yn National Centre for Radio Astrophysics

Nz

NCRA-TIFR

Internal Technical Report
GMRT/ R-267

Python Based Interactive command line & GUI environment for OnlineV2

Deepak Bhong

Email: deepak@gmrt.ncra.tifr.res.in

Revision Date: Aug. 2015 Modification/ Change 1

Ver. 1 Initial Version R-267

Abstract

This report is about the design and working of interactive command line
environment for OnlineV2. OnlineV2 is control and monitor software for up-
graded GMRT antennas and other sub systems like correlator, GAB etc devel-
oped at GMRT. OnlineV2 is generalized framework to support future expan-
sion.

Interactive command line environment uses Ipython as interactive com-
mand line shell, so it is called Python environment. It can have as many as 32
controlling command line terminals, all communicate with OnlineV2 through
Hub using TCP/IP protocol.

This report also gives description about wrapper functions created on top
of NOVAS astronomical library. The algorithms used by NOVAS are based on
vector astrometry theories and the IAU resolutions. The wrapper functions are
written for C programming language as well as scripting langauge i.e. PHP,
PYTHON and PERL.

Contents

1

Introduction

1.1 OnlineV2 e e
1.2 Interactive command line environment for OnlineV2
1.3 WhyPython?

Components of Python Environment

21 Userinputterminal
2.2 Python EnvironmentHub
2.3 Application Programming Interface API in Python for OnlineV2 . . .

Design

3.1 Design of Interactive Scripting environment
3.2 Communication withOnlineV2
3.3 Application Programming Interface(API) and Procedures

Astronomical Calculations

41 NOVAS . . e e
42 Wrapper functions for NOVAS
43 Wrapper functions for PHP, PERL and PYTHON

Under Development

5.1 Monitoring APl in Python for OnlineV2
5.2 Background task manager
53 GUI e

References

11
11
11
11

13
13
13
13

14

1 Introduction

1.1 OnlineV2

OnlineV2 is an upgraded control-monitor software for GMRT. OnlineV2 can com-
municate with the antennas and antenna subsystems using the fast Ethernet en-
abled over the optical fiber. The design and development of new monitor and con-
trol modules which use a Rabbit RCM 4300 processor and of software running on
this module and on the central control computer (OnlineV2).

OnlineV2 does not require an antenna-base computer like the ABC in the cur-
rent system since the Rabbit MCM cards can easily handle both antenna-base op-
erations and the communication traffic. In this upgraded system, the Rabbit MCM
directly communicates with OnlineV2 through the Layer 2 network switch at the
antenna base and Layer 3 switch in the receiver room and can play the supervisory
role at the antenna base, when required.

The Linux, Apache, MySQL, PHP (LAMP) model of free and open software is
used in the development of OnlineV2. MCM cards use Dynamic C and OnlineV2
is coded in C.

1.2 Interactive command line environment for OnlineV2

To fulfill the need of command line input, grouping of commands to create cus-
tom procedure and automation in execution of science observations and system
tests, interactive command line environment is developed. Logical execution of
OnlineV2 commands is achieved by using IPython as command line input shell
for control terminal, so power of PYTHON can be utilized in decision making on
basis of complex logic of tasks. A python package is developed to control all GMRT
subsystems namely Servo, FPS, Front-End, GAB(GMRT Analog Backend) and Sen-
tinel.

These libraries are developed using Object Oriented Programming in Python,
which can act as API(Application Programming Interface) for controlling the sys-
tems.

The format of a command follows Object Oriented Design, some example
command are listed below.

¢ move servo of C00 antenna in elevation by +10 degree
$ C00.servo.mvelev(10d)

¢ default setting of GAB of C00 antenna
$ C00.gab.set()

¢ Send GAB setting command to defined sub array of antennas.

$ gab.set()

1.3 Why Python?

Python is a very-high-level dynamic object-oriented programming language. It is
designed to be easy to program and easy to read. It is very popular in scientific
community. Python is an advanced scripting language that is being used success-
tully to glue together large software components.

List of software where PYTHON is used.

CASA uses PYTHON for standard scripting interface, with IPYTHON ex-
tension for interactive command line use.

Taurus is a python framework for control and data acquisition CLIs and GUIs
in scientific/industrial environments. It supports multiple control systems or
data sources: Tango, EPICS etc. New control system libraries can be inte-
grated through plugins.

Sagemath is free, open source math software that supports research and
teaching in algebra, geometry, number theory, cryptography, numerical com-
putation, and related areas.

Spacepy is Python Based Tools for the Space Science Community. SpacePy
is being used for major space science projects and at several government and
educational institutions.

2 Components of Python Environment

2.1 User input terminal

It is based on IPython shell. IPython is an interactive shell built on top of Python
interpreter. It has support for terminal, GUI and WEB interface. Qt library is used
for GUI interface.

One can create multiple number of users, currently this number is limited to 32.

File Edit View Terminal Tabs Help

cms@incms :~/pyenvs xterm &

[1] 26815

cms@incms:~/pyenv$ users

GMRT ONLINE COMMAND LINE USER INTERFACE

1: addlist 'source.list'
= addlist{'source.list')
0 vlacal.list
1 source.list

userS@GMRT [3]: gts '3cl47’

-------------- > gts('3c147')

Source Not found in list: vlacal.list

Source Found in : source.list

3C147 05h42m36.13s +49d51'07.2" 2000,

source from source.list : 85h42m36.13s +48d51'07.2"

Precessed RA(app): 5h43md6.04s Dec: 49d51'22.16"

rise : 7h56m25.11s transit: 13h39m34.62s set :19h22m44.12s

use RT [4]1: fps.

fps.initfps fps.read_version fps.set_low rpm fps.set_min_angle
fps.run_to_preset fps.set max_angle

[4]: fpsi

Figure 2.1: Python Control Terminal

Figure 2.1 shows OnlineV2 user input in gnome terminal.

2.2 Python Environment Hub

As its name suggest it acts as router to OnlineV2 for all user input terminals. It
is written in Python language. All user input terminals gets connected as client to
HUB through socket. Also Hub is connected using TCP/IP socket onlineV2. Figure
2.2 shows output from HUB while it is in running mode.

™ deepak®@astro1:/datal/deepa...(astrol.gmrt.ncra.tifr.res.in) — + X
File Edit View Search Terminal Help

[deepak@astrol pyenv-dvl]$./pyenv_hub =1
Successfully connected to onlinev2

starting hub on astrol.gmrt.ncra.tifr.res.in port 19999
Ready for accepting user connections

Command number @

new connection from ('192.168.3.6', 500082)

Command number @

new connection from ('192.168.3.6', 50083)

Command number @

received test from ('192.168.3.6"', 50003)

<class 'bytes'>

Sending command to online V2

<class 'bytes'> 1798

Figure 2.2: Hub

2.3 Application Programming Interface API in Python for OnlineV2

It has two components.
¢ Control API
* Monitor API

Control API is used to send control commands to GMRT antenna or subsystems.
And Monitor API will be used to read parameters related to GMRT antennas or
systems, which are set or changing with time like servo position, temperature etc.
Both these package follow Object Oriented design and are fully compatible as third
party PYTHON package, which can be imported in IPython shell.

Monitoring API is Object Oriented interface to read shared memory created by
OnlineV2. The monitoring API is under final development.

User input terminals are uses both Control and Monitor API. They are imported
at start of IPython shell as Python package.

3 Design

3.1 Design of Interactive Scripting environment

HUB ™ ONLINEV2

Background \\.E
ad! task
manager /fg

W

lr/..--"' "'-~..\ P S
(- =,
\\l_l_Jser n AN

.

Shared Memory

Python Environment

Figure 3.1: Design of Python scripting environment for OnlineV2

Figure 3.1 shows the architectural block diagram of interaction scripting environ-
ment for OnlineV2 that has been successfully implemented and tested with several
antennas. In Figure 3.1, "userl’, ‘user2’.....represent the user terminals which are
used by telescope operators to interface with OnlineV2 which in turn will interface
with all the GMRT subsystems at the antenna base and in the CEB. The user ter-
minals, Hub and background task manager - all part of the Python environment
interface with the shared memory which has all the control and responses from
OnlineV2 recorded.

3.2 Communication with OnlineV2

Interactive user input terminals are connected to HUB through TCP/IP sockets.
And HUB is connected to OnlineV2 through a socket. Communication between
USER and OnlineV2is handled by HUB. User communicates with OnlineV2 through
HUB using protocol based on C structure.

The listing 1 shows common structure for all commands send to OnlineV2 from
user.

Listing 1: Common command structure

typedef struct {
int user_no;
int oandono;
int array ;
int no_of_antennas;
char antenna_list[4][32];
char system[16];
} common;

The listing 2 shows structure used for servo commands. It is same structure
which is used by OnlineV2 for communication between Onlinev2 and servo system
of antennas.

Listing 2: Servo command structure

typedef struct {
int seq;
char timestamp[64];
char system_name[16];
char op.name[16];
short int number_param;
char para_name[32][16];
char para_value[32][16];
} servocmd;

Structure shown in listing 3 is used to send commands which are connected
through RABBIT MCM. This is same structure used for communication between
OnlineV2 and systems connected through rabbit MCM.

Listing 3: Rabbit MCM command structure

typedef struct {
int seq;
char timestamp[64];
char system_name[16];
char op.name[16];
short int number_param;
char parameter_name[32][16];
char Argument Ch1[32][16];
char Argument Ch2[32][16];
} omd;

3.3 Application Programming Interface(API) and Procedures

It is OBJECT ORIENTED PYTHON package to give control and monitor commands to
OnlineV2. Architecture overview of API with PROCEDURES are shown in figure 3.2

: NOVAS
onnectio Servo FPS

User 1 Antenna

L System Procedure

|

L User Procedure

|

IPython Shell

Figure 3.2: Object Oriented design of API

Figure 3.2 shows class hierarchy of different systems. Connection, GAB, NO-
VAS, FE, Servo and FPS represent base class for handling socket connection to

9

OnlineV2, commands related to GAB, commands related to NOVAS, commands
related to FE , commands related to servo and commands related to FPS respec-
tively.

User and Antenna represent another derived class which has relationship with
above mentioned classes. Upto this part it called as Control API.

Using this API system procedures are written and again these are used in user
procedure layer, which are directly used in IPython shell.

10

4 Astronomical Calculations

4.1 NOVAS

The NAVAL OBSERVATORY VECTOR ASTROMETRY SOFTWARE (NOVAS) is a soft-
ware library for astrometry-related numerical computations. It is developed by
the Astronomical Applications Department, United States Naval Observatory. We
have studied different libraries i.e. STARLINK, IAUSOFA, astropy and NOVAS for
use of astronomical calculations. NOVAS has capability to get precessed position
of celestial objects as well solar system objects like SUN, Jupiter and other planets
and was selected by us for use in OnlineV2.

NOVAS consist of several astronomical utilities in C language. To call these
several wrapper functions were developed as explained below.

4.2 Wrapper functions for NOVAS
Following are wrapper functions implemented in C.

1. precess_radec_mean: It returns mean value of precessed right ascension and
declination to given epoch.

2. precess_radec_app : It returns apparent value of precessed right ascension and
declination to given epoch.

3. radec2azel : It returns astronomical azimuth and elevation for given RA and
DEC, at given time, for given location i.e. latitude and longitude.

4. riseset : It returns rise, transit and set time of stars for given time.

5. get_Ist : It returns local sidereal time for given time in seconds. Depending
of option it gives mean or apparent LST

Following is list of C function prototypes.

Hms hrs_hms(double hrs);

Dms degs.dms(double degrees);

int precess.radec.mean(double ra.hrs ,double dec.degs , time.-t epoch2 ,double *pra ,double xpdec);

int precess.radec.app(double ra_hrs ,double dec.degs , time.t epoch2 ,double :pra ,double *pdec);

int radec2azel(time-t secs, double ra, double dec, int ref.opt,on.surface xlocation, double +az, double xel);
int riseset(double ra, double dec, time-t secs, double xrisetime , double xsettime, double x*transittime);
double secs2jdutc(time_t secs);

double get_lst(time_t curr_time_secs, int Ist_type);

4.3 Wrapper functions for PHP, PERL and PYTHON

Native interface functions in PHP, PYTHON and PERL for different functions de-
scribed in subsection 4.2 are implemented using SWIG. SWIG is a software de-
velopment tool that connects programs written in C and C++ with a variety of
scripting languages.

Examples code in PERL and PHP are given below

11

#! /usr/bin/perl -w
use gnovas package
use gnovas;

$secs = time();

To calculate local sidereal time

S$lst=gnovas::get lst(int($secs),1);

printf("\nLocal sidereal time: $lst\n");

To get rise, transit set time of

$ra = 1; # in hours

S$dec = 1; # in degrees
($stat,$rise,$set)=gnovas::riseset(Sra,%dec,int($secs)};

printf("\nRise and Set time: $rise $set");
($stat,$ra,$dec)=gnovas: :precess_radec_app($ra,Sdec,int(Ssecs));
printf("\napparent precession $stat\n $ra $dec");
($stat,$ra,Sdec)=gnovas: :precess_radec_mean($ra,$dec,int($secs)});
printf("\nmean precession $stat\n $ra $dec");

<7php

gnovas interface file

require({'gnovas.php');

Get LST

$lst = get lst{time(MULL),1};

printf{ "LST in hours @ GMRT $lst\n"};

$RA = 1; # hours

$DEC = 1; # degree

Calculate rise, transit and set time

$output = riseset({$RA,$DEC,time(NULL)};

printf{"status $output[@] rise:$output[l] set:$output[2], \n"};

mean precession

$output = precess_radec_mean($RA, $DEC, time(MULL));

printf{"status $output[@]mean ra(hrs):$output[l] dec(deg):$output[2], \n"};
apparent precession

$output = precess radec_app{$RA,$DEC, time{MNULL)};

printf{"status $output{@]app ra(hrs):$output[1l] dec(deg):$output[2], \n"};
7=

While the wrapper function in C are developed so that OnlineV2 software can
call the NOVAS routine for precession, time conversion and other astronomical
calculations, the PERL and PHP wrapper are provided to be able to interface the
NOVAS library for web-based operations.

12

5 Under Development

5.1 Monitoring API in Python for OnlineV2

Monitoring API will be python package to read status of command, parameters
related to antenna, correlator, GAB and other systems. These monitored parame-
ters can be used in command file, since command file is itself PYTHON script. And
using these parameters as input, logical decisions can be taken while running back-
ground task. Which will help in automation of science observations and systems
tests.

For example if any antenna applies brake, hold command can be issued without
human intervention. Similar known problems can be handled by software itself.

5.2 Background task manager

It will handle background task, such as science observation or system test with
out affecting user input terminal. That is task will run in background and input
terminals will be freed to accept other commands from standard input.

53 GUI

GUI using python and QT is under development. We will make use of the GUI
developed for direct interface to OnlineV2 (see report by Naresh Sisodiya in this
OnlineV2 report series).

13

http://ncralib1.ncra.tifr.res.in:8080/jspui/handle/2301/638

6 References

www.python.org

www.ipython.org

Explanatory Supplement to the Astronomical Almanac - by Sean Urban (Editor), P.
Kenneth Seidelmann (Editor)
www.aa.usno.navy.mil/software/novas/novas_info.php

WWW.SWig.org

14

	R267
	R267
	Introduction
	OnlineV2
	Interactive command line environment for OnlineV2
	Why Python?

	Components of Python Environment
	User input terminal
	Python Environment Hub
	Application Programming Interface API in Python for OnlineV2

	Design
	Design of Interactive Scripting environment
	Communication with OnlineV2
	Application Programming Interface(API) and Procedures

	Astronomical Calculations
	NOVAS
	Wrapper functions for NOVAS
	Wrapper functions for PHP, PERL and PYTHON

	Under Development
	Monitoring API in Python for OnlineV2
	Background task manager
	GUI

	References

