Subarray Operation at GMRT

Jayaram N Chengalur
12/Dec/2000

*
i
H

1 Introduction

This writeup documents the multiple subarray version! of the DAS software. Up to 8 sub-
arrays can be active at any given time. Two different subarrays can be tracking different
sources, have different RF frequencies, and different LTA periods. However they must have
he same baseband bandwidth. The principal immediate application of subarray operation
is to permit simultaneous astronomical observations and maintenance /data quality checking.
This current version of DAS is also a step towards a version that would support features
that are standard in any astronomical observatory. Although not all these features are
implemented yet,it is hoped that they can be done in an incremental fashion.

The various programs that one has to run remains the same as before, viz. acq dassrv ,
acq30 , sockemd ,collect , mon , record . However the commands that these programs
fccept have changed.

'S

2 So Many Subarrays, So Little Time

As before prior to starting an observation session, one needs to start the programs?, dassrv
. sockermd , acq30 , collect . The order in which these programs are started is irrelevant.
Once this chain is in place, the programs have to be initialized vi4 the init command. This
command is now a privileged command, i.e. it can be issued only by ONLINE user0, which

‘f by convention the on duty telescope operator. Initialization parameters can be passed via
the init.hdr file as before. Please note that the parameters in the init.hdr file (eg.
the number of channels to record, and the LTA duration) are common to all
subarrays! In record however, one can integrate over and above the LTA given
in the init.hdr file. A sampler selection can no longer be made in the init.hdr file. Instead
the data for all samplers with valid connections in the corrsys.hdr file will flow from the
correlator PC to collect on mithun. As described in more detail below, the user can select
agsubset of this data for monitoring and recording. Since it is not possible to add antennas
later in the session, it is important to initialize with all available or potentially available
antennas®.

1The documentation is meant for acq30 ver0.98, collect ver1.00, fstop ver0.96 and dasstv ver(.92.

INote that since different software at the GMRT evolves more or less independently, dassrv and sockemd
have to serve as the infinitely elastic substance that stands between the irresistible ONLINE force and the
immovable correlator object. As such they perform various contortions to dynamically map between the
conventions used by these two different systems, and have hence become, most regrettably, crucial elements
in the DAS chain. Should dassrv or sockcmd crash, all active subarrays will be orphaned and will have to
be killed by hand (using getemd), after which the DAS chain will need to be restarted.

3DAS also requires a BandMask, i.e. which sidebands of which polarizations to record. This is a bitcode
with the first four bits being USB_130, USB_175, LSB_130 & LSB.175 respectively. A BandMask of 3 hence
implies record the 130 USB and the 175 USB.

OK. Now having initialized the DAS chain, one needs to start some observation with a
specified set of antennas. This is where things get a little hairy. To start an observation
you need to first have control over where the antennas will point. For this the ONLINE
master will give you, the user, some subset of the available antennas. This is the ONLINE
subarray that you could control, point at your calibrator, or your source, set the wrong LOs
for etc. We will refer to it as the ONLINE “permitted subarray”. ONLINE however
allows the user to define a subset of the “permitted subarray” as the “(in)use subarray”.
Commands that are typed by the user at the ONLINE prompt are sent only to the the
antennas in the “(in)use subarray”. So if for whatever reason you wish to exclude an antenna,
given to you by the ONLINE master you can. The subarray that is most familiar to most
users is this “(in)use subarray”, it is the 6t of antennas that are displayed in the “subw’
window of ONDISP . The “permitted subarray” is shown the “gens” window which mest.

ers usually do not visit. The ONLINE master can dynamically reallocate the antennas
mong users (hence the “permitted subarray” can dynamically change). So if some antenna
is misbehaving, it could in principle be removed from the users permitted subarray and its
control could be handed over to the engineer on duty so that repairs and testing can be done.
One the antenna is verified as repaired, it could again in principle be given back to the users
“permitted subarray” .

DAS however has the following constraint. A single lta file cannot contain data for
a variable number of antennas. That means that even if an antenna is taken away from
the “permitted subarray” one needs to continue to record its data. Further although some
antenna may not be available at start the observation, it might become available later.
But even if one wishes to use an antenna only at some point in the future one has to start
recording its data from the start of the observation. To allow for such situations, DAS allows
the user to define a subarray whose data is to be recorded. This is the “recording subarray”
and it can be a superset (but not a strict subset, see below) of the ONLINE “permitted
subarray.” The upshot is that any user can record the data from any antenna, i.e. even

tennas that are not under his/her control. Of course as far as the user is concerend this
‘ta is likely to be garbage.

Although it is permitted for one user to record data from antennas that “belong” to an-
other user (i.e. which are in another users ONLINE “permitted subarray”), it is important
that one and only one fringe stop model be applied to any -given antenna. Hence a user
can fringe stop* only those antennas that are in his/her ONLINE * ‘permitted array”. In
DAS terminology this is called the “model subarray”, and it is exactly the same as the ON-
LINE “permitted array”. Further the “model subarray” has to be a subset of the “recording
subarray” (i.e. you cannot fringe stop antennas that you are not recording) and hence the
“recording subarray” must be a superset of the ONLINE “permitted subarray”. Whew.

Fine. Great. Wonderful. But what does this translate to on the ground, or more
accurately, at the kumbh terminal? To find out, take a deep breath, skip the rest of this
section, go straight to appendix A. If you continue with this section, you could learn various
things about the DAS which may be vaguely useful. '

4

i.e. supply a “model” in DAS terminology

3 DAS Subarrays

Let us start with a breif overview of the DAS. Data from the correlator is read into the PC
via a special purpose PCI card, (the “fishcamp” card) by the device driver for that card
(pcidev.o). This device driver is automatically started when the correlator PC (Duall) is
booted. This very raw data is then re-organized by a higer level program, viz. acq . acq
is also responsible for putting timestamps on the data. Neither the device driver nor acq
have any idea as to what the correlator setup is, or what antenna is connected to which
sampler. They simply collect whatever data is presented to them by the hardware. The next
program in the chain is acq30 . This is the program which understands antenna connectivity
(and also subarrays). The antenna connectivity is read from a header file, the “corrsys.hdr”
file. acq30 also computes (separately for each antenna) the required fringe stopping and
qelay tracking parameters and supplies them to a program called fstop whose job is to
oad these parameters in a time critical fashion into the control cards of the correlator. acq
and the device driver are essentially free running, they do not accept user commands. User
commands are accepted from a message queue by acq30 . acq30 does not care from where
commands appear on this queue, if it finds a command on the queue it attempts to execute
it. There are currently two ways of putting commands on the queue, one via the program
getcmd , the other via sockemd . getcmd is largely meant for debugging. It runs on
the corelator PC and passes commands typed on stdin to acq30 . sockemd is what most
users require, it also runs on the correlator PC but it reads commands sent to it across the
network by ONLINE (via the program dassrv) and passes them on to acg30 . In this
section “raw” acq30 commands are described. This is what you would type to getemd .
In appendix A, the ONLINE commands that achieve the same thing are listed. sockemd
and dassrv are responsible for mapping from what ONLINE gives to what acq30 needs.

After having set up the DAS chain, the next step is to define the various subarrays
involved. The DAS software identifies each observation (“project”) with a ProjectCode .

he ProjectCode is a 7 letter code that intended to be a unique identifier of the project®. A

oject has a “recording subarray” (which is fixed) and a “model subarray” (which can vary
with time, provided that it is at all times a subset of the “recording subarray”). Projects
are defined using the command addproj . This command requires an antenna mask and a
band mask. These masks specify the antennas and polarizations/sidebands whose data is to
be recorded. addproj takes an argument which is the name of a “scan.hdr” file, in which
these various masks (and other useful information) is given. See appendix B for an example
“scan.hdr” file. Having defined a project, one can then start and stop “scans” on different
sources. The corresponding commands are startscan and stopscan . The startscan takes
an argument which is the name of a “scan.hdr” file, and the argument to stopscan is the
ProjectCode . The startscan command associates a source (and also RF frequencies,
etc) as well as a model antenna mask and model bandmask with the project. These masks
specify the antennas for which the “model” (i.e. fringe stopping) will be applied.

The first startproj command received by acq30 starts the data flow. The data flow
will then continue for as long as the DAS chain is alive. In particular, even if -there is no
active subarray, the data will continue to flow for all the antennas that were specified in the
“corrsys.hdr” file. A number of bookkeeping parameters can be specified in the “scan.hdr”
file. These are read by acq30 and passed on to collect . However for backward compatibility
with xtract and other offline programs not all these parameters them will be recorded into

%j.e.it is suitable to use as an identifier key to search a putative archive of observations.

the lta file. When it is possible to update the offline software, these parameters will be
recorded into the lta file. The bookeeping parameters include:

1. FLUX: The I, Q, U and V fluxes of the source.

2. MJDO: The epoch of RA_DATE and DEC_DATE.

3. RADATE, DEC_DATE: The apparent right ascention and declipation of the source.
4. DRA, DDEC: The rate of change of RA and DEC (for solar system objects).

5. FREQ, FIRST_LO, BB_LO: The frequency of the reference channel (i.e. channel 1),
the first and fourth LO settings.

@ . CH_WIDTH: The channel widths.
7. ID : The source ID.

8. NET_SIGN: Positive means that sky frequency increases with channel number, negative
means that sky frequency decreases with channel number.

9. REST_FREQUENCY:: The rest frequency of the line being observed.
10. LSR_VEL: The velocity corresponding to the reference channel frequency.

11. CALCODE: A Calibrator Code.

12. QUAL: Source qualifier (useful for source association in offline analysis).

Data is recorded into a disk file (the “lta” file} using the program record . Data can

also be monitored online using the program mon . record and mon need to be told which

Qroject’s data they are to record (or monitor). This is specified via the ProjectCode which
as to be the first argument to the record or mon program.

The basic unit of integration of the visibility is the STA cycle, which is about 128 milli-

_seconds. This integration (called Short Term Accumulation) is done in the hardware. The
next level of integration (Long Term Integration, LTA) is done by acq30 . Since this is
common to all subarrays, it will presumably generally be left at some small value like 8 STA
cycles (i.e. ~ 1 second}. However for most projects this is a very short integration time and
most observers would like a longer integration in order to keep the data volume low. This
further level of integration can be done by record . The amount of integration to be done
by record is specified as a command line option (argument 3 on the command line, see
Appendix A) and is in units of the LTA already done by acq30 . Thus for example if one
keeps an LTA of 8 in acq30 and asks record to do a further 16 integrations before writing
to disk, the effective integration time is 16 x 8 x 0.128 = 16.4 seconds.

When all the scans for a given project are over, the project can be deleted with a delproj
command. This command will cause any record (or mon) program that is active for this
project to exit. After all pl‘OJECtS are over, one can kill the complete DAS chain using the
finish command.

%Note that the inter channel spacing need not equal the channel width if for example only every alternate
correlator channel is recorded.

Once a project has been defined using the addproj command, no other project with the
same ProjectCode can be defined. Also no project with an overlapping “model subarray”
will be accepted. Once a delproj command is given however one can define a new project
with the same “model subarray” or Pro JjectCode as the old project.

4 Timing, Latencies, etc.

acq30 updates the model (i.e. the fringe parameters) once every ModelCycle, which is
currently set to 16 STA cycles. The data for each STA interval is given a unique and
monotonically increasing sequence number (DataSeq) by acq . The model is updated every
time DataSeq is an integer multiple of ModelCycle. It is desirable that each LTA cycle
ontains an integer number of ModelCycles and that the start of a new LTA interval coincides
‘ith the start of a new ModelCycle. It is hence highly recommended that the LTA interval
be an integer multiple of the ModelCycle (i.e. LTA should preferably be an integer
multiple of 16). All programs will of course work even if LTA is not an integer multiple of
the ModelCycle, or even if LTA is less than the ModelCycle. In particular setting LTA=1 is
allowed, although if you also record all channels with LTA=1 be prepared for very large data
sets. After initialization acq30 waits for a “strtndasc” command before it starts acquiring
data. The data is acquired starting with the first encountered DataSeq that is an integer
multiple of LTA. Thus there could be a delay of up to 1 LTA cycle between the first instance
of 2 “strtndasc” command and the actual start of data acquisition by acq30 .

Commands issued from ONLINE are sent across the network to the Correlator PC,
where there are placed on a message queue by sockemd . This queue is polled for fresh
messages every 40 ms by acq30 . acq30 executes commands as soon as it reads them.
The delay between issuing a command from ONLINE to its being executed by acq30 is
dominated by the polling intérval in acq30 , and is in general small compared to the LTA
interval.

Once acq30 executes a command, the information about the change in state is commu-
nicated across the network to collect . This information is sent asynchronously, i.e., collect
generally receives the information about the change of state before the data affected by this
change of state reaches it. collect reflects this change of state in its shared memory (which
is accessed by record and mon) only after the data affected by this change reaches it.
In the meantime the information is placed in an “event queue”. Thus for example, when
ONLINE issues a “strtndasc” command, collect will queue this request until the Correla-
tor data corresponding to times later than the start command reaches it. In the meantime
collect prints an informational message
* NewScnReq Prj prjcode (ScanTabId=n)

50 that the user knows that this command has been received and is pending. Since col-
lect waits for the affected data to reach it, it effectively executes commands only at LTA
boundaries. When collect actually reflects the new state in its shared memory, another
informational message |

* ScanStart Prj prjcode (ScanTabld=n)

is issued to let the user know that the data itself has arrived and that record should start
recording etc. The length of time that a command stays on the queue depends on the
pipeline delay between acq30 and collect . The command queue is 8 commands long, the

DAS chain will collapse if more than 8 commands are pending”.

record prints an “am alive” message once every record interval (LTA2 x LTA), so if
LTA2 is large there can be a long wait between collect announcing that a new scan has
been started and the user seeing output from record . record has started recording from
the first good LTA interval though, so no data is actually lost.

A queue length of 8 commands is probably generous, but I am willing to be surprised.

5 Appendix A

This is the sequence of operations to be followed when using the subarray DAS software.

1 duall % corr_config 1

2 duall % acq
3 duall % acq30 , sockemd , fstop

=

mithun % collect
chitra % dassrv

o

6 ONLINE > initndas’/t/init.hdr’

7 ONLINE > prjtitle ’title’

. 8 ONLINE > prjobs 'observer’

9 ONLINE > tparlr21L1 1L24L14L2 ...

10 ONLINE > prjfre
11 ONLINE > lnkndas

12 ONLINE > ante N al a2 ...aN
13 ONLINE > initprj '"CODE’

14 ONLINE > gts 'source’
15 ONLINE > sndsacsrc(1,Nh)

setup parameters are read from the file “cnd.file’
in the directory pointed to by the environmen
variable “ACQ_DIR”.

The order is irrelevant. The sampler connectivity
as well as the baseband bandwidth (CLK_SEL
is read from the file “corrsys.hdr” in the di
rectory pointed to by the environment variabl
“ACQ_DIR”. The antenna co-ordinates etc. ar
read from the file “antsys.hdr” in the direc
tory pointed to by the environment -variabl
“SYS_DIR”. Users do not have write permissiol
for this file.

order unimportant, can be run before (3).

order unimportant, can be run before (3) or (4)
However, should dassrv die during the observa
tion, all subarrays will be orphaned, and will hav
to be killed by hand using getcmd .

This is a privileged command, i.e. can only b
executed by user0. Unlike previously, there i
no sampler selection possible in the init.hdr file
The parameter is the absolute path name of th
init.hdr file

Title of the project. Up to 80 characfers. Use
command.

Name of the observer. Up to 8 characters. Use
command.

Observing frequency etc. User command®,

Copy project parameters into ONLINE .share;
memory. User command.

Setup the link between ONLINE and DAS. Use
Command®

Antennas to be recorded. User command
Initialize the project with given CODE. Th
CODE can be upto 7 characters long. Note tha
ONLINE maps all characters into uppe
case. User Command.

Get source parameters. User command.

Track given source. User command.

*Note that by default the bandmask is set to 3, i.e. 130_USB and 175_USB, to use 130_LSB and 175.L5B,
set tpa{il) to Oxc’. :
5This has to be done only once per ONLINE session.

16 mithun % record CODE file.lta [LTA2] Start recording data for the project CODE.

17 mithun % mon CODE ([options]

18 ONLINE > strtndasc

19 mithun % dasstat -v

20 ONLINE > stpndasc
21 ONLINE > stpprj

22 ONLINE > hltndass

Note that ONLINE maps all characters
into upper case. The optional parameter
LTA2 is how much integration to do in units
of the LTA1 already done by acq30 . So for
example if you give 16 in the init.hdr file and 8
here, then the data in the recorded lta file has
an effective integration of 8 x 16 = 128 STA
cycles. If you set LTA2 to #m, then record
will compute the median instead of the mean
of the # LTA1 records. This is desireable in
certain instances (primarily when there are a
few extreme outliers.)

Monitor data for the project CODE. Note:
(1) mon is usually easier to use via the
TCL/TK script mon.tcl. (2) mon has two
particularly useful options for weak sources,
viz. “-a” to average over channels and “1” to
do a specified amount of LTA2, i.e. integration
over and above that done by acq30 .

Start scan on the source got by the last gt-
src. Fringe stopping is done for all antennas
that are in the ONLINE “permitted” sub-
array (i.e. those antennas that you see in
the ONDISP gens subwindow under the ti-
tle SUBN PERM, where N is your ONLINE
subarray number. Note that this is a superset
of the antennas that you see in the ONDISP
subarray window (subw) or under the title
USRN USIN in the gens window. Frequencies
can be changed from scan to scan by setting
tpa and running prjfre. User command.
useful diagnostic program that shows the
antennas being recorded, the source being
tracked, the LO settings being used etc.

Stop scan on source. User command.

Stop the project, also causes record and mon
(corresponding to this users’ CODE) to exit.
User command.

Stop the DAS session. This is a privileged
command and can be executed by user0 only.

6 Appendix B

Sample scan.hdr file for getemd.

{ SubArray0.def

ANTMASK = 3fffffff

BANDMASK= 0003

SEQ =0

INTEG = 0.396290

DATE-0BS= Sun Feb 28 00:00:00 1999

OBSERVER= me

PROJECT = secret

CODE = fullcod
.UBJECT = .3C468.1B

RA-DATE = 357.724972

DEC-DATE= 64.668272

MID_REF = 51236.770833

DRA/DT = 0.000000

DDEC/DT = 0.000000

F_STEP = 125000.000000

RF = 3256000000 325000000
FIRST_LO= 255000000 255000000
BB_LO = 70000000 70000000

} SubArray0

Appendix C (Diagnostic Utilities)

. The subarray DAS appears to be stable. Most of the problems (not surprisingly) occur
because of confusion between which subarray is relevant for a given purpose. Please read
 the section on Subarrays for the hairy details on subarrays. There are also several utilities
to determine the current status of DAS. ONDISP has new sub-window, called dasw which
gives the status of all the defined projects. Similarly there is a program called dasstat
which gives a list of all currently active projects. dasstat has a particularly useful option
“-v" (verbose) which gives the antennas in each subarray, as well as the source that is being
tracked, the first and baseband LO settings etc. This can on occassion be a reassuring thing
to check.
record and mon will wait for the next record block before starting, this could be a long
wait if you have a large LTA. If record does not find the specified ProjectCode it the list
of active projects, it will sit there patiently waiting for the ProjectCode to appear. This
could be a finite wait if you intend to start a scan for that ProjectCode sometime soon,
or it could be for ever if you have made a typo in the ProjectCode supplied to record .
The common mistake is to forget that ONLINE maps everything into upper case. When
record is waiting, it types the message : ‘‘* Waiting for ScanStart’’

