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1 Introduction

This document describes a method for computing the antenna dependent amplitude
and phase from the visibility data for a point source. The method can be extended
to include data from extended sources for which a good source model is known.

Interpretation of the antenna dependent quantities in terms of the antenna and
system temperatures is also explained. Using the antenna dependent quantities from
a database with good signal-to-noise ratio, the effective system temperature valid
for interferometry data can be monitored.

The equations given here are exact and are implemented in the programs antsol1

and rantsol2, which operates on the GMRT visibility database written in the native
LTA format.

2 Problem definition

The normalized cross-correlation function (the correlator output), measured by an
interferometer using two antennas, antenna i and antenna j, in the limit I �
Tsysi

/ηi, can be written as:

ρObs
ij = ρObs(uij, vij, wij) =

+∞∫∫
−∞

I(l,m)

√
ηiηj

Tsysi
Tsysj

e2πι(uij l+vijm+wij

√
1−l2−m2+φi−φj)

dl dm√
(1− l2 −m2)

+ εij

(1)

1http://langur.ncra.tifr.res.in/˜sanjay/Offline/offline
2http://langur.ncra.tifr.res.in/˜sanjay/Offline/offline
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where I(l,m) is the sky surface brightness, ηi is the sensitivity and Tsysi
the

system temperature of the antenna i in units of Kelvin/Jy and Kelvin respectively,
εij is the additive noise on the baseline i-j, and φi is the antenna based phase of the
signal. The rest of the symbols have the usual meaning.

In practice however, the antenna based amplitude (
√

ηi/Tsysi
) and phase (φi) are

potentially time varying quantities. This could be due to changes in the ionosphere,
temperature variations, ground pick up, antenna blockage, noise pick up by various
electronic components, background temperature, etc. Treating the quantities under
the square root in the above equation as the antenna dependent amplitude gain,
these antenna dependent quantities can be written as complex gains gi = aie

−ιφi

where ai =
√

ηi/Tsysi
. For an unresolved source at the phase tracking center,

variations in this amplitude will be indistinguishable from a variations in the ratio
of η and Tsys.

In terms of gis, we can write Eq. 1 as

ρObs
ij = gig

?
j ρ
◦
ij + εij (2)

where

ρ◦ij =

+∞∫
−∞

+∞∫
−∞

I(l,m) e2πι(uij l+vijm+wij

√
1−l2−m2) dl dm√

(1− l2 −m2)
(3)

The use of the word “antenna based gains” for gis result into confusion for many
and needs some clarifications. gis are called complex “gains” since they multiply
with the complex quantity ρij. For an unresolved source, |gi| represents the fraction
of correlated signal and arg(gi) represents the phase of the correlated part of the
signal from the antenna with respect to the phase reference (usually the reference
antenna). It is in this sense that it is referred to as “antenna based” gains. gis are
antenna based but a function of direction in the sky since, as defined here, they
include Tsys which in turn includes the sky background temperature. However, here
we assume that the angular scale over which gis vary is larger than the antenna
primary beam (isoplanatic case).

For an unresolved source at the phase tracking center, all terms in the exponent
of ρ◦ij are exactly zero. ρ◦ij in this case would be proportional to the flux density of
the source.

Given ρObs
ij and knowing ρ◦ij the goal is to determine the antenna dependent

complex gains gis.
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3 Solution for the complex gains

Assuming that the antenna dependent complex gains are independent, with a gaus-
sian probability density function (this implies that the real and imaginary parts are
independently gaussian random processes), one can estimate gis by minimizing, with
respect to gis, the function S given by

S =
∑

i,j
i6=j

∣∣ρObs
ij − gi g?

j ρ◦ij
∣∣2 wij (4)

where wij = 1/σ2
ij, σij being the variance on the measurement of ρObs

ij

Dividing the above equation by ρ◦ij (the source model, which is presumed to be
known - it is trivially known for an unresolved source), and writing ρObs

ij /ρ◦ij = Xij,
we get

S =
∑

i,j
i6=j

∣∣Xij − gi g?
j

∣∣2 wij (5)

If ρ◦ij represents the structure of the source accurately, Xij will have no source
dependent terms and is purely a product of the two antenna dependent complex
gains.

Expanding Eq. 5, we get

S =
∑

i,j
i6=j

[
|Xij|2 − g?

i gjXij − gig
?
j X

?
ij + gig

?
i gjg

?
j

]
wij (6)

Evaluation ∂S
∂g?

i
and equating it to zero 3, we get

∂S

∂g?
i

=
∑

j
j 6=i

[
−gjXijwij + gigjg

?
j wij

]
= 0 (7)

or

gi =

∑
j

j 6=i

Xijgjwij∑
j

j 6=i

|gj|2 wij

(8)

This can also be derived by equating the partial derivatives of S with respect to
real and imaginary parts of gi as shown in the appendix.

3Complex derivatives can be evaluated by treating gi and g?
i as independent variables. See

reference 1 and the appendix
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Since the antenna dependent complex gains also appear on the right-hand side
of Eq. 8, it has to be solved iteratively starting with some initial guess for gjs or
initializing them all to (1,0).

Eq. 8 can be written in the iterative form as:

gn
i = gn−1

i + α


∑

j
j 6=i

Xijg
n−1
j wij

∑
j

j 6=i

∣∣gn−1
j

∣∣2 wij

− gn−1
i

 (9)

where n is the iteration number and 0 < α < 1. Convergence would be defined
by the constraint

|Sn − Sn−1| < δ (10)

(the change in S from one iteration to another) where δ is the tolerance limit.

4 Interpretation of the equation

Eq. 8 offers itself for some intuitive understanding in the following way.

Xij is a product of two complex numbers, namely gi and g?
j , which we wish

to determine. Xij is itself derived from the measured quantity V Obs
ij . Numerically

speaking, each term in the summation of the numerator of Eq. 8 will involve gi (via
Xij) and the multiplication of Xij with gjwij would give gi an effective weight of
|gj|2 wij. Since the denominator is the sum of this effective weight, the right-hand
side of Eq. 8 can be interpreted as the weighted average of gi over all correlations
with antenna i.

In the very first iteration, when gj = (1, 0), the normalization would be incorrect
since the numeric value of gj as it appears inside Xij would be different from that
used in the denominator of Eq. 8. However, as the estimates of gjs improve with
iterations, the equation would progressively approach a true weighted average equa-
tion. The speed of convergence will depend upon the value of α and the convergence
would be defined by the constraint in Eq. 10. In the ideal case when the true value
of all gis is known, right hand side of Eq. 8 also reduces to gi.

Estimating gi for an antenna, by averaging over the measurements from all base-
lines in which it participates (for an unresolved source) makes sense since for an N
element array, gi would be present in N-1 measurements (all the Xij|j=1,N ;j 6=i) and
the best estimate of gi would be the weighted average of all these measurements.
Proper weight for gi, buried in each of the products Xij, can be found heuristically
as follows. gi, estimated from the measurements of a given baseline, must obviously
be weighted by the signal-to-noise ratio on that baseline. This is wij in the above
equations. It must also be weighted by the amplitude gain of the other antenna
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making the baseline, namely gj, to account for variation in antenna sensitivities and
Tsys. The total weight for gi would then be |gj|2 wij, the sum of which appears in
the denominator of Eq. 8. Knowing that ideally Xij = gig

?
j , each of the Xij|j=1,N

must be multiplied by gjwij (to apply the the above mentioned weights to gi), before
being summed for all values of j and normalized by the sum of weights to form the
weighted average of gi. One thus arrives at Eq. 8 using these heuristic arguments.

5 Estimating Tsys

For an unresolved source of known brightness I, in the limit Ta � Tsys, ρ◦ij = I and
Eq. 1 can be written as

ρObs
ij = Igig

?
j ≈ I

√
ηiηj

Tsysi
Tsysj

(11)

where ηi = Ae/2kb, Ae is the effective area of the dish, kb is the Boltzman’s
constant and

|gi| =

√
ηi

Tsysi

(12)

Hence, knowing ηi, Tsysi
can be estimated from the amplitude of the antenna

dependent complex gains.

All contributions to ρObs
ij , which cannot be factored into antenna dependent gains,

will result in the reduction of |g|. η remaining constant, this will be indistinguishable
from an increase in the effective system temperature. Since majority of later process-
ing of interferometry data for mapping (primary calibration, bandpass calibration,
SelfCal, etc.) is done by treating the visibility as a product of two antenna based
numbers, this is the effective system temperature that will determine the noise in the
final map (though, as a final step in the mapping process, baseline based calibration
can possibly improve the noise in the map).

In the normal case of no significant baseline based terms (εij) in Xij, the system
temperature as measured by the above method will be equivalent to any other
determination of Tsysi

.

Tsys can also be determined by recording interferometric data for a strong point
source with and without an independent noise source of known temperature at each
antenna. In this case

Tsysi
= Tni

(
gON

i
2

gOFF
i

2 − gON
i

2 ) (13)

where gON
i and gOFF

i are the antenna dependent gains with and without the
noise source of temperature Tn. Note that ηi does not enter this equation. Also, Tn
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should be such that
√

Ta/(Tn + Tsys) ≥ 0.2 to ensure that the correlated signal is
measured with sufficient signal-to-noise ratio (in this case, ≥ 0.04).

References
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A Update direction in real and imaginary repre-

sentation

gis are complex functions. One can therefore write S in terms of gI
i and gR

i , the real
and imaginary parts of gi and minimize with respect to gI

i and gR
i separately. It

is shown here that the complex arithmetic achieves exactly this and the results are
same as that given by complex calculus. The superscripts I and R in the following
are used to represent the real and imaginary parts of complex quantities.

Expanding Eq. 5, ignoring wijs and writing it in terms of real and imaginary
parts we get

∑
i,j
i6=j

∣∣Xij − gig
?
j

∣∣2 =
∑

i,j
i6=j

[
Xij − gig

?
j

] [
X?

ij − g?
i gj

]
=

∑
i,j
i6=j

[(
XR

ij + ιXI
ij

)
−

(
gR

i + ιgI
i

) (
gR

j − ιgI
j

)]
[(

XR
ij − ιXI

ij

)
−

(
gR

i − ιgI
i

) (
gR

j + ιgI
j

)]
=

∑
i,j
i6=j

[(
XR

ij − gR
i gR

j − gI
i g

I
j

)
+ ι

(
XI

ij + gR
i gI

j − gI
i g

R
j

)]
[(

XR
ij − gR

i gR
j − gI

i g
I
j

)
− ι

(
XI

ij + gR
i gI

j − gI
i g

R
j

)]
=

∑
i,j
i6=j

S0S
?
0

(14)

where

S0 =
[
XR

ij − gR
i gR

j − gI
i g

I
j

]
+ ι

[
XI

ij + gR
i gI

j − gI
i g

R
j

]
(15)
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Taking partial derivative of S with respect to gR
i and reintroducing wij, we get

∂S

∂gR
i

=
∑

j
j 6=i

{[
−gR

j + ιgI
j

]
S?

0 − S0

[
gR

j + ιgI
j

]}
wij

=−
∑

j
j 6=i

[
S0gj + g?

j S
?
0

]
wij

=− 2
∑

j
j 6=i

Re (S0gjwij)

=− 2
∑

j
j 6=i

[(
XR

ij − gR
i gR

j − gI
i g

I
j

)
gR

j +
(
XI

ij + gR
i gI

j − gI
i g

R
j

)
gI

j

]
wij

=− 2
∑

j
j 6=i

[
XR

ijg
R
j −XI

ijg
I
j − gR

i gI
j

2 − gR
i gR

j

2
]
wij

(16)

Therefore,

∂S

∂gR
i

= −2
∑

j
j 6=i

[
Re(Xijgj)− |gj|2 gR

i

]
wij (17)

Equating ∂S
∂gR

i
to zero, we get

gR
i =

∑
j

j 6=i

Re(Xijgjwij)∑
j

j 6=i

|gj|2 wij

(18)

Similarly

∂S

∂gI
i

= −2
∑

j
j 6=i

[
Im(Xijgj)− |gj|2 gI

i

]
wij (19)

Therefore the equivalent imaginary part of Eq. 18 is

gI
i =

∑
j

j 6=i

Im(Xijgjwij)∑
j

j 6=i

|gj|2 wij

(20)

writing gi = gR
i + ιgI

i and substituting for gR
i and gI

i from Eq. 18 and 20 respec-
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tively, we get

gi =

∑
j

j 6=i

Xijgjwij∑
j

j 6=i

|gj|2 wij

(21)

This is same as Eq. 8, which was arrived at by evaluating a complex derivative
of Eq. 5 as ∂S/∂g?

i , treating gi and g?
I as independent variables. Evaluating ∂S

∂gi
= 0

would give the complex conjugate of Eq. 21. Hence, ∂S/∂gi gives no independent
information not present in ∂S/∂g?

i .
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