NCRA LIBRAR

I//HI!INII)IIIIII/I/IHI/I

User Interface For Off-line Applications

Sanjay Bhatnagar,
N.C.R.A., Pune

March, 1997
\)_,! 9 00

1 Introduction

This document describes the user interface for the GMRT off-line data analysis
package. The motivation for developing this user interface system was to have a
simple, uniform interface for all the programs that we, as a group, might develop.

Applications using this system can be started in an interactive (the default) or
non-interactive mode. Application programs present a list of keywords, the values of
which can be set, reset, loaded from or saved to a file in the interactive mode. In the
non-interactive mode, these keywords can be set as a list of command line arguments
of the form <KeyWord>=[<ValO>,<Vall>,...]. While searching for keywords, the
interface uses minimum-match algorithm requiring the user to specify only the least
number of characters which uniquely identify the keyword of interest. While setting
the values of the keywords, the interface also uses bash styled command line editing
and file name completion mechanisms. The command line editing is normally done
using emacs commands, but can be configured (’degraded’!) to use vi styled com-
mands. The interactive shell also defines some package wide commands (common to
all the applications in the package) to provide basic as well as detailed online help.

2 The User interface commands

In an interactive session, the application programs present a list of keywords to
which the application is sensitive. The most basic commands in the shell are for
setting or resetting the values of the keywords. Keywords can be assigned a list
of values, separated by a comma (’,"}). However, not all keywords will require a
list of values (though it may not be an error to provide a list of values where a
lesser number of values are required). The number-of values-that are required by a
keyword can be found using the command ’?°. The value of a keyword can be set
by a command of type <KeyWord>=[<Val0>[,<Vali>[...]1]] and can be reset by
omitting the values in such commands (command <KeyWord>=).

The help command provides the basic help about the shell itself and prints
following on the screen:

Commands in the interactive mode:

Use <Key>=<Vali,Val2,..> to set value(s) for a keyword
Use <Key>=<RETURN> to unset value(s) for a keyword

inp : To see the various keywords and their values
go : To run the application

gob : To run the application in background

cd : Change working directory

help : This help

7 : Information on the type of the keyword
explain : Detailed help, optionally of keywords/task [[Key][:Task]]
save : Save the values, optionally in a file

load : Load the values, optinally from a file

edit : Use an editor to (un)set the values

quit : Quit the application

Any other input will be passed to the system shell

These commands form the standard set of shell commands available from all ap-
plications. There may be a few extra commands which may be application dependent
and will change from application to application. However, the help command will
always show all the commands available for a given application.

The command inp is for viewing the current settings of the keywords. The go
command is used to end the interactive session. After this command, the application
determines the user defined values of the various keywords and starts execution. The
gob command is similar to the go command except that it will run the application
in background and print the Process ID (PID) number of the background process
on the screen (also see section 3). The c¢d command is used to change the current
working directory within the interactive shell. The command ’?’ provides some ba-
sic information about the type and number of values the keywords expect. explain
command provides as detailed a help about the application and the keywords as
the author of the application has cared to write in the help file. These help files
are located in the directory specified by the environment variable GDOC (see section
3). The command save is used to save the current setting of the keywords in a file.
By default, these values are saved in a file named ./<Application Name>.def. To
save the values in some other file, the file name can be provided as an argument to
this command. The load command is the conjugate of save - by default it loads
the settings for the keywords from the file . /<Application Name>.def. If this file

is already present when the application is started, it is loaded automatically. Al-
ternatively, it can load settings from a file provided as an argument to the load
command. The command edit lets the user edit the keyword values in an editor
of choice specified by the environment variable EDITOR (see section 3). The quit
command is used to quit the interactive session without executing the application.

All inputs to the interactive shell, which are neither any of the above mentioned
commands nor any of the application specific commands, are passed to the under-
lying Operating System (OS) user shell. Hence, most of the native OS commands
shall still be available from this shell. (Users however must be aware that certain
OS shell commands like “setenv” (for csh users) or “export” (for bash/sh users)
will seem to work, but will not have the desired effect).

As mentioned before, all keywords can take a list of values, each of which is
separated by a comma (’,"). The number of comma separated values that a keyword
expects can be found using the ’?’ command which reports the type and the number
of the values expected. The number of such values expected will be reported along
with the type, enclosed in ’{" and ']’ pairs. Some keywords might be able to take
mixed type of values (e.g., string, floats, integers). For these keywords, the reported
type will be “UNKNOWN?”. For the keywords, which can accept any number of
values, the type string will be followed by the string “[]”.

As mentioned above, comma is treated as a separator in a list of values for a
keyword. To suppress its interpretation as a separator, it has to be “escape” using
the backslash (’\’) before the comma. For example, if the value of keyword key has
to be set to the a string ¢ ‘Funny, value with a comma’’, it can be done using

key=Funny\, value with a comma

Similarly, if any other characters reserved for the command syntax ('\’, ’[’, '},
’=") are to be used as part of the value, they also will be required to be escaped.

Keywords that take numeric values can also take arbitrary mathematical expres-
sions (or a list of them). Any of the following functions or constants can be used in
these expressions:

¢ Functions
sin, cos, tan, asin, acos, atan, atan2, sinh, cosh, tanh,
exp, In,log, logl0, sqrt, fabs, floor, ceil, rint

e Constants

1. PI: value of m
2. C: speed of light in m/s.

3. R2D,D2R: multiplicative constants for conversion from Radians to Deg.
and vice versa

4. H2R,R2H: multiplicative constants for conversion from Hours to Radians
and vice versa

5. SOL2SID,SID2SOL: multiplicative constants for conversion from Solar to
Sidreal time and vice versa

Numbers in the expression can be in any of the following number representations:

Integer format, real (float) format

1.0E-1 or 1.0e-1 (=0.1)

1.0D-1 or 1.0d-1 (=0.1)

1h10m0.1s: the time format - converts the number to seconds before using it.

1d1°1”: The angular format - converts to arc seconds before using it.
(1d1’ = 3660.0"and -1d1’ = -3660.0")

2.1 De-referencing mechanism

Keywords are treated as variable by the shell. The user interface system allows
the application programmers to have more symbols which are treated as constants
(i.e. their values cannot be modified by the user). We refer to these symbols
as ‘‘const symbols’’. Some applications may load a number of frequently used
values of various keywords as constants (for example, the list of symbols reported
by the showfmt command of the xtract! program). By default, none of the const
symbols are presented to the user. Those applications which carry these extra shell
constants would also provide an extra shell command to view these variables.

Values can be transfered from one keyword (or a const symbol) to another key-
word by referring to the source keyword by appending its name to the ’$’ operator.
If the value of the source keyword is a list, the entire list is transfered to the target
keyword. If a particular element of the list is to be transfered, it can be indexed
by appending the index of the desired value bracketed by ’>[? and ’]’. Particular
element of a list of values can also be altered by referring it in a similar manner.

For e.g. to transfer the ¢ value from keyword Keyl to a keyword Key2, one
could use Key2 = $Key1[i]

2.2 File name convention
Most off-line applications can perform I/0O using UNIX pipes. If the name of the

input source begins with the '<’ character, the rest of the file name is treated as a
command, the output of which becomes the input of the application. For example,

http:/ /langur.nera.tifr.res.in/ “sanjay/Offline /xtract

4

to supply the output of a program tmac as the input of the program xtract, the
““in’? keyword of xtract must be set to “<tmac”. On giving the go command to
xtract, the interface of tmac will be started and the keywords of tmac can then
be set in the normal fashion. The go command to tmac will start the execution of
tmac who's output becomes the input of xtract. Till this time, execution of xtract
would remain blocked, waiting for input from tmac.

Similarly, if the output file name begins with the ’|" character, the rest of the
file name is treated as a command, the input of which becomes the output of the
off-line program.

By convention, a blank output file name implies that the output would go to
the standard output stream (usually your screen) and a blank input file name im-
plies that the input would be read from the standard input stream (usually your

keyboard).

3 Customization
The user interface can be customized using the following environment variables.

e GDOC

GDOC must point to the standard directory where documents explaining the
various off-line data analysis programs are kept. The explain command will
first look for the explanation file in the local directory and then in the directory
-specified by this variable. The name of the explanation file can be constructed
by appending the suffix ¢¢.doc?’ to the application name.

e GERR, GOUT

GERR and GOUT variables are used when the application is run using the gob
command (see section 2). The standard output of the application will be
redirected to the file specified by GOUT while the standard error stream will be
redirected to the file specified by GERR. By default, these variables are set to
/dev/null.

e GCONF

Some applications may load frequently used setting for some keywords. These
values are loaded as constants in the user shell. Their values can be transfered
to the application keywords by referring to their value by '$’ mechanism (see
section 2.1). The path for the file containing these values is specified by the
environment variable GCONF. The configuration file name is the name of the
application with a “.config” suffix. If GCONF-is not defined, the application
looks in the directory specified by GDOC. If this variable is also not defined, or
the configuration file is not found, the application will look for the configura-
tion file in the current directory.

e EDITOR

This environment variable is used to specify the name of the text editor to be
used in the edit command (see section 2). The default editor is emacs.

e GDEFAULTS

The default values of keywords can be saved in a system wide file. Such a file
can be automatically loaded by the applications upon startup. The defaults
file name is constructed by appending ©.def” to the name of the application.
GDEFAULTS variable specifies the directory where this file is to be found.

By default, the application will look for the defaults file in the current directory.

If a keyword appears in the “.def” as well as the “ config” file, the key-
word will be treated as a shell constant. This can be used to effectively pro-
duce specialized versions of an application program by writing an appropriated
“_config”, where keywords can have fixed values, not alterable by the user
(for e.g., a version of xtract which will read input from the shared memory
of the GMRT data acquisition system).

The following two variables are effective only for versions of the user interface
libraries which use the GNU Readline and the History libraries.

e GHIST

GHIST specifies the file in which the history of the commands issued in the
interactive session are saved. This file will be common to all applications. The
default history file is $HOME/ .g_hist.

This is also the file from which all applications will load the command history.

e MAXGHIST

MAXGHIST should be set to the maximum number of command history entries
which the user wishes to save. By default this is set to 100.

3.1 The help keyword

The help keyword is special (not to be confused with the shell command help de-
scribed in section 2). It is never displayed in the list of keywords, but all applications
are sensitive to it. To use it, it must be specified as command-line argument. Fol-
lowing is a list of versions of command-line arguments involving the help keyword
and their corresponding effects:

e help=noprompt

The application runs in the non-interactive mode. This is useful when the
application is run from within a shell script.

When run in this mode, value of all the keywords which needs to be set must
be supplied on the command-line (the order of the command-line options is not
important). The keywords must be fully spelled in the command-line options
(i.e., no minimum-match will be applicable).

help=explain

This executes the explain command of the interactive shell (see section 2)
without starting the interactive shell.

If a keyword is supplied within brackets (* (> and ?)?) immediately after the
explain string (for e.g. like help=explain{out), help will be provided for
the specified keyword alone. If a application name is also included within the
brackets, separated from the keyword by a colon (’:’), help for the named
keyword of the named application will be provided. If the keyword is skipped
(but not the colon), entire help of the named application will be provided.

help=doc

This results into an empty documentation file written on the standard output,
in the required format, with a list of keywords to which the application is
sensitive. This is for use by authors of the applications and to encourage them
to not only write the documentation, but also in a uniform format.

help=dbg

Authors of the applications have the facility to have hidden keywords which
are normally not displayed for the user, but will be used by the application
internally. These keywords can be accessed as normal keywords by setting
help keyword to the value “dbg”.

Appendix: Antenna/Baseline naming convention

There is a uniform antenna and baseline naming convention used by most (all?)
off-line applications.

A fully qualified antenna name consists of three fields separated by '’ character.
The first field is a 3 letter antenna name (for e.g. “C01”). The second field is a 3
letter name for the side band (“USB” for Upper Side Band, and “LSB” for Lower Side
Band). The last field is a 3 letter name for the IF (“175” for the 175 MHz IF and
“130” for the 130 MHz IF). For e.g.a fully qualified specification for the 130 MHz -
IF, upper sideband data for C10 would be C10-USB-130.

Each of the field can also be replaced with a regular expression. For e.g. a
compact way to specify 175 Mhz IF, lower sideband for all central square antennas
is C.+-LSB-130. Here the ’.’ in the antenna name matches any character and the
'+ operator in the antenna name operates on the ’.’, one-or-more number of times.
Hence, effectively “.+” is equivalent to the wild-card '*’ operator.

From this point onwards, “antenna name” implies a fully qualified antenna iden-
tification.

A fully qualified baseline names consist of two antenna names separated by colon
(’:"). The antenna names themselves can be replaced by regular expressions. For
e.g. to specify all baselines of C00-USB-175 antenna with respect to all other central
square antennas alone, one could use C00-USB-175:C.+. To specify all baselines
with arm antennas alone, one could use CO0-USB-175: [EWS] . +.

To select the self correlations, one must use the prefix character ’A’ for the
antenna names. In such a case, the name of the second antenna is redundant and
therefore not required.

Read the manual on the POSIX regljlar expression syntax and use your creativity
to avoid otherwise large amounts of typing (with a proportionately large number of
typographic errors and the resulting frustration!).

Examples:

e All baselines with C11

baselines=C11

e Self correlation of Cil
baselines=AC11

e Self correlation of C11 130 MHz polarization channel, any side band
baselines=AC11-.+~130 '

e All USB baselines with C11
baselines=C11-USB-.+:.

or
baselines=C11-USB-.+

e All USB baselines with C11 and baselines 10,15 and 18
baselines=C11-USB-.+,10,15,18

