The fftmac Structure

Sanjay Bhatnagar
N.C.R.A., Pune

Jan, 1997

1 Introduction

fftmac holds the mapping between baselines and samplers/Antennas with their polarization and band
information.

It also holds various other astronomically useful information derived from the global beader, namely,
the names of the antenna which are connected.to the samplers, the fixed delays (in meters) associated with
the various antennas connected to the samploers.

It is intended to provide an easy way to find the IF and polarization of the various FFT pipe lines
(cquivalently of the connected antenna) and the index in the antenna table of the antennas in use. This
index can be found as a function of the samplers connected to the various baselines (query="give the index
in the antenna table for the antenna connected to sampler x”).

This object is organized as a structure for C and as a "smart” structure for C++ users and is filled
by a call to getfftmac for C users and by a call to LTAFMT::getFFTMac for C++ users. (However, for C
users, before calling any of these, one has to set the values of fftmac.nbase and fftmac.nfft: These can be
got by querying the global header of the LTA database (keyword BASELINE and SAMPLERS)).

The structure holds pointers for various arrays. Buffers for these arrays are allocated by methods which
fill this structure.

C users will need to free these buffers at appropriate time - at least once before using this again as
an argument of getfftinac(). Failing to do so may result into unpredictable behavior of the application
and certainly a potentially massive memory leak. (As a general rule for using off-line libraries, once the
memory pointed to by pointers is freed, the pointer should itself be set to NULL. Many routines which
need to allocated memory take the decision to allocate (or not to allocate memory) depending upon the
value of the pointer).

C++ users need not worry about freeing the buffers. There is a destructor defined with this structure in
C++ which will clear all buffers when the structure goes out of scope. One can safely make calls to getFFT-
Mac(fftmac &) without frecing the allocated memory in between the calls - the structure will keep track of
when it needs to allocate buffers. The actual allocation of the memory is done by the fftmac::allocarrays(),
which also can be called without the nced to free the allocated memory (though, there may be no nced to
explicitly call this function at the application program level - the LTAFMT::getFFTMac() will make a call
to this when necessary).

The various fields of this object are as follows.



x N

nfft iz the number of configured fft pipelines in the correlator, nbase is the number of haselines
present in the data, and nant is the number of physical antennas used in the data base. This is
different from the number of configured samplers (which is cssentially equivalent to logical antennas).
nchan is the total number of frequency channels in the database.

1. nfft,nbase,nant,nchan

2. Sampl,Samp?2

Two fltmac.nbase long arrays of unsigned short integers. Sampli[i] is the index of the first sampler
making the ith. baseline and Samp?2 is the other sampler.

3. AntOfSamp

A fftmac.nfft long array of unsigned short integers. AntOfSampli] is the index in the antenna table
(struct AntTab) of the antenna connect on the sampler 1.

4. ANameOfSamp

A fftmac.nfft long array of char *. ANameOfSampl|i] is the character string which is the name of the
antenna connected to sampler 1 as derived from the antenna table (struct AntTab[i]. Name). .

5. IFOfSamp

A fitmac.nfft long array of short integers. IFOfSampfi] is the IF connected to the sampler i. Value
of -1 implies LSB is connect, else USB is connected.

6. PolnOfSamp

A fftmac.nfft long array of short integers. PoluOfSampl[i] is the polarization channel connected to
the ith. sampler. Value of -1 implics the 130 MHz. chanuel is connected, else 175 MHz. channel is
connected.

7. SelfOfSamp

A fitmac.nfft long array of unsigned short integer. SelfOfSampli] is the index of the baseline which
has the self correlation for the ith. sampler.

2 fftmac Class For C++4 Programmers -
fftmac structure is available as a “smart structure” for C++ programmers. This means that it’s still
declared as a structurce and can be passed around to routines written in C, but has methods defined on
this structure in C++ (constructor, destructor and others listed below). The advantage of using this is
that the class does it’s own memory management. allocarray mcthod can be freely called any number of
times without worrying about memory leaks. The structure will release the memory it has allocated when
the class instantiation goes oui of scope.

1. fitmac::allocarray()

This allocates the right amount of memory for the various arrays explained above.



2. fftmac::cleanup()
This cleans up the memory allocated for the various arrays. It is automatically called by the destruc-
tor.

3. fitmac::fitmac()

The defanlt {and the only) constructor.

4. fitmac:: fftmac()
The default (and the only) destructor.

3 Examples

/* Instautiation of the structure as follows */

#include <gstruct.h>
. fftmac fm;

/* Initialize it as follows */
struct AntCoord Tab[30]; LoadAntTab(Tab,30); getFFTMac(&fm); /x In C */
db.getFFTMac (&fm); /* In C++, where db is Class LTAVIEW */

1. To extract the name of the ith. haseline, use as follows:

printf{("fm.ANameOfSamp[fm.Sampl[i] ,fm.ANameOfSamp [fm.Samp2[i]]]);

2. To extract the polarization of the two antenna of the ith. béseline, use it as follows:

fm.PolnOfSamp [fm.Samp1[i]] and fm.PolnOfSamp[fm.Samp2[i]];

3. To extract the TF of the two antenna on the ith. bhaseline, use it as follows:

fm.IFOfSamp [fm.Sampi[i]] and fm.IFO0fSamp[fm.Samp2[i]]



