Design of Differential Amp. on MCM card

Aniruddha Adoni 21 August 1992

The purpose of differential amplifier between multiplexer output and ADC input is to get 0 to 5 Volts as ADC input for any specified analog range. The known analog input ranges for MCM card are as follows: (a) 0 to 5V, (b) -5 to +5V, (c) -2.5 to +2.5 and (d) 0 to +2.5V

The differential amplifier on card is as shown below:

The equation for the output voltage is:

$$V_0 = \frac{R_1 + R_2}{R_1} \left[V_1 - V_{in} \frac{R_2}{R_1 + R_2} \right] \tag{A}$$

The resistors should be selected such that for any known range, we should be able to fulfill following conditions:

Thus, for various ranges to find unique R_1 and R_2 for following conditions

For
$$V_{in}$$
 as V_{min} , V_0 should be $5V$ (i)
$$V_{in}$$
 as V_{max} , V_0 should be $0V$ (ii)

(i) For first condition, the equation (A) becomes

$$5 = \frac{R_1 + R_2}{R_1} V_1 - \frac{R_2}{R_1} V_{\min}$$

$$5 = (1 + \frac{R_2}{R_1}) V_1 - \frac{R_2}{R_1} V_{\min}$$

$$= V_1 + \frac{R_2}{R_1} (V_1 - V_{\min})$$

$$5 - V_1 = \frac{R_2}{R_1} (V_1 - V_{\min})$$

$$\frac{R_1}{R_2} = \frac{V_1 - V_{\min}}{5 - V_1}$$
(3)

(ii) For second condition, substituting in equation (A), we get

$$0 = \frac{R_1 + R_2}{R_1} V_1 - \frac{R_2}{R_1} V_{\text{max}}$$

$$V_1 + \frac{R_2}{R_1} V_1 - V_{\text{max}} \frac{R_2}{R_1} = 0$$

$$\frac{R_2}{R_1} (V_1 - V_{\text{max}}) = -V_1 \frac{R_2}{R_1}$$

$$= -\frac{V_1}{(V_1 - V_{\text{max}})}$$

$$= \frac{V_1}{V_{\text{max}} - V_1}$$

$$\frac{R_1}{R_2} = \frac{V_{\text{max}} - V_1}{V_1}$$
(4)

From equations (3) and (4), we can write

$$V_1 - \frac{V_{\min}}{5 - V_1} = \frac{V_{\max} - V_1}{V_1}$$

By cross multiplying, we get equation for V_1 as,

$$V_1 = \frac{5 V_{\text{max}}}{5 + V_{\text{max}} - V_{\text{min}}} \tag{5}$$

Now, by substituting the values for V_{\min} and V_{\max} , we will get the value of V_1 to be adjusted for the selected range.

Next, substituting this voltage V_1 in any of the equations of R_1 by R_2 (i.e. equation (3) or (4)), we will get the gain adjustement value.

Thus, for the given range, one has to set V_1 and $\frac{R_1}{R_2}$ by pots P_1 and P_2 respectively.

For the four ranges the values of V_1 and $\frac{R_1}{R_2}$ are calculated and given in the following table:

Voltage Range	V1	R1 by R2
0V to +5V	2.5V	1
-5V to +5V	1.66V	2.01
-2.5V to +2.5V	1.25V	1 -
0 to +2.5V	1.66V	0.506

Thus, for the specified ranges, the resistor ratio should vary between 0.5 to 2.5 and voltage at inverting terminal of OPAMP should vary between 1.0 to 3.0 volts.

To satisfy the $\frac{R_1}{R_2}$ ratio and V_1 for all ranges the components should be chosen as follows:

$$R_x = R_y = 2k2$$
 $R_2 = R_4 = 4k7$
 $P_1 = 10k$ $P_2 = 20k$ decreased or

If one is sure that first 3 ranges are the only ranges, then R_x , R_y and R_2 , R_4 can be increased. But one condition is always there: $R_x < R_2$ and $R_y < R_4$.

So, for first 3 ranges, another combination can be:

$$R_x = R_y = 4k7$$
 $R_2 = R_4 = 5k6$
 $P_1 = 10k$ $P_2 = 20k$
