NCRA LIBRARY

M

0

GMRT
MONITOR AND CONTROL MODULE
SOFTWARE

Mukund Gadgil,
Computer Division
Version 1, Revision 0

April 28, 1992




INTRODUCTION

Monitor and Control Module (MCM) is the vital part of the
control and MOnitor System (COMOS) of GMRT. It is a single card
data acquisition and control system. MCM cards are distributed at
all the remote antennas and at the Central Electronics Building
(CEB). All the Monitor and Control points terminate on different
MCMs. Each MCM has 64 analog input channels and 16 opto-isolated
digital output lines. The typical monitor points are LO
levels,power supply voltages,switch status etc.Typically,each MCM
scans the all/specified input analog channels,digitizes the
signals and stores the data into the on-chip internal RAM. It can
also output the contrcl word at the digital output port. Each MCM
is connected to an Antenna Base Computer (ABC) by means of a
shared serial 1link. The serial link between the MCM and the ABC
may be either a plastic fiber or a shielded twisted copper pair.
Monitor program on MCM receives the data from the ABC via this
serial 1link,decodes it,processes the data and sends the response
“back to the ABC. This is the basic function cycle of any MCM, the
details of which will be made clear further in this report.

This report has been divided into four sections as follows:

1. Overview of MCM Hardware : In this section the hardware
of the MCM  card 1is described briefly. Also some details
regarding the microcontroller itself are mentioned in order to
make the software part understandable.

2. Overview of Multiprocessor Serial Communication and
Communication Protocols : This section narrates the way two
microcontrollers (ABC and MCM) communicate with each other and
"how they exchange the information among themselves.

3. Overview of MCM Software : This is a brief description of
the MCM nonitor program. It gives the summary of the MCM
operation as far as software is concerned.

4., Details of the Monitor Program : Detailed description of
the MCM Software is given here. It covers all the modules of the
monitoer program viz. main program, command code routines,
interrupt service subroutines etc.




SECTION I

OVERVIEW OF MCM HARDWARE

In order to understand the details of the software backbone
of MCM, it 1is necessary to gain a brief knowledge about its
hardware.Siemens VLSI Circuit - SAB 80C535 is the heart of the
MCM system,which is an 8-bit Microcontroller from the 8031 family
with on-chip peripherals viz. timer/counter, 6 X 8-bit ports, §-
bit A/D converter with programmable voltage references, serial
interface and 256 bytes of Data Memory.Circuit diagram of the MCM
card 1is as shown in Appendix A. In the current version of MCM
hardware, the processor clock frequency 1is 3.6864 MHz,which
results into the 3.26 usec machine cycle time.

Input Section: The 64 input 1lines to MCM are divided into 4
groups of 16 lines by means of four 16-to-1 multiplexers (MUX).
MUXes used are Analog Devices's monolithic chips ADG 506. The
ADG506 has 16 input lines,out of which one can appear at the
output depending on the status of the four control lines of the
same. Outputs of the four muxes are in turn connected to four
separate analog input lines of the on-chip ADC.

ADC Section:80C535 has an on-chip 8-bit A/D converter with 8
multiplexed analog inputs.It operates on the principle of
successive approximation by means of capacitive discharge. With a
3.6864 MHz crystal used, the ADC conversion time is approximately
46 psec. (14 processor machine cycles).

Qutput Section: 16 digital output 1lines of each MCM are TTL
compatible. However, these outputs are opto-isolated. Desired 16-
bit word can be output on these lines for the various control
applications viz. electromechanical device control, power
switching etc.

Internal Data Memory: It can be divided into three physically
separate and distinct blocks: the lower 128 bytes of RAM,the
upper RAM area(128 bytes) and the 128-byte special function
register (SFR} area.While the latter SFR area and the upper RAM
area share the same address locations,they must be accessed
through different addressing modes as shown in Table I.

Table I: Internal Data Memory Map

Address space Locations Addressing mode
Lower 128 bytes of RAM OOH to 7FH Direct/Indirect
Upper 128 bytes of RAM 80H to FFH Indirect
Special Function Regs. 80H to FFH Direct

[




From = programming point of view, the lower RAM area can be grouped
into three address spaces: : : :

1) A general purpose register area that occupies locations 0
through 1FH.
2) The next 16 bytes (locations 20H to 2FH) contain 128
addressable bits.
3) Locations 30H to 7FH may be used as a scratch pad area.
Appendix B describes the detailed usage of these 256 byte of
internal data memory.
Serial Interface: The SAB 80CS35 has two serial interfaces which
are functionally nearly identical as far as asynchronous
communication is concerned. While communicating with the ABC, out
of these two channels, serial interface channel-0 is used in half
duplex mode. There are four different modes in which the channel
can be programmed, out of which Mode 3 (9 bit UART, variable baud
rate) mode 1is programmed by the monitor program of MCM. In this
mode 11 bits get transmitted: a start bit(0), 8 data bits(LSB
first), a programmable 9th bit, and a stop bit(1l). This mode of
communication is purposefully selected in order to facilitate the
multiprocessor communication in the situation where many MCMs are
connected . to a single ABC through a shared serial 1link.
Multiprocessor communication will be explained later in the
report. )
Special Function Registers:(SFRs)These registers are located in
the internal RAM. These are the registers through which the CPU
interfaces with all its peripherals. all control and data
transfers from and to peripherals use this register interface
exclusively. The monitor program on the MCM has to properly
program these registers for a well behaved interface.
General Purpose Registers: These are the lower 32 locations of
_internal RAM. They are grouped into four banks, with each bank
consisting of 8 General Purpose Registers (GPRs). Only one of
these banks c¢an be enabled at a time. Two bits in the Program
Status Word (PSW,is one of the SFRs) PSW.3 and PSW.4, select the
active register bank. The 8 GPRs of the selected register bank
may be accessed by register addressing in which the instruction
opcode indicates which register is to be accessed. For indirect
addressing RO and R1 are used as pointers to address internal
MeEMOrY . '

Table II: GPR Bank Selection

PSW. 4 PSW.3 Bank selected
0 0 Bank 0
0 1 Bank 1
1 0 Bank 2
1 1 Bank 3




SECTION II

OVERVIEW OF MULTIPROCESSOR SERIAL COMMUNICATION
AND
COMMUNICATION PROTOQCOLS

as it has been already mentioned, a single ABC card communicates
with multiple MCM cards via a shared asynchronous serial link.
The serial channel between ABC and MCM has to be thus time
multiplexed. Each MCM card has got its own address which can be
set through a DIP switch at the input port. Monitor program, at
power on, reads the DIP switch settings (i.e. the address) and
stores it into the data memory. Then the mode-3 of the serial
interface-0 is selected. If the master ABC wants to transmit a
hlock of data to one of the several salve MCMs, it first sends
out an address byte which identifies the target slave. An address
byte differs from a data byte in that the programmable 9th bit is
set to 1 in address byte and 0 in data byte. With mode-3 selected
for MCM card, no interrupt is generated with the data bytes when
bit SM20_= 1.(SM20 1is one of the eight bits of the SFR SOCON.) An

address byte, however, will interrupt all slave MCMs, soO that
cach slave MCM can examine the received byte and see if it is
being addressed. The initial part of the SIO handler does the
same thing. It compares the address byte sent by the ABC to its
own address stored 1in the internal data memory. If the address
match is found, that particular slave MCM clears its SM20 bit and
it can get further interrupts with the data bytes. After having
received a complete message, the slave sets SM20 again. The
slaves that were not addressed leave their SM20 set and go oOn
about their business, ignoring the incoming bytes.

Communication Protocols: Communication protocols are nothing but
*he fixed formats of the packets that are transmitted by MCM and
‘ABC. In order to extract the information out of these packets
this definite packet structure is required. For example, while a
packet 1is sent from ABC to MCM, MCM must know things like packet
“length, command code, checksum of the packet etc. Accordingly
there are different packet £ilds viz. packet size, id-code,
control word etc. which have a definite position and meaning in
the packet. Exact protocols for the ABC to MCM and MCM to ABC

packets are given in Appendix C.




SECTION III
OVERVIEW OF MCM SOFTWARE
In GMRT COMOS, ABC ultimately controls the operation of MCM

in the sense that it can issue certain "commands" to it and get
the response back. A detailed description of the commands can be
found 1in the Appendix D. The basic functions of the MCM software
are -

i) to accept the command from ABC,

ii} to execute the issued command and

iii) to transmit the response data to ABC.
The whole monitor program can be divided into 4 sections:
a] POST and Initializations,
b] Main program,
c} Mode routines and
d] Interrupt Service Routines.
These are described in brief below.
a]POST and Initializations: At power on , POST (Power On Self
Test) and system initializations are done by the microcontroller.
During POST, the CPU checks for the proper functioning of its
peripherals. After successful completion of POST, initializations
are done during which various SFRs, GPRs, and internal data
memory locations are programmed to specific values.
b] Main Program: To start with, function of the main program is
to jump . into one of the 'mode routines'. After the packet {(data
bytes) 1s received conmpletely by the MCM from ABC, program

control 1is transferred to main program again. Main program then
performs the following function: :

1) Validates the checksum of the received packet.

2) Checks whether proper command code (each packet received
from ABC contains a command code that corresponds to a specific
caommand to be executed by MCM) and its arguments are received or
not. If not, an error flag is raised. :

3) Executes the command. Prepares the core part of the
response packet accordingly.

4) Prepares the header portion of the frame,calculates the
Checksum, puts it at +the tail of the frame and transmits the



response frame to ABC.

5) After transmission 1s over main programs reinitiates the
timer, various data memory locations, SFRs, GPRs and
program control is transferred back to the selected mode.

c] Mode Routines: In the first version of the MCM software, there
are two modes which the monitor program can exhibit viz. Idle
Mode and Scan Mode. In either of the modes a sub-part of the
response frame 1is made ready, serial reception 1s enabled and
then the program enters into the corresponding mode. In idle meode
the program does nothing; it just waits for the command to be
issued from the ABC. In scan mode, selected analog input channels
are scanned, converted into digital form and stored into the RAM.
This is a cyclic processes that repeats itself until a packet is
received from ABC.

d] Interrupt Service Routines(ISR}: There are two types of
interrupts on the MCM card : SIO (Serial Input-Output) interrupt
and timer interrupt. Accordingly, two ISRs exist.

1) SIO handler: For the 80C535 microcontroller an interrupt
can be generated after each byte is received or transmitted. In
the monitor program, both receive as well as transmit interrupts
are enabled. There are no separate interrupts for
receive/transmit interrupts. It means that the Interrupt Vector
Address is the same for both the interrupts. Proper care has to
be taken in the SIC handler so as to identify the interrupt
source. ’

2) Timer handler: Monitor program enables the timer-0
interrupt at power on. Timer-0 1s used to detect the receive
time-outs. Timer—-0 registers (THO and TLO) are loaded with a
count value that produces an interrupt after every 5 ms. Timer-0
restarts after every byte is received from ABC and it is stopped
after the last byte in the frame is received from ABC. If suppose
MCM 1is expecting a byte from ABC and if it does not get a byte
within ‘5 ms; the timer interrupt gets generated. In the timer
handler ISR a flag is set which indicates the mode program to
jump into the main program. Main program in turn reports the
time-out error to ABC when a next non-timeout ABC-frame is
received.




SECTION IV

DETAILS OF THE MCM MONITOR PROGRAM

What happens at power on ?

As is done by all the microcontrollers from the 8031 family,
80535 also starts executing the program from ROM location
0000H at power on reset. The first instruction has to be a long
jump instruction because first fifty ROM locations are reserved
as the interrupt vector addresses. In the first version of the
monitor program this jump is decided to be at location 0030H. So
the actual main program starts from this location. Initially
internal RAM 1is checked by writing 1ls and 0s into each location
and by reading ‘them back to see if byte has been written
correctly or not. If ram test fails, LED on the card is turned
on, port pin p4.0 is set to 1, and serial reception is disabled.
After successful completion of ram test, stack pointer is loaded
with the wvalue 65H so that now stack area gets defined over the
locations 65H to 7FH. After this stack allocation now the program
is ready to call different subroutines. The first subroutine
called is the timer check routine.

Timer Check Subroutine: In this subroutine both the timers,
Timer-0 and Timer-1, are checked by putting some count value into
the respective count registers and then timers are triggered on.
After few 'nop's 1t 1is checked 1if counter values have
decremented or not. If not, an error 1is reported locally by
turning on the LED, setting the p4.l1 bit and disabling the serial
input. '

After the successful completion of ram and timer checks, a

‘subroutine called init 80535 is called which initializes
the 80535's SFRs.
Init 80535: Following sequence of operations is carried out

in this subroutine:
' Select DPTRO (0th bank of the dptr).

Disable both the timers.

Enable interrupts.

Set the interrupt priorities.( Highest priority to SIO
interrupt, second highest priority to Timer-0 interrupt and
least to ADC interrupt.)

Set the serial communication mode to mode-3.

Configure timer-1 registers to produce 9600 baud rate.

Configure timer-0 to produce 5 ms ticks.

Start timer-1.

return to the calling program.

All these settings are done through different SFRs viz.
DPSEL, PCON, TENO, IEN1,SOCON etc.

After these SFR initializations, GPRs and internal RAM area
are also initialized through a subroutine 'init'.

Init: The upper and lower ram locations are cleared to all
0s. Thus automatically the entries in the 'mode table' are all
set 0s which set the default mode to idle mode. All the flags are
also cleared. LED 1is turned off, MCM address is obtained by




reading the dip switch settings and is stored in one of the the
ram locations. Register r0 of bank-0 points to the start of the
ram area where packet from ABC is to be stored. Then register
bank 1 is selected and r0 of this bank points to the 5Sth location
of the ram area which is reserved for MCM to ABC packets. Thus
the registers r0 from banks 0 and 1 are the pointers to specific
memory locations which get passed to the required parts of the
progran. '

Now the main program is ready to jump into one of the nmodes.
Since at power on, idle mode is set, it jumps into idle mode.

Idle Mode: Following are the things done in this mode:

Prepare the header portion of the response (MCM to ABC)
frame. This 1is done by putting the appropriate numbers at the
memory locations pointed to by the memory pointers that in turn
are passed by the main program. This header includes the length
of logical packet, response code and the arguments. Serial
reception is enabled along with the address interrupt. Then the
program simply loops until the frame is received from ABC. While
in the loop, program continuously checks if 'exit' flag is set or
not. If set, it exits cut of the loop and jumps into the main
program. :

Scan Mode: Header part of the packet is made ready similar
to the idle mode. Program enters into receive mode, enables
reception and address interrupt. Then the actual samplings of the
channels start. After each sampling is over, it is checked if
'exit' flag is set or not. If set, all the remaining channels are
digitized and then the program flow gets diverted back to the
main program. If exit flag is not found to be set, sampling is
done continuously.

Interrupt handling: While the monitor program is in cne of
the modes, the reception of the data from ABC is handled
completely by the SIO isr (interrupt service routine). So the
- main program does not have to bother about the data reception.
Only thing to be done by the main/mode programs is to check for
different flags that get set by the isr. _

Whenever an sio interrupt occurs, it is first seen whether
it is a receive interrupt or a transmit interrupt. This can be
found from the RIO and TIO flags; the flag that is set denotes
the type of the interrupt. With a receive interrupt RIO gets set
and with a transmit interrupt TIO gets set. For the transmit
interrupt, nothing is done except clearing the TIO flag and then
the program control is transferred to the point where it was
before the interrupt. With a receive interrupt, it is checked
whether the byte received is the first byte of the packet. If it
is, then that byte is compared with the address of the MCM card.
If a match is found, then the corresponding flag is set, LED is
turned on, and the data interrupt is enablied to receive further
incoming bytes. Otherwise it simply returns to the mode progran
(without enabling the data interrupts.)

As soon as the address match is found, timer-0 is triggered
to run. If the next data byte does not arrive within the
stipulated time period of 5 ms, timer interrupt is generated. In
the timer isr, timer-0 is halted, two flags viz. the timeout flag




and exit flag are set, and then the program returns to the
" main/mode program. On the other hand if the next byte is received
before the timeout occurs, timer-0 is stopped. Byte is stored,
pointer 1is incremented, and the byte-counter (which is nothing
but the no. of bytes received) is incremented. If this count is
found to be greater than the maximum count, a flag is set and the
pointer Iis decremented. Further it is checked whether full frame
is recelived or not. If complete packet is received, again a flag
is set. If not, isr sets the 'exit' flag whenever only five bytes
of the packet are remaining.

What happens after the program jumps into main routine from the
mode routine ?
Program jumps from the mode routine into main program whenever an
~'exit' flag is found to be set. After the control is back to the
main program, it waits for either frame (from ABC) to be over or

timeout to occur. If timeout occurs, following steps are taken:

Serial input is disabled.

Address interrupt is enabled.

Receive mode is enabled.

All the GPRs and 3FRs are reinitiated.

All the flags, except the timeout flag, are cleared.

Program control is transferred back to the previous mcde.

In case the frame is found to be over, first thing that is done
is to calculate the checksum. Calculated checksum is compared
with the the checksum sent by the ABC. With a mismatch found a
flag called 'csumerr' is set. Then the command code is extracted
from the packet and it is compared with the existing command
codes, If the command code is found to be an unknown one, error
is reported by setting the 'icr' (inconsistent command received)
flag. Program control is then transferred to that portion of the
~main program which sends the packet to ABC.

With a proper command code found, program Jjumps into the
respective command-code vroutine. In each such routine again the
validity of the arguments is checked. With the invalid arguments
found, again the icr flag 1is set and program control is then
transferred to that portion of the main program which sends the
packet to ABC. With proper arguments found, that command is
executed and it jumps into 'transmit' part of the program.

Xmit Program: Before the actual packet transmission starts,
the final packet length 1is calculated, checksum of the whole
packet is calculated and 1is put at the tail of the packet.
Control word is also set according to the status of the different
flags set previously. Then the complete packet is transmitted in
polled fashion. After the transmission is over, program control
1s transferred back to the mode set recently.




APPENDIX B

MEMORY MANAGEMENT ON THE MCM

Lower RAM: Range : 0CH to 7FH. Used as follows:
O0H to 1FH : 32 registers. (4 banks of 8 GPRs)

20H to 22H : 24 bits for different flags.

23H : Used as a 'temp' location in the program.
24H : Version byte

25H i Counter for no. of bytes received from ABC,
26H ¢ Checksum calculated by MCM is stored here.

27H : MCM address is stored at this maloc.
65H to 7FH : Stack locations.

Thus in the lower RAM area, memory locations from 28H to 64H (60
locaticns) are free for use.

Upper ggﬂ;.Packet received from ABC 1is stored in this area.

It extends from B80H to FFH.

'80H to 91H : Frame received from ABC resides in this area.

92H to 99H : Analog mask(8 bytes) stored here.

9AH to 9BH : 16 bit of digital mask.

9CH to 9FH : 32 bits of digital mask.

AQOH to A7H : 8 bytes for mode table.

Packet to be transmitted to ABC starts at location ABH. Maximum

packet length (MCM to ABC) can be 5FH{i.e. 95 bytes). So there is
no free memory area in upper part.



APPENDIX C

COMMUNICATION PROTOCOLS

Communication from ABC to MCM: Message from ABC to MCM consists

of the following fields:

1) Packet size : 2 bytes, lower byte first.

2) Identifier Code : 1 byte.

3) Contrel Word : 2 bytes, lower byte first. Upper byte
does not contain any information. Lower byte 1is the
command code.

4) Argument Length : 2 bytes, lower byte first.

5} Actual arguments: These are the variable no. of bytes
specified in the argument length.

6) Checksum :1 byte. It is the last byte of the frame. It is
checksum of all the bytes in the frame.

Communication from MCM to ABC: Packet structure for MCM to ARBC
communication is as follows:

1) Packet size : 2 bytes, lower byte first.
2) Identifier Code : 1 byte.

: 3) Control Word : Lower byte first.Lower byte indicates the
communication status

Bit 0 : Set when timeout.

Bit 1 : Set when checksum error.

Bit 2 : Set when an inconsistent command is
received. "

Bit .3 : Set when packet size is too large to fit
into the allocated internal data : memory
buffer, '

Upper byte indicates the no. of logical packets in the
physical packet. '

The physical packet header contains the above mentioned three
fields. So the first logical packet starts at the sixth byte of
the physical packet.

Logical packet has the following format:



1) -Length of the logical packet : 2 bytes.

2) Response code : 1 byte. It is the command code to which
MCM is responding.

3) Argquments : These are the variable no. of bytes and are
nothing but the arguments - sent by the ABC for that
particular command.

At power on the self test results are available as a
single argument byte with following bit mappings:

Bit 0 : Timer-o0 test.
Bit 1 : Timer-1 rest.
Bit 2 : ADC test.
Bit(x)=1 => ERROR.

The last byte of the physical packet will be the checksum byte.



APPENDIX D

MCM Executable Commands

Basically, there are three typés commands that MCM can
execute: NULL COMMAND, SET COMMAND and READ COMMAND. The last two
commands can have arguments and sub-arguments as explained below.

1] NULL COMMAND: Command code for this command is 00. Whenever
this command 1is received, MCM does not do anything. It simply
sends the response to ABC stating .its current mode along with the
self-test results and remains in that mode only. This command is
useful as a handshake command when MCM is not being accessed
frequently.




2] SET COMMAND: Command code = 01.This command has different
arguments, sub-arguments and accordingly there are five different
SET commands.

a) SET MODE IDLE : Argument -> MODE (00), Sub~argument ->
IDLE (00). '

This command sets the MCM in idle mode.
b) SET MODE SCAN : Argument -> MODE (00), Sub-argument ->
SCAN (01).

This command sets the MCM in scan mode.

€) SET ANALOG MASK : For this command argument is the
'Analog Mask'(01l) and sub-arguments are the actual bytes of the
mask (8 bytes). '

d) Set Digital Mask 16 Bit : Argument -> 'Digital Mask 16
bit' (02), followed by the 2 bytes of the digital mask.

e) Set Digital Mask 32 Bit : Argument -> 'Digital Mask 32
Bit' (03), followed by the 4 bytes of the digital mask.

3] READ COMMAND : Read command has the command code 02. READ also
has five different commands:

a) Read analog mask : Command code -> 02. (02 => read)

Argument -> 00 (00 stands for analog mask).

b) Read digital mask 16 bit : Command Code -> 032.

Argument -> 01 (01 => digital mask 16 bit).

c) Read digital mask 232 bit : Argument ~> 02,

d) Read version : Argument -> 03. Reads the program version.

@) Read mode : Argument -> 04. Reads the current mode in
which MCM is looping.

Number quoted against an argument is the actual hex code for
that particular argument.

There are different buffers allocated for analog mask(8 bytes),
digital mask 16-bit(2 Dbytes), digital mask 32-bit(4 bytes),
mode (8 bytes) and version(2 bytes). Any SET command copies the
respective arguments and sub-arguments into the respective
buffers. For SET DIGITAL MASK command MCM outputs the 16/32 bits
on the digital output port. Similarly any READ command MCM reads
from the respective buffer and sends this data to ABC. Detailed
packet formats for all these commands can be found in Appendix.



Tree diagram of MCM Ccmmands

COMMANDS

NULL
SET —— MODE IDLE
—— SCAN
ANALOG MASK
DIGITAL MASK 16 BIT
' DIGITAL MASK 32 BIT
READ -————— ANALOG MASK |

—— DIGITAI MASK 16 BIT

———— DIGITAL MASK 32 BIT

— VERSION

—— MODE



~

Library of the subroutines/functions
used in
MCM Software Version 1

1] TMR_CHK : Timer test subroutine.

Input : None.
Qutput : A byte in accumulator.
(a) = 00 ==> Timer test passed.
= 01 ==> Timer test failed.

2] ADC_CHK : On-chip ADC test subroutine.

Input : None.
OQutput : A byte in accumulator.

(a) = 0 ==> ADC test passed.
==> ADC test failed.

i

3] INIT 80535 : Microcontroller specific initializations.

Input : None.
Cutput : None.

Action : This subroutine when executed does the
: following things:
i) Selects the 0th dptr.
ii) Enables and sets the priorities
of different interrupts.
iii) Configures timers 0 and 1. Timer
0 for generating 5 ms ticks to
detect ABC time-outs and timer
1 to generate the 9600 baud.
iv) Initializes SQCON SFR in Mode-3.

4] INIT : Software initializations.

ITnput : None.
Output : None.
Action

1) Clears all the internal RAM locations
to 00. (This automatically sets the
power-on mode to be idle mode.)

ii) Clears all the flags.

iii)Reads the MCM address.

iv) I nitializes the memory pointers.

5] SET_CW : Puts control word in the MCM to ABC packet.

Input : i} Pointer to the 'control-word' malloc.
i1) Software flags.
OCutput Proper control word set intoc 'control-

word' malloc.



6] GET_CHKSUM : Calculate the checksum of the packet.

Input : 1) Pointer to the start of the packet.
i1i) Packet length including checksum byte.
)  Checksum "of the packet. (Appends at
the end of packet.)
ii) Packet length in ri(i)

=

Output

7] SEND_BYTE : Sends the byte on the serial link.

Input : Byte to be transmitted in accumulator.
Output : TIO0 bit set.

- There are different segments of the program which are not used as
the subroutines. Instead, they are the modules of the program.
But these modules can be used as subroutines. Such modules are
listed below:

8] RAM TEST Function ¢ Tests the internal ram of the
microcontroller. Alternate 0s and 1ls are written into the ram
locations and are read back and then checked with the bit pattern
written in. 'If the two match through out the whole ram space,
test is . a success. Else it is declared to be

ram test failure.

9] GET_AD Function : Configures the ADCONO SFR (i.e. loads the
proper byte into it) and DAPR SFR. Starts the conversion cycle of
the ADC. SFR bytes can be passed as the i/p parameters and the
output parameter is the <contents of the ADDAT SFR after
-conversion is over.

10] Xmit Function : Input : Start of the packet, Packet length.
Output : None.



| DO SELF TEST I

[ INITIALISE 80535 SFRs

FLOWCHART FOR THE HMAIN PROGRAM OF THE MCH MONITOR PROGRAM |

INITIALISE DIFFERENT GPRw
CLEAR ALL THE FLAGS ,RERD ADDRESS
SET ALL MEMORY POINTERS
SET HODE-TABLE

Y

[ JURP INTO THE HODE SET FREVIOUSLY

I TINTO MAIN I

TIME—OQUT FLAG

| DISABLE SERIAL RECEPTIOM }

I EMASLE ADCRESS INTERRUFT

|

| EMARBLE RECEIVE MODE

REINITIATE GPR+ AND
CIFFERENT MEMORY POINTERS

l

TIME—OUT FLAG

ICLEQR ALL THE FLAGS EXCEFY}

[I JUHP INTO HGOE

FISRBLE SERLAL RECEPTIONJ

I

l CALCULATE CHECKSUH I

—€F1 SET THE ERROR FLAG I

v

| SEND THE RESPONSE I

BACK TO ABC

¥

|| JUMP INTO MCDE ||

COHMAND CQDE
OK?

JUMP INTO PROFPER
COHMAND CODE ROUTINE

I EXECUTE THE COMMAND J

¥

F SEND THE RESPOMSE |

BACK TO RBC

¥

1' JUMP INTQ MOLDE i]

.\



IFLOHCHQRT OF SI0 ISR FOR THE MCHM MORITQR PRGGRAM

TRAMNSHIT
INTERRUPT ?

CLERR TRO FLAG

S BYTES OF SET THE FLAG

R PACKET FOR
; is REHAIMING FRAME OVER
RETLIRN NO NO
ADDRESS CLEAR RIO FLAG -
FROM MATCHING?
INTERRUPT NO I CLEAR RIO FLAG
TES
SET FLAG 'EXIT*
STOP TIMER-OQ SEY THE FLAG
RELOAD TIMER FOR
REGISTERS ADDRESS MATCH
I START TIMER-Q F“*}‘———*
STORE THE
RECEIVED BYTE

ERABLE
DATA INTERRUPT

INCREMENT THE
POIMTER

INCREMENT THE
CGUNTER

15
PACKET
100 LARGE
?

DECREMENT THE
PGINTER

SET YHE FLAG
FGR PRCKET
AR

IS
COUNTER

ACKEY LENGTE




|FLOHCHRRT FOR THE SCRHN MODE OF MCM MOMITOR PROGRAM

&

PREPARE THE HEADER OF
RESPONSE PACKETY

¥

I ENABLE ]

RECEIVE MODE

{

ENRBLE
ADDARESS INTERRUPTY

ENABLE
SERIAL RECEFPTION

STARY SAMPLING FROM
AST SELECTED CHANNEL

SAMPLING
OVER

ALl
CHANNELS
CVER
2

JUMP INTO
ALL MAIN FROGRAM
CHANNEL.S
OVER
?

START SAMPLING NEXT
SELECTED CHANNEL




~

; LISTING CF THE MAIN PROGRAM OF THE MCM SOFTWARE

: * 8/9-bit Format *
; format flag=0 => 8-bit format
H format flag=1 => 9-bit format
table  SEGMENT ' CODE
$SET (format flag, 1) ; /* 9-BIT FORMAT  */

;THIS IS THE MAIN MODULE

[ PO ————— LM

;Symbols definitions

pstart_in EQU 80h ;Starting common maloc area
‘ ;for received data
- init_byte cnt  EQU 00h
¢ntr_init EQU 00h ;Pointer initialisation value.
stack ' EQU 65h ;Starting loc. for stack
max_pack_in EQU 18 ;Max pak len.for ABC2MCM frame
flag strt EQU 20h
direct_buff EQU 26h
NULL_COMMAND EQU 0
SET COMMAND EQU 1
READ_COMMAND EQU 2
REBOOT COMMAND EQU 3
max_cmd_code EQU 3
max_set code EQU 4
max_mode code  EQU 2
max_read code EQU 5
v
o mode code EQU 0
. scan_code EQU 1
restart CODE 00H
start0 CODE 30h
sr_int CODE 238
sr_int0 CODE 540h
timer 0 CODE Obh
timer 0 jmp CODE 600h
; _iade CODE 43h
; ade_service CoDE 700h

psize lb DATA pstart_in ;packet size lower byte

psize hb . DATA psize 1lb+l ;packet size upper byte

id code DATA psize hb+l :ID CCODE of the MCM

cmd_code DATA id code+l ;control word lb({cmd code)

control word hb DATA cmd codet+l '

arg lenth 1b DATA controlwword_hb+l;Argument length lower Dbyte

argulenth:hb DATA - arg lenth lb+1 ;Argument length upper byte

args DATA arg_lenth hb+l ;Actual arguments are stored
;from this maloc

argsl ' DATA args+l

args? DATA argsl+l

canl mask DATA args2+8 ;Analog mask stored here




dmask 16 DATA canl mask+8 ;16 bit digital mask stored here

dmask_32 DATA dmask 16+2 ;32 bit digital mask stored here

mode_table DATA dmask_32+4 ;Current Mode byte (1 byte)

pstart_out DATA mode table+8 ;Start of the Response Packet

flag area DATA flag _strt

temp loc DATA  direct buff-2

temp locl DATA direct buff-3

version DATA direct buff-1

byte cntr DATA direct buff ;Counter for no.cf bytes

;recceived from ABC.
chk_sum DATA direct buff+i ;Checksum calculated by MCM
' ;is stored here.

mem_addr DATA direct buff+2 ; MCM address stored here.

tof BIT 00nh ;Flag bit for time_ out (20.0)

csum err flag BIT tof+l

tmr{_status BIT tof+2 ;Flag set when Timer( NOT ok

tmrl status BIT tof+3 ;Flag set when Timerl NOT ok

tmr2 status BIT tof+4 ;Flag set when Timer2Z NOT ok

Q ram_status BIT tof+d ;Flag set when internal ram check fails

adc_status BIT tof+6 ;Set when ADC faulty

come out BIT tof+7 ;Flag which indicates the function to
;jump into the main programe.

ptoo_large BIT tof+8 ;Set when a tco large packet 1is

' ;received from ABC

icr - BIT tof+9 ;Flag for inconsistent command.

slftst BIT tof+10 ;Flag for selftest.

tot BIT tof+1l

null BIT tof+12 ;Flag set when mode is set to idle.

RSEG table
P Command Lookup Table :-

lkupt: DW cmd 0 ;NULL COMMAND
: _ DW cmd 1 ; SET COMMAND
" _ DW cmd 2 ;READ COMMAND
; DW cmd_ 3 ; REBOOT COMMAND
set_table: DW set mode
DW set_anl mask
DW set dmask_ 2b
DW set_dmask_4b

; Mode Lookup Table :-

modt ; DW idle mode
DW scan_mode
read table: DW rd _anlmask
DW rd dmasklb
DW rd dmask32
DW rd versicn
DW rd mode
EXTRN CODE (init 80535) ;init 80535 is anmexternal
;procedure
5 INCLUDE (reg535.pdf) '
$ INCLUDE (rx2.asm) ;Include interrupt handeling

$ INCLUDE (init.pdf)



CSEG AT restart
1imp start

;Main program starts:-

CSEG AT start?
start:
clr RENO
mov r(, #1
ram_loopl: mov a, #0aah
mov @r0,a
mov a,@r0
cjne a,#0aah, ram _err
inc rQ
cjne rQ, #0£fh, ram loopl
mov @r(, #0aah
. mov a,Br0
cjne a,#0aah,ram err
mov, r0, #1
ram loop2: mov a,#55h
mnov @z0,a
mov a,@x0
cine a,#55h, ram err
inc 0
cjne r0,#0£ffh, ram loop2
mov @rQ, #55h
mov a,@r
¢jne a, #55h, ram err
simp ram_over
ram_err: clr p3.4
mov pd,#01
setb ri0
jmp $
. ram _over: mov sp, #stack
H call tmr chk
H call adc_chk
call init 80535
call init

:Disable reception

;Initialize the B8053% SFRs.

intoumain:

tot _err:

$if (¥format_flag EQ 1} then ({

else

f£i

13mp into mode

jb psw.5, frame_over
ib tof,tot_err

s jmp into_main

clr RENO

setb s0con.5

seth 3.3

)

setb p3.3

)

;Disable reception,

;Set SMZ2 bit to get interrupt

;with address byte only.
;Enter into receive mode

:Enter into receilive mode



clr psw.4

mov rQ, #pstart_in
clr psw.l
clr pPsw.5
setb psw.3 ;REG. BANK 1
mov r0, #pstart_out+5
mov byte cntr,#0
; mov th0, #0fdh
: mov tl0, #0
mov thl,#timer0 hb
mov t10, #timer0 1b
mov version, #1
H mov po,#2
mov flag_ares,#0
mov flag area+l, #0
setb tot
lijimp into mode
frame over:
clr REND ;Disable reception.
. : setb psw.d
; setb psw.3
: mov rl,#80h
;111 mov rQ,#0ffth
i dingz ro,$
; dinz rl,111
; mov thi, #0
; mov t10,#0
; seth TRO ;Start timer-0
clr psw.3 ;Reg. bank 0
clr psw.4
clr p3.4 ;Turn on the LED,
; After the full frame is received, reg. & memory status are as follows:
; r0(0} -> points to the malloc immediately following the ‘chk _sum’field
: {(byte_cntr) = total no.of bytes in the frame received from ABC.
dec z0 . ;Store the chk_sum received
. ;from ABC 'into proper field
mnov chk sum, @r0 Ji.e. ("chk_sum™) .

clr a ;Clear the acc.

mov rl,byte cntr ;Load rl with total no. of
;bytes received from ABC,

dec rl ;Decrement rl by 1 because the

;last i.e.’csum’ field in the
;frame has to be ignored while
;rcalculating the check sum.

; dec ‘rl .

mov 'r{, #pstart in ;Point to start of frame
csum: add a,@ro -
inc rQ
dinz rl, csum
cpl a :
add a,#1h ;Now calculated csum is in acce.
cine a,chk_sum, csum_erxr ;Mismatch between the 2 csums.
;Report the error,

S jmp no_<sum_err

R I ——————




CcsSum_err:

Nno_csum err:

unknown cmd:

nothsét:

. cmd 1:

set mode:

setb
setb
clr
mov
mov
call
mov
mov
1jmp

setb
clr
mov
mov
call
mov
setb
mov
mov
clr
subb
inc
mov
cjne
sjmp

setb
clx
mov
mov
call
mov
mov
1imp

1jmp

seth
mov
mov
clr
subb
jnc

mov
rl
push
mov

nove
mov
inc
pop
move
mov
mov
mov
clr
Jmp

;seth
clr

csum _err flag
psw.3

psw.4

temp loc,z0

0, #pstart out+3
set cw

r0,temp loc
r6,#0

Xmit

psw.3

psw.d

temp loc,r{

r0, #pstart_out+3
set Cw
r0,temp_loc
psw.4

rQ, #cmd_code
a,@z0

c

a,#max_cmd code
unknown_cmd
a,@rd
a,#1l,not_set
cmd 1

icr

psw.d

temp loc,r0

r{, #pstart_out+3
set _cw
r0,temp_loc

ro, #0

xmit

set not

psw.4
rl, #args
a,@rl

c
a,#max_set code
unknown_cmd

;REG. BANK 1 IN USE

;REG., BANK 3 IN USE.

;Command Code is-in the accumulator.

~

;REG.BABK 1

;REG.BANK '3
;SET Command found.First check if its

;argument is proper.rl(3)

;Unknown argument code found,

a,@rl ;Proper argument found.Jump to respective
a ;routine.
acce

dptr, #set_teable

a,fat+dptr
rl,a

dptr

acc
a,@a+dptr
r2,a
dph,rl
dpl,xr2

a

Ga+dptr

psw.3
psw.d

;Point to the base address of
;the command table

;rl (1)

;Jump to the proper SET command routine

;REG. BANK 1



~

mov rl, #argsl ;SET MODE found.First check if its

mov a,@rl ;argument is proper.rl(l)
clr c ' '
subb a,#max mode_code :
jnc unknown_cmd ;Unknown argument code found.
mov temp_ loc,z0
mov r, ¥pstart_out+3
call set CwW
; mov rQ,temp_loc
; mov temp_loc, 0
mov r0, #mode_table
mav rl, #argsl
mov a,@rl
mov @rQ,a
mov r0,temp_loc
mov @r0, #5 ;Length of 2nd Logical Packet (l.b.)
MoV r6, #5
inc bl
mov @rd, #0 ;Length of 2nd Logical Packet (h.b.)
. inc r0 '
mov rl, #cmd_code
mov a,erl
mov '’ @r0,a :Command code (Code:1l -> set}is put
inc rd -
mov rl, #args
mov a,@rl
mov @rl,a ;1lst argqument ( 0 -> mode ) put in lp
inc rQ
inc rl ;argsl
mov a,@rl
mov @r0,a ;2nd argument ( 0/1 -> idle/scan )
inc r0
1jmp xmit
set_anl mask:
setb psw.3
clr psw. 4
mov temp loc, r0
mov rQ, #pstart_out+3
. call set_cw
: mov r0,temp_ loc
; mov temp loc, 0
mov a,#0
mov r0, #canl mask
mov ri, #argsl
anl cpy: push acc
mov a,@rl
mov @rQ,a
pPop acc
inc a
inc rQ
inc orl

cine a,#8,anl cpy

; mov rl,r2
mov r0,temp loc
mov @r0, #12 ;Length of 2nd Logical Packet {(Lower Byte)
mov rhH, #12
inc x{Q
mov @r0, #0 ;Length of 2nd Logical Packet (Upper Byte)
ing r0

mov rl, #cmd_code

R




arg_cpy:

set_dmask 2b:

arg cpyl:

set_dmask 4b:

mov
mov
inc
mnov
mov
push
mov
mov

- inc

inc
pop
inc
cjne
inc
1jmp

setb
clr
nov
mov
call
mov

mov
mov
mov
mov
mov
push
mov
mov
pop
inc
inc
inc
cjne

mov
mowv

mov
mov
mov
mev
inc
mov
inc
mov
mov
mov
inc
mov
mov
push
mewv
mov
inc
inc
pop
inc
cine
inc
1imp

a,@érl

@x0,a ;Command code (Code:l =-> set)is put
balt] =

rl, #args

a,#0

acc

a,@rl

@r0,a ;1st argument (1 -> anl mask ) put in 1lp
r(Q

rl rargsl

acc

a

a,#9,arg cpy

rQ

xmit

psw.3

psw.4

temp loc,r0

0, #pstart cut+3
set_cw

rd,temp loc

r2,r0

temp_ loc, r0
r0, #dmask 16
rl,#argsl
a,#0

acc

a,@ri

@r0,a

acce

a

rd

rl
a,#2,dl6_cpy

p4,dmask_16
pS5,dmask_16+1

rQ,r2

r0,temp loc

@r0,#6 ;Length of 2nd Logical Packet (Lower Byte)
ro, #6

0

Qr0,#0  ;Length of 2nd Logical Packet (Upper Byte)
r0

rl, #cmd code

a,@rl

@rl,a ;Command code (Code:l ->» set)is put
rQ

ri, #args

a,#0

ace

a,drl

@xr0,a ;lst argument (1 -> dmask 16 } put in lp
rQ

rl ;argsl

acc

a

a,#3,arg cpyl

x(

xmit




seth
¢lr
mov
mov
call
H mov

; mov
; mov
mov
mov
mov
d32 cpy: push
mov
mnov
pop
inc
inc
inc
cine

® nov

mov
mov
mov

: mov
mov
mov
mov
inc
mov
inc
mov
mov
mov
inc
mov
mov

. arg_cpyz: push
mov
mov
inc
incg
pop
inc
cine
inc
1limp

set not:
mov
mov

push
mov

move
mov
inc
pop
move
mov
mov
mov

psw.3
psw.4
temp loc, 0

rQ, #pstart out+3

set_cw
r0,temp_loc

r2,z0

temp loc,x0
rQ, #dmask 32
rl, #argsi
a,#0

ace

a,fdrl

@rQ0,a

acc

a

0

rl
a,#4,d32_cpy

p4,dmask_32

p5,dmask_32+1
p4,dmask 32+2
p5,dmask_32+3

rQ,r2
r0,temp lecc

;Set the 32 bit word to the
;ports.,

@r0,#8 ;Length of 2nd Logical Packet (Lower Byte)

r6, #8
r{

Qrd, #0 ;Length of 2nd Logical Packet (Upper Byte)

rQ

rl, #cmd code
a,@rl

@z0,a

rQ

rl,#args
a,#0

acc

a,@rl

@r0,a

rQ

rl

acc

a

a,#5,arg cpy?
r

xmit

rl, #cmd_code
a,@rl

a

acc

dptr, #1lkupt

a,Qa+dptr
rl,a

dptr

acc
a,@a+dptr
r2,a
dph,ri
dpil,x2

:Command code {(Code:l -> set})is put

;1st argument (1 -> dmask 16 ) put in lp

;argsl

;Point to the base address of
;the command table

;rQ (0)



jmp Q@a+dptr ;Jump to the proper routine

;This is the NULL COMMAND.Program 3just sets the control word,
;returns the packet length(0,in this case)

clr psw.4

mov temp loc, r0

mov r0, #pstart _out+3
setb null

call set_cw

mov x0, temp_loc

mov ré, #0

1imp xmit

;Following fragment of the program executes the command-2 i.e. READ COMMAND

;Read Command found.Check first if

mov rl, #args ;proper argument is received for this
mov a,erl ; command.
clz c
subb a,#max_read code
jnc unknown ;Invalid arg.found.Errcr!
setb psw.3
clr psw.4
mov temp loc, r0
mov r0, #pstart_out+3
call set_cw
mov rd, temp loc
mov rl, #args ;Valid argument found,proceed.
. mov a,@rl o
ri a
push acc
mov dptr, #read table ;Point to the base address of
;the command table
move a,@a+dptr
mov rl,a ;0 (0)
inc dptr
pop acc
move a,@a+dptr
mov r2,a
mov dph,rl
mov dpl,r?2
clr a
jmp @a+dptr ;Jump to the proper routine
unknown: 1jmp unknown_cmd

rd anlmask:
H setb psw.3

; clr psw.4d
mov @r0, #12 ;Length of 2nd Logical Packet (Lower Byte)}
mov rh, #12
inc r0 :
mov @r0, #0 ;Length of 2nd Logical Packet (Upper Byte)
inc 0

e I ——————S




put msk:

' rd dmasklé6:

?

'S put_di6:

rd dmask32:

¢

r

mov
nov
MoV
inc
Tov
mov
mov
inc

mov
mov
push
mov
mev
inc
inc
pop
inc
cjne
1jmp

setb
clr
mov
mov
inc
mov
inc
mov
mov
mov
inc
mov
mov
mov
inc

mov
mov
push
mov
mov
inc
inc
pop
inc
cine
1imp

seth
clr

nov

mov
inc
mov
inc
mov
mov
mov
inc
mov
mov
mowv
inc

rl, #cmd_code
a,@rl

@rd,a

r

rl, #args
a,Qrl

@r0,a

r0

a,#0

rl, #canl mask
acc

a,@rl

@r0,a

0

ri

acc

a
a,#8,put_msk
xmit

psw.3
psw. 4
@r0, #6 °
r6, #6
r(

@r0, #0
r0

rl, #cmd _code
a,@rl

@rd,a

ri

rl, #args
a,@rl

Rr0,a

r(

;Length of 2nd Logical Packet (Lower Byte)

:Length of 2nd Logical Packet (Upper Byte)

a,#0

rl, #dmask_16
acc

a,@rl

@r0,a

r0

rl

acc

a

a,#2,put dlé
xmit

psw.3
psw.4
@r0, #8
r&, #8
r0
@rQ, #0
rd

rl, #cmd code
a,érl

€r0,a

rd

rl, #args
a,@rl

8r0, a

)

;Length of 2nd Logical Packet (Lower Byte)

;Length of 2nd Logical Packet (Upper Byte)



mov a,#0

mov rl,#dmask 32
put_d32: push ace

mov a,lrl

mov @xQ,a

inc rQ

inc rl

pop acc

inc a

¢cjne a,#4,put_d32
13mp Xmit
rd version:

; setb psw.3

; clr psw.4 ‘
mov " @xQ,#5 ;Length of 2nd Logical Packet (Lower Byte)
mov r6, #5
inc r
mov @x0, #0 ;Length of 2nd Logical Packet (Upper Byte)
inc r0

._ mev rl, #cmd_code

mowv a,firi
mov €xrQ,a
ine rQ
mov rl, #args
mov a,@rl
mov @xr0,a
inc r0
mov @r0,versicn
inc rQ

1ijmp Xmit

rd_mede:

H setb psw.3

; clr " psw.4

' mov @r0, #5 ;Length of 2nd Logical Packet (Lower Byte)
mowv ré,#5
inc 0
mov @Qr0, #0 ;Length of 2nd Legical Packet (Upper Byte)
inc rg - _
@ mov rl, #cmd ‘code

mov a,@rl
mov @r0,a
inc rQ
mov rl, #args
mov a,@ri
MoV @r0,a
inc r0
mov rl, #mode table
mov a,@rl
mowv @r0,a
inc rd

1jmp xmit

idleﬁmode:

;Prepare the header portion of the response frame :-

;REGESTER BANK 1 IS IN USE. .
mov @r0, #4 ;1lp(lower byte)
inc r JPointer to llp(upper byte)
mov r5, #4
mov @xr0,#0 ;lip(upper byte)
inc rQ ;Pointer to Response Code



mov @rQ, #reboot_command ;Response code for
: jSelf Test/Reboot

inc r0 ;Pointer to arguments of the response
;code
mov - @rl,+#0
mov a,#l
push acc
jnb tmr0_status,tlok
orl a,@rd
mov @r0,a
t0ok: pop ace
- orl a
push acc
jnb tmr2 status,tZok
orl a,@ro0
mov @rQ,a
tZ2ok: pop acc
rl a
jnb adc_status,adc_ck
orl a,@ry
mowv Qr0,a
adec ok: mov a,drQ
' cine a,#0,stst_failed
s Jmp stst_ok
stst failed: clr p3.4
mov p5, #0aah
setb rif
Jmp $
stst_ok: ingc 0 ;r0(l) points to the Start of the out buff that
;will be filled by main prog. if needed
mov byte cntr, #cntr_init
clr rid ;Enable the RI Interrupt
%if (3format_ flag EQ 1) then (
) setb p3.3 ;Enter into receive mode
setb sOcon.5 ;Set SMZ bit to get interrupt
;with address byte
)
alse {
seth p3.3 ;Enter into receive mode
)
fi
setb psw.3
setb RENOQ ;Enable reception
jnb come_out, $ ;Wait till frame received
1jmp inte main

;This command scans those channels for which the corresponding bit in the
/Analog Mask is set to 1. Others are skipped.

;Following are the registers used-

;r2:Counter for no. of mask-bytes covered.

;r3:Global counter for the no. of channel-bits covered

;r4:Counter for the actual no. of channels scanned.

;r7:Counter for no.of bits checked within the mask-byte

;r0:Points to the storage locations for ADC values for the different channels
;rl:Points to the analog mask location

| R




cir psw.4
mov rl, #canl mask
mov r5, #0
mov r2, #8
mov r3, #8
mov a,Arl
find: rrc a
jc scan
scan_ret: djnz r3,find
mov r3,#8
inc rl
mov a,@rl
dinz re, find
s jmp 1pl _got
scan: inc r5
sjmp scan_ret
Ipl got:
' ; mov p5,xrb5
mov a,rb
; add a,#3
; add a,#8
; ' add a,#1ll
add a,#13
mov r5,a
mov @r0,a
inc r
mov Rr(, #0
inc z(
mov
inc r0
mov @r0, #mode_code
inc rQ
mov @r0, #scan_code
inc r0
mov rl, #canl mask
. mov r2,#8
send msk: mov a,@rl
mov @zx0,a
inc rQ
inc rl
djnz r2,send msk
$if (%format flag EQ 1) then (
setb p3.3
setb sOcon.>5
)
else {
©  setb p3.3
)
fi
mov temp locl,pl
orl temp locl, #0fh
clr ADEX
clr ADM
sethb RENO
mov temp_loc, x0
continue: mov rl, #canl mask
mov r2,#08h
mowv r3, #00h

; It contains the no.of bytes to be
;returned by the mode to the main prog.

;Logical Packet length (l.b)

;Logical Packet length (h.b)

@r0, #set_command ;Command code for SET

;Code for MODE

;Code for SCAN

;Enter into receive mode
:Set SM2 bit to get interrupt
;with address byte

;Enter into receive mode

;Make lower nibble of temp_locl HIGH

;Internal start of conversion
;Steop after 1 conversion.

;Enable reception

;This is the maloc from where the
;ADC o/p data will he stored.

;Counter for no. of mask-bytes covered.
;Global Counter for no.of channel-bits

e




mov
mov
mov

: clx
wait: ; rrc

n_arg:

rr
: mov
jb

return: inc

not _over: dinz
mov
inc
dinz
mov
sjmp
chk _exit:

cine
; cine

1jmp

;covered.

r4, #00h

;Counter for actual no.of channels

;scanned.

r7, #08h

;Counter for no.of bits checked within

;a mask-byte.

a,@rl

- C

a

get_ad

a

p4,r3
acc.7,get_ad

r3 ;Increment the global counter

come_out,chk_exit
ri,wait
r7,#8h

ril

r2,n _arg
rd,temp loc
continue

r3,#64,not_over
r3,#63, not_over

into_main

sReload the

"hit-counter’ wvalue.

;Wait untill all channels over.
;Wait untilil all channels over.

inc
push
mov
mov
div

orl
moev
orl
anl

mov

mov
orl
anl
mov
mov
ib
nov
cpl
mov
inc
pop
1jmp

®mit:
setb
clr
mov
mov
add
add
mov

5.7

rd ;s Counter for
acc

a,r3

b, #16

ab

a,#0£f8h
p3,a
adcon(, #07h
adcon(0, a

r4,adconl

a,b
a,#0£0h
a,temp locl
pl,a
dapr, #00h
BSY, S
a,ADDAT

a

@r0,a

r(

acc
return

psw.3

psw.4

r0, #pstart _ocut
a,rh

a,r6

a, #6

@r0,a

actual no.of channels scanned
;Bit counter value in acc.

;After the division acc has
;the mux. no. & b=channel no.
;Set MUX0-2 bits to 1.

;Proper mux no. has been set

;Make upper nibble HIGH

;REG. BANK 1

;Update the packet size value.



get chksum:

;:Enter into

;Enter into

(including csum byte) in r5(1)

Transmit mode

;Bit ({sOcon.3) set for addr.

transmit mocde

;Stop timer-0.
;Address byte sent.

+Send Data Bytes now

;ppl in rl{l)

;LED Off!
;Clear all the flags

;REG. BANK 1

;Enable recption

mov r5,a ;ppl 1.b.
inc r0
mov @r0,#0 ;ppl h.b.
inc r0
mov rl, #id_code
mov a,fdrl
mov @rd,a
call get chksum
clr p3.3

%1f(%format _flag EQ 1) then
clr p3.3
setb TB8D
) .

else {

clr p3.3
) _—

fi

; clr TRO
mov a,mcm_addr
cali send byte

; call delay

. clr TB8O -,

; mov a,thl

; call send byte

H oV a,tl1l0

; call send_byte
mov rQ, #pstart_out
mov a,r2
mov rl,a

sending: mov a,@x0
call send byte

H _ call delay
inc r
dijnz rl,sending

; : mov a,tho

H call send byte

: mov a,tl0

H call send byte,
clr psw. 3.

. elr psw.4

mov r0, #pstart_in
clr psw.1
clr psw.5
setb p3.4:
mov flag_area,#0
mov flag area+l, #0
seth pSwW. 3
nov r0, #pstart _out+5
mov byte cntr,#0

; mov th(, #0£dh

; . mov t10,#0
mov tho, #timer0_hb
mov 10, #timer(0_1b
mov version, #1
clr rigQ

; setb RENO
cilr til
1jmp into mode

;Puts the checksum byte as the last byte of the packet.

;Also returns the packet length in reg.

rl(l)



mov z0, #pstart out

dec 5 ;This is the packet size without checksum byte
mov a,rb :
mov rl,a ;{ppl-1) in r1 (1)
inc a
mov r2,a ;Actual ppl in r2(1)
clr a
calc: add a,@rd
ine r0
dinz rl,calc
cpl a
inc a ;Checksum in acc
mov rl,a ;Checksum stored in rl
mov r0, ¥pstart_out
mov a,rs
H inc a ;Packet size including checksum byte
add a,xd
moev r0,a
mov a,rl
‘ mov Rr0,a ;Put the checksum byte at the end of
;the packet
ret
send_byte:
clr ti0
mov shuf,a :Get the byte in acc
jnb tif, $
ret
init: .
mov rQ, #pstart_in
mov ri;#128
do: mov @r0, #00h
inc rQ
djnz rl,do
mov rQ, #direct_buff
mov rl, #50
dol; mov @x0, #0
ing r(Q
. dinz rl,dol
clr psw.3 ;Use reg.bank 0
clc psw. 4
clr PSw.l
clr psw.5
setb p3.4 ;LED Off!
mov flag_area, #0 ;Clear all the flags
mov flag area+l, #0
mov a,pl
anl a,#0£f0hnh
mov r0, #4
rot: rr a
dinz r0,rot
mov mcm_addr, a ;Get the MCM Address
; mov pé,mcm_addr
mov r0, #pstart_in
seth psw.3 ;REG., BANK 1
mov r0, #pstart_out+5
mov version, #1
ret
set Ccw:
H setb psw.3 ;REG. BANK 1
: clr psw.4



no_tof:
no_csum;

no_icr:

ok:
one_ lp:

delay:

. into mode:

’

mov
mowv
push
jnb
orl
mov
pop
ri
push
jnb
orl
mov
pop
rl
push
jnb
orl
mov
BoP
rl
jnb
orl
mov
inc
ib
mov
ret
mov
ret

sethb
mov
dinz

- ¢clr

ret

mov
mowv
rl
push
mov

move
mov
inc
pop
movce
mov
mov
mnov
clr
jmp

a, %l

@r0, #0

acc
tot,no_tof
a,@r0

@z0,a

ace

a

acc

csum err flag,no_csum
a,@r0

@rQ,a

acc

a

acc
icr,no_icr
a,@ro

@r0,a

ace

a

ptoec large,ck
a,@ro

@r0,a

ri

null, one 1lp
@r0, #2

@r0, #1

psw.d
rQ, #0£fh
rQ,s
psw.4

rl,#modé_table
a,lrl

a

acc

dptr, #modt

$r1{l)

a, Ra+dptr
rl,a
dptr

acc
a,Ra+dptr
r2,a
dph,rl
dpl,x?2

a

@a+dptr

- ;This subroutine tests the Timer-0 and Timer-1

;No.of lp.s in pp

;Point to the base address of
;the mode table

;rl (1)

;Jump to the proper routine

;Testing 1is done by putting certain wvalues in timer registers and then by

clr
clr
mov

TRO
TR1
thl, #0££h

;Disable Timer-0
;Disable Timer-1
;9600 baud




tmrC_ok:

tmrl ok:

ERD

nov
mov
mov
mov
setb
mov
dinz
clr
mov
cjne

mov
clr .
setb

jmp

setb
mov
djnz
clr
mov
cjne

mov
clr

" setb

jrp

ret

t11,#0£ffh

thQ, #0ffh

t10,#0£f£fh

tmod, #gate_dable+timer+tmrl mod2+tmr(0_modl
TRO ;Start Timer-0
r0,#7£fh

r0,$%

TRO

r0,tl0

rQ0, #0ffh, tmrl ok

pd, #02h ;Timer-0 mal-functioning
p3.4
rid

$

TR1 ;Start Timer-1
rd, #7fth :

r0,$

TR1 ;Stop Timer-1
r0,tho

r0,#0ffh, tmrl ok

pé, #03h ;Timer-1 mal-functioning
p3.4
ri0

$



ﬁAME up 80535

rog 80535 segmer: CODE
ESEg; prog £:335

$SET (format_£flzg,1} ; ¢ BIT FORMAT
EXTRN  DATA(p<,pS, s0c:i, POON, den0, ienl, en2, ipg, 1p1)
EXTRN  BIT(BD)

; This program does the power on initializations for 80535

—"__——_’___-“"-'—__—_---—-—--_-.___._._.._._.._

——— s e e

——— e T
- e v it _

PUBLIC init_80535
USING 0 '
init_80535:

.inclﬁde(init.pdf)'
' startl:

mov dpsel, #Jdptr0 Select dptr0 for ext. mem.
;addressing.
cly TR1 ;Disable timeri
clr TRO ;Disable timer(
orl PCON, #8Vh ;Set SMOD bit (PCON,7)
mov IENO,#int_enable+s_port_int+tO_int able ;Enable serial
; mov IEN1, #1 ‘Enable ADC Interrupt
; mov IEN1, #0 ;Enable ADC Interrupt
mov IENZ, #00h
mov IPO,#11h 7Highest Priority to SIO Int.g second highest:
mov IP1,#12h ’Priority tg Tmr0 Int. & lowest to ADC Int.
$if( $format_flag EQ 1 ) then (
mov SOCON, #sc_mod3+ser jp enable+mul proc
nov SOCON,#SC_mOd3+no_ser:ip+mul_prog
)
else {
mov SOCON,#sUWmOd1+Ser_ip enable+mul proc
mov SOCON,#sc_mOdl+no_ser:ip+mul_proc

}

;Configure Timerl in mode2 (auto reload) for proper baud rate .-

—.____-_-.___—___-_—u-_._..__—".-—..._..._.___“_ ———e—e

clr BD /Baud rate enable {ADCONQ . 7)
mov thl, #0fely ;9600 baud
: mov th0, #0fdh _ JFOr 5 ms time out
H mov t10, #0h -
mov thl, #timer0_hb
mov thl, #timer0_1b
mov tmod,#gatﬁ_dable+timer+tmr1_mod2+tmr0 modl
setb TR1 ;Start timer]

ret




1 jmp
CSEG at
service:

jb

clr

reti

jb

" push
mov
cine
clr
setb

%if (3format_flag EQ 1)
' : clr

)
else {

clr

)

pop
mov
mov
clr
seth

reti

_end: pop
clr
reti

not_1:
clr
clr

; clr
nov
ing
inc
push

jb
mov
mov
¢jne
setb
len__nOk . dec
len_ok: mov
mowv
clr
subb
cine

LISTING OF THE isr FOR MCM SOFTWARE VERSION 1

sr int ;Serial-int. vector location
service
sr-int0
ri,no_ti
ti0
;return

psw.l,not 1

acc

a,sbuf

a,mcm, addr, end

p3.4

psw.1 ;Set the flag for address match found

:with data bytes.

then

sOcon.b

sOcon.5 ;Clear 3M2 bit,now interrupt will occur

acc

th0, #0£fdh

t10, #0

ri0

TRO ;Start TMRO only when valid address
;byte is received.

acc
ri0

TRO

psw.3 ;Switch to hank-0

psw.4d

@x0, sbuf ;Store the received byte

r0 ;Increment the pointer

byte cntr ;Increment the 'byte-counter’
acc

ptoo large,len nok
a,byte cntr
pé4,byte cntrx

a, #max_pack in, len ok
ptoo_ large

r{

rl, #psize_lb

a,érl

c

a,byte cntr

a, #0, fnot_over

' seth ﬁsw.5 iﬁiiii iiﬁﬁi ii ii iviiliﬁi thi iiiil



-

pop
setb
“eclx
clr
clr
reti

fnot_over:

returnl:

cjne
seth

pop
setb
clr
mov
mov
clr
setb
reti

CSEG AT
1jmp

CSEG AT

servﬁtmro:
clr
clr
mov
mnov
seth

setb
reti

acc
psw.3
tof
rid
TRO

a,#7,returni
come_out

acc

psw.3

tof

thQ, #0£fdh
£10,#0
ril

TRO

timer 0
serv_tmr(Q

timer 0_7jmp

TRO

p3.4

th0, #0£dh
t10, #0
tof

come out

;Stop Timer-0

:Reload the timer values.



