-

i L,

NCRA LIBRARY
0010

1
For the MCM-user to write his/her own C programs to control the
MCM card, a library interface has been developed that consists
of all the basic functions required to communicate and control
the MCM. Scope of this document is to understand what all
functions have been put up in this library and how to use themn.

Mukund R 1

Following is a list of the functions available in the MCM library:

int inits(int);
MCM *null emd(int, int);
MCM *set_idle mode(int, int);
MCM *set_scan_mode(int, int);
MCM *set_mean_mode(int, int, int);
MCM *set limits mode(int, int);
MCM *set_anl_mask (int, unsigned char *, int);
MCM *set dmask 16bit(int, unsigned char =, int);
MCM *set _dmask 32bit(int, unsigned char *, int);
MCM *set_dmask 64bit(int, unsigned char =, int);
MCM *set_t_values(int, int, int, unsigned char #*, int);
MCM *read_anl mask(int, int);
MCM *read_dmask_16bit(int, int);
MCM *read_dmask 32bit(int, int);
MCM *read_dmask_é64bit(int, int);
MCM *read_version(int, int);
MCM *read _t _values(int, int, int, int);
MCM *read mode(int, int);
© MCM *feed_control(int, unsigned char, int, int);
MCM *commonbox_mon(int, int);
MCM *febox_mon(int, int, int);

Except the first function (ie inits),on successful communication
with the MCM, all the functions return a pointer to an mcm
structure, otherwise return a NULL pointer on timeout. (Timeout
implies no response from MCM} .

The mcm structure is defined like this:

typedef struct {

unsigned char addr,cboxdata[SS],cmd_stat,loffset,lvals[BG]_
unsigned char anamask[S],digimask[B],scandata[64];1data(5],

char version(4],mode(8],cmd_name(30],monitor[10];
char avgfact; o
+ MCM;

Depending upon the command issued (ie the function called), user can
look at the various structure elements to find out the response from

MCM.

What each function does?

—— e ———

Syntax: # include <mlib.h>
MCM *null cmd(int mcm_addr, int com_port) ;

null cmd sends a null-command packet to the MCM. Returns a

2> set_idle_mode:

3>

4>

8>

6>

7>

8>

9>

Syntax: # include <mlib.h>
MCM *set_idle_mode(int mcm_addr, int com port);

This function, when called successfully, puts the MCM in idle mode.

set_scan_mode:

——————

Syntax: # include <mlib.h>
MCM *set scan_mode(int mcm_addr, int com_port) ;

set_scan_mode puts the MCM in scan mode.

set _mean mode:

Syntax:
include <mlib.h>
MCM *set_mean_mode(int mcm_addr, int avgfact, int com_port);

"avgfact" is the averaging factor.

set_limits mode:

Syntax: + # include <mlib.h>
MCM #*set_limits_mode(int mcm_addr, int com_port);

This function is used to configure the MCM in limits mode.

set_anl mask:

Syntax:
include <mlib.h>
MCM *set_anl_mask(int mcm_addr,unsigned char #*mask,int com port)

Second parameter to this function is a pointer to an array of
eight bytes that specify the analog mask bytes.

set_dmask 16bit:

include <mlib.h>
MCM #set_dmask_16bit(int mcm_addr,unsigned char #*mask,int com port)

Second parameter to this function is a pointer to an array of
two bytes that specify the 16 bit digital mask.

set_dmask 32bit:

——— . —— ey ———— — ——

include <mlib.h>
MCM *set_dmask_32bit(int mcm_addr,unsigned char *mask,int com_port)

Second parameter to this function is a pointer to an array of
four bytes that specify the 32 bit digital mask.

set_dmask_64bit:

include <mlib.h>
MCM *set_dmask_é4bit(int mcm_addr,unsigned char *mask, int com_port)

}? _ Second parameter to this function is a pointer to an array of
' eight bytes that specify the 64 bit digital mask.

10> set t values:

T s i —— — i —— o sy

include <mlib.h>
MCM *set_t values(int mcm_addr, int offset,int bytes cnt,
unsigned char *buff, int com_port) ;

This function is used to set the threshold values for the
channels selected by the analog mask. User has to specify
these values before MCM is configured into "limits" mode.
Each of the selected channel has two threshold values,
lower and upper. current version of MCM kernel supports at
the most 18 channels in the limits-mode of MCM, which implies
maximum 36 threshold bytes. MCM kernel reserves an array of 36
bytes (on-chip RAM) to store these values.

"offset" => offset from the start of the array at which

the threshold values are stored in the on-chip RAM
"bytes cnt” => no. of threshold bytes,
"buff" => pointer to start of the array where threshold bytes
are stored in PC RAM.

For a detailed description of the mean and limits modes of MCM,
please refer to a seperate note on MCM Modes.

11> read_anl_mask:

—— . . ———— o .

Syntax: # include <mlib.h>
MCM *read_anl mask(int mem_addr, int com_port);

read_anl mask on success puts the analog mask in the element
"anamask[]" of the MCM structure.

12> read dmask_16bit:

S — k. — T Akt

Syntax: # include <mlib.h> T
MCM *read_dmask_lé6bit(int mem_addr, int com port);

read_dmask_16bit on success puts the 16-bit digital mask in
the element "digimask{]" of the MCM structure.

13> read_dmask_32bit:

e — — i —— — o —— - ="

Syntax: # include <mlib.h>
MCM *read_dmask 32bit(int mcm_addr, int com port);

read_dmask_32bit on success puts the 32-bit digital mask in
the element "digimask[]" of the MCM structure.

14> read_dmask_64bit:

S ——— v —— — —

Syntax: # include <mlib.h>
MCM *read_dmask 64bit(int mcm_addr, int com_port);

read_dmask_64bit on success puts the 64-bit digital mask in
the element "digimask[]" of the MCM structure.

15> read version:

——— e —— o

Syntax: # include <mlib.h>
MCM *read version(int mcm_addr, int com port);

o read_version on success puts the MCM kernel version number in
the "version" element of the MCM structure.

16> read mode:
Syntax: # include <mlib.h>
: MCM *read_mode(int mcm _addr, int com_port) ;

read_mode on success puts the current MCM mode in the "mode["
element of the MCM structure.

17> read_t values:

e T —— — — ——————— —

include <mlib.h>
MCM - *read_t_values(int mcm_addr,unsigned char *offset,
int bytes_cnt, int com_port) ;

read _t_values reads the threshold values from the on-chip
threshold-array on MCM and puts it into the "lvals[]" element of
the MCM structure. :
. "offset" => offset from the start of the array at which

the threshold values are stored in the on-chip RAM
"bytes_cnt" => no. of threshold bytes to be read. :

18> inits:
Syntax: # include <mlib.h>
int inits(int com_port) ;

Before a user starts communicating with MCM, this function must
be called to initialise the com port.

com_port = 1 => COM1l port

com_port = 2 => COM2 port.

19> feed_control:

T ——— e v ————

D # include <mlib.h>
MCM *feed control(int mcm addr, unsigned char feed data,
int feed addr, int com_port);

"feed addr" => front end box number (0 to 5)
"fdata" => data tobe output at feed addr.

20> febox mon:
Syntax: # include <mlib.h> :
MCM *febox_mon(int mcm_addr, int box_num, int com port);

On success, this function puts the monitored data from the
specified front-end box into the "cboxdata[]" element of the
MCM structure.

21> commonbox mon:
Syntax: # include <mlib.h>
MCM *febox mon(int mcm_addr, int box_num, int com_port);

On success, this function puts the monitored data from the

common box into the "cboxdata[]" element of the MCM structure.

Elements of the mcm structure:

--b---_II._--&-———*-—----—-----—

addr: stores the mcm address.

-——— —

e —— i —— . ———

1 => MCM detected ABC timeout.

1 => MCM detected checksunm error
1 => MCM received unknown command
1
1

=> MCM received a too large packet
=> MCM has transmitted a truncated
packet

If all the bits of this byte are set (ie cmd_stat = oxff),
that implies that PC detected a checksum error in the
packet .it received from MCM and has thrown out the packet.

loffset: Offset from the start of the on-chip array of threshold

——————— values that was specified while setting/reading command.

lvals([36]: Array of 36 bytes that hold the threshold values, for

———————— the channels selected, that were specified during the
set/read threshold command.

anamask(8]: Holds the 8 bytes of analog mask.

—— i ——— —— —

digimask[aj: This array holds the digital mask set/read. Depending

| e ——— upon the set_dmask command issued user should read

either two, four or eight bytes from this array.
scandata(64]: ADC data for the 64 analog inputs is stored in this

———————————— array.
ldata[5]: These five bytes indicate the status of the channels
———————— selected in limits mode of MCM.

version{4]: Current version of MCM kernel. (In string format).

S —— - ——

mode[87]: Current mode of MCM. (In string format).

cmd name(30]: Latest command name that MCM has exXecuted(in string
———————————— format).

monitor(10): During the front-end monitoring, this string indicates
——————————— wheather common-box was monitored or the frontend-box.
avgfact: A byte that indicates the averaging factor for the

_______ mean mode of MCM.

