N AR Rl

S

e
g

»
LR
s kv) o g, gt 5 -

““,lzl d

SOFTWARE GUIDELINES -- Assorted and sketchy
| crs/24.10.90 -

This note lists out some broad guidelines for developing real-
time software on systems for which we have not planned to buy any
operating system. In particular, this refers to the station
computer (80186-based) and monitor/control module (8031-based)

for which we have to build a miniature operating system using the

Intel Development set available with us.

Interrupt Handling:

In GMRT software, we will assume that the maximum number of
interrupts recognised by the system is 8. There will be a status
word int_flag =-- one byte long, being the low order byte if
natural wordlength is 16 for the processor -- which will be

nonzero whenever an interrupt occurs in the system. 1In this

word, each interrupt type will be associated with a unique bit
which is set by the interrupt-service routine and cleared by a
higher 1level associated with processing the interrupt. In
addition, there will be an 8~byte array int_count with a byte
corresponding to each interrupt. Whenever an interrupt occurs,
the corresponding byte in int_count is incremented by the
interrupt-service routine and decremented by the higher-level
routine. The counter int_count thus signifies the number of
unprocessed interrupts of this kind existing at any given time.

The interrupt handling routines consist of 3 layers. The lowest
layer is an interrupt-service routine intSer triggered by the

hardware interrupt. This routine sets the associated bit in
int_flag, and increments the corresponding counter in the array
int_ count. In addition, it will perform critical operations
associated with the interrupt. For instance, for the HDLC, this
will be checking the status and, if there is an error, marking a
repeat-regquest, In the case of interrupt from a serial line, the

received character should be transferred to the appropriate

location of a buffer. If an absolute clock is being maintained,
the internal timer is incremented by the appropriate interval
between the clock~ticks. A skeleton of Fortran-equivalent
interrupt service routine is given below (Usually, this routine
will be in Assembler or perhaps C, never in Fortran !): _
subroutine intSer

implicit integer * (a~h)

|

parameter (int num = 6) /* 0,1,...8 “”“
parameter (int_val = 64) /* should be 27int_num 090104
parameter (mid_enable = .true.)

common/intCMN/Int_flag,int_fmid,int_count(O:?)
int_flag = OR(int_val,int_flag)

int_count (int _num) = int_count (int num) + 1
if(mid_enable)int_fmid = OR(int_val,int_ fmid)
return

end

NCRA LIBRARY

In general, intBer should have as minimal functions as possible,
typically 1less than 20 instructions long. Any function beyond
this should be entrusted to a second-level routine intMidl which
should perform the less important but system-level functions
associated with the interrupt. This level is not necessarily
present for all interrupts. When it is present, it will be part
of the kernel rather than the application task running under the

supervisor kernel. For instance, for a packet coming through
HDLC, this will check if it is meant to be processed by the
kernel or the application task. The application task often

may not get control until kernel functions are completed.

The kernel is expected to perform intMid corresponding to all
pending interrupts as part of normal house-keeping activities. A
typical kernel (if written in Fortran!) could look like the
following:

program kernel
implicit integer * (a-z) '
parameter (int_ lev=5) /* max no, of interrupts handled
dimenzsion int_order (int lev)
common/intCMN/int_flag,int_fmid,intmcount(0:7)
common/childCMN/proc_id,proc_key, addr_st,addr_end
data int_val/i, 2, 3, a, 5/ -
data int_order/2, 4, 1, 8, 0 / /* int. priority !
call iniKer
proc_Key = 0 /* for use by application process

: /* appln process sets key proc > 0 to

/* indicate it isn't finished;

. /* < 0 in case of abnormal error
proc_id = 0 /* no child process yet
proc_load = 0 /* no process to be loaded yvet

while (.true.) _
call intwWait /* sleep until some interrupt occurs

call sigProc(intval, proc_id,proc_load)
/* proc_load = 1 if new process has to be loaded

if(proc_load .eq. 1)call loadProc(proc_id,proc_key,err)

/* proc_key = 0 ==> no process loaded
/* -1 ==> loaded for execution later
/* >0 ==> process-execution is required

if(err .ne. 0)call errHand (err)
if(proc_key .gt. 0)then
call childProc{proc key)
if (proc_key .eq. 0)call clearProc
if(proc_key .1lt, 0)call errInform(proc_id, proc key)
/* e.g. inform master of abnormal termination
end if
end While
stop

end

subroutine iniKer
implicit integer * (a-z)
common/intCMN/int_flag, int_fmid, int count(0:7)
int_flag = 0 '
int fmid = 0
do kX = 0,7
int count(k) = 0
end do
call iniKer2
return
end

subroutine inikKer?2

reset timers, start and end address of application
routine to be invoked;
read Table of application process names, start-
and end-addresses of their executable code as
stored in EPROM;
check the health of various subsystens

return

end

The third . level of interrupt handling is done by a routine
intAppl which is part of the application task running under the
supervisor kernel. This can be as elaborate as necessary, and
the application task can be typically assumed to choose its own
order of priority of interrupts,

