Antenna Feed Efficiencies – Steps showing computation

G.Sankar, GMRT-TIFR, Pune. 15th June, 1990.

1 Step 1:

The XY plot record of the relative power of the feed under test vs. the angle of rotation (normal to the plane of measurement) is digitised first.

2 Step 2:

The y -axis values in mm. are converted to power-level values by feeding-in the calibration values of the detector and log-amplifier i.e., mm. \rightarrow dBm.

3 Step 3:

For a given configuration of the feed under test and the test frequency used for measurement, the E- and H- plane pattern values are recorded in a data file.

The order of recording is: Pattern values (in mm.) for positive angles, followed by negative angles.

[Note: Angluar values are \underline{not} stored in the data file; for a given interval , it is computed in the Efficiencies program]

4 Step 4:

If ψ_i denotes the angle (of rotation) where $\psi_i = 0$ when i = 1, and $E(\psi_i)$, $H(\psi_i)$ are the power levels measured at ψ_i for the E- and H- planes respectively, the voltage levels are computed

as follows:

$$E_{\nu}(\psi_i) = 10^{-E(\psi_i)/20}$$

 $H_{\nu}(\psi_i) = 10^{-H(\psi_i)/20}$

5 Step 5:

The co-polar and cross-polar patterns are computed next, using the following equations (assuming the principal plane patterns [viz. E & H] are symmetric w.r.to ψ_i):

$$CO(\psi_i) = \frac{1}{2} \cdot [E_v(\psi_i) + H_v(\psi_i)]$$
$$XP(\psi_i) = \frac{1}{2} \cdot [E_v(\psi_i) - H_v(\psi_i)]$$

6 Step 6:

The following integrals are evaluated next, where Ψ_0 is the semi rim-angle of the parabolic dish:

$$T_1 = \int_0^{\Psi_0} \left[|CO(\psi)|^2 + |XP(\psi)|^2 \right] \cdot \sin \psi d\psi$$
 (1)

$$T_2 = \int_0^{\pi} \left[|CO(\psi)|^2 + |XP(\psi)|^2 \right] \cdot \sin \psi d\psi$$
 (2)

$$T_3 = \int_0^{\Psi_0} |CO(\psi)|^2 \sin \psi d\psi \tag{3}$$

$$T_4 = \int_0^{\Psi_0} |CO(\psi)| \tan\left(\frac{\psi}{2}\right) d\psi \tag{4}$$

$$T_5 = \int_0^{\Psi_0} CO(\psi) \tan\left(\frac{\psi}{2}\right) d\psi \tag{5}$$

7 Step 7:

The sub-efficiencies as given by Kildal.P.S.¹

, are primarily four in numbers, viz., (i). Spill-over efficiency η_{sp} , (ii). Polarization efficiency η_{pol} , (iii). Illumination or Taper efficiency η_{tr} and (iv). Phase efficiency η_{ϕ} . In terms of the

¹Kildal.P.S., Factorization of the Feed Efficiency of Paraboloids and Cassegrain Antennas, IEEE Trans.on Antennas & Propagation, Vol.AP-33,1985, pp.903--908.

above integrals (1) to (5), the sub-efficiencies are given by:

$$\eta_{sp} = \frac{T_1}{T_2} \tag{6}$$

$$\eta_{pol} = \frac{T_3}{T_1} \tag{7}$$

$$\eta_{sp} = \frac{T_1}{T_2}$$

$$\eta_{pol} = \frac{T_3}{T_1}$$

$$\eta_{tr} = 2\left(\cot^2\frac{\Psi_0}{2}\right) \cdot \frac{T_4^2}{T_3}$$
(6)
(7)

$$\eta_{\phi} = \frac{|T_5^2|}{T_4^2} \tag{9}$$

The Overall feed efficiency (assuming no losses due to blockage, surface errors, leakage thro' reflector mesh etc...), η_F

$$\eta_F = \eta_{sp} \cdot \eta_{pol} \cdot \eta_{tr} \cdot \eta_{\phi} \tag{10}$$

All the above relations were implemented in a program titled EFXYPL.BAS (written in GW-BASIC).