Switching Frequencies for Walsh Functions for GMRT

A. Pramesh Rao (22 Feb 90)

While it is generally accepted that we should have phase switching using Walsh functions in the GMRT, there seems to be some uncertainty as to what should be the frequencies of the Walsh functions. In his note of 17 Aug 89, N. Sunil suggests using a minimum sequency of 13 Hz implying a maximum sequency of 13x128=1664 Hz. While this is quite satisfactory to the astronomer, such high frequencies are likely to complicate the design of the GMRT receivers. The purpose of this note is to show that a maximum sequency of about 52 Hz is quite adequate to meet the astronomical requirements.

The fringe frequency of an interferometer depends baseline, the observing frequency and the declination and hour angle of the source. With the current coordinates of the GMRT, the highest fringe frequency is 9.514 Hz, which occurs at 18cm at zero declination for the E6-W6 baseline around transit. The fringe frequency is not antenna based but baseline based and arises only when signals from 2 antennas are correlated. To avoid the interaction between Walsh function and the fringe frequencies, and for good rejection of any CW stray signal that are picked up after the first point of phase switching the Walsh function frequency should be higher then the fringe frequency by at least 0.8 Hz (VLA Electronics Memo 122, "Phase switching in the VLA", A. R. Thompson, 1974). Adding this to the highest fringe frequency. we will use 12 Hz as a working number for the effective highest fringe frequency.

If 31 and 32 are the Walsh function sequencies of the of the 2 antennas forming the baseline with fringe frequency of 12 Hz, the product Walsh function at the output of the correlator has a sequency greater than |s1-s2| and should be equal to or greater than 12 Hz. If fo is the lowest sequency (ie the Walsh functions are defined over an interval T=1/fo) and we generate 64 Walsh functions having sequencies from fo to 64fo, it is fairly straight forward to allocate sequencies to stations such that the difference in the sequencies of the antennas at the ends of the √'arms (E6,W6,S6) is at least 16fo and the difference decreases proportionately as one goes towards the centre. Such schemes for allocating the sequencies have been given both by Thompson and by Sunil. Since the highest fringe frequency occurs for E6-W6, the baseline with the largest east west baseline, the implication of this is that the astronomical requirement that |s1-s2| should be greater than the fringe frequency boils down to 16fo > 12 Hz, giving fo > 0.75 Hz and 64fo, the maximum sequency , is

order of 48 Hz. The maximum switching interval is then of the order of 10 ms which can be handled fairly easily. The interval over which the Walsh functions are defined is (1/fo) 1.333 s or less

For actual astronomical observations one would like the actual integration period to be some integral multiple of the Walsh function period since then the Walsh functions are orthogonal and one gets the best performance. For synthesis observations, the typical integration periods are a few seconds to the order or minute. For this 1.333s is a rather inconvenient interval since integration periods of of ten or multiple of ten seconds cannot be achieved. For this reason it is slightly more useful to increase fo to 0.8 Hz which reduces the interval over which the Walsh functions are defined to 1.25 s and which supports integration periods of 5,10 and multiples of 5 and 10 seconds. With this the highest Walsh function frequency goes up to 64x0.8=51.2 Hz and the fastest switching interval reduces to a little less than 10 ms.

In actual practice, one may need 6 Walsh functions for each antenna (four for the the possible four IF channel and two for the two local oscillators). This increases the order of Walsh functions we need to use from 64 to 25d. However, the point to be noted is that this does not necessarily have to increase the highest Walsh function frequency (or reduce the shortest switching interval). Quadrupling the number of Walsh functions can be achieved by decreasing for by a factor of 4 or equivalently, increasing the period over which the Walsh functions are defined from 1.25 to 5s. Since the fringe frequency between the local oscillator signals and between the IF channels of the same antenna are zero, there are no constraints on them, and we can if required allocate sequential sequencies. In Appendix II we show a possible allocation of sequencies, giving 6 Walsh functions to each antenna. While in this table we have worried about avoiding square waves, no consideration has been given to avoiding 50 Hz and its sub harmonics (is the 50 Hz line frequency stable enough for such planning?).

Some more thought has to be put into the matter before the final allocation of the Walsh function frequencies can be made. The purpose of this note was just to shows the range of actual switching frequencies required and to allay some fears that frequencies of the order of kiloherz would be required. With 256 Walsh function frequencies to play with there are many possible allocation schemes and there are bound to be schemes that give better performance than the configuration in Appendix II. However, what can be discussed and finalised is the actual value of fo, whether fo of 0.2 Hz is a satisfactory number, so that one can proceed with details of actual design.

APPENDIX 1

Coordinates and Walsh function frequencies for GMRT (1/antenna)

Given below are a possible set of Walsh function sequencies for the GMRT antennas. Given are the antenna name, x and y coordinates in metres (in the local survey units ie x to east and y to south) and the Walsh function sequency for each antenna in units of fo, the minimum sequency which is 0.8 Hz. Table 2 shows the maximum fringe frequency (at 18cm) on each baseline and the absolute difference between the Walsh function frequencies of the two antennas forming the baseline. As seen from the table, the Walsh frequency difference is higher than the fringe frequency by much more than the recommended 0.8 Hz on most baselines. On 3 baselines, s2-s4,w2-w3 & c3-c4 it is only 0.7Hz, but even this can be improved if we take into account the fact that there will be only 30 antennas in GMRT and we are here handling 32. The effect of the excess being only 0.7 Hz as against 0.8 Hz is marginal, reducing the rejection of correleted signals by a small factor.

Ant	×(m)	y(m)	Walsh	seq
c0	-258.0	259.0	33.	
cl	103.0	280.0	35.	
c2	429.0	237.0	37.	
c3	802.0	94.0	39	
c 4	998.0	104.0	40.	
c 5	360.0	497.0	42.	
c6	461.0	469.0	43.	
-c8	149.0	659.0	49.	
c 9	386.0	396.0	44.	
c10	600.0	850.0	45.	
c11	1034.0	575.0	47.	
c12	266.0	907.0	15.	
c13	847.0	1380.0		
c14			17.	
	903.0	899.0	19.	
e l	-1540.0	-100.0	51.	
e 2	-2690.0	-800.	53.	
e 3	-4190.0	-1750.0	55.	
e 4	-7590.0	-2750.0	58.	
e 5	-10090.0	-3350.	61.	
e 6	-11890.0	-4300.	63.	
sl	-290.0	2750.	31.	
s2	760.0	4950.0	21.	-
s3	-240.	7150.	29.	
s 4	-790.	9750.	23.	
s 5	510.	11600.	27.	
s 6	660.	14400.	25.	
wl	1810.	-300.	13.	
w2	3510.	-1300.	11.	
w3	5710.	-2600.	09.	
w4	7310.	-5200.	07.	
w5	8410.	-8000.	05.	
w6	11610	-9250	nî.	

Matrix showing maximum fringe frequency on each baseline, lower left hand triangle, and |s1-s2|, upper right hand triangle.

Frequency in units of 0.1 Hz

	c0	сl	c2	с3	c 4	c 5	c 6	с8	c9	-			c13					_	e 5		sl		• /		s 5	s6	wl		w3	• • •		
c0	0	16	32	48	56	72		128	88								176				16	96	32	80	48				192			
cl	1	0	16	32	40	56	64	112	72	80							160				32	112	48	96	64	80	176	192	208	224	240	272
c2	3	1	0	16	24	40	48	96	56	64	80	176	160	144	112	128	144	168	192	208	48	128	64	112	80	96	192	208	224	240	256	288
c3	4	3	2	0	8	24	32	80	40	48	64	192	176	160	96	112	128	152	176	192	64	144	80	128	96	112	208	224	240	256	272	304,
c 4	5	4	2	1	0	16	24	72	32	40	56	200	184	168	88	104	120	144	168	184	72	152	88	136	104	120	216	232	248	264	280	312 '
c5	2	1	0	2	3	0	8	56	16	24	40	216	200	184	72	88	104	128	152	168	88	168	104	152	120	136	232	248	264	280	296	328
c 5	3	1	0	1	2	0	. 0	48	8	16	32	224	208	192	64	80	96	120	144	160	96	176	112	160	128	144	240	256	272	288	304	336
c8	1	0	1	3	4	1	1	0	40	32	16	272	256	240	16	32	48	72	96	112	144	224	160	208	176	192	288	304	320	336	352	384
c 9	3	1	0	2	- 3	0	0	1	0	8	24	232	216	200	56	72	88	112	136	152	104	184	120	168	136	152	248	264	280	296	312	344
c10	3	- 2	0	1 -	2	1	0	2	0	0	16	240	224	208	48	64	80	104	128	144	112	192	128	176	144	160	256	272	288	304	320	352
c11	5	4	2	ā	1	3	2	4	- 3	2	0	256	240	224	32	48	64				128			_								
c12	2	0	1	2	3	1	1	0	1	1	3	0	16	32	288	304	320	344	368	384	128	48	112	64	96	80	16	32	48	64	80	112
c13	4	2	0	2	2	1	0	2	1	٥	1.	2	0	16	272	288	304	328	352	368	112	32	96	48	80	64	32	48	64	80	96	128
c14	. 4	3	1	1	1	2	2	3	2	1	1	3	- 1	0	256	272	298	312	336	352	96	16	80	32	64	48	48	64	80	96	112	144
el	5	7	8	9	10	8	3	7	8	8	10	7	9	10	0	16	32	56	80	96	160	240	176	224	192	208	304	320	336	352	363	400
e 2	10	11	12	14	1.5	12	12	11	12	13	15	11	13	14	4	0	16	40	64	90	176	256	192	240	208	224	320	336	352	368	384	416
(1.5	17	13	20	21	19	18	17	13	19	20	1.7	19	20	10	6	0	24	48	64	192	272	208	256	224	240	336	352	368	384	400	432
24	29	3.0	3.2	3.3	34	31	32	3.0	31	32	34	31	33	33	24	19	14	0	24	40	216	296	232	230	248	264	360	376	392	408	424	456
e 5	39	40	4.2	43	44	4]	42	40	41	42	44	41	43	4.3	34	29	24	10	0	16	240	320	256	304	272	288	384	400	416	432	448	480
e6	46	47	49	5.0	5]	48	49	47	48	49	51	48	5.0	50	4]	36	3.1	17	7	0	256	336	272	320	238	304	400	416	432	448	464	496
sl	3	4	4	6	5	4	4	3	4	4	. 6	3	5	5	2	7	1.3	27	37	44	0	30	16	54	3.2	48	144	160	176	192	208	240
s 2	3	5	6	6	5	5	6	4	5	5	6	4	5	5	4	. 9	1.5	2.9	40	47	2	0	64	16	48	32	64	80	96	112	128	160
s 3	. 9	9	10	10	1:	9	9	9	9	9	10	9	9	9	6	1	6	22	33	40	6	5	0	48	16	32	128	144	160	176	192	224
s 4	1.3	13	14	14	1 5	1.7	1.3	13	13	13	14	12	1.3	14	12	9	2	1.5	27	34	9	9	4	0	32	16	80	96	112	128	144	176
s 5	14	15	1.5	15	1.5	1.5	15	1.4	15	14	1.5	1.4	14	14	10	5	2	19	3]	38	10	9	4	4	0	16	112	128	144	160	176	208.
s 6	13	18	19	19	19	13	18	1.8	18	18	18	18	17	18	14	9	2	15	27	3.5	14	12	8	0	4	G	96	112	128	144	160	192
wl	3	7	6	4	3	6	. 6	7	6	5	3	6	4	4	14	18	24	38	48	5.5	9	8	13	17	17	20	0	16	32	48	64	96
w2	15	14	13	11	10	13	1.3	14	13	12	10	13	11	11	20	25	31	4.5	55	62	16	14	19	2.3	21	24	7	0	16	32	48	80
w3	24	23	22	20	19	22	22	23	22	21	19	22	20	20	29	34	40	54	64	71	2.5	22	27	31	28	30	16	9	0	16	32	64
w4	31	30	29	27	26	29	29	30	29	28	26	30	28	27	36	41	47	60	70	78	32	3.0	35	38	3.5	37	23	16	7	0	16	48
w.5	37	3.5	34	33	3.2	34	34	35	34	34	32	35	3.3	.33	42	46	52	6.5	75	82	38	35	40	44	41	43	29	22	13	6	0	32
w6	50	48	47	45	4.5	47	47	48	47	46	45	48	46	4.5	54	59	6.5	78	88	95	51	48	53	56	53	54	41	34	25	18	13	0
										-	ŕ	_		•				_				_										
	c O	cl	c 2	c 3	c 4	c 5	c 6	c 8	c 9	c10	cll	c12	c13	c 1 4	el	e 2	e 3	e 4	e 5	e 6	s !	s 2	s 3	s 4	s 5	s 6	wl	w2	w 3	w4	w 5	w6

Possible distribution of Walsh functions (6/antenna)

Given below are a possible distribution of Walsh functions giving 6 Walsh functions per antenna (2 for the local oscillators and 4 for the IF channels). Since the LO signals have no fringes in them the Walsh sequencies can be arbitrarily chosen (we only avoid square waves). Similarly, there are no fringes between IFs from the same antenna and so the Walsh function sequency difference can be arbitrarily small. Between antennas the Walsh function sequency difference should exceed the maximum fringe frequency by at least 0.8 Hz. To accommodate 180 Walsh functions, we need to work with a set of 256 Walsh functions as compared to 64 in Appendix I. This is achieved by reducing fo 0.8 Hz to 0.2 Hz which increases the period over which the Walsh functions are defined from 1.25 s to 5s. The highest frequency in this scheme is the same as that in Appendix I. Since from one antenna to the next, the sequency of the Walsh functions increases by at least 4, the astronomical performance of this configuration, (excess of Walsh function sequency difference over the highest fringe frequency) is as good as in the previous case.

name	LOl	LO2	IF1	IF2	IF3	IF4
c0	129	130	131	132	133	134
cl	137	138	139	140	141	142
c 2	145	146	147	148	149	150
c 3	153	154	155	156	157	158
c 4	151	152	159	160	161	162
c.5	165	166	167	169	169	170
c 6	163	154	171	172	173	174
ċ 8	103	194	195	196	197	198
c 9	119	120	175	176	177	178
c10	135	136	179	180	181	182
cll	185	136	187	188	189	190
c12	-57	58	59	60	61	62
c13	65	66	67	68	69	70
c14	73	74	75	76	77	78
e 1	201	202	203	204	205	206
e 2	209	210	211	212	213	214
е3	217	218	219	220	221	222
e 4	229	230	231	232	233	234
e 5	241	242	243	244	245	246
e 6	249	250	251	252	253	254
sl	121	122	123	124	125	126
s2	-81	82	83	84	8.5	86
s 3	113	114	115	116	117	118
s 4	89	90	91	9 2	93	94
s 5	105	106	107	108	109	110
s 6	97	98	99	100	101	102
wl	49	50	51	52	53	54
w2	41	42	43	44	45	46
w3	.33	34	35	36	37	38
w4	25	26	27	28	29	30
w 5	17	18	19	20	21	22
w6	3	5	6	7	9	10