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1 Introduction :

The coordinate system being followed is identical to what TCE had used, as shown in Fig.1.
Because of the symmetry, the anchoring point on any one of the parabolic arm (Node 1) and
the Connecting block (connecting the top and bottom wire ropes) of the Rope Truss (Node
2) - their coordinates alone are needed to be computed.

2 Calculation of Node 1 Coordinates :

All these points lie along the parabolic arm and they should be positioned at the 14-nodes of
the arm. The inter-block distance W, is given by

(2.1)

W
Wy = cos(¢1;)
where
Wy, — supplied mesh width (for which the Rope trusses should be built to match)
¢1; — the angle between the line connecting Anchor block at ‘5 and ‘(j +1)’,[where j — being
the Rope truss index, running from 1 to 14 ; from Hub to Rim of the Parabolic dish] and the
z-axis projection on the mesh panel’s plane.

Note : The angle 11.25° is the angle between the z-axis and the line
projected on the z-y plans of the inter-anchor block connecting line,
whose length is W,. Angle ¢1 varies from 9.6° to 10.9°
{(for 11.25° on the z-y plane)

For j = 1, the coordinates are found out from the geometry of the hub and the paraboloidal
constraint. For the rest of the points (7#1), a convenient system of coordinates is used, as
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shown in Fig.2.
The &% plane contains the parabolic curve:

&

The relations between the two system of coordinates,viz.,(z,y, 2) and (&, §, %) are :

z = 2 (2.3)
y = &sin(11.25°% (2.4)
T = #£cos(11.25°%) (2.5)

The inter-block distance W, in the -2 coordinate system is given by

Wo? = (&j41 — ;)" + (241 — %) (2.6)
Points j and j 4+ 1 should satisfy the parabola equation— Eqn.(2.2) with f = 18.54 m. Com-
bining this with Eqn.(2.6),
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Starting from 7 = 1,

£}, 2; and W, are known quantities. Substituting these in Eq.(2.7), #;41 can be solved through
an iterative process, which can be repeated till j = 14.

Using Eq.(2.3) to Eq.(2.4), z,y, 2 can also be computed.

The local normal angle, #; with respect to the z —axis is given by

~

0; = arctan (23}—) (2.8)

Solution of Eq.(2.7) and subsequent calculation of §; as per the above equation completes the
Node 1 coordinates computation.

3 Rope Truss Plane :

Angle 8; defines the inclination of the Rope Truss (RT) plane to the z — axis. Node 1’s any
general point defined by z;,y;,z; will be satisfying the local normal RT plane’s equation,
defined w.r.to the z,y, r system of coordinates.

To formulate the RT normal plane’s equation, let us go back to (£, , 2) system of coordinates.
The equation of the RT plane can be conveniently written in intercept form. Since all the RT
planes will be parallel to the y —axis, the y —intercept b will be co.

Considering the RT plane at point ‘j° of the parabola,as shown in Fig.3,
g p
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€ % tan 8, (3.1)
d; = &;+ Ztand; (3.2)

Re-transforming (&, g, 2) system to z, y, z system, the respective intercepts @, b, con the z, y, z

axes becomes

a;j = @jcosll.25° 3.3)
b; = o 3.4)
c; = & 3.5)
Hence the equation of the RT plane passing thorough (z;,y;, z;) is given by
4 EH (3.6)
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3.1 Node 2 Coordinates estimation :

Any point of the Node 2 should satisfy the following conditions:

e The point of Node 2 should satisfy the RT plane equation, viz., Eqn.(3.6) for the corre-
sponding 7 value.

e The point should lie on the parabola described at the Node 2 — line i.e., a line inclined
by 3.75° to the = —axis on the # — y plane. In other words, if z;, y;, 2; are the coordinates
of the Node 2 point ( corresponding to index 7 on the Node 1 - line ),

22 + y;?
2

=4f (3.7)

e Any two adjacent RT plane’s top line ( i.e. the line connecting the anchor-block at 3’
of Node 1 to the connecting-block at ‘¢’ of Node 2 ) should be parallel to each other

Conditions {or constraints) 1 & 2 have been written down in explicit mathematical form as
shown in Eqn.(3.6) and Eqn.(3.7). To do the same for Constraint 3, consider Fig.(4).
Similar to the definition of angle ¢1;, another angle ¢2; is defined at Node 2 line: It is
the angle between the line joining adjacent Node 2 points ¢ and (i + 1) and the z —axis line
projection on to the containing 7, (7 + 1),7 and (¢ + 1) points ( or the mesh—plane ,in short
...}). Estimation of ¢2, is outlined in Appendix—A.
Coordinates of the Node 2 point for ¢ = 1 can be computed initially as per the geometry of
the hub ,paraboloidal constraint and RT plane constraint [vide. Appendix-B]. To simplify
the notations used, Fig.5 illustrates the points and angles of Fig.4 in the simpler form:
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i = 1
(G+1) — 2
i = 0
(i+1) — 3
¢l — ¢
$2;, — ¢2

The known quantities here are:
(mla Y1, Z]),(Eg, 2, z2)r($0a Yo, ZO) and Rl? which is given by

Ry = /(w0 - 21)2 + (yo — 1) + (20 — 21)?2 (3.8)

From the above geometry shown in Fig.5, R; can be calculated in terms of the known quan-
tities : '

Ry = Ry 4+ wp(tan ¢y — tan ¢3) (3.9)

Let the direction cosines of line iy be (I1, my,ny) and of line Ry be (I2, mg, na).
The angle n between lines By and R; is given by

cosn = lils + mimg + nyny (3.10)
Since Rs is parallel to R;, the above eqn.reduces to

Lilz + mimg+ning =1 (311)



Substituting for Iy, mq, ng

o= T T
1 = R
m = Yo— 1t
1 R
ny = 0 — 21
i = R]
Eqn.(3.11) reduces to
(on - $1)(f63 = wz) + (yo - yl)(ys - yz) + (Zo - 21)(2’3 - Zz) =R R,y (3-12)

Rewriting Eqn.(3.6) & Eqn.(3.7) as per the simplified notation,

? EE =1 (3.13)
ki J
3l +ys? —4f(z3—5) = 0 (3.14)

In the above equation the quantity ‘s’ is the amount of shift in z —axis required to ‘bring—out’
the parabola from the tube-centre to the anchor block mean position level, as dictated by the
theodolite survey method, while fabricating and during (subsequent) check—out.

Now combining Eqn.(3.12) to Eqn.(3.14), a quadratic in z3 is formed (vide Appendix-C).
Solving for z3 and substituting it in Eqn.(3.13) 23 can be computed. Similarly y3 can be
found out from Eq.(3.12).

Formation and solving the quadratic in @3 for ¢ > 1 and <14 by successive steps completes
the solution for all Node 2 points. To check the solutions, the constraints (1) thro’ (3) cited
in Sec.(2.1) could be evaluated by substituting «;, y;, 2.

* Aokok okkokakok Kokk ok



Fig. Al.

A Appendix - A

Steps to compute the relationship between an angle within two lines in 3D-space and the
angle within the projected lines on one of the coordinate plane are outlined here.

Direction cosines of a projected line :
Refer Fig.Al. AB is the projection of line PP, on the # — y plane.F)’s coordinates are

z1,41, 21 and that of P, are xq, y2, z3.Let &, 3, be the direction angles of line P P,.

T3 — kg

= Al
cosa F.F, (A.1)
_ W~k
cosf3 = PP, (A.2)
cosy = Z;:Pjo (A.3)

if /,3,7' be the direction angles of the line AB, then

coso/ = 220
AB "’
Tg = To
= Ad
Ve —e1)* + (y2 — n1)? (A-4)
cos 3 = yZAjByl (A.5)
cosy’ = 0 (A.6)



Fig. A2.

;since AP is normal to z — axis.
Rewriting the above by sustituting from Eqn.(A.1) to (A.3),

CcOs ﬂi, = T2 N
V(P Py)%cos? o + (P Py)%cos? B
Tz — Iy . 1
PP \/cos? o+ cos? 3

cos o
= e A7
\cos? o + cos? 3 (A7)
Similarly

cos 3

A8
vcos? a + cos? 3 (A-8)

Since cos®a + cos® 3 + cos? v = 1, Eqns. (A.7) and {A.8) can be simplified to

cos 3’ =

COS «x

cosa! = (A.9)
cos
cos g = zz:g | (A.10)

Angle between projected lines :



Consider now two lines in space, subtending an angle ¢ between them, as shown Fig.A2.
Let the direction cosines of P, P; be cos oy, cos 31, cosy; and that of P, Ps be cos ag, cos 33, cosva.
Angle ¢, being the angle between P, P, and P, Ps, is given by

cosg = cosacosay + cos Frcos Fa + cosyLCos T2

If ¢ is the angle between the corresponding projections AB and AC of PP, and P P;
respectively, then

cos# = cosa’ycos e’y + cos B cos §'5 (A.11)

From Eq.(A.9)& (A.10),

cosfl =

COS V| COS g + cos 31 cosf3;
sin+y; sin-<yy  sin9y sin-yg
€OS (1] CO8 vy -+ cos Ficos 3,

sin y1sin 2

ie.,

COS ¢ — COS 1 CO8 Y2
cosf =

(A.12)

sin 4y1sin o
Computation of angles ¢1; & ¢2, :

Angles ¢1; can be calculated from the known coordinates (i, y;, z;) and (@541, Yj+1, 2j41)

Yi+1 — Yj
tan $l; = (A.13)
V(@01 — 253)7 + (2541 = )2

Angle ¢2; has to be computed using Eq.(A.12). Tn doing so, an approximation simplifies
lengthier steps : The line connecting ¢ and :+ 1 {on the Node 2 — line) is assumed to be
normal to the local normal of the parabolic curve at ¢’ ; i.e., ¢ to i + 1 line is inclined to the
z — axis by an angle (5 —6;).

Hence

cosy;y = sinb;

cosya

10



From Eqn.(A.12)

cos¢2; = cos 3.75%in v;sin v2 + cos y1c08 Y2
= (cos®;)%cos3.75° + (sin 8;)*

[This approximation results in an error of £0.002° or £7.2 arcseconds |

K odokok koo ok ok

(A.14)



B Appendix - B
Estimation of Node 2 coordinates for i =1 :

Let (@2, y2, #2) be the coordinates of the Node 2 point for ¢ = 1. This point will be placed
on the Hub-circle. As pointed out in pp. 5 — 6, this point should satisfy the following condi-
tions :

(i). Local-normal plane condition :

T2 22

(i1). Paraboloidal condition :

go? +yt —4f(za—8) =0 (B.2)

(iii). The line connecting Anchor block at 7 = 1 and the Node 2 point in question (¢ = 1)
should be parallel to the y — axis. If d; is the line length (between j = 1 and { = 1), then

h — 2
=1 B.3
- (B.3)
where
y1 is the y —coordinate of j = 1 point (Anchor bock).
From the Hub-geometry d; can be estimated as

dy = 2Rp-sin (g) (B.4)

where & = 7.5° and Ry, is the Hub—radius.
So yp can be found out from Eqn.(B.3) as d is known.

Substituting Eqn.(B.1) in (B.2) eliminating z; and further substituting g’s value, a
quadratic in z; results. Solution of the quadratic and subsequent solution of Eqn.(B.1) yields
xy and zg. Hence (z;,y;, #;) for ¢ = 1 are estimated in this method.

k kokok ckdckkk kokk
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C Appendix - C

Solution of z3 :
Eqn.(3.12) can be re-written as follows :
(x0 — z1)(z3 — z2) + (yo ~ v1){ys — y2) + (20 — 21)(z3 — z2) = RB1 Ry
ie.,

pe(zs — 22) + pyys — y2) + p:(23 — 22) = R Ry (C.1)

where p; = (w0 — 1) 3 py = (yo — v1) ; and p; = (20 — 1) .
Re-arranging terms,

Pr®3+ Pyls +Pr23 = IRy + pewy + pyya + P22

From Eqn.(3.13),

z3=cj (1 - .’c_3) (C.3)

Substituting Eq.(C.3) in Eq.(C.2)

&€
Pe3 + Pyy3 + PG (1 - f) =K,
7

ie.,
K — PLC; .
o = Ki=pe 75 w_px)
. Py Py @;
= q+ @3 (C.4)
where
1
g1 = —(K1 — p:cj) (C.5)
Dy
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and

1 { p.c;
_ (e C.6
2 py( @ D ) (C.6)
Substituting Eqns.{C.4) and (C.3) in Eqn.(3.14),and simplifying further
where |
A = 1+4¢° (C.8)
4 .
= 2+ L9 (.9)
a;
= 4f(s—¢;) + @ (C.10)

Solving the quadratic eqn.(C.7) yields z3.
Substituting r3’s solution in Eqn.{C.3) gives 23 and similarly in Eqn.(C.4) gives ys.



