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SYNOPSIS

Right in the early years of radio astronomy, it was realized that

the population of extragalactic radio sources consists of extremely

powerful sources, which should be visible even at large cosmological

distances.	 It was hoped that by using these sources as deep probes into

the Universe we may be able to decide between the various cosmological

world-models and thus perhaps unravel some of the mysteries of the Cosmos.

The subsequent studies have shown that the population of extragalactic

radio sources evolves heavily with the cosmic epoch and that the evolution

almost completely masks out any distinguishable features of the geometry

among various world-models. But a study of the cosmic evolution of various

properties of these radio sources may still yield valuable information on

the conditions which prevailed in the Cosmos at different epochs. Physical

size of the population of extragalactic radio sources is one such property.

The cosmic	 evolution of physical size of extragalactic radio sources has

been examined in the past either by making a direct comparison of the

observed angular size distribution with redshift or from an analysis of the

variation of angular size with flux density. Both these kind of studies

have shown	 the inadequacies of constant physical size models for the

population of extragalactic radio sources and the inference has been that

there is an evolution in physical size in the sense that the sources had

smaller physical sizes at earlier epochs. But a suitable luminosity-size

correlation	 among the radio source population could also explain these

observations, without invoking any size-evolution.

In the present work we have investigated the problem of size

evolution	 of extragalactic radio sources by examining their size

distribution in the luminosity-redshift plane. In this way not only do we



figure out	 the presence of any size evolution with redshift which may be

present in various luminosity classes, but we also come to know of the

existence of any luminosity-size correlation at various redshifts. In fact

there are indications in our study that both the size evolution and the

luminosity size correlation may be different among radio galaxies and

quasars, and accordingly we have studied these two optical classes

separately.	 For our purpose we need information on the flux density,

angular size, optical class and redshift for each source in our sample. We

have observed a large sample of - 300 extragalactic radio sources with the

Ooty Radio Telescope at 327 MHz, using the lunar occultation technique. In

addition to	 the information on flux density, a reliable estimate of the

largest angular size of the observed radio source is also possible from the

occultation	 technique, which provides arcsec resolutions, although along a

few one-dimensional scans only. Moreover the arcsec accuracies of radio

positions obtained from occultations, make it possible to get reliable

optical identifications, allowing us to classify these sources into

galaxies and quasars, and also leading to estimates of their redshifts, at

least for the galaxies.

In chapter 1 we describe main features of the Ooty Radio

Telescope (ORT).	 As the ORT beams have a sharper response in the

north-south direction, the pointing also needs to be more accurate in that

direction.	 The pointing of ORT in north-south is done electronically, by

using a discrete set of RF and IF phase-shifters. In chapter 1 we discuss

a procedure for eliminating some of the discontinuous steps which appear in

the RF pointing of ORT in north-south, because of the discrete nature of

these phase	 shifters.	 Refraction effects due to the troposphere, and

partly due to the ionosphere, shift the ORT beams almost off source when

the observations are carried out near horizon. Actually the ORT is a
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phased array system in the north-south, and 	 as such a horizontally

stratified plane parallel atmosphere should	 give rise to no refraction

effects for such a system. But mainly due to the fact that the ORT has 	 an

incline of 11°.5 in north-south, added to 	 the effects of a curved

atmosphere, make the pointing errors due to refraction appreciable. 	 In

chapter 1, we have discussed these refraction effects on the pointing of

ORT. Recently ORT has been converted into an aperture synthesis system 	 by

putting many smaller antennas at some appropriate locations. 	 While

discussing the refractions effects, we have also cosidered the pointing 	 of

OSRT (Ooty Synthesis Radio Telescope).

By using different phase gradients across ORT, which is a	 phased

array system in north-south, a set of 12 simultaneous beams has been formed

in north-south. During observations with the ORT, often a source may not

be lying exactly on the maxima of any specific beam and accordingly the

signal may appear simultaneously within 2 or more neighbouring beams. 	 In

such a case it is tempting to combine the simultaneous response in various

beams to get a better signal to noise ratio.	 But such an improvement

depends upon the temporal correlation of noise among these beams. 	 In

chapter 2 we have discussed this problem and have shown analytically that

the noise correlation among two neighbouring beams, formed from the same

elements in a phased array system, as a function of the angle of separation

f these beams is the same as the individual beam pattern. The result is

almost independent of the way the beams are formed. Actual comparisons 	 of

the observed noise correlation among various beams of ORT as a function of

their angle of separation, with the beam pattern, both for the total 	 power

beams and the correlation beams, are made.

Some details of the lunar occultation technique, the method 	 of

observations and the data analysis procedure are discussed in Chapter 3.
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Data analysis procedure includes the radio position determination, optical

identification, angular size determination and the flux determination for

the whole source as	 well as for	 the individual components, 	 whenever

multiple discrete components are 	 seen.	 Chapter 3 also contains the

tabulated radio and optical data on - 300 occultation sources observed by

us with the ORT. Finding charts for 66 newly identified optical cases are

also given. Additional notes and comments on some individual sources are

also included in the text.

The cosmic evolution of physical 	 size and the	 luminosity-size

correlation for the population 	 of extragalactic radio sources are

investigated in Chapter 4. It is argued that in order 	 to make these

investigations, an extensive data base covering a large range of radio flux

density, is needed.	 For this purpose we have supplemented 	 our Ooty

occultation source 	 sample with many sub-samples, selected 	 from the

literature, at various flux levels. 	 All the sources in our thus formed

sample are optically identified, and their redshifts are either known from

spectroscopic measurements or are estimated from optical magnitudes. Radio

spectral data for most of these sources is also available. Thus for all

these sources we can calculate the radio luminosity and the physical size

for any given world-model. By using this large sample of 669 sources we

have examined their physical 	 size	 distributions	 in	 different

luminosity-redshift bins, separately for galaxies and quasars. It appears

that for radio galaxies the physical size increases with luminosity for

redshifts < 0.5, where reliable data are available. Moreover it is found

that the physical size decreases with increasing redshift	 for the radio

galaxies with luminosity 1026 < P4OB < 10 27 W/Hz, where the median value of

largest linear dimension drops from - 300 kpc for nearby sources to

- 100 kpc at redshifts - 0.5. This drop in size can be represented by the
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size evolutionary models of type (1+z) -n , for n - 3. The	 observed size

evolution	 can also be fairly well described by other models including one

in which there is an exponential increase in the physical size of radio

sources	 with	 the	 cosmic	 time.	 For	 brighter	 radio galaxies

(P,,, > 10 27 W/Hz), there is little evidence for size evolution, at least

upto redshift - 0.5; at higher redshifts data are lacking mainly because of

the incompleteness of optical identification.

For quasars, unlike galaxies, there is no evidence of an increase in

size with luminosity; in fact there is a hint of an inverse correlation

between luminosity and size. Only a marginal size evolution seems to be

present for different luminosity classes among quasars. The possibility of

a differential size evolution	 for different luminosity classes among

galaxies and/or	 that	 of an intrinsic difference in the size distribution

among galaxies and quasars can not be ruled out.



CHAPTER 1

OOTY RADIO TELESCOPE

Ooty Radio Telescope (ORT) is an astronomical instrument designed

primarily for the Lunar Occultation (LO) observations of radio sources. It

is in the shape of a parabolic cylinderical reflector with a length of 	 529

metres along north-south, and a cross-section of 30 metres along east-west.

The reflecting surface is made up of about 1100 stainless steel wires,

stretched lengthwise along the north-south direction.	 The reflecting

surface is illuminated by 1056 half-wave dipoles placed along 	 its

north-south focal line; these dipoles are grouped into 22 modules of 48

dipoles each. The voltage signals from each of these modules are divided

into 12 parts and are then appropriately combined together to form 12

simultaneous neighbouring beams, separated by 3 sec6 arcmin in declination.

Each of these beams can be operated simultaneously, in the total power mode

where the voltage signal from all the 22 modules are added together	 and

passed through a square law detector, and in the correlator mode where the

combined output of 11 north modules is multiplied with the combined output

of 11 south modules.

The ORT has an equatorial mount with its north-south axis made

parallel to the axis of earth by laying it along a natural hill whose

north-south slope is equal to the local latitude of the place. The system

is made mechanically steerable in hour angle about this axis, while in

declination the set of 12 simultaneous beams can be steered 	 by generating

an appropriate phase gradient across the ORT cylinder in the north-south

direction. The system is thus made steerable mechanically	 between -4h

07m and +5h 20m in hour angle and electronically from -36° to +36° in

declination. The system operates at a frequency of 326.5 MHz with a 4	 MHz

bandwidth.
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The details of the mechanical structure and the receiver 	 system have

been described by Swarup et al.(1971) and Sarma et al.(1975). Kapahi et

al.(1975) have described the feed system at the focal line. The mechanical

phase shifters as described by Kapahi et al.(1975) have since then been

replaced by the new diode phase shifters (Joshi et al. 1988).	 Very fast

steering in north-south is now possible with the help of diode phase

shifters under computer control.

The ORT beams have a full half-power width of about 2:'3 in right

ascension, and of 5.6 secs and 3.6 secs arcmin in declination for the total

power system and the correlator system respectively. It is 	 obvious that

the pointing has to be more accurate in north-south. In this chapter we

discuss some aspects of the pointing of ORT, mainly concentrating on the

declination pointing. 	 The various aspects discussed are: 	 (i) the broad

scheme of declination pointing (Section 1.1) (ii) the discreteness in the

beam pointing due to	 finite steps in the phase gradient (Section 1.2).

(iii) Effects of refraction on the pointing (Section 1.3). 	 Recently ORT

has been made part of an aperture synthesis system called the Ooty

Synthesis Radio Telescope (OSRT), by putting a large number 	 of smaller

parabolic cylinders at suitable locations around ORT (Swarup 1984). In

Section 1.3 we shall briefly discuss the refraction effects for the OSRT

system also.

1.1 BROAD SCHEME OF THE POINTING OF ORT IN DECLINATION:

ORT, as far as its pointing in declination is concerned, is a phased

array of 22 modules,	 each module in turn being a phased array of 48

dipoles. All the modules, as well as the dipoles within each module, are

spaced uniformly along the north-south direction. Because the north-south



Page 3

axis is made parallel to the axis of earth, the radio waves coming from the

direction of 0° declination arrive	 simultaneously at all the array

elements. But the radio waves coming from a direction (S° arrive with a

progressive time delay d sind/c between successive elements, d being the

distance between two adjacent elements.	 This gives rise to a phase

difference 4) = 27d v sine/c, between successive elements (fig. 1.1) at a

frequency v.

In order to phase the array in direction S, we have to compensate for

the above phase difference by providing extra path lengths through cables

for the successive elements in the 	 reverse order.	 The phase (p as

calculated above, in general, consists of n integer cycles (of 27 radians

each) and a proper phase (fraction of a cycle). If we were to compensate

only for the proper phase at a given frequency, then the integer cycles

would leave a large residual phase for the other frequency components in

the band to broaden the beam excessively. 	 For the ORT, all dipoles within

each module are phased towards the intended direction at	 RF stage itself

using the diode phase shifters (Joshi et al. 1988). 	 Further the phase

differences between individual modules are taken care of at the IF stage

through appropriate cable lengths.	 It	 is at the IF stage where large

cable-lengths are introduced to compensate for the time delays in steps of

integer cycles, thus maintaining the signal coherence among various

modules. The available lengths of cables presently allow the steering to

be done in the range of +36° in declination.

1.2 DISCRETE STEPS IN THE PRIMARY-BEAM POINTING

The discrete nature of the phase-shifters employed for the RF system

of ORT gives rise to discrete steps in its primary-beam pointing in the



Fig 1.1 A schematic of the declination setting
system of the ORT

14
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north-south direction. Here we discuss this effect and a 	 procedure to

eliminate these steps.

As discussed earlier the ORT in the north-south direction consists of

22 modules, each	 of 23 metres	 in length. Each module consists of 48

dipoles, with 24 dipoles on either side of its centre.	 The	 distance

between successive dipoles is accordingly given by

	- Or114792 = 0.5219 X
RF '	

where X
RF 

= 0r19182

The pointing	 of ORT in north-south is done by generating an

appropriate phase-gradient. 	 For	 this, first the individual modules are

aligned towards the intended direction	 by putting a	 proper phase

distribution at RF stage for the dipoles, we call it the 'primary-beam

pointing' of ORT.	 The phase	 difference between successive modules is

adjusted at IF stage.

The digital phase-shifter system for 	 primary-beam pointing of ORT

employs 4 bits for each dipole, wherein the phase distributions for

individual dipoles can be changed only in discrete steps of 27/2" 	 = 27/16

radians.	 In the	 usual approach, one calculates the required phase

distribution for each dipole and rounds it	 off to the nearest integer

multiple of 27/16 for setting the bits. The phase distribution for dipoles

on one side of the centre of a module is exactly antisymmetric to that for

dipoles on the other side, hence we shall concentrate in our discussion on

the phase distribution for mainly on one side of the module.	 Discrete

steps in	 the phase distribution put a restriction on the minimum discrete

steps allowed in the pointing of ORT for certain directions. 	 For	 example,

starting	 northwards from	 0°	 declination, where there is a zero

phase-gradient across the module, the first LSB (least significant bit

23.0
d -

48
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corresponding to	 a phase value of 27/16 ) in the extreme dipole gets set

only at a minimum declination given by

27	 1
27(24m-) 0.5219 sin 6 1 =

=> d i	8'.76

Thus for all the intended settings between -8'.76 to +8'.76, there is no

change in the phase distribution within the module, and the pointing is

essentially towards 0° declination. The next change in pointing occurs

when LSB is set also in the last but one dipole. This is when

27	 1
27(23-

1
) 0.5219 sin 6 2 = 1 6 •

=> 6 2 	 -	 9'.15

This step of 0'.39 (=9'.

first one of 8'.76, starting

steps can be calculated.

15-8'.76) is quite small as compared with the

from 0° declination. Similarly the other next

In general, successive steps between two

consequtive settings will be small except near certain directions. These

certain 'troublesome' directions are those for which the phase distribution

is such that the adjacent dipoles differ in phase by integer multiples of

27/16. In case of even integer multiples, one will get the ideal setting

with phase difference between successive dipoles exactly compensated for.

But for odd integer multiples, all 24 dipoles on one side of the centre

of module will have a constant phase error of +27/32 while the remaining 24

dipoles on the other side will have a constant phase error of -27/32. 	 But

in all cases of integar multiples there will be large discrete steps of

size = ±8'.76 sec6 in the pointing.	 These 'troublesome' directions 	 are

thus given by

27 0.5219 sing =
16 '

where n is an integer.

Accordingly it appears that in the usual approach, large steps in
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primary-beam pointing	 occur around declinations, 6=0°, ±6°.88, ±13°.86,

±21°.06, ±28°.62 etc.

1.2.1 Optimum Direction Of Pointing

Apart from these large apparent discrete steps in pointing, in the

above usual approach 	 for calculating phase distribution, the pointing

itself may not be very satisfactory. To see this let us 	 calculate where

the beam is	 'actually' pointing at when, for example, for the intended

pointing direction of 6-9', we in the usual scheme, put +27/16 phase in the

extreme dipoles.	 To	 find the 'actual' pointing direction we can use the

least square error method of the 'Fitted Straight Line' 	 on the similar

lines as described by Hatcher(1973).	 We outline this method in the

following way:

First, let us enumerate the dipoles within a module with an index i=1

to N, where N=24 in our case; as mentioned earlier we concentrate only on

dipoles on one side of the module and for these we shall measure the phase

difference with respect to the centre of the module. Let (pi denote the

actual phase put for the ith dipole for a given setting.	 For a pointing

towards direction	 6, ith dipole would have ideally	 a phase value,

gbi=2 .nd sing (i-1/2)/A, where d is the distance between two adjacent

dipoles. Now we form a quantity S = 1(c.-7) 2 . For the given phase

distributions cp i , S ci) will be a function of sing . We define that value

of 6 to be the 'actual' pointing direction for which S is a minimum. If

we write clq=cp 0 (i-1/2), where 4 0 =211-d/A sing , then minimizing Scp with

respect to (p a , we get

DS,f,

--I	 = 	 W-(1)-) (2i-1) = 0
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(1) 0 	 N
--	 (2i-1)2
2 i=1

=
N

 (p i (2i-1)
i=1

or

Using the series
N
 1	 (2i-1)2

i=1

N(2N-1)(2N+1)

 

3

we get

or

(Po
N(2N-1)(2N+1)	 =	 (pi	 (2i - 1)

6	 1=1

6

(Pc	 =	 q). (21-1) .
N(2N-1)(2N+1)	 i=1	 1

This allows us to calculate the 'actual' direction of pointing in the

least-mean-square sense for any given phase distribution (pi.

From this we can readily calculate that for the intended pointing

towards direction 6 - 9'.0, when in the usual scheme only the 24th dipole

has a phase of 27/16, the 'actual' pointing of the primary-beam is towards

6 -2'.1, and for the intended pointing towards, say, 6 -9'.2, when both the

23rd and the 24th dipoles have 27/16 phase each, the actual pointing of the

primary-beam is towards 6	 and so on. Thus there could be substantial

pointing errors in the usual scheme, but again it should be noted that

these errors become significant only around the above mentioned

'troublesome' directions.

1.2.2 A Scheme To Eliminate Large Steps

We have shown above how to estimate an optimum direction of pointing
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for a given phase-distribution. But our problem really is the other way,

we need some simple scheme to calculate an optimum phase distribution cpi,

for an intended direction of pointing .	 In case of manual operations, such

schemes really may not be very practical,but if the phase-bits setting is

done under computer control, we can employ the following scheme:

	

First we compute the actual	 required phase values,	 cpi, for the

intended direction, 6 0 ,	 and then round off these values to the nearest

integer multiple of 27/16 to get cp i in the usual	 way.	 Then we also

calculate	 L4i-cpi-cpl,	 for	 all	 i	 and	 form	 the	 sum

E(i) = I(6,:pi)(21-1). 	 If E(I) turns out to be zero, then this 	 setting

itself gives the 'actual' pointing towards Sc,. But if E is finite, then

we canadjustthephasevaluescP.in such a way as to make E
(I) as
	 small

as possible.	 Then for	 these	 cp i values, the	 optimum direction, as

calculated in section 1.2.1, will be as near to the intended direction do,

as possible with the discrete phase distributions.

Whileadjustingcp.valuestomakeE
(I)
	2i-1)	 0,	 one

needs caution.	 An important	 aspect	 of the problem, in fact ignored by

Hatcher(1973), is that, while it is true that the procedure	 described in

section 1.2.1, gives an optimum pointing direction for the given phase

distribution, but it does not imply that the given	 phase	 distribution is

the optimum one for the pointing in that direction. 	 In fact, the condition

1(ecp i )(2i-1) = 0 could be satisfied for 	 a variety	 of contrived phase

distributions to give the same 'actual' pointing direction. For example,

even for the 'actual' pointing towards 6=o°, 	 one	 could	 put large phase

jumps across	 the module but still satisfy E = O. 	 All such unrealistic

phase distributions will give rise to large side—lobes and	 decrease the

beam efficiency. 	 Of course for any of	 such	 phase distributions the

principal maxima of beam would still be pointing towards (5=o°. Thus while
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adjusting o i values, one has to act judiciously.

We describe here a simple and efficient procedure, 	 which meets the

above requirements and is quite fast in execution.

ut the corrections, in the form of discrete phase of value +27/16,

starting from the dipole having largest absolute value of off, and then

recalculate E
CI)	

after this correction.	 If absolute	 value of E

decreases cue to this correction then one goes to the next largest value of

pCb for correction and so on.	 At any stage when absolute value of

'corrected' E	 is larger than the just previous one, one quits the loop

and also revokes the last made correction.

In this way one does not 'over correct' the individual phases and

mostly the corrections are done only for largest 	 errors, thus also

minimizing the total number of corrections to be made. It should be noted

that in this way no dipole could be in error from the required exact phase

by more that the smallest discrete step, i.e., 27/16. 	 Implementation of

this procedure is quite simple, of course first all the optimum phases to be

put are calculated and only then the bit patterns are set in a single go.

In this procedure, starting from 6=0°, the first 	 LSB in the 24th

dipole gets set at a declination value of 1.'05 and remains so till 3'.05,

after which the LSB in the 23th dipoles also gets set and thus it goes on.

This procedure	 not only gets	 rid of the apparant discrete steps in the

pointing but also sets the phase distributions in an optimum way.

This procedure has effect mainly near 	 the 'troublesome' directions;

for other directions, errors 64i are	 in any case small in the usual

procedure itself.

Figs. 1.2 and 1.3 show the testing of the above procedure using ORT.
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A strong source, unresolved	 with the primary-beam ,	 was scanned in

north south using only the RF phase shifters. The observations were made

using both	 the usual procedure and the proposed new procedure. The

improvement in pointing with the new procedure is very obvious from the

figs.	 1.2 and 1.3. The observations were made for Crab and for 3C161, in

each case the broad plateau (around 6=+21'.06 and 6=-6'.88 respectively) in

the usual procedure gets replaced by a smooth curve in the new procedure.

1.3 REFRACTION EFFECTS ON THE POINTING OF ORT AND OSRT

Here we shall consider the refraction effects of only an average

troposphere	 and ionosphere.	 Effects of the irregularities either in the

troposphere or in the ionosphere, which in any case are highly time

variable, will not be considered here.

1.3.1 Refraction Effects Of The Troposphere:

First we shall consider a horizontally stratified 	 parallel plane

atmosphere.	 In this case, the normal bending of a wavefront, important for

a single dish observations, has no effect for an interferometer system

lying in a horizontal plane. This can be seen in the following way.

Let the source be lying at a true zenith angle z as seen from the top

of the atmosphere, i.e, without the refraction effects. As the rays enter

the atmosphere, due to refraction the rays will appear to come from a

zenith	 angle z', given by lisin z' = sin z. The wave front which was at an

angle z with respect to the horizontal plane will now be at an angle z'

(fig.1.4).	 So an individual single dish will have to point towards the
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apparent zenith angle z' instead of the true zenith angle z. 	 But for an

interferometer it can be seen easily that the phase difference between A'

and B' is the same as it was between A and B ('.*AAT=BB'). This can be

seen in another way: let q be the phase difference between A and B, and ct,'

be the phase difference between A' and B'. Then the change in phase

 

27
(u A'L' - AL)

A
27d

(p sin z' - sin z) (AB=A'B'=d)

= 0

A

 

Thus if we are going to compensate for the phase difference between A'

and B' by using cables in the path of signal from B' (or A'), the length of

these cables is independent of the refractive index of the atmosphere,

because	 the final phase difference is the same as it was between A and B.

This statement is true even if the refractive index changes with height and

the bending of rays takes place continuously. We will be putting the cable

lengths as if the source were at a zenith angle z and there were	 no

refraction present. Thus the bending of wavefront due to refraction has no

effect on the pointing of an interferometer system lying in a horizontal

plane.	 It should be noted that the above statement is true even if the

source does not lie in the vertical plane passing through A'B'. 	 For

example	 if A' and B' lie on a north-south line, then for any hour angle

position of the source, the above statement will still hold true.

Let us consider now the case when our interferometer system is 	 not

lying in a horizontal plane but is inclined at an angle 8 with respect to

it (see fig. 1.5). Then the ray reaching B', as compared to the 	 one

reaching A', would have travelled an extra path

pB'B"-AL = p B'M sec z' - AB sin z
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= p d sin e sec z' - A'B" sin z

= p d sin 8 sec z' -	 (d cos0+d sine tan z') sin z

Now without accounting for the refraction 	 we would have also put

cable-lengths in path of B' corresponding to a path difference of

d sin(z-8). Thus, we get a total path difference of

pd sin 8 sec z' - d(cos 8 + sin 8 tan z') sin z + d sin (z-6)

= pd sin 8 sec z' - d sin 8 (tan z' sin z + cos z)

and using the fact that sin z = p sin z',

the total path difference = d sin e (p cos z' - cos z).

27d sin e
This amounts to a phase difference = 	 	  (p cos z' - cos z).

A

This formula for the phase difference can be interpreted in a simple

way:	 (i) Only the vertical component of	 the baseline, d sin 8, is

responsible for the refraction effects, (ii) 	 d sin 6 cos z' is the

projection of the vertical component of the baseline, d sine ,along

zenith angle z' of the rays, arriving with 	 a wavelength X/p in the

atmosphere, (iii) aud sine cos z/A is the calculated phase difference in

absence of refraction which we would have	 compensated for through

cables-lengths.

It can be seen easily that the above formulae is true even if the

source	 does not lie in the vertical plane passing through A'B'. Moreover

the formula remains true even if the refractive index changes with height

(of course we assume that the change in refractive index is negligible over

a height difference of d sine). What matter here are the final values of p

and z'	 and the initial value of z (see fig. 1.5).
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The assumption of a horizontally stratified parallel plane atmosphere

is quite good as long as the zenith angle of the point of observations is

not very large. At large zenith angles the effect of the curvature of the

atmosphere must be taken into account. For this purpose one could adopt a

model of the atmosphere being in uniform concentric spherical shells around

the surface of the earth, the refractive index changing as we go from one

shell to another. Alternatively one could simply assume that the whole of

the atmosphere is within a single homogeneous spherical shell of an

appropriate scale height and with a sharp boundary. The quantities of our

interest in any of these models are the final direction of arrival of the

rays and the values of the refractive index at the location of the

antenna-elements.	 Of course, we assume that the refractive index value as

well as the direction of arrival do not change from one interferometer

element to another.

If baseline of length d extending from element A to elemnt B is

characterised by an azimuth Ab and a zenith angle Zb , and the apparent

position of the source is given by an azimuth A a and a zenith angle Za,

then the projection of the baseline on the direction towards the source is

given by (fig.	 1.6)

d cos 0 = d (cos Z
a
 cos Z

b
 + Sin Z

a
 Sin Z

b
 cos (A

a
 - A

b
)).

Now d cos 8 is the extra path for the ray reaching element A with respect

to the one reaching element B, and the corresponding phase difference is

given by

270 cos 0	 27pd
----	 (cos Za cos Zb + Sin Za Sin Zb cos (Aa - Ab)).

A	 A

If the true azimuth and the true zenith angle of the source are A, and



Fig 1.6 Geometry of the projection of the baseline
on the direction towards source

Fig 1.7 Relation between Z and Z o for a single

spherical shell mo el atmosphere
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Zo respecively, then without the refraction effects, the phase difference

should be

27d
---	 (cos Z, cos Zb + sin Z o sin Zb cos (A 0 -Ab )).
A

Now based on the reasonable assumption of the spherical symmetry of

the atmosphere, the source azimuth does not change due to refraction, i.e.,

A
a
=A

°
.	 Thus all we have to know is Z

a
 as a function of Z o in order to

take into account the refraction effects.

There are various formulae available in literature for calculating

Z
a
 as	 a function	 of Z, depending upon the chosen model for the

atmosphere. For example, for a single homogeneous spherical shell model

atmosphere with a uniform refractive index, Za and Z, are related by

(fig.	 1.7)

p sin (Z
a -
	 = sin (Z o - 0)

and

sin (Z
a
 - 0) _

sin Z
a 

1 +h/RE

Where h is the total assumed height of the atmosphere above the surface of

earth, RE is the radius of earth, and 0 is the angle at the centre of the

earth between the direction towards the observer and the point where the

ray enters the atmosphere.

The other formulae, which account for the change in refractive index

as a function of height, cannot be rigorously applied unless one has a

precise knowledge of the relation between height and refractive index

(Smart 1977).	 So various approximations and simplifying assumptions are

made to derive usable formulae. But almost all such formulae including the

ones given above for the single homogeneous spherical shell model fail,

many giving almost absurd results, for high zenith angles (z > 80°).
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In optical astronomy, Refraction-Tables since long are being used for

large zenith angles.	 These tables are based on the actual observational

data and these list refraction angle, R=Z,-Z a , as a function of Z a or

4.	 We do not have such extensive refraction-tables available for direct

use at radio frequencies and we have already mentioned that the 	 various

formulae are not very satisfactory at high zenith angles. A compromise

coul: be arrived at by the use of appropriate formulae for low zenith

angles, say for z < 80°, and using the modified optical refraction-tables

for higher zenith angles. We know that for small zenith angles refraction

angle, R, is directly proportional to p-1. And we can except that even for

large zenith angles the principal term will be proprotional to p-1.	 In

fact	 this will be the first order term in Taylor's series expansion of R,

in terms of 11-1; the co-effecient of this term will be highly dependent 	 on

zenith angle. Zeroth order terms should obviously be zero, as there can be

no refraction if p-1=0.	 So we could simply multiply	 the value of R	 in

refractiontablesbyascalingfactorgivenby(-1) (u(u	 -1) /(u

and use that value for high zenith angles, This procedure appears very much

justified from the refraction angle (=bending) versus surface radio

refractivity data given Crane (1976) for a zenith angle of 85°. 	 He also

gives a procedure for the computation of refraction angle as a function of

p-1 at high zenith angles. In fig. 1.8 we have plotted refraction angle

vs.	 true zenith angle from the tabulated values given by Allen (1973).

Also plotted are the values obtained from Table II of Crane (1976) for the

corresponding value of p-1=290x10-6 .	 The match	 between these two

independent sets of data, one from optical and the other from radio

measurements, is so well that we can say there is essentially no difference

between the two. We propose to use interpolated values from this plot 	 for

the refraction angle-at high zenith angles.
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We use an average value of refractive index given by 1-1=250x10
-6

,

for application to ORT and OSRT; error in this value is unlikely to be

much greater than 10% (Mathur and Sukumar 1976). Thus to convert for our

use the refractive index values from the plot, we shall use a scaling

factor of 250/290-0.86. For smaller zenith angles (z,<80°) we use

the formula (Allen 1973),

R = A tan Z,-B tan Z (3, ,	 where A=50".138, B=0".058 .

(These values have already been scaled down by a factor of 0.86)

A few values obtained from this formula for Z,> 	 801' are also

plotted in fig. 1.8 for comparison purposes. It is clear that while

the above formula gives a very good approximation to the observational

data up to Z< 85°, for higher zenith angles, this formula cannot be

used.

1.3.2 Refraction Effects Of The Ionosphere

Bending due to the ionosphere refraction as compared with that

due to the tropospheric refraction is much smaller at our frequency

(326.5 MHz), ionospheric refraction being inversely	 proportional to

(frequency) 2 .	 But it should be kept in mind that the ionosphere, due

to its highly irregular behaviour, could produce	 highly variable

refraction effects during 	 the period of continuous observations,

stretched over many hours.	 But here we consider only the average

effects concerned with the pointing of various antennae.

Firstly, it should be noted that independent of the baseline

orientation there should be no ionospheric refraction for a

horizontally startified parallel plane ionosphere. 	 Here we assume

that the effects due to the horizontal gradient of electron density
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are negligible (Mathur and Sukumar 1976).	 Then it is only the

spherical curvature of the ionosphere which produces bending of the

rays. Thus we expect no change in the azimuth angle, only the

apparent zenith angle will be different from the true zenith angle.

To calculate it we need to know the value of refraction index as a

function of height, which in	 turn requires the electron density

profile as a function of height.	 From the electron density profile

one can directly calculate the total bending using an expression like

the one given by Hagfors (1976).	 In absence of that we simply adopt

the plot of refraction bending vs zenith angle as given by HagfOrs for -

an example electron density profile. We have scaled down the plot for

our frequency (326.5 MHz) and also extrapolated the values below a

zenith angle of 60° (fig. 1.9).	 Errors due to extrapolation cannot

be larger than a few arcsec due to the low absolute value of bending

in that region.

Though the refractive index value for the ionosphere is smaller

than unity, the overall effect of bending is in the same direction as

due to the troposphere, i.e., the apparent zenith angle is smaller

than the true zenith angle.	 Thus the bending effects due to the

ionosphere and due to the troposphere add up. 	 In fact the apparent

zenith angle, after the rays have entered and crossed the ionosphere,

becomes the true zenith angle for the purpose of calculating the

troposhperic bending. To account for the total refraction effects due

to both the ionospheric and the tropospheric, 	 we need to know the

final apparent zenith angle at the location of antennae as a function

of the true zenith angle above the ionosphere.
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1.3.3 Application To ORT And OSRT

For ORT (as well as for the other smaller antennae), the

east-west pointing is done purely by a mechanical rotation, thus the

hour angle pointing will be directly affected by the bending due to

refraction. We can calculate the apparent hour angle (H a ) of the

source from its apparent zenith angle (Za ) and the azimuth (AO by

using the expression

tan H
a
 =

-sin Za sin A,

cos (1) cos Za-sin	 sin Za cos A,

Where q(=11°23') is the latitude of ORT. 	 Azimuth is measured eastwards

from the north point.	 Fig. 1.10 shows	 the change in HA for different

pointing directions, the maximum change for ORT is about lm.

ORT is a phased array system as for as	 its north-south pointing is

concerned. The apparent declination (6 a ) is given by

sin 6
a
 = sin (1) cos Z

a
 + cos (1) sin Z

a
 cos A,

The appropriate phase-gradients across	 ORT in north-south can be

calculated for the 	 pointing towards 6 a , but it is necessary that the

value of wavelength used for phase calculations should be A
vacu

um/p,

where p is the refractive index value at the location of ORT. The same is

true for the north-south pointing of all other individual antennae of OSRT.

West-side Story: It has been observed that when ORT is tracking a source

for some continuous observations, then as the source approaches the west

limit, its position shifts rapidly towards north with respect to ORT

north-south beams.	 This shift, of the order of a few arcmin, causes the

source to drift from one beam to another. 	 This, so called 'west-side'

story, can be easily explained in terms of the refraction effects.

p.
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The extra phase difference between elements A and B due to refraction

can be written as

27d
=	 (p sin 6 a - sin 60

A

2Trd
= ---	 (sin (1) (p cos Za-cos Z o ) + cosq) cosA o (p sin Za-sin Zo)).

A

The same expression is obtained from the equations in Section 1.3.1 by

noting that Ab =O and zb=(7/2)-(1) for ORT, here we take A as the southern

element. In the above expression for pcp, contribution of the 2nd term,

d cos cp cos A o (p sin Za-sin Z o ), is very small, in fact it will be zero

for a horizontally stratified parallel plane atmosphere, and thus it is

finite simply due to the curvature of the atmosphere. While the first

term, d sin (1)(p cos Za-cos Z o ), dominates and is due to the height

difference between the north-south elements of ORT. This term is actually

the same as derived in Section 1.3.1, but here Za also includes the

effects due to the curvature of the atmosphere.

This extra phase Ago, if uncorrected for, will result in an apparent

southwards shift in the beam-pointing with respect to the source position.

Magnitude of this shift can be calculated as

2Trd cos 6
66 = 6cP

A

or	 .66 -
p sin 6a - sin do

  

cos

Thus the source position will appear to shift towards north with

respect to the beams; this shift will be larger at large zenith angles and

it is also independent of the sign of hour-angle. Fig. 1.11 shows a plot

of shift at various hour-angles and declinations. For ORT, the eastern HA
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limit is at - -4
h07m while the west limit goes up to - +5

h
 2u , so

the shift will be more pronounced for a source approaching the west limit.

Fig. 1.12 shows some observations and the corresponding predicted shift

for the beam	 position in case of a few	 sources chosen at different

declinations, here a constant shift of 15 arcsec has been subtracted from

the predicted	 value from fig. 1.11. It should be kept in mind that the

observations, apart from any other errors, will also	 be affected by any

north-south phasing errors for ORT at the time of observations and the

01 dominant term (due to tropospheric refraction) in	 predicted values is

11 
directly dependent upon any variation 	 in the assumed	 value of

p-1=250X10
-6

.	 Within	 these uncertainties,	 the	 agreement	 between

observations and the	 predicted values is quite satisfactory. A table of

refraction bending for both the ionosphere and 	 the troposphere	 has been

generated and	 a simple programme has been used above for calculating the

errors in declination pointing of ORT.

The formulae of the type given in Section 1.3.1 and 1.3.2 are usuable

directly in the pointing routines for the OSRT. Then we would not need to

calculate any	 extra differential phase paths between various antenna

elements to account for the refraction effects of average troposphere and

ionosphere, these would be automatically taken care of by our 	 procedure.

But one needs caution for observations near high zenith angles. The

differential bending for a 2°x2° field could be of the order 	 of a few

arcmin at high zenith angles, thus causing a considerable . distortion in the

map in the form of its apparent contraction along the direction towards

increasing altitude.	 This either needs some procedure to compensate for

the contraction or it will restrict the hour-angle limit as a function of

declination for observations of a source depending upon the width of the

field of view and the maximum distortion that can be tolerated in the map.
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If the interferometer baseline becomes quite large then the

differential bending for the rays reaching two elements may be appreciable.

Effectively it implies that the wavef ront can no longer be considered

planer on the scale of baseline lengths, but it becomes curved due to

refraction within the atmosphere. Due to the fact that bending is more at

larger zenith angles, the approaching wave front will be always 'concave'

as seen by observers on the surface of earth (fig. 1.13). This gives rise

to the first order correction to the differential phase path between

elements A and B. The differential bending at two elements, with large

separation, occurs because the zenith angle of a source is different due to

a difference in the longitude and latitude of the two points on the surface

of earth, giving rise to a differential refraction. This first order

correction gets applied automatically if one uses the midpoint of the

baseline as origin for calculating the	 apparent zenith angle and the

azimuth etc. The maximum error, if this effect is uncorrected for, can be

estimated in the following way:

The maximum error will occur for the sources which at large zenith

angles happen to lie in the vertical plane passing through the baseline.

Then the change in differential path	 sine-AR/2, where AR is the

differential bending due to refraction (fig. 1.13). The maximum change in

true zenith angle, for a horizontal baseline, from one element to another

is d/RE, where R
E
 is radius of earth. From figures 1.8 and 1.9, it is

estimted that the maximum value of 6R • sine<(1/360)d/R
E
 radians.	 Thus

the change in differential path <(d2/2RE)/360.

For a 3.5 km baseline this value is <2mm, while for a 9 km baseline

it is <2 cm. Thus this change in differential path can be ignored for

the OSRT baselines at 326.5 MHz.
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Fig 1.13 Extra phase path between two elements of a long
baseline interferometer due to differential bending
of wavefront
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