
CHAPTER 2

COVARIANCE OF NOISE IN MULTIPLE BEAMS OF ORT

As discussed in chapter 1, the voltage outputs of the 22 modules of

the	 ORT	 have been combined with different phase gradients to form 12

simultaneous beams both for the total power system and for the correlator

system.	 As the ORT tracks the moon during occultation observations, none

of the beams may be pointing exactly towards the position of a source being

observed, and in	 that case the source response may appear within two or

more neighbouring beams (see fig. 2.1). Now a question arises in such a

case:	 can we improve the final signal to noise ratio by combining the

signal present in both such beams? Before this question can be answered we

should realize that even the temporal noise in these two neighbouring beams

may not be statistically independent, because the contribution of 	 noise

from	 different modules is the same, only it is combined with a different

phase distribution. In fact the question is much more general, namely what

is	 the correlation co-efficient of noise among two simultaneous beams,

looking towards different directions with identical power patterns, for a

phased array system?

We shall analyse the problem for a case of one-dimensional array; the

result can be easily generalized to the case of a 2-dimensional phased

array system (Singal, 1985). We assume a north-south array with N equally

spaced elements.	 The voltage signal from all the N elements can be

combined and passed through a square law detector to form a total 	 power

system.	 Alternatively the array can be divided into two parts with n

elements on the north and the remaining m=N-n elements on the south.	 Then

the	 voltage signals from the n north elements are added together and
Em

similarly signals from the m south elements are added together. 	 These

separately combined signals from the north and from the south arms can be
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now multiplied together to form a correlator system. Multiple beams can be

formed in either case by using appropriate phase gradients along the array.

We assume a narrow-band system of a predetection band-width t Hz, so

that vv/ y, <<1, where V
c is the centre frequency of the pass-band. For

the ORT system py = 4MHz and ve = 326.5 MHz. We also make the reasonable

assumption that any further addition to noise in a beam after the beam

formation network is negligible.

For our purpose we shall consider two beams, one being	 the central

beam formed with no phase-gradients across the array and the other called

the neighbouring beam formed by introducing a successive phase

difference, Lcb, between two adjacent elements, given by

d w
c
 sin 6

Where 6 is the angle of pointing of the neighbouring beam with respect to

that of the central beam, d is the distance between two adjacent elements,

c is the velocity of electromagnetic waves in the medium (vacuum!) and we

= 27y
c
. The instrumental phase delay as calculated above, is introduced

to compensate for the geometric phase delay between adjacent elements for a

signal coming from direction 6.

2.1 NOISE REPRESENTATION

Narrow-band noise voltage output of an individual element can be

represented as V(t)cos(w et+(p(t)), where the variations of envelope V(t)

and the phase (1)(t) are slow compared to those of cos(w et) and are on a

time scale -1/Ay. The probability density of V(t) is Rayleigh distributed,

and p(t) is uniformly distributed inside the range 0 to 27. 	 Moreover the

variance of the noise power V 2 (t)/2, which has a non-zero mean, is equal to
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the square of the mean value of V 2 (t)/2, i.e.,

Variance of V 2 (t)/2 = < V 2 (t)/2 > 2 (see Davenport and Root, 1958).

Here no distinction is made between the noise originating within the

instrument and the external noise.

2.2 TOTAL POWER BEANS

	

To form a total power	 beam voltages from all N elements, with

appropriate phase distributions, are added together and passed through a

square law detector.

2.2.1 Central Beam

The noise output in the central beam is given by

N	
2[	

V1
.	 cos(wCt+¢ 1 )]

i=1

Here V. and gb.1 imply V.(t) and ¢ 1 (t)	 respectively with i as a

running index to represent different elements.

Noise output can be written as

N	 N

V. cos(w t+cp.) •	 1 V cos(wCt+cl) j ). 	 c	 .	 j
1=1	 J=1

N	 Nr	 1
=	 2,	 2 V.V

j
 (cos(2w c t+cp.+(pj )+cos(cp.1-(1)j)) .

i=1 j=1	 1	
1 

Time average of the 1st set of terms inside the summation is zero over

a cycle of wet=21r, during which time V's and (p's can be assumed to be

unchanged. Thus the contributions from only the 2nd set of terms is

relevant. Thus the noise output
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1
=

	

2	 Vi	 V j cos(q).-cpj)
I1	 j=1

	

N	 N-1
=1 V

./ 1
. 2 +	 1 V. V

j
 cos(cpi-q5j).

	

2 i_	 i	 1 j>i 1 

All V's and q's are variables on time scales - 1/6y , hence the noise

output will consist of independent peaks, both positive and negative about

the mean, at intervals of duration - 1/Ay.

2.2.2 Neighbouring Beam

	

Due to the introduction of 	 instrumental	 phase delay, Aq), between

	

adjacent elements,	 the noise output for the neighbouring beam can be

written as

2[ 1 V.	 cos(w
c
t+cp

i +(i-1)L10]i1 1

=
N	 N
 1 V.
	
cos(w

c
,1)t+.+(i-1)60	 •	 1 V. cos(w

Ct+q). j +(j-1)a(P)
1=1
.
=1 j=1	 J

1 N
	 N

v. 	v
2	 j

V.V cos(q).
1

-cp
j
+(i-j)60 ...(ignoring the high frequency terms)

	

i=1	 j=1	 1 

1 N	 N-1

	

=
2. 1Vi1

2 +1	 1V.V
j
 cos(cp.

1
-cp

j
 +(i-j)4¢)	 .

1=1	 i=1 j>i

2.2.3 Variance Of Noise In Individual Beams

Various terms within the expressions for noise output are uncorrelated

or linearly independent, so total variance is the sum of variances for the

individual terms.

N N

Terms V.V
j
 cos(q). -4)

j
) have a zero mean,
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N-1
=> Variance of	 (	 V.Vj cos(q). -cpj))

i=1 j>i

N-1	 N-1
= <	 V.V cos(4).1-q).) • 	 1 Vk72, cos(cpk -cp z ) >j

1=1 j>i	 k=1 i>k

1
N-1

=
1=1 j>i

N-1
1	 < V.V.jVk VR, (cos4 i ,-(P i -qd+cos(cp i + cpk -cp i -(10 , z )) >.i k=1 i>k

The second set of terms inside the summation will average to zero,

	

while in the	 first set only the terms with { i=k} will have finite
j=2,

time averages.

N-1
Thus variance of	 (	 1 

V.1Vj 
cos(cp. -¢,

j
) )

i=1 j>i

1
N7 1

1
N:1	

7
=	 2,	 1	 <V. 2 V. 2 >	 =	 2,	 <V. 2 > <V2>

J

	

1=1 j>i	 1 J	 1=1 j>i 1 

thelaststepisallowedbecauseV
1
.and V j , for i4j, are statistically

independent.

PismentionedinSection2.1,varianceof(V.
1

2/2)=<V.
1

2 /2 >2.

Thus variance of noise, 0 1 2 , in Central Beam

N	 N-1
= 1<V.2/2>2+211<V.2/2><V.2/2>

Ji=1	
1	

i=1 j>i	
1

	N	 N
or	 0 1 2 =1/<V. 2 /2> <V 2/2>	 .

i=1	 j=1

Similarly we can calculate variance 01 2 for the neighbouring beam

and we find

N	 N
01 2 =	 <V.2/2> <V 2 /2> = 012

i = 1 j = 1	 1

0 1 01
	 0 2

In case all elements are identical with the same average noise power
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	(V,;/2) = < Vi 2 /2 > for all	 i,

then 0 1 2	 N 2 (V 0 2 /2) 2 ,	 or	 c, = N(V 0 2 /2) ,

which is N times the noise power from an individual element.

2.2.4 Covariance Of Noise In The Central And Neighbouring Beams

Representing the covariance as C 1 , we note that the noise output in

both the	 central and	 the neighbouring beams contain the identical terms

2
1 

2,
r- V. 2 with non-zero mean.	 Contributions of these terms to the

covarianceisl<V. 2 /2 > 2 . Contribution of the remaining terms to the

covariance is given by

N-1	 N-1
< 1	 V.V.
	

.cos(-cp.) • 1	 1 
VkVP. 

cos(cp
k

+(k-i)A0 >,
i=1 j>i	 k=1

where the only non-zero average terms with { 
i=k 

} are
J-1

1 
N;1

.<1/ i 2 Vi 2 > COS((i-j)A0•
j1 = 1 	 >1

Thus
N-1

C1 ...I<IL2/2>21.2110/.2/2><V.2/2> cos((i-j)LNO
i=1 j>i 1

N
= 1	 1 <V. 2 /2> <V . 2 /2> cos((i-j)60 .

i=1 j=1	 1

Now Normalized Covariance or the Correlation Coefficient is defined as

P1 = C 1 /(o 1 a' 1 ) .	 Thus

N
11<1/.2/2><IL2/2> cos((i-Da)

i=1 j=1	 1

N
<V. 2 /2> <V .2/2>

i=1 j=1	 1

In case of N identical elements, we simplify it to get



1	 N	 N
---	 cos((i-j)4) =

N 2 i=1 j=1
	  2

N sin(Acb/2)

sin(Np4/2)
P1
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Which is the same as the normalized Total power beam pattern as a function

of Acp (Appendix A.1)

2.3 CORRELATOR BEAMS

As stated earlier, to form	 a correlator	 beam voltages from the

north-arm and the south-arm are multiplied together.

2.3.1 Central Beam

We write the sum of the voltages	 in the north-arm as

1Vi cos(w ct+cp i ), while	 to avoid	 any ambiguity we write the sum as

1V'.cos(wc	 jt+cr) for the south-arm.	 In whole of the Section 2.3,

indices i	 and k will be used only for elements in the north-arm, while j

and 9,, will be used for those in the south-arm. Then the noise output is

given by

n	 m
V. cos(wc1	 jt 44.) •	 I V'. cos(wc	 jt+cr)

1=1 1	j=1

1 n mr	 r= -	 VV' cos(cp.-(r) ...	 (ignoring the high frequency terms) .
i=1	 j_ ..1 1 j

This noise output, which has a zero mean, will consist of independent

peaks (both positive and negative) at intervals of duration -1/Ay .

2.3.2 Neighbouring Beam

We write the noise output as

1 V.1 cos(w c tiA). 2i-2 1 0) •
m

	

 1 V. cos(w t+cp'	 AT)
j=1	 c	 j 	 •
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Here we have chosen the mid-point in between the north and the south

arms as the phase-centre for computational convenience.

Again ignoring the high frequency terms,

1
n	 m

noise output	 = 2- 	 Z	 V.V' cos((cp74'.)+(i+j-1)4)..	 1 j
i=1 j=1

2.3.3 Variance Of Noise In Individual Beams

Variance of noise in the central beam can be written as

n	 m	 n	 m
0 2 2 =	 <	 1	 vi	 cos(-).iG 	 Vk Vi cos ( k-qq) >

ji=1	 =1	 k=1	 k=1

nmnm
r	 C'

	

= 
1 

2, j=1	

2,	 < V.VW
jk 

VI	 cos(_))r 	 COS4k-q) ›.

	

ii	
.	

j

	

i = 1 j = 1	 k=1 k=1

Time average of only the terms with { i=k } will be finite,
j=9.,

all other terms will average to zero.

n	 m	 n	 m1	 r	 r	 1	 1	 r	 r
0 2 2 	

2	 1 j	 1	
<V'2/2> .

i=1	 j=1	 i=1	 j=1

Similarly we can calculate variance 0 12 2 for the neighbouring beam

and we get

n	 m
1

0 2 2 =	 E	 <V. 2 /2> <V t2 /2> = 0 2 2 .21
i=1 j=1

•
02 0; = 0 2 

2

In case all n elements in the north-arm are identical with the same noise

power V 0 2 /2 = <V i 2 /2> for all i, and in the same way all m south elements

have the same noise power Wo 2 /2 = <V'. 2 /2> for all j, we can write

0122 --
2

2 = 
1 
nm (V 0 2 /2) (V' 2 /2) .
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2.3.4 Covariance Of Noise In The Central And Neighbouring Beams

We represent the covariance by 0 2 , then

	

n	 m	 n	 m
C 2 =	 < /	 /	 COS(qDi-140'.) •	 /	 / VkVj COS(k - CIT- ( k 41 - 1) 10) ›.

	

i = 1	 j = 1 	 j	 k=1 i=1	 "

Here again only the terms witht ik lwill have finite contribution.
j=9,

C2 =
m 

1

2 <V.2Vl.2> COS((i+j-1)44)1
1	 1=1

1 
n	 m

2,
7

-	 <V.2/2> <V I., 2 /2> CO5((i+i-1).0)2
1=1 j=1

The Normalized Covariance or the Correlation Coefficient,

p 2 = C 2 /(0 2 0' 2 ), is given by

n m
1X<V. 2 /2> <VI/2> cos((i+j-1)AcP)

1=1 i=1

P2

n	 m
1	 1 <V 2 /2> <V'.2/2>

1=1	 j=1	 1

Using V 0 2 /2 and V'0 2 /2 for the north and south elements respectively,

we can simplify the expression for p 2 as

1	 n	 m

P2

	

	 /	 / cos((i+j-1)0)
nm 1=1 j=1

sin(ndcp/2)	 sin(my¢/2)	 n+m
	  cos( 	

n sin(4/2)	 m sin(W2)	 2

which is the same as the normalized correlator beam pattern as a function

of 11(1) (Appendix A.2).

2.4 EFFECT OF POST-DETECTION TIME CONSTANT

	

In all our discussions, we have 	 ignored the effect of any post

detection time constant, and calculated variances and covariances as if the

output were unsmoothed. If the outputs were smoothed with a time constant
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T before the variances and covariances are calculated, we would expect

these to be uniformly less by a factor AVT.	 But the normalized

covariances, i.e.	 correlation coefficients, will not be affected by the

smoothening. We can see it in another way.

Consider a large number N of independent samples of a pair of random

variables X and Y each, then correlation coefficient, p 1 , is defined as

N
1 X. Y.

1.
1=1

P1
N	 N	 1/2

[	 X.'	
Y .2

1=1 1	 j	 1	 j

We assume that both X and Y each have a zero mean.

Now we form another pair of variables x and y, obtained from X and Y,

by taking a running mean (or even block mean) of m points each, so that

m	 m
1	 r	 1	 r

X. =	 -	 2. 	X.	 .	 and y .	 =	 -	 2,	 Y.	 .	 ,
1
	

m	 .	 i+j-1	 1
	

m	 .	 i+j-1
j=1	 j=1

both x and y each will have a zero mean.

Now correlation co-efficient of 	 x and y can be written as

N-m+1
x i	y.

i=1

P2
	 we assume N/m >> 1.

N-m+1	 N-m+1	 1/2

[	 X•
1 

2	 .2y.	
j=11=1	 =1

Now substituting x i and y i in terms of X i and Y i in p 2 , it is

easily	 verified	 that p 2 = p 1 .	 Thus a constant linear correlation between

the sets of values	 of two variables	 cannot be destroyed by a mere

smoothening.	 So a finite time constant will have no effect upon our final

results.

Fig.	 2.2 shows correlation coefficient of the actually observed noise

as a function of beam separation for both the total power beams with N=22,
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Fig 2.2 Noise correlation coefficient as a function of the
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and the correlator beams with n=m=11, of the Ooty Radio Telescope. Here RC

time constants of 3 msec and 500 msec were used for the total power and

correlator beams respectively. The match with the beam pattern is very

good in both cases.	 Errors in the individual correlation coefficient

points are due to the finite number of sample points, a total of 1000

sample points for either beam were used in all cases.

2.5 SOME GENERALIZATIONS AND CONCLUSIONS

In our discussions above we calculated the correlation coefficient

between the	 'Central beam' and a 'neighbouring beam'. Actually in our

calculations we can replace the central beam by a beam l000king towards an

arbitrary direction, and our results still remain the same, but (1) in the

expressions for correlation coefficient will 	 then represent	 the

differential	 phase gradient corresponding to the angle of separation

between this beam and the neighbouring beam. We assume throughout that our

beams are narrow and	 that accordingly the angle of separation, of our

interest, between two beams is also small.

Now suppose the separation between successive elements varies along

the array.	 Then the arguments of cos((i-j)40 and cos((i+j-1)[..4) in the

expressions for correlation coefficient for both the total power beams 	 and

the correlator beams will get replaced by 	 the appropriate values, in

general a will be a function of both i and j.	 But the expressions	 for

beam patterns also will get modified in exactly the same manner as the

expressions for the correlation coefficient. We could also change 	 the

combination of elements forming the beams, 	 especially in the case of

correlator beams. Here again expressions for the correlation coefficient

and the beam pattern get altered in an identical manner.
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Let us consider the case when all antenna elements are not of an

identical nature. 	 We have already seen that in the case of correlator

beams, if the individual elements in the north-arm are not similar to those

in the south-arm,	 our results still hold true. As a general rule we can

state that our results hold true for the following case: If there are two

sets of elements and the combined voltage outputs of one set of elements

are being multiplied by the combined voltage outputs of the other set of

elements during beam formation, then the elements in one set need not be

similar to those in the other set. 	 But the elements within each set whose

voltage outputs are being added should not all be of arbitrary nature, the

ratio between the output noise power and the voltage response for a

unit point source should be same for all elements within the set. The last

condition is not really a very restrictive one, it concludes the case of

identical elements within the set.

Thus we see that under very general configurations of beam formation

systems, the correlation co-efficient of noise in two simultaneous beams,

formed from a common set of antenna elements, as a function of the angle of

separation of the	 two beams is identical to the individual beam pattern.

This result can be used to estimate the expected improvement in signal to

noise ratio whenever signal from a common source appears in two or more

lip

	

	 beams simultaneously. Such a premonition is useful as well in cases where

no improvement is expected, as a lot of wasteful effort can be avoided.

Fig. 2.1 shows the actual occultation (Immersion) observations of a

radio source, whose response appeared simultaneously in more than one beam

of ORT. Only six of the total 12 beams, i.e. beam 7 to 12, are shown

here; the individual beams marked by 7, 8, etc. The radio source seems to

lie almost half-way between 9th and 10th beams, as the response is almost

the same in these two beams.	 As the noise correlation between two
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neighbouring 0RT correlator beams, separated by 3 arcmin, is almost zero

(see fig.2.2), the signal to noise ratio would improve by a factor of ^2 if

beams 9 and 10 are combined here.	 But no such further improvement in

signal to noise ratio will result if the negative signal present in beam 8

or beam 11 (which is about 50% of that in beam 9 or beam 10) is also sought

to be combined. The reason being that there is an anticorrelation of noise

at about 50% level (see fig. 2.2) between beams 8 and 10 (as well as

between beams 9 and 11), which are at a separation of 6 arcmin. Such an

information is very useful in utilizing the best possible sensitivity of a

multiple-beam phased array system.
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