CHAPTER VI

THE FORMATION, NUMBERS AND RADIO LUMINOSITIES OF GIANT RADIO GALAXIES

6.1 INTRODUCTION

Until the discovery of the giant radio galaxies 3C236 and DA240 by Willis, Strom and Wilson (1974), the sizes of double radio sources were known to be within a megaparsec. THE FORMATION, NUMBERS AND RADIO LUMINOSITIES

OF GIANT RADIO GALAXIES

6.1 INTRODUCTION

Until the discovery of the giant radio galaxies 3C236

and DA240 by Willis, Strom and Wilson (1974), the sizes of

double radio sour 6.1 INTRODUCTION
Until the discovery of the giant radio galaxies 3C236
and DA240 by Willis, Strom and Wilson (1974), the sizes of
double radio sources were known to be within a megaparsec.
Even today this is largely true, Until the discovery of the giant radio galaxies 3C236
and DA240 by Willis, Strom and Wilson (1974), the sizes of
double radio sources were known to be within a megaparsec.
Even today this is largely true, with most sources 6.1 INTRODUCTION
Until the discovery of the giant radio galaxies 3C236
and DA240 by Willis, Strom and Wilson (1974), the sizes of
double radio sources were known to be within a megaparsec.
Even today this is largely true, Until the discovery of the giant radio galaxies 3C236
and DA240 by Willis, Strom and Wilson (1974), the sizes of
double radio sources were known to be within a megaparsec.
Even today this is largely true, with most sources Even today this is largely true, with most sources
having sizes between 200 - 500 kpc, but existence of a
small percentage (<5%) on the megaparsec scale has beer
clearly established (Miley, 1980; Saripalli et al., 1986).
 today this is largely true, with most sources
Even today this is largely true, with most sources
having sizes between 200 - 500 kpc, but existence of a
small percentage (<5%) on the megaparsec scale has beer
clearly establ (ven today this is largely true, with most sources
having sizes between 200 - 500 kpc, but existence of a
small percentage (<5%) on the megaparsec scale has been
clearly established (Miley, 1980; Saripalli et al., 1986).
O clearly established (Miley, 1980; Saripalli et al., 1986).

Of the several hundred radio galaxies mapped so far, the

total number of known GRGs is less than 20. The rarity of

these objects poses questions concerning thei or, (b) are they produced by powerful engines over relatively normal time scales? These basic questions pertaining to an Of the several hundred radio galaxies mapped so far, the
total number of known GRGs is less than 20. The rarity of
these objects poses questions concerning their formation:
(a) could the GRGs be associated with nuclear act total number of known GRGs is less than 20. The rarity of
these objects poses questions concerning their formation:
(a) could the GRGs be associated with nuclear activity
of modest intrinsic power but of extremely long dur (a) could the GRGs be associated with nuclear activity
of modest intrinsic power but of extremely long duration?
or, (b) are they produced by powerful engines over relatively
normal time scales? These basic questions perta which have indicated the important role of the central engine in the formation of their exceptional sizes. In the literature. In the previous chapters,

In the literature. In the previous chapters,

In this comparative studies of GRGs have been presented

have indicated the important role of the central engine

In this chapter in the literature. In the previous chapters,
statistical, comparative studies of GRGs have been presented
which have indicated the important role of the central engine
in the formation of their exceptional sizes.
In this c

in favour of their formation via powerful engines over normal

time scales, employing a generalized version of the recent model for radio beam propagation, of Gopal-krishna and Wiita (1987; GW).

In this model, a radio beam first propagates through the gaseous halo of the parent elliptical galaxy, which is nearly isothermal, and has a density profile roughly given by n \propto $\rm{r}^{-1.5}$ (e.g., Forman,Jones and Tucker, 1985; see also Strom 1987; GW).

In this model, a radio beam first propagates through the

gaseous halo of the parent elliptical galaxy, which is nearly

isothermal, and has a density profile roughly given by
 $n \propto r^{-1.5}$ (e.g., Forman, Jone In this model, a radio beam first propagates through the
gaseous halo of the parent elliptical galaxy, which is nearly
isothermal, and has a density profile roughly given by
 $n \propto r^{-1.5}$ (e.g., Forman, Jones and Tucker, 1 pressure-matched halo-IGM interface. The properties of the IGM have the and has a density profile roughly given by
 $n \propto r^{-1.5}$ (e.g., Forman, Jones and Tucker, 1985; see also Strom

and Jägers, 1988). Then the beam enters an even hotter but

much less dense intergalactic medium observed diffuse (3-200 KeV) X-ray background (e.g., Guilbert sothermal, and has a density profile rougnly given by
 $n \propto r^{-1.5}$ (e.g., Forman, Jones and Tucker, 1985; see also Strom

and Jägers, 1988). Then the beam enters an even hotter but

much less dense intergalactic medium (nuch less dense intergalactic medium (IGM), after crossing a
pressure-matched halo-IGM interface. The properties of the
IGM have recently been derived from the analysis of the
observed diffuse (3-200 KeV) X-ray background redshift, the halo/IGM interface would occur closer to the IGM have recently been derived from the analysis of the
observed diffuse (3-200 KeV) X-ray background (e.g., Guilbert
and Fabian, 1986; Barcons, 1987). Since both density and
temperature of the IGM rise steeply with cosmol relativistic beam is considered to be halted by the deceleraand Fabian, 1986; Barcons, 1987). Since both density and
temperature of the IGM rise steeply with cosmological
redshift, the halo/IGM interface would occur closer to the
galactic nucleus at earlier epochs. The advance of t ambient medium, or by the cessation of the nuclear activity. ITT, the halo/IGM interface would occur closer to the
tic nucleus at earlier epochs. The advance of the
ivistic beam is considered to be halted by the decelera-
of the head of the beam to the sound velocity in the
nt mediu redshift, the halo/IGM interface would occur closer to the
galactic nucleus at earlier epochs. The advance of the
relativistic beam is considered to be halted by the decelera-
tion of the head of the beam to the sound velo

galaxies, are frequently marked by hot spots whose separation of the head of the beam to the sound velocity in the
ambient medium, or by the cessation of the nuclear activity.
The extremities of classical double radio sources,
usually associated with relatively isolated ellipti redshifts. Recently, it has been established that the median decreases with redshift as $(1+z)^{-\sigma}$, where σ ambient medium, or by the cessation of the nuclear activity.

The extremities of classical double radio sources,

usually associated with relatively isolated elliptical

galaxies, are frequently marked by hot spots whose The extremities of classical double radio sources,
usually associated with relatively isolated elliptical
galaxies, are frequently marked by hot spots whose separa-
tion, 2D, has a median value of 300 - 400 kpc at small
r Gopal-Krishna et al., 1986; Oort et al., 1987a,b; Singal,

91

1988). The simple analytical models for beam propagation
through the halo and IGM presented in GW was able to predict
the exponent $\tau \simeq 3$ as confirmed by Oort et al., (1987b) and 92
1988). The simple analytical models for beam propagation
through the halo and IGM presented in GW was able to predict
the exponent $\sigma \simeq 3$ as confirmed by Oort et al., (1987b) and
Singal(1988). The prediction of thi the exponent $\sigma \approx 3$ as confirmed by Oort et al., (1987b) and 92
1988). The simple analytical models for beam propagation
through the halo and IGM presented in GW was able to predict
the exponent $\tau \approx 3$ as confirmed by Oort et al., (1987b) and
Singal(1988). The prediction of this 1988). The simple analytical models for beam propagation
through the halo and IGM presented in GW was able to predict
the exponent $\tau \simeq 3$ as confirmed by Oort et al., (1987b) and
singal(1988). The prediction of this a 1988). The simple analytical models for beam propagation
through the halo and IGM presented in GW was able to predict
the exponent $\sigma \simeq 3$ as confirmed by Oort et al., (1987b) and
Singal(1988). The prediction of this a hereafter referred to as RW). 1(1988). The prediction of this analytical model has
been confirmed by numerical simulations of the jets
a boundary-following code (Rosen and Wiita, 1988;
fter referred to as RW).
Both GW and RW considered typical classica

sources, and the prediction of chis and prioder model mass
also been confirmed by numerical simulations of the jets
using a boundary-following code (Rosen and Wiita, 1988;
hereafter referred to as RW).
Both GW and RW consi also been confirmed by numerical simulations of the jets
using a boundary-following code (Rosen and Wiita, 1988;
hereafter referred to as RW).
Both GW and RW considered typical classical double
sources, and the possibility considering extremely energetic beams, relativistic motion of the head is to be expected, at least over the early part of nereafter referred to as RW).
Both GW and RW considered typical classical double
sources, and the possibility of relativistic motion of the
head of the beam was not taken into account. However, when
considering extremely e stages when the source has grown to very large volumes, the head of the beam was not taken into account. However, when
considering extremely energetic beams, relativistic motion of
the head is to be expected, at least over the early part of
the source's life. On the other hand, dur considering extremely energetic beams, relativistic motion of
the head is to be expected, at least over the early part of
the source's life. On the other hand, during the later
stages when the source has grown to very larg nead of the beam was not taken into account. However, when
considering extremely energetic beams, relativistic motion of
the head is to be expected, at least over the early part of
the source's life. On the other hand, dur relativistic electrons would preferentially loose energy stages when the source has grown to very large volumes, the
magnetic energy density in the radio lobes is expected to
fall below the energy density of the Microwave Background
Photons. Under such conditions, the radio-emit photons, generating X-rays and thereby supressing the radio magnetic energy density in the radio lobes is expected to
fall below the energy density of the Microwave Background
Photons. Under such conditions, the radio-emitting
relativistic electrons would preferentially loose energ Photons. Under such conditions, the radio-emitting
relativistic electrons would preferentially loose energy
through inverse Compton collisions with the background
photons, generating X-rays and thereby supressing the radio Fall below the energy density of the Microwave Background
Photons. Under such conditions, the radio-emitting
relativistic electrons would preferentially loose energy
through inverse Compton collisions with the background
p Photons. Under such conditions, the radio-emitting
relativistic electrons would preferentially loose energy
through inverse Compton collisions with the background
photons, generating X-rays and thereby supressing the radio background is stronger. With the concept of RRE we are able to account for the observed low powers of GRGs which seem to defy the known positive correlation (D \propto P^{0.3}) between the

92

93
1978; radio power and linear size (Gavazzi and Perola, 1978;
1978; Ekers et al., 1981; Kapahi, 1986; Machalski and Condon, 1985;
1987; Singal, 1988). Ekers et al., 1981; Kapahi, 1986; Machalski and Condon, 1985; Oort et al., 1987a; Alexander and Leahy, 1987; Singal, 1988).

6.2 BEAM DYNAMICS IN THE RELATIVISTIC LIMIT

We assume the beam fluid to have a relativistic equation of state and a relativistic bulk velocity. The beam opening angle, within the halo, θ , is assumed to remain constant as in GW and in Model A of Scheuer (1974). The opening angle, $\mathcal F$ is observed to be smaller for sources with higher powers S.2 BEAM DYNAMICS IN THE RELATIVISTIC LIMIT
We assume the beam fluid to have a relativistic equation
of state and a relativistic bulk velocity. The beam opening
angle, within the halo, θ , is assumed to remain constant of state and a relativistic bulk velocity. The beam opening
angle, within the halo, θ , is assumed to remain constant as
in GW and in Model A of Scheuer (1974). The opening angle,
 θ is observed to be smaller for sour We assume the beam fluid to have a relativistic equation
of state and a relativistic bulk velocity. The beam opening
angle, within the halo, θ , is assumed to remain constant as
in GW and in Model A of Scheuer (1974). T (Bridle, 1986). We have incorporated this effect, and
describe the procedure adopted, below. When we make the
additional assumption, that the beam power, L_b , is
predominently kinetic, we get (e.g., O'Dea, 1985). $\frac{198}{198}$
the lastly $\frac{1}{b}$.
|
|
|
| be have incorpo
dure adopted, b
on, that the
c, we get (e.g.,
 $\rho_b c^2 \gamma_b (\gamma_b^{-1}) \beta_b c$

$$
L_{b} = \frac{\pi \theta^{2} D^{2}}{4} \rho_{b} c^{2} \gamma_{b} (\gamma_{b}^{-1}) \beta_{b} c
$$
 ... (6.1)

describe the procedure adopted, below. When we make
additional assumption, that the beam power, L_b ,
predominently kinetic, we get (e.g., O'Dea, 1985).
 $L_b = \frac{\pi \theta^2 D^2}{4} \rho_b c^2 \gamma_b (\gamma_b^{-1}) \beta_b c$...(
where D is the length of where D is the length of the beam at a given time, and \int_{b}^{b} , $c \beta_h$ and γ_h are the density, bulk velocity and bulk Lorentz factor of the beam, respectively. Following Blandford and gredominently kinetic, we get (e.g., 0 Dea, 1985).
 $L_b = \frac{\pi \theta^2 D^2}{4} \rho_b c^2 \gamma_b (\gamma_b^{-1}) \beta_b c$...(6.1)

where D is the length of the beam at a given time, and $\int b$,
 $c \beta_b$ and γ_b are the density, bulk velocity and bulk decelerated and thermalised at a termination shock, typically where D is the length of the beam at a given time, and \int_{b}^{b} , $c \beta_b$ and γ_b are the density, bulk velocity and bulk Lorentz factor of the beam, respectively. Following Blandford and Rees (1974) we assume that the $c \beta_h$ in pressure balance with the external medium, as in and Y_b are the density, bulk velocity and bulk Lorentz
of the beam, respectively. Following Blandford and
(1974) we assume that the beam flow is strongly
rated and thermalised at a termination shock, typically
by a hots Factor of the beam, respectively. Following Blandford and
Rees (1974) we assume that the beam flow is strongly
decelerated and thermalised at a termination shock, typically
marked by a hotspot, which is advancing with a v beam velocity is $c \beta'_{b'}$, we obtain ted and thermalised at a terminati
by a hotspot, which is advancin
pressure balance with the exte
(1974). Transforming to the shock
ocity is $c \beta'_{b}$, we obtain
 $\frac{\pi}{4} \theta^2 D^2 \rho_b (\gamma_b^B b^c)^2 = \frac{\pi}{4} \theta^2 D^2 \rho_{ext} (\gamma_h \beta_h c)^2$ the beam, respective.

we assume that

and thermalised at a

a hotspot, which is

ressure balance with

74). Transforming to

cy is $c \beta'_{b}$, we obtain
 $D^2 \rho_b (\gamma_b^B)_b^b c)^2 = \frac{\pi}{4} \theta^2 D^2 \rho$ ted and thermalised at a termination shock, typicall
by a hotspot, which is advancing with a velocit
pressure balance with the external medium, as i
(1974). Transforming to the shock frame, where th
ocity is $c \beta'_{b}$, we

 $\frac{1}{4}$ θ^2 ext $(\gamma_h^{\beta} h)$

taking $\begin{array}{c} \mathcal{F} \\ \mathcal{F} \end{array}$ and $\begin{array}{c} \mathcal{F} \\ \mathcal{F} \end{array}$ to be the ambient density which is taking $\begin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix}$ of $\begin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}$ inside the halo and constant beyond, in the IGM. Using the relations, $\begin{pmatrix} \beta' & 0 \ 0 & \beta' & 0 \end{pmatrix}$ beyond, in the IGM. Using the relations, β _b = (β b⁻ β h)/ caking $\begin{pmatrix} 1 & 1 \ 1 & 2 \end{pmatrix}$ obtains the ambient density which is
assumed to be a function of D inside the halo and constant
beyond, in the IGM. Using the relations, $\beta'_{b} = (\beta_{b} - \beta_{h})/$
(1- $\beta_{b} \beta_{h}$) and γ'_{b} we have the result: a function of D inside the

le IGM. Using the relations

l' $Y'_b = Y_b Y_h (1 - \beta_b \beta_h)$ and

l'a $\frac{\beta_h}{1 - \beta_h} = \frac{1}{D} \left(\frac{4L_b}{\pi c^3 \theta^2 \rho_{ext}} \right)^{1/2}$

l'a Forman et al. (1985) and):
J
- 「 D inside the halo and constant

he relations, $\beta'_{b} = (\beta_{b} - \beta_{h})/(\beta_{b} - \beta_{h})$
 $(1-\beta_{b} - \beta_{h})$ and noting that $\beta_{b} = 1$
 β_{b}
 β_{b}
 β_{c}

result:
\n
$$
\frac{\beta_{h}}{1 - \beta_{h}} = \frac{1}{D} \left\{ \frac{4L_{b}}{\pi c^{3} \theta^{2} \rho_{ext}(D)} \right\}^{1/2} \dots (6.3)
$$
\ng Forman et al. (1985) and GW, within the halo\n
$$
\rho_{ext}(\mathcal{D}) = \frac{n_{0} m_{H} \mu}{[1 + (D/a)^{2}]^{\delta}} \dots (6.4)
$$

Following Forman et al. (1985) and GW, within the halo we take

$$
\rho_{\text{ext}}(\mathbf{D}) = \frac{n_{\text{o}}m_{\text{H}}\mu}{[1 + (D/a)^{2}]^{\delta}}
$$
 ... (6.4)

with $\mathfrak{n}_{_{\rm O}}$, the central density, $\mathfrak{m}_{_{\rm H}}$, the mass of a hydrogen atom, μ , the mean molecular weight, a, the core radius of the gaseous halo and δ estimated to be 0.75 \pm 0.15. Throughout this work, we use the best average values of $n_{o} = 10^{4} \text{m}^{-3}$, a = 2 kpc, $\mu = 0.6$ and $\delta = 0.75$; the temperature of the halo is taken to be constant, with $kT = 1$ KeV (Forman et al., 1985). As argued in GW (see also, Rana and Wilkinson, 1987), it is assumed that the halo properties have not evolved significantly out to a redshift of one.

Using Eq. (6.4) and Eq. (6.3) , we obtain

V(D) =
$$
\frac{Xc[1+(D/a)^{2}]^{\delta/2}}{D+X[1+(D/a)^{2}]^{\delta/2}}
$$
...(6.5)

that the halo properties have not evolved
tly out to a redshift of one.
 $\mathfrak{g} \to \mathbb{R}$ $\mathfrak{g} \to (\mathfrak{g} \to \mathfrak{g} \times (\mathfrak{g} \to \mathfr$ assume
signif
U
where
of the $\frac{4L_{b}}{2}$ 1/2 where π c $\frac{3\theta^2}{\rho}$ n $\lim_{\theta \to 1} \mu$ of the head of the beam.

In order to incorporate the known dependence of θ on P into our model, we need to estimate the dependence of θ upon the beam power, $L_{\bf b}$. This requires transforming the P- θ diagram shown in Fig.2 of Bridle (1986) into an $L_{\rm b}^{\rm -}$ θ relation, which, in turn, needs an estimate of the mean radio efficiency (see below) for sources of different powers. These estimates were obtained by a single iteration, starting with the assumption of a constant initial opening angle ($\beta = 0.04$ radian; see GW) for all sources and predicting the timeevolution of their radio output as described below. It is found that at a small redshift of 0.1, characteristic of the sources plotted in Fig.2 of Bridle (1986), the typical radio luminosity (emitted at its mean age, $t_{\text{N}}/2$) is \sim 30% of the initial luminosity, $P_{\rm o}$, for powerful sources (P $\approx 10^{28}$ WHz⁻¹ at 1 GHz) but only \sim 3% for moderately powerful sources with $P \approx 10^{25}$ WHz⁻¹. This, combined with the P- θ diagram of Bridle (1986), leads to an approximately linear relation between L_h and θ :

$$
\theta
$$
 (in radians) = 0.02 + 0.03 [39 - Log{0.2 L_b (in watts)}]

For the most powerful sources, the $P - \theta$ diagram shows that θ approaches a minimum value of \sim 0.02 radian, which we adopt for the above relation as well. Expressing D in units of kpc (X is also in kpc) and solving Eq.(6.5), we obtain for $(D/a)^2$ >>1,

$$
t = \frac{1}{xc} \left\{ \frac{a}{2 - \delta} \right. . \quad D^{2 - \delta} + xD \} .
$$

Within the halo, it is not possible to solve for D in closed Within the halo, it is not possible to solve for D in closed
form in terms of t. As expected, the above two equations
reduce to Eq(6.5) and Eq(6.6) of GW, in the limit $\beta_{h} \ll 1$. The
above derivation holds for the beam reduce to Eq(6.5) and Eq(6.6) of GW, in the limit β_{h} <<1. The above derivation holds for the beam propagation while $D < R_h$, the halo/IGM interface defined by the pressure matching form in terms of t. As expected, the above two equations
reduce to Eq(6.5) and Eq(6.6) of GW, in the limit β_h <<1. The
above derivation holds for the beam propagation while D<R_h,
the halo/IGM interface defined by the R_h (z=0) = 171 kpc (GW).

In order to investigate the beam propagation outside the halo (D>R_h) analytically, we have to consider two extreme possibilities designated Model A and Model B in GW and RW. It should be noted that the numerical simulations presented in RW suggest that the true behaviour of the beam lies almost midway between these two models. (D>R_h) analytically, we have to consider two extreme
bilities designated Model A and Model B in GW and RW.
hould be noted that the numerical simulations presented
suggest that the true behaviour of the beam lies almost

to remain constant upon crossing the interface, implying that β _h rises abruptly owing to the sudden drop in the ambient density. Following Guilbert and Fabian (1986) $n_{IGM}(z) = n_{IGM}(0)$ (1+z)³, with $n_{IGM}^{\text{}}(0) = 7.10^{-1} m^{-3}$, and $T_{IGM}^{\text{}}(z) = T_{IGM}^{\text{}}(0) (1+z)^2$ In Model A, the opening angle, $\hat{\sigma}$, of the beam is taken
to remain constant upon crossing the interface, implying that
 β_h rises abruptly owing to the sudden drop in the ambient
density. Following Guilbert and Fabia assumption for the ram-pressure balance (GW), we obtain for the generalized case, $\frac{1}{n}$ n $\frac{n}{c}$ (c abidply owing to the sddden diop I

llowing Guilbert and Fabian (1986) n

h n_{IGM}(0) = 7.10⁻¹m⁻³, and T_{IGM}(z) =

(0) = 1 8 KeV. In this model, us

for the ram-pressure balance (GW),

ized case,

(V(D) = $\frac{CX'}{D+X'}$ Pdel, using
 Pdel, using
 with $kT_{IGM}(0) = 18$ KeV.

assumption for the ram-press

the generalized case,

and, $V(D) = \frac{cX'}{D+X'}$, with X
 $D(t) = {x' + 2X'ct + [R_h^2(z) - \frac{2a^6}{2-6}R]}$

These equations reduc (c) this control to the post x { - n \text{ n} \t we obtain

we obtain
 (2)
 $\{1/2$
 $\{1\}$
 $\{-x\}$
 $\{0\}$ of GW ance (GW) ,
 $\frac{n_0}{M^{(0)(1+z)^3}}$
 $\frac{n_0}{G(M^{(0)(1+z)^3})}$

EGM^{(0)(1+z)</sub>} Extraction for the ram-pressure balance (GW), we obtain for

eneralized case,
 $V(D) = \frac{cX'}{D+X'}$, with $X' = X \frac{n_0}{n_{IGM}(0)(1+z)^3}$, V^2 ...(6.7)
 $V^2 + 2X'ct + [R_h^2(z) - \frac{2a_0^2}{2-\delta} R_h^{2-\delta}(z) \frac{n_0}{n_{IGM}(0)(1+z)^3}]^{1/2} - X'$ (6.8)

and,

$$
V(D) = \frac{cX'}{D+X'}, \text{ with } X' = X \{ \frac{n_0}{n_{IGM}(0)(1+z)} \}^{1/2} \cdots (6.7)
$$

$$
D(t) = \{x'^{2} + 2x'ct + [R_{h}^{2}(z) - \frac{2a^{6}}{2-6} R_{h}^{2-6}(z) \{ \frac{n_{0}}{n_{IGM}(0) (1+z)^{3}} \}] \}^{1/2} - x'
$$
 (6.8)

 β _h <<1.

For Model B, where β $_{\rm h}$ is taken to be continuous across the halo/IGM interface, the beam opening angle abruptly increases to a larger value, θ _{IGM}, given by (GW, Eq.10) B. where β
interface,
larger value
 $\frac{a}{R_h(z)}$)⁶ [-
e find, s taken to
beam open
IGM' given
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$ Model B, where β h is taken

/IGM interface, the beam of

ito a larger value, θ _{IGM}, given
 $IGM = \theta \left(\frac{a}{R_h(z)} \right)^{\delta} \left(\frac{n_0}{n_{IGM}(0)(1+z)^{3}} \right)$ where β h is taken
erface, the beam of
ger value, θ $_{IGM}$, gi
 $\frac{a}{(z)}$, \int_{0}^{z} $\frac{n_0}{n_{IGM}(0)(1+z)^3}$
ind,

$$
\theta_{IGM} = \theta \left\{ \frac{a}{R_h(z)} \right\}^{\delta} \left[\frac{n_o}{n_{IGM}(0)(1+z)} \right]^{1/2}
$$

In this case, we find,

$$
\theta_{IGM} = \theta \left(\frac{a}{R_h(z)} \right)^{\delta} \left[\frac{n_0}{n_{IGM}(0)(1+z)^3} \right]^{1/2}
$$
\n
$$
\theta_{IGM} = \theta \left(\frac{a}{R_h(z)} \right)^{\delta} \left[\frac{n_0}{n_{IGM}(0)(1+z)^3} \right]^{1/2}
$$
\n...(6.9)\nIn this case, we find,\n
$$
V(D) = \frac{cX^n}{D+X^n}, \text{ with } X^n = X(\theta) \theta_{IGM} \left(n_0 / [n_{IGM}(0)(1+z)^3] \right)^{1/2}, \dots (6.10)
$$
\n
$$
D(t) = \left\{ X^{n^2} + 2X^n \left[ct + \frac{a^{\delta} R_h(z)^{2-\delta}}{X} \left(\frac{1}{2} - \frac{1}{2-\delta} \right) \right]^{1/2} - X^n \dots (6.11)
$$
\nOnce again, these reduce to Eq(11) and Eq(12) of GW for\n
$$
\theta_h \le 1.
$$
\nThe abrupt flaring of the jet in Model B has apparently

 β_{h} < 1.

The abrupt flaring of the jet in Model B has apparently been observed in some well resolved radio jets (see Sect.3.2 of GW) as well as in both the boundary following simulations ...(6.11)
Once again, these reduce to Eq(11) and Eq(12) of GW for
 B_h <<1.
The abrupt flaring of the jet in Model B has apparently
oeen observed in some well resolved radio jets (see Sect.3.2
of GW) as well as in both the simulations (Wiita, Rosen and Norman, in preparation). These simulations also reveal the acceleration of the beam head at the interface predicted by Model A. IGN) as well as in both the boundary following simulations

and preliminary full 2-dimensional hydrodynamical

ulations (Wiita, Rosen and Norman, in preparation). These

ulations also reveal the acceleration of the beam he

6.3 SIZE

For comparison with observations we express the results simulations also reveal the acceleration of the beam head at
the interface predicted by Model A.
5.3 THE TIME EVOLUTION OF THE RADIO OUTPUT AND THE LINEAR
SIZE
For comparison with observations we express the results
in te assumed to scale closely with the bolometric radio power, L_R , and is thus evaluated at $= 1$ GHz (roughly at the logarithmic

...(6.9)

centre of the radio band), by assuming a typical spectral index of \propto = -0.8. Here L^R is = $P \int d \nu$, evaluated between 10⁷ and 10¹¹ Hz; hereafter we will drop the subscript θ tre of the radio band), by assuming a typical spectra
ex of $\alpha = -0.8$. Here L_R is = $P \int d\theta$, evaluated betwee
and 10^{11} Hz; hereafter we will drop the subscript of
 \mathbb{R}^D .
Two simplifying assumptions concerning from P_0 .

Two simplifying assumptions concerning extended radio sources, that are customarily made in the literature, are : centre of the radio band), by assuming a typical spectral
index of α = -0.8. Here L_R is = P $\int d \nu$, evaluated between
10⁷ and 10¹¹ Hz; hereafter we will drop the subscript ν
from P_{ν}.
Two simplifying assu implying that the relativistic electrons have 4/3 times the energy density of the magnetic field; and (ii) the bolometric radio emission, L^R , is a fairly fixed fraction of the total beam power, $2L_b$, and that the beam power is constant in time energy density of the magnetic field; and (ii) the bolometric
radio emission, L_R , is a fairly fixed fraction of the total
peam power, $2L_b$, and that the beam power is constant in time
(see, e.g.,Begelman, Blandford and of L_{b} over the source lifetime is a simplifying assumption. It has received some support from the recently reported correlation between the nuclear emission in the [0III] line indicative of the current beam power, and the time-averaged beam power, estimated by dividing the minimum energy content of L_b over the source lifetime is a simplifying assumption.
It has received some support from the recently reported
correlation between the nuclear emission in the [OIII] line
indicative of the current beam power, and t Saunders, 1988). In this work we essentially retain these assumptions with the modification that while $\mathtt{L}_\mathtt{R}$ is initially equal to a constant fraction, ϵ , of $2L_{b}$, with ϵ typically Saunders, 1988). In this work we essentially retain these
assumptions with the modification that while L_R is initially
equal to a constant fraction, ϵ , of $2L_b$, with ϵ typically
0.1 (e.g., Gopal-Krishna and Sarip of the radio lobes by their spectral ages (Rawlings and
Saunders, 1988). In this work we essentially retain these
assumptions with the modification that while L_R is initially
equal to a constant fraction, ϵ , of $2L_b$ reduction of the radio efficiency as the internal magnetic assumptions with the modification that while L_R is initially
equal to a constant fraction, ϵ , of $2L_b$, with ϵ typically
0.1 (e.g., Gopal-Krishna and Saripalli, 1984a; Dreher, 1984;
Saripalli and Gopal-Krishna, 19 Saunders, 1988). In this work we essentias
sumptions with the modification that whequal to a constant fraction, ϵ , of $2L_b$
0.1 (e.g., Gopal-Krishna and Saripalli, 1
Saripalli and Gopal-Krishna, 1985) we al
reduction o $p h(z) = 4.8.10^{-14}$ $\left(1+z\right)^{\,4}$ Joules.m $^{-3}$ (Lang, 1978). This concept of 'reduced

98

and diffraction of their cases of highly extended double radio sources since a large of highly extended double radio sources since a large of their radio emission originates from the lobes of highly extended double radio sources since a large fraction of their radio emission originates from the lobes 99

exadio efficiency' (RRE) is particularly relevant in the case

of highly extended double radio sources since a large

fraction of their radio emission originates from the lobes

(e.g., Jägers, 1986; Leahy and Williams, appreciably lower than that in the hot spots and falls below U_{ph} sooner. Earlier, Rees and Setti, (1968), considered within the framework of the plasmon model, the possibility that radio lobes of weak double sources might be 'snuffed of highly extended double radio sources since a large

fraction of their radio emission originates from the lobes

(e.g., Jägers, 1986; Leahy and Williams, 1984) whose B is

appreciably lower than that in the hot spots redshifts. Applying this idea to an actually observed sample of nearby sources, Scheuer (1977) argues that this snuffing out is unlikely to account for the much slower cosmological evolution of weaker radio sources, inferred from the radio source counts (Longair, 1966). Although the inverse Compton losses may not be severe enough to effectively extinguish the sources even at high redshifts, as argued by Eales (1985), but is unlikely to account for the much slower cosmological
evolution of weaker radio sources, inferred from the radio
source counts (Longair, 1966). Although the inverse Compton
losses may not be severe enough to effectiv resulting RRE is quantitatively estimated and applied within the framework of the relativistic beam model. s may not be severe enough to effectively extinguish the
es even at high redshifts, as argued by Eales (1985),
will certainly reduce the radio output. Here, the
ting RRE is quantitatively estimated and applied within
ramew

sources it is not possible to give a precise derivation of the extent of RRE. Nevertheless, taking into account the known structures of large double sources and general physical constraints we have arrived at the following estimate of the effect. We assume that the radio output as a function of the time, can be written as, of RRE. Notice
that we have arrive that
assume that
exponent that
 $(\tau) = \epsilon'(\tau)L_R$ taking into account the
urces and general physical
following estimate of the
utput as a function of the
...(6.12a)

$$
L_R(t) = \varepsilon'(t)L_R(0) = \varepsilon'(t)\varepsilon 2L_b
$$

with no inverse Compton losses: present at $t = 0$. Once they
set in we assume $L_R(0) = L_R(t) + L_X(t)$, with L_X the X-ray
emission from upscattered microwave photons, so that set in we assume $L_R(0) = L_R(t) + L_X(t)$, with L_X 10

. Once they

the X-ray

that emission from upscattered microwave photons, so that m we assume $L_R(0)$:

on from upscattered n
 $E^{\text{H}}(t) = L_R(t)/[L_R(t) + L]$ Ses[#] present at t =
 $L_R(t)+L_{\chi}(t)$, with

icrowave photons, s

(t)] = $[1+(u_{ph}(z)/5)u_{\text{B}}]$

whis energy density C
t a

$$
\varepsilon^{+}(t) = L_{R}(t)/[L_{R}(t) + L_{X}(t)] = [1 + (u_{ph}(z)/\langle u_{B} \rangle)]^{-1}
$$
 (6.12b)

with $\langle u_{\rm B} \rangle$ the average magnetic energy density in the radio source.

hotspot yields $\int_{\mathrm{ext}} V_h^{\mathbf{r}} = (1/3)u_h^{\mathbf{r}}$, so that density i
ch is relate
through the
h. But the
 $\kappa v_h^2 = (1/3$
= (9/7)Np_{ext} V
c β_h from eq
many large In general we can set $\langle u_B \rangle = \eta u_{B,h'}$, with $u_{B,h}$ the $h^2 + L_X(t)$,
ave phote
 $[1+(u_{ph}(t))$
energy denoting the noting the context
of the to emission

emission

ε'(t

with <u_B

source.

In

magnetic

Chapter I

the hot s = $L_R(t)/[L_R(t) + L_X(t)] = [1+(u_{ph}(z)/6 u_{B}^2)]^{-1}$ (6.12b)
the average magnetic energy density in the radio
neral we can set $\langle u_B \rangle = \eta u_{B,h}$, with $u_{B,h}$ the
energy density in the hot spot(Table 3.1.1a,
), which is related to the Chapter III), which is related to the total energy density in the hot spot, u_h , through the assumed minimum energy argument by $u_{B,h} = (3/7)u_{h}$. But the ram-pressure confinement of the

$$
\langle u_{B}^{>} = (9/7) \, np_{ext} \, v_{h}^{2} \qquad \qquad \text{...} (6.12c)
$$

with V_h given by c β_h from equation (6.5) or (6.8) or (6.10). An examination of many large and giant radio sources suggests that the magnetic fields in their lobes, which account for most of the radio emission, are typically a few times weaker than in their hot spots. Accordingly, we have adopted $\eta =0.1$ for our present numerical work.

However, $\langle \mathtt{u}_{\mathtt{B}} \rangle$ cannot be allowed to fall below the limit set by the static confinement of the lobe due to the thermal pressure of the external medium, at which point the expansion of the lobe will be halted. This implies, u_B > cannot be a
 $\therefore u_B$ cannot be a
 \therefore confinement
 \therefore external mediu
 \therefore l be halted. Th
 $= \frac{3}{7}$ \vee $u_{min} = \frac{3}{7}$ u_{eff} at
im
 $\frac{1}{2}$ $\frac{9}{1}$ Figure . $\langle u_B \rangle$ cannot be allowed to fall below the limit

i static confinement of the lobe due to the thermal

of the external medium, at which point the expansion

be will be halted. This implies,
 $\frac{1}{2} \times u_{min} = \frac{3$

with
'halc
(6.12 ${\tt p}_{\tt ext}^{}$ =n $_{\tt ext}^{}$ $^{\tt kT}_{\tt ext}$ and subscript 'ext' takes on the 'values 'halo' and 'IGM'. By inserting the larger of (6.12c) and ^{ith} $P_{ext} = n_{ext}kT_{ext}$ and subscript 'ext' takes on the values

'halo' and 'IGM'. By inserting the larger of (6.12c) and

(6.12d) into equation (6.12b), an estimate for the total

radio luminosity, (6.12a), is obtained.

A radio luminosity, (6.12a), is obtained.

As discussed in GW the observed expansion of a double source will be halted (the 'growth freeze') either when V_h decreases to $\mathrm{c}_{_{\mathrm{S}}}(z)$, the ambient sound velocity, or when the central engine turns off after a lifetime, t_N . But, in view of RRE and the finite sensitivity of the radio observations to the total flux and surface brightness, we must also As discussed in GW the observed expansion of a double
source will be halted (the 'growth freeze') either when V_h
decreases to $c_s(z)$, the ambient sound velocity, or when the
central engine turns off after a lifetime, t sensitive surveys made for discovering GRGs is the one decreases to $c_S(z)$, the ambient sound velocity, or when the
central engine turns off after a lifetime, t_N . But, in view
of RRE and the finite sensitivity of the radio observations
to the total flux and surface brightne of RRE and the finite sensitivity of the radio observations
to the total flux and surface brightness, we must also
introduce an additional constraint. The largest among
sensitive surveys made for discovering GRGs is the on to the total flux and surface brightness, we must also
introduce an additional constraint. The largest among
sensitive surveys made for discovering GRGs is the one
carried out using the 6C synthesis array at 151 MHz (e.g. appears to be confusion-limited below a flux density limit of introduce an additional constraint. The largest among
sensitive surveys made for discovering GRGs is the one
carried out using the 6C synthesis array at 151 MHz (e.g.,
Baldwin et al., 1985, and references therein). For th corresponding to $S_{\lim} = 1$ Jy at 1GHz (the frequency to which Baldwin et al., 1985, and references therein). For the
purpose of detecting giant radio sources, the 6C survey
appears to be confusion-limited below a flux density limit of
 \sim 5 Jy at 151 MHz (Saunders, Baldwin and Warn \sim 5 Jy at
correspondin
all our esti
 \propto = 0.8 (S δ \propto δ α). corresponding to $S_{\text{lim}} = 1$ Jy at 1GHz (the frequency to which
all our estimates are referred), assuming a spectral index
 $\alpha = 0.8$ ($S_y \propto \overline{S}^{\alpha}$).
6.4 RESULTS
Here, we present results, incorporating the beam power

6.4 RESULTS

dependence of the opening angle, θ and the model for the dependence of the radio emitting efficiency on power. As will be seen below, the model yields a good match to the observed total number of GRGs at small (z<0.1) redshifts. For this we

have used the radio luminosity function at different z as
derived by Peacock (1987). derived by Peacock (1987).

102

used the radio luminosity function at different z as

ed by Peacock (1987).

The results are presented in the form of Figures 6.1

.2, and Tables 6.1, 6.2. The time evolution D (length of

beam), of V_h (velocity of and 6.2, and Tables 6.1, 6.2. The time evolution D (length of the beam), of V^h_h (velocity of advance of the hotspot), P have used the radio luminosity function at different z as
derived by Peacock (1987).
The results are presented in the form of Figures 6.1
and 6.2, and Tables 6.1, 6.2. The time evolution D (length of
the beam), of V_h (v The results are presented in the form of Figures 6.1
and 6.2, and Tables 6.1, 6.2. The time evolution D (length of
the beam), of V_h (velocity of advance of the hotspot), P
(monochromatic radio power at 1 GHz), S (the to $\frac{2L_{b}}{2}$ The results are presented in the form of Figures 6.1

5.2, and Tables 6.1, 6.2. The time evolution D (length of

beam), of V_h (velocity of advance of the hotspot), P

bochromatic radio power at 1 GHz), S (the total flux range 0.05 to 0.65 at intervals of 0.1. Fig.6.1. shows the Γ^P 3 6.2, and Tables 6.1, 6.2. The time evolution D (length of

e beam), of V_h (velocity of advance of the hotspot), P

ponochromatic radio power at 1 GHz), S (the total flux

msity at 1 GHz) have been computed for total b to 10^6 the time scales of 10^6 yr, 10^7 yr, and the assumed density at 1 GHz) hat

(2L_b) in the range

range 0.05 to 0.65 at

L_b-D plot for a few r

to 10⁶ the time scal

nuclear lifetimes t_N

of 0.05, 0.15 and 0.

Hutchings,1988). Th $=$ 10^8 yr and 3.10^8 yr for three redshifts density at 1 GHz) have been computed for total beam power

(2L_b) in the range 10^{32} W to 10^{40} W, and redshifts in the

range 0.05 to 0.65 at intervals of 0.1. Fig.6.1. shows the

L_b-D plot for a few representativ density at 1 GHz) have been computed for total beam power

(2L_b) in the range $10^{32}w$ to $10^{40}w$, and redshifts in the
 L_b -D plot for a few representative ages of the source, equal

to 10^6 the time scales of 1 ($\angle L_{\rm b}$) in the range 10 W to 10 W, and redshifts in the
range 0.05 to 0.65 at intervals of 0.1. Fig.6.1. shows the
 $L_{\rm b}$ -D plot for a few representative ages of the source, equal
to 10⁶ the time scales of 10⁶ range 0.05 to 0.65 at intervals of 0.1
 L_b -D plot for a few representative ages

to 10⁶ the time scales of 10⁶ yr, 10⁸

of 0.05, 0.15 and 0.35 (see GW; Stock

Hutchings, 1988). The onset of var

Section 6.3) in th sources have been marked in the $(L_h - D)$ diagrams for each nuclear lifetimes $t_N=10^8$ yr and 3.10^8 y
of 0.05, 0.15 and 0.35 (see GW; Stocktern Hutchings, 1988). The onset of varies
Section 6.3) in the course of the every
sources have been marked in the (L_b^-)
redshift. The po redshift. The points (function of L_h) at which the beam head is the time scales of 10 yr, 10 yr, and the assumed
nuclear lifetimes $t_N=10^8$ yr and 3.10⁸ yr for three redshifts
of 0.05, 0.15 and 0.35 (see GW; Stockton and Mackenty, 1987;
Hutchings, 1988). The onset of variou are also shown together with the estimated location of the Butchings, 1988). The onset of various constraints (see
Hutchings, 1988). The onset of various constraints (see
Section 6.3) in the course of the evolution of the radio
sources have been marked in the (L_b-D) diagrams for sources have bee
redshift. The poi
head becomes subs
are also shown tog
parent galaxy's
GRG (D = 750 kpc).
It can be seem

It can be seen that for a fixed redshift a given size is attained at earlier times, for increasing beam powers. Also the various constraints become operative at larger values of garent galaxy's halo and the minimum hall size for a
SRG (D = 750 kpc).
It can be seen that for a fixed redshift a given size is
attained at earlier times, for increasing beam powers. Also
the various constraints become op hotspot as the beam emerges out of the galaxy halo (Model A) It can be seen that for a fixed redshift a given size is
attained at earlier times, for increasing beam powers. Also
the various constraints become operative at larger values of
D. The discontinuity in the velocity of adva

Fig.6.la-c The dependence of size (D) on the beam power (L \bar{b}) at four different ages, for three redshifts in Model A (continuous lines) and Model B (dotted lines). The different symbols represent, $\frac{1}{2}$: When the beam becomes subsonic; and 1: when S_1 $_{GHz}$ = 1 Jy. The ticked lines indicate evolution of GRGs free of constraints. The vertical lines represent the galaxy halo radius (R_h) and the minimum GRG half-size of 750 kpc. The redshift is indicated on the top left hand corner,

--

rig.6.2a-c Dependence of several important timescales on the initial radiated power, P_{0} , at 1 GHz, is shown for three redshifts in Model A (continuous lines) and Model B (dashed **c** Dependence of several important timescales on the
radiated power, P_0 , at 1 GHz, is shown for three
in Model A (continuous lines) and Model B (dashed
The various symbols represent : $t_{1/2}$, the kime at
radio power lines). The various symbols represent : $t_{1/2}$, the time at which the radio power falls to half its initial values; $t_{g'}$, the time at which the source becomes a GRG; $t_{g'}$, the time at figure at which the source becomes a GRO; the time at which the motion of the beam's head becomes a GRO; t_g, the time at which the radio power falls to half its initial values; t_G, the time at which the source becomes the time at which the flux falls to the detection limit of 1 Jy at 1 GHz.

Table 6.1a

Minimum total beam power (both beams included) to form a GRG observable above the level of S_{1GHz} = 1Jy within the lifetime $t_{\bf N}$ = 3.10⁸ yr for different z for Model A and Model B

Table 6.1 b

Maximum size (kpc) attained within the lifetime t_{N} = 3.10⁸ yr having S_{min} > 1 Jy at different z and beam power for Model A $/$ Model B.

Table 6.2. The model predictions for average radio luminosities and the numbers of giant radio sources (H $_{\circ}$ = 50 kms⁻¹ Mpc⁻¹,q₀=0) S_{lim}=1.0 Jy at 1 GHz

observable above the flux density limit at 1 GHz of 1Jy. N is the number of observable GRG's limited either by the flux threshold or the nuclear life time. <P> is the mean radiated power at 1 GHz for GRG's at typical overall size of 2D = 2 Mpc

different curves pertaining to Model A. In Table 6.1 we list the values of the minimum total beam powers ($2L_b$) required to produce an observable GRG ($S_{\text{Lim}} > 1$ Jy) within the lifetime of the central engine $t^N = 3 \cdot 10^8$ yr for redshifts of 0.05, del A. In Table 6.1
eam powers (2L_b) requ
> 1 Jy) within the 1
yr for redshifts of
6.1. Also from Fig.6
bservable size attain different curves pertaining to Model A. In Table 6.1 we list
the values of the minimum total beam powers $(2L_b)$ required to
produce an observable GRG $(S_{\text{Lim}} > 1 \text{ Jy})$ within the lifetime
of the central engine $t_N = 3.10$ different curves pertaining to Model A. In Table 6.1 we list
the values of the minimum total beam powers $(2L_b)$ required to
produce an observable GRG $(S_{\text{Lim}} > 1 \text{ Jy})$ within the lifetime
of the central engine $t_N = 3.10$ different beam powers, within the lifetime of the central engine for different z, which are tabulated in Table 6.1. of the central engine $t_N = 3.10^8$ yr for redshifts of 0.05,
0.15 and 0.35, as read from Fig.6.1. Also from Fig.6.1, we
get the values of the maximum observable size attained for
different beam powers, within the lifetime 0.15 and 0.35, as read from Fig.6.1. Also from Fig.6.1, we
get the values of the maximum observable size attained for
different beam powers, within the lifetime of the central
engine for different z, which are tabulated in the head velocity across the interface, making the beam flare U.15 and U.35, as read from Fig.6.1. Also from Fig.6.1, we
get the values of the maximum observable size attained for
different beam powers, within the lifetime of the central
engine for different z, which are tabulated in higher redshifts, more energetic beams are required. From Table 6.1, it is seen that for a given total beam power the maximum observable size attained reduces with increasing the head velocity across the interface, making the beam flare
and actually decelerate within the tenuous IGM. Also at
higher redshifts, more energetic beams are required. From
Table 6.1, it is seen that for a given total b size.

In Fig.6.2, we illustrate the dependence of various timescales important **in** the evolution of the radio galaxy, Table 6.1, it is seen that for a given total beam power the
maximum observable size attained reduces with increasing
redshift, indicating the cosmological evolution of linear
size.
In Fig.6.2, we illustrate the dependence redshift. P(0) is taken as a fraction ($\epsilon = 0.1$), of the beam In Fig.6.2, we illustrate the dependence of various
timescales important in the evolution of the radio galaxy,
on the initial radio power P(0) for different values of
redshift. P(0) is taken as a fraction ($\epsilon = 0.1$), of In Fig.6.2, we illustrate the dependence of various
timescales important in the evolution of the radio galaxy,
on the initial radio power P(0) for different values of
redshift. P(0) is taken as a fraction ($\epsilon = 0.1$), of timescales important in the evolution of the radio galaxy,
on the initial radio power P(0) for different values of
redshift. P(0) is taken as a fraction ($\epsilon = 0.1$), of the beam
power. In these plots, the region bounded b = 3.10^8 yr, and $t_{1\rm Jy}^{}$ the time when the radio output becomes redshift. P(0) is taken as a fraction ($\epsilon = 0.1$), of the beam
power. In these plots, the region bounded by the lines
representing t_{GRG}^- the time at which a source of a given
initial radio power becomes a GRG, the line on the initial radio power $P(0)$ for different values of redshift. $P(0)$ is taken as a fraction ($\epsilon = 0.1$), of the beam power. In these plots, the region bounded by the lines representing t_{GRG}^- the time at which a s

104
clearly noted from the 3 plots is, the shrinking of this
region, with increasing redshift. At higher redshifts, only
high radio power sources can form, and be detected as GRGs. region, with increasing redshift. At higher redshifts, only high radio power sources can form, and be detected as GRGs.

In estimating the total numbers of observable GRGs distributed over the whole sky, we need to use our estimates of the time spent as an observable GRG which is a function of clearly noted from the 3 plots is, the shrinking of this
region, with increasing redshift. At higher redshifts, only
high radio power sources can form, and be detected as GRGs.
In estimating the total numbers of observable region, with increasing redshift. At higher redshifts, only
high radio power sources can form, and be detected as GRGs.
In estimating the total numbers of observable GRGs
distributed over the whole sky, we need to use our redshifts (see below). For this we used the RLF for steep distributed over the whole sky, we need to use our estimates
of the time spent as an observable GRG which is a function of
beam power and redshift, along with the appropriately
transformed radio luminosity function (RLF) converted the values appropriate to $q_0 = 0$ (consistent with our definition of a GRG) using relations given in Peacock (1987).

Since, for our exercise we require a knowledge of the number density of sources as a function of total beam power, rather than the observed radio power, we need to convert the RLF to a beam power function. For this we should Since, for our exercise we require a knowledge of the
number density of sources as a function of total beam
power, rather than the observed radio power, we need to
convert the RLF to a beam power function. For this we shou Since, for our exercise we require a knowledge of the
number density of sources as a function of total beam
power, rather than the observed radio power, we need to
convert the RLF to a beam power function. For this we shou to setting in of RRE; see Section 6.3) the conversion becomes somewhat imprecise. rt the RLF to a beam power function. For this we should
the relation between the radio power and beam power.
as this varies during the evolution of the source (due
tting in of RRE; see Section 6.3) the conversion becomes

Wiita, 1988) that Log P remains nearly constant at approximately $\texttt{Log (} \in 2\texttt{L}_\texttt{b})$ until a time $\texttt{t}_{\texttt{l/2}}$ when it has decreased by 0.3. After that the decay is quite abrupt due to RRE. Hence, to a first approximation, P may be regarded as constant for t

104

t_{1/2} and effectively zero thereafter. Thus, to this approximation, sources now observed at a given power P must have turned on essentially at that power during the past $t_{1/2}$ $\leq t_{1/2}$ and effectively zero thereafter. Thus, to this
approximation, sources now observed at a given power P must
have turned on essentially at that power during the past $t_{1/2}$
years. A few sources of higher initi at even earlier times would also now be observed at P, but it is impossible to isolate them from the existing data; their numbers must, however, be small in view of the steepness of the RLF. Because of this unavoidable omission, the values for the numbers of GRGs given below (Table 6.2) are somewhat overestimated. is impossible to isolate them from the existing data; their
numbers must, however, be small in view of the steepness of
the RLF. Because of this unavoidable omission, the values for
the numbers of GRGs given below (Table

The rate of creation of sources per unit volume with a mately equal to the observed number density of sources with the RLF. Because of this unavoidable omission, the values for
the numbers of GRGs given below (Table 6.2) are somewhat
overestimated.
The rate of creation of sources per unit volume with a
total beam power $2L_b$ ($\approx L_R(0)/$ overestimated.

The rate of creation of sources per unit volume with a

total beam power $2L_b$ $(\approx L_R(0)/\epsilon \approx 10^{10}P(0)/\epsilon$) is approxi-

mately equal to the observed number density of sources with

power P divided by t_{1 Further, a source would be observed as a GRG only provided the time $\mathrm{t_{G}}$, it takes to grow to 2D=1.5 Mpc is shorter than the time t_{\star} over which it would remain observable after its creation, subject to one or the other set of constraints mately equal to the observed number density of sources with
power P divided by $t_{1/2}$ for that value of P (The same
procedure must be carried out for each redshift interval).
Further, a source would be observed as a GRG initially radiated power required to produce a GRG using a particular set of constraints, the number of observable GRGs in a given redshift bin is equal to Notice to one or the other set of

ying t_N and S_{Lim}. If we define P^{*} as

ally radiated power required to produce a

cular set of constraints, the number of ob

given redshift bin is equal to

N(z)Az= $\Delta V(z)$ \int_{P^* to one or the other set of constraints
 S_{Lim} . If we define P^* as the minimum

ed power required to produce a GRG using a

constraints, the number of observable GRGs

ft bin is equal to
 $\begin{array}{c} \infty \\ \int_{P^*}^{P_*} \{F_$

$$
N(z)\Delta z = \Delta V(z) \int_{P^*}^{\infty} [t_x(P,z) - t_G(P,z)] \frac{\rho(P,z)}{t_{1/2}(P,z)} dP \Delta z.
$$

with $\Delta V(z)$ being the volume contained within $z-z/2$ and

 $z+z/2$, and the integral being defined only for non-negative
values of the quantities within the square brackets. The
function $V(z)$ for $q_0 = 0$ is obtained by differentiating the 106
2+z/2, and the integral being defined only for non-negative
values of the quantities within the square brackets. The
function $V(z)$ for $q_0 = 0$ is obtained by differentiating the
following expression (e.g., Windhorst 2+2/2, and the integral being defined only for non-negative
values of the quantities within the square brackets. The
function $V(z)$ for $q_0 = 0$ is obtained by differentiating the
following expression (e.g., Windhorst, 19 $z+z/2$, and the integral being defined only
values of the quantities within the square
function $V(z)$ for $q_0 = 0$ is obtained by dif
following expression (e.g., Windhorst, 1984): $V(z)$ for $q_0 = 0$ is obtained by differentiating the eing defined
within the s
is obtained b
Windhorst, 1
 z)² - $\frac{1}{(1+z)}z^{1-\frac{1}{2}}$
values of Δ on $V(z)$ for

ing expression
 $V(($\frac{C}{H_C}$

able 6.2 or$ tegral being defined only fo

ntities within the square
 $q_o = 0$ is obtained by diffe

n (e.g., Windhorst, 1984):
 $\int_0^3 \left[\frac{1}{8} \left\{ (1+z)^2 - \frac{1}{(1+z)} \right\} - \frac{1}{2} \ln (1+z) \right]$

ves the values of ΔV , P^*

upto $z = 0.6$, 106

integral being defined only for non-negative

antities within the square brackets. The

pr q_o = 0 is obtained by differentiating the

on (e.g., Windhorst, 1984):
 $\frac{1}{3} \left\{ \left(1+z\right)^2 - \frac{1}{2} \right\} \cdot \frac{1}{2} \ln (1+z) \right\$

$$
V(\langle z \rangle) = 4\pi \left(\frac{c}{H_0} \right)^3 \left[\frac{1}{8} \left\{ (1+z)^2 - \frac{1}{(1+z)} \right\} - \frac{1}{2} \ln (1+z) \right]
$$

5 of the quantities within the square brackets. The

ion $V(z)$ for $q_o = 0$ is obtained by differentiating the

wing expression (e.g., Windhorst, 1984):
 $V(z_2) = 4\pi \left(\frac{c}{H_o}\right)^3 \left(\frac{1}{8} \left((1+z)^2 - \frac{1}{(1+z)}\right)z^3 - \frac{1}{2} \ln(1$ redshift intervals upto $z = 0.6$, for Model A, Model B and a composite Model AB, for the detection limit of $S_{1GHZ} = 1$ Jy and two values of limiting nuclear lifetimes of $t_{\rm N}$ = $10^8\;$ yr and $3\boldsymbol{.}10^8$ yr. Since the RLF is poorly defined at z \geq 0.6 for the very high powers needed to form GRGs at such redshifts, redshift intervals upto $z = 0.6$, for Model A, Model B and a
composite Model AB, for the detection limit of $S_{1GHZ} = 1$ Jy
and two values of limiting nuclear lifetimes of $t_N = 10^8$ yr
and 3.10⁸ yr. Since the RLF is poo composite Model AB, for the detection limit of $S_{1GHZ} = 1$ Jy
and two values of limiting nuclear lifetimes of $t_N = 10^8$ yr
and 3.10⁸ yr. Since the RLF is poorly defined at $z \ge 0.6$ for
the very high powers needed to f of the behaviour of a beam crossing the interface (Section composite Model AB, for the detection limit of $S_{1GHz} = 1$ Jy
and two values of limiting nuclear lifetimes of $t_N = 10^8$ yr
and 3.10⁸ yr. Since the RLF is poorly defined at $z \ge 0.6$ for
the very high powers needed to fo respectively, we have also tabulated geometrical means of N the very high powers needed to form GRGs at such redshifts,
the applicability of this analysis is restricted to lower
redshifts. Since Models A and B represent opposite extremes
of the behaviour of a beam crossing the inte closer to reality than either Model A or Model B (see RW).

As expected, the minimum initial radio power, F * , required to form a GRG increases with z, and because the RLF respectively, we have also tabulated geometrical means of N
under the heading 'Model AB'. The composite model should be
closer to reality than either Model A or Model B (see RW).
As expected, the minimum initial radio pow under the heading 'Model AB'. The composite model should be
closer to reality than either Model A or Model B (see RW).
As expected, the minimum initial radio power, p^* ,
required to form a GRG increases with z, and beca under the heading 'Model AB'. The composite model should be

closer to reality than either Model A or Model B (see RW).

As expected, the minimum initial radio power, P^* ,

required to form a GRG increases with z, and b As expected, the minimum initial radio power, p^* ,
required to form a GRG increases with z, and because the RLF
falls steeply with P, fewer GRGs would be predicted at
higher z. On the other hand, the volume elements Δ required to form a GRG increases with z, and because the RLF
falls steeply with P, fewer GRGs would be predicted at
higher z. On the other hand, the volume elements $\Delta V(z)$ are
larger, and, moreover, the RLF increases due seen in Table 6.2.

To predict the mean radio luminosity <P> of GRGs as a 107
To predict the mean radio luminosity <P> of GRGs as a
function of redshift, we consider the radio power, P_{1Mpc}, at
the value D = 1 Mpc which is the typical half-size of the
known GRGs (Saripalli et al., 1986). Thus w To predict the mean radio luminosity <P> of GRGs as a
function of redshift, we consider the radio power, P_{1Mpc} , at
the value D = 1 Mpc which is the typical half-size of the
known GRGs (Saripalli et al., 1986). Thus we known GRGs (Saripalli et al., 1986). Thus we obtain predict the

of redshift,

ue D = 1 Mpc

Gs (Saripalli
 $\frac{\Delta V(z)}{N(z)} \int_{p*}^{\infty} P_{1Mpc}$

N(z) is giver mean radio luminosity
we consider the radio
which is the typical
et al., 1986). Thus w
(P,z)[t_{*}(P,z) - t_G(P,z)] -
why Eq.(6.13). The pr $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$
 $\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$ To predict the mean radio luminosity $\langle P \rangle$ of GRGs as a
function of redshift, we consider the radio power, P_{1Mpc} , at
the value $D = 1$ Mpc which is the typical half-size of the
known GRGs (Saripalli et al., 1986). Thu

From the value
$$
B = 1
$$
 type which is the **typical matrix** is the **typical matrix** of the **known** GRS (Saripalli et al., 1986). Thus we obtain

\n
$$
\langle P(z) \rangle = \frac{\Delta V(z)}{N(z)} \int_{P^*}^{\infty} P_{1 \text{Mpc}}(P, z) \left[t_{\star}(P, z) - t_{\text{G}}(P, z) \right] \frac{\rho(P, z)}{t_{1/2}(P, z)} \, \text{d}P_{1 \text{Mpc}}(6.1)
$$

<P> at 1 GHz are given in Table 6.2 for Models A,B and AB.

6.5 DISCUSSION

We have studied the evolution of the giant radio ...(6.1)
where N(z) is given by Eq.(6.13). The predicted values of
 $\langle P \rangle$ at 1 GHz are given in Table 6.2 for Models A,B and AB.
6.5 DISCUSSION
We have studied the evolution of the giant radio
galaxies using the beam prop where N(z) is given by Eq. (6.13). The predicted values of

Expanding and AB.

6.5 DISCUSSION

We have studied the evolution of the giant radio

galaxies using the beam propagation model of Gopal-Krishna

and Wiita (1987), %The at 1 GHz are given in Table 6.2 for Models A,B and AB.

6.5 DISCUSSION

We have studied the evolution of the giant radio

galaxies using the beam propagation model of Gopal-Krishna

and Wiita (1987), incorporating los the lobes against the microwave background and relativistic motion of the beam's head. We have employed an observational constraint of a detection limit of $S_{1GHZ} = 1$ Jy at 1 GHz, and upper bounds to the nuclear life time of 10^8 and 3.10^8 yr, to the powers and numbers (over entire sky) of observable GRGs as a function of redshift. From Table 6.2, it is seen that the lobes against the microwave background and relativistic
motion of the beam's head. We have employed an observational
constraint of a detection limit of $S_{1GHz} = 1$ Jy at 1 GHz, and
upper bounds to the nuclear life time composite model AB) for $t_N^{}$ = $10^8\,$ yr and $3\mathbf{.}10^8\,$ yr and redshift z < 0.1 are both $10^{26.3}$ WHz⁻¹. This agrees very well be time of 10^8 and 3.10^8 yr, to
tire sky) of observable GRGs
n Table 6.2, it is seen that
inosities at 1 GHz (for the
 $\frac{3}{7}$ yr and 3.10^8 yr and redshift
. This agrees very well with
for the 9 GRGs at z < 0.1
 the mean $10^{25.9}$ WHz⁻¹ found for the 9 GRGs at z limit of $S_{1GHz} = 1$ Jy at 1 GHz, and

r life time of 10^8 and 3.10^8 yr, to

ver entire sky) of observable GRGs

From Table 6.2, it is seen that

b luminosities at 1 GHz (for the

= 10^8 yr and 3.10^8 yr and redsh (Saripalli et al. 1986; Table 2.5). At higher redshifts the the predicted mean radio luminosities at 1 GHz (for the composite model AB) for $t_N = 10^8$ yr and 3.10⁸ yr and redshift z < 0.1 are both $10^{26.3}$ WHz⁻¹. This agrees very well with the mean $10^{25.9}$ WHz⁻¹ found f composite model AB) for $t_N = 10^8$ yr and 3.10⁸ yr and redshift
z < 0.1 are both $10^{26.3}$ WHz⁻¹. This agrees very well with
the mean $10^{25.9}$ WHz⁻¹ found for the 9 GRGs at z < 0.1
(Saripalli et al. 1986; Table 2 seen to increase slowly with redshift.

For comparing the predicted number of observable GRGs over the whole sky with that inferred from existing data, we use the published results of the 6C survey (Baldwin et al., 108

For comparing the predicted number of observable GRGs

over the whole sky with that inferred from existing data, we

use the published results of the 6C survey (Baldwin et al.

1985). With a combination of low observi 108

For comparing the predicted number of observable GRGs

over the whole sky with that inferred from existing data, we

use the published results of the 6C survey (Baldwin et al.,

1985). With a combination of low observ sensitivity of 200 mJy/beam (5 rms) and a large sky coverage $(\sim$ 3 steradian), the 6C survey is well suited for picking out GRGs. For z<0.1, a source would require a minimum size of \sim 10 arc to be a GRG by our definition. In this exercise we have predicted the total number of GRGs having z<0.1, and (for GRGs) having S_{1 CH7}>lJy above which the 6C survey \angle is unaffected confusion. Such sources would therefore have been well resolved and recognized as GRGs. We would therefore be fairly justified in assuming a high degree of completeness in the detection of such sources in the whole of the 6C sample. have predicted the total number of GRGs having $z(0.1)$, and
having S_1 $_{\text{GHZ}}$) JJy above which the 6C survey is unaffected by
confusion. Such sources would therefore have been well
resolved and recognized as GRGs. W prediction of 25 - 30 GRGs for the composite model AB with t_N = 3.10^8 yr and z<0.1 agrees remarkably well with the \sim 30
GRGs estimated for the whole sky. This good agreement lends
confidence in the prediction of 91 observable GRGs over
the entire sky and all redshifts, for the gustilled in assuming a high degree of completeness in the
detection of such sources in the whole of the 6C sample.
There are 7 known GRGs ($\delta > 30^{\circ}$) meeting these criteria
which extrapolates to ~30 GRGs over the whol justified in assuming a high degree of completeness in the
detection of such sources in the whole of the 6C sample.
There are 7 known GRGs ($\delta > 30^\circ$) meeting these criteria
which extrapolates to ~30 GRGs over the whole the entire sky and all redshifts, for the same set of constraints. At higher redshifts $(z > 0.1)$ we predict a larger orediction of 25 - 30 GRGs for the composite model AB with t_N
= 3.10⁸ yr and z<0.1 agrees remarkably well with the \sim 30
GRGs estimated for the whole sky. This good agreement lends
confidence in the prediction of 91 Possible causes of this discrepancy are likely to be related to observational difficulties: by

 $\sum_{i=1}^{n}$ extrapolating from S_{151MHz} = 5 Jy, given by Saunders et al. (1987)

- For such (distant) sources, the low surface brightness 109
For such (distant) sources, the low surface brightness
extensions (or bridges) will be more difficult to
detect, thereby causing the GRG to be misidentified as
two unrelated sources. detect, thereby causing the GRG to be misidentified as two unrelated sources. For such (distant) sources, the low surface brightness
extensions (or bridges) will be more difficult to
detect, thereby causing the GRG to be misidentified as
two unrelated sources.
The parent galaxy will not so readily s
- The parent galaxy will not so readily stand out due to its faintness.
- 3. would be clearly hampered by the lack of sufficient extensions (or bridges) will be more difficult to
detect, thereby causing the GRG to be misidentified as
two unrelated sources.
The parent galaxy will not so readily stand out due to
its faintness.
The recognition of sourc detect, thereby causing the GRG to be misidentified as
two unrelated sources.
The parent galaxy will not so readily stand out due to
its faintness.
The recognition of sources as GRGs at higher redshifts
would be clearly ha crucial hint for physical association, may appear merged The recognition of sources as GRGs at higher redshifts
would be clearly hampered by the lack of sufficient
angular resolution. Due to this, the faint radio
extensions from the hotspots towards each other, a
crucial hint fo confused as two unrelated sources.

The third difficulty has clearly been shown to be the case by Saunders et al., (1987), who observed 9 6C fields containing suspected GRGs with higher resolution. With the higher resolution follow-up, they could confirm as many as 4 sources as large doubles with size exceeding a megaparsec (having redshifts z>0.1) and 3 others with a high probability of having megaparsec sizes. Their results clearly indicate the existence of a large number of potential, (distant) GRGs in the 6C catalogue,consistent with our prediction (Table 6.2). A exceeding a megaparsec (having redshifts z>0.1) and 3
others with a high probability of having megaparsec
sizes. Their results clearly indicate the existence of a
large number of potential, (distant) GRGs in the 6C
catalog clearly needed.

109

6.6 CMACIAISIMS

Through reasonable assumptions concerning the properties of jets, galactic haloes and the IGM, and using the analytic 110
i.6 CONCLUSIONS
Through reasonable assumptions concerning the properties
of jets, galactic haloes and the IGM, and using the analytic
model of Gopal-Krishna and Wiita(1987;1988) for the beam
propagation we have been ab propagation we have been able to predict the numbers and mean S.6 CONCLUSIONS
Through reasonable assumptions concerning the properties
of jets, galactic haloes and the IGM, and using the analytic
model of Gopal-Krishna and Wiita(1987;1988) for the beam
propagation we have been able t Through reasonable assumptions concerning the properties
of jets, galactic haloes and the IGM, and using the analytic
model of Gopal-Krishna and Wiita(1987;1988) for the beam
propagation we have been able to predict the nu Gopal-Krishna, Wiita and Saripalli, 1988) is that giant radio sources are produced by intrinsically powerful AGNs whose radio luminosities suffer declines of nearly an order-ofmagnitude between the point of their turning-on and their observations. The main conclusions of this work (see also
Sopal-Krishna, Wiita and Saripalli, 1988) is that giant radio
sources are produced by intrinsically powerful AGNs whose
radio luminosities suffer declines of nearly statistically high prominence of their radio cores, which is comparable to the intrinsic prominence of the cores of radioloud quasars (Saripalli et al., 1986). Our results are based on the assumption that the beams are relativistic throughout their lengths, which is supported, a posteriori, by the consistency with the observations. The model predicts that a systematic, high resolution follow-up of GRG candidates picked from a 6C type survey would lead to the discovery of a large number of GRGs at moderately high redshifts, where very few GRGs have been found so far. stency with the observations. The model predicts that a
matic, high resolution follow-up of GRG candidates
d from a 6C type survey would lead to the discovery of a
number of GRGs at moderately high redshifts, where very
RG

Future Work:

agreement with the available data, we have so far considered only fixed values of parameters that appear most reasonable. large number of GRGs at moderately high redshifts, where very
Few GRGs have been found so far.
Future Work:
Although the results presented here are in good
agreement with the available data, we have so far considered
only

beam power; η , the ratio of the average magnetic energy density of the entire source to that of the hot spots; and even a, δ and T, the scale-height, power-law index, and temperature of the gaseous halo, are expected to have significant dispersions, and ranges of such parameters will be explored in future work.

811.