CHAPTER VII

THE LARGE RADIO GALAXY CENTAURUS A

7.1 INTRODUCTION

The nearby galaxy Centaurus A (NGC5128) has always been an object of extensive optical, and radio studies. It is one CHAPTER VII

THE LARGE RADIO GALAXY CENTAURUS A

7.1 INTRODUCTION

The nearby galaxy Centaurus A (NGC5128) has always been

an object of extensive optical, and radio studies. It is one

of the five brightest galaxies in t the nearest galaxy having an active nucleus and associated with an extended double radio structure. Its distance has been recently re-estimated from the light curve of the supernova 1987g placing it at \sim 3 Mpc (Frogel et al., 1987). The Elliptical (E2) image of this galaxy is bisected by a of the five brightest galaxies in the sky $(m_v \sim 6)$, and also
the nearest galaxy having an active nucleus and associated
with an extended double radio structure. Its distance has
been recently re-estimated from the light roughly along a position angle of 126° (Baade and Minkowski, with an extended double radio structure. Its distance has

been recently re-estimated from the light curve of the

supernova 1987g placing it at \sim 3 Mpc (Frogel et al., 1987).

The Elliptical (E2) image of this galaxy thickness \sim 1 kpc and having an inclination of \sim 73[°] to the plane of the sky (Graham, 1979; Dufour et al., 1979; Marcelin et al., 1982).

The association of Cen A with the powerful radio source was first established by Bolton et al. (1949). The radio 1954). It is known to be a disk of diameter ~ 15 kpc,
thickness ~ 1 kpc and having an inclination of $\sim 73^{\circ}$ to the
plane of the sky (Graham, 1979; Dufour et al., 1979; Marcelin
et al., 1982).
The association of \sim 540 kpc, for the distance D \sim 3Mpc. The radio source shows several peaks in its structure, forming an overall 5- shaped morphology (Haynes et al., 1983; Burns et al., 1983). This S shaped morphology is maintained even at size scales 2 orders of magnitude smaller, in the \sim 7' arc double source (Maltby et al., 1963; Schwartz et al., 1973; Christiansen et al.,

1977; Burns et al., 1983) which is embedded in the optical
image of the galaxy (Fig.7.1a and 7.1b). The origin of this,
remarkable S-shaped radio structure is investigated in this image of the galaxy (Fig.7.la and 7.1b). The origin of this, remarkable S-shaped radio structure is investigated in this Chapter.

Faint, optical ripples or shell-like structures are known to be commonly associated with elliptical galaxies Solution 1977; Burns et al., 1983) which is embedded in the optical

image of the galaxy (Fig.7.1a and 7.1b). The origin of this,

remarkable S-shaped radio structure is investigated in this

Chapter.

Faint, optical rippl image of the galaxy (Fig.7.1a and 7.1b). The origin of this,
remarkable S-shaped radio structure is investigated in this
Chapter.
Faint, optical ripples or shell-like structures are
known to be commonly associated with ell (Schweizer, 1980; Malin and Carter, 1983). Recently even spiral galaxies have been shown to possess such shell systems (Schweizer and Seitzer, 1988). Considering only ellipticals, showing peculiar features (like tails, filaments, dust

lanes) as well as those which are otherwise normal

(Schweizer, 1980; Malin and Carter, 1983). Recently even

spiral galaxies have been shown to possess such shell s showing peculiar features (like tails, filaments, dust
lanes) as well as those which are otherwise normal
(Schweizer, 1980; Malin and Carter, 1983). Recently ever
spiral galaxies have been shown to possess such shell syst and theoretical attempts to understand the formation of the (Schweizer, 1980; Malin and Carter, 1983). Recently even
spiral galaxies have been shown to possess such shell systems
(Schweizer and Seitzer, 1988). Considering only ellipticals,
shells are known to occur in ~ 10 of a galaxies (Quinn, 1984). There have been many observational
and theoretical attempts to understand the formation of the
shells (observational: Schweizer, 1980, 1983; Malin and
Carter, 1980, 1983; Carter et al., 1982; Malin (Schweizer and Seitzer, 1988). Considering only ellipticals,
shells are known to occur in ~ 10 ⁸ of all bright elliptical
galaxies (Quinn, 1984). There have been many observational
and theoretical attempts to understa Theoretical: Fabian et al., 1980; Quinn, 1982, 1984; Huang and Stewart, 1985; Williams and Christiansen, 1985; Kundt and and theoretical attempts to understand the formation of the shells (observational: Schweizer, 1980, 1983; Malin and Carter, 1980, 1983; Carter et al., 1982; Malin et al., 1983; Pence, 1986; Fort et al., 1986; Schweizer and 1987).

Optical shells are sharply defined, arc-like features, not completely encircling the parent galaxy. They have been and Stewart, 1985; Williams and Christiansen, 1985; Kundt and
Krause, 1985; Dupraz and Combes, 1986; Umemura and Ikeuchi,
1987).
Optical shells are sharply defined, arc-like features,
not completely encircling the parent central galaxy, along the major axis, and as near as \sim 1 kpc from the galactic nucleus. One of their most characteristic properties is the inter-leaved disposition about the parent galaxy, i.e., the next outer shell occurs on the opposite side of the galaxy. Even the most sensitive optical observations carried out so far have failed to detect any emission lines. Their colours are seen to be bluer than, or similar to, those of the parent galaxy. From these results, it is has been been inferred that the shells are entirely made of stars. From photometric observations, it is deduced that the shells contain upto \sim 10% of the mass of elliptical galaxy side of the galaxy. Even the most sensitive optical observa-
tions carried out so far have failed to detect any emission
lines. Their colours are seen to be bluer than, or similar
to, those of the parent galaxy. From thes been found that the shells occur mostly in galaxies located in sparsely populated environments (Quinn, 1984).

Among all the models for the shell formation the galaxy merger hypothesis first suggestd by Schweizer (1980) and later studied by several authors seems to account for most of observed properties of shells. Basically, in this model, the stars in different sections of the captured disk galaxy revolve about the centre of the ~10 times more massive galaxy with different periods, because of their different energies. The inner-most sections have the shortest periods observed properties of shells. Basically, in this model, the
stars in different sections of the captured disk galaxy
revolve about the centre of the ~ 10 times more massive
galaxy with different periods, because of the velocities at the extremes of their oscillation, they spend most of their time at these extremities. The main deficiency of this model concerns the fate of the large amount of gas associated with the captured galaxy, in case it is a spiral.

The competing models for the shell formation, all involve interaction between an outflow from the parent galaxy and

some external medium. Stars form, from the resulting density enhancements as they cool. These models are inadequate in 115
some external medium. Stars form, from the resulting density
enhancements as they cool. These models are inadequate in
accounting for the important shell properties like their
interleaved distribution, their incomplete interleaved distribution,their incomplete arc-like structure, and the same or somewhat bluer colours (of the stars in the shell) as those in the parent galaxy.

In the context of the model proposed in this chapter for explaining the S shaped radio structure of Cen A, two properties of the shells are important: their gas content and their rotation about the galactic nucleus. Neither of these properties has been ruled out by the merger scenario. So far only 2 shell velocities have been determined but it has not explaining the S shaped radio structure of Cen A, two
properties of the shells are important: their gas content and
their rotation about the galactic nucleus. Neither of these
properties has been ruled out by the merger sc radial or circular relative to the nucleus (NGC3923; Quinn, 1982; NGC1316: Bosma et al., 1985). rotation about the galactic nucleus. Neither of these
rties has been ruled out by the merger scenario. So far
2 shell velocities have been determined but it has not
possible to establish if the measured velocities are
1 or

collinear. They may or may not contain emission peaks in their lobes. The C-shaped sources, WATs, HTs and NATs are all radial or circular relative to the nucleus (NGC3923; Quinn,
1982; NGC1316: Bosma et al., 1985).
Typical double radio galaxies, are more or less
collinear. They may or may not contain emission peaks in
their lobes. The C-sh sources (eg. NGC315) too have been explained in terms of the continuous beam model. According to Henriksen et al. (1981), the twin jet would be refracted towards the galaxy minor axis cheir lobes. The C-shaped sources, WATs, HTs and NATs are all

Eound in galaxy clusters. Like them, the S or Z shaped

sources (eg. NGC315) too have been explained in terms of the

continuous beam model. According to Henri original direction of ejection. The S-shaped structure could sources (eg. NGC315) too have been explained in terms of the
continuous beam model. According to Henriksen et al. (1981),
the twin jet would be refracted towards the galaxy minor axis
(the direction of maximum pressure gra itself (eg. for NGC326, Ekers et al., 1978). The model of sources (eg. NGC315) too have been explained in terms of the
continuous beam model. According to Henriksen et al. (1981),
the twin jet would be refracted towards the galaxy minor axis
(the direction of maximum pressure gra

116
structure in terms of an interaction of the jets with the
shell segments rotating about the parent galaxy. shell segments rotating about the parent galaxy.

In the particular case of Cen A the S-shaped structure is delineated by discrete emission peaks, so any suggested model must also explain their origin. Haynes et al. (1983) proposed multiple nuclear outbursts along a precessing ejection axis.

The discovery and detailed studies of radio jets, which is delineated by discrete emission peaks, so any suggested
model must also explain their origin. Haynes et al. (1983)
proposed multiple nuclear outbursts along a precessing
ejection axis.
The discovery and detailed studies is delineated by discrete emission peaks, so any suggested
model must also explain their origin. Haynes et al. (1983)
proposed multiple nuclear outbursts along a precessing
ejection axis.
The discovery and detailed studies model must also explain their origin. Haynes et al. (1983)
proposed multiple nuclear outbursts along a precessing
ejection axis.
The discovery and detailed studies of radio jets, which
in some are seen connecting the nucle proposed multiple nuclear outbursts along a precessing
ejection axis.
The discovery and detailed studies of radio jets, which
in some are seen connecting the nucleus all the way to the
hotspots, posed difficulties for the channels for the ejected plasmons, their centre brightened profiles indicative of emission from within them, imply that the channels are filled. The many numerical simulations of a ejection models while providing all support for the
continuous beam model. Moreover, if jets are interpreted as
channels for the ejected plasmons, their centre brightened
profiles indicative of emission from within them, i continuous beam model. Moreover, if jets are interpreted as
channels for the ejected plasmons, their centre brightened
profiles indicative of emission from within them, imply that
the channels are filled. The many numerica contrinuous beam model. Moreover, if jets are interpreted as
thannels for the ejected plasmons, their centre brightened
profiles indicative of emission from within them, imply that
the channels are filled. The many numeric model, Gopal-Krishna and Wiita (1987) could account for the linear size evolution of powerful doubles. reproduced the observed powerful radio source morphologies
(Norman et al., 1982). Again based on the continuous beam
model, Gopal-Krishna and Wiita (1987) could account for the
linear size evolution of powerful doubles.
Th

The model for the S-shaped and multi-peaked radio need to do away with the continuous beam ejection scenario, model, Gopal-Krishna and Wiita (1987) could account for the
linear size evolution of powerful doubles.
The model for the S-shaped and multi-peaked radio
structure seen in Cen A, that is presented here, does not
need to do peaks (Gopal-Krishna and Saripalli, 1984b). Our study is The model for the S-shaped and multi-peaked radio
structure seen in Cen A, that is presented here, does not
need to do away with the continuous beam ejection scenario,
and quite naturally accounts for the S shape of the di

117

radio photographs of Cen A. It further allows us to place

lower limit to the gas density in the optical shells, besides

yielding constraints on the physical parameters of the jet. lower limit to the gas density in the optical shells, besides yielding constraints on the physical parameters of the jet. The shell is inferred to contain gas at significant levels, though its signature (emission lines) has not been directly detected despite several 1000 sec. of integration.

7.2 COMPARISON OF RADIO AND OPTICAL MAPS

Radio maps:

For the present study we make use of 3 radio maps of Cen A. The first **is** the Parkes map made at 1.4 GHz by Cooper et al. (1965) with a coarse angular resolution of 14' arc (Fig.7.1a). The third radio map shown in Fig.7.2a, coversed and the source shown in the new Parkes map of the source shown in the new Parkes' map of the source shown in Fig.7.1a). The new Parkes' map of the source shown in Fig.7.lc has been made at 5 GHz with a 4' beam (Haynes et al., 1983). The third radio map shown in Fig.7.2a, covers only a small region, containing the inner double radio source and has been made by Schreier et al. (1981) using the VLA at 1.4 GHz with a resolution of 10" x 31" arc. From this map it can be seen that the extensions of the two inner lobes indicate an inversion symmetry about the central core, in the same clockwise sense as displayed by the outer radio peaks (Fig.7.1). The nuclear radio source **is** seen to be joined to the base of the northern inner lobe by a roughly collinear chain of radio/X-ray knots (Schreier et al., 1981; Fig.7.2; indicate an inversion symmetry about the central core, in the
same clockwise sense as displayed by the outer radio peaks
(Fig.7.1). The nuclear radio source is seen to be joined to
the base of the northern inner lobe by a can be seen that the extensions of the two inner lobes
indicate an inversion symmetry about the central core, in the
same clockwise sense as displayed by the outer radio peaks
(Fig.7.1). The nuclear radio source is seen to (Dufour and van den Bergh, 1978; Graham and Price, 1981) it is known that the northern jet is likely to be approaching

Figlla—c. Shown are three wide-field pictures of Cen A. all reduced to the same angular scale and aligned in declination. These are: a The Parkes lA **GHz** map showing the two giant radio lobes of Cen A, stretched over $\sim 10^3$ (Cooper et al., 1965). The four northern radio peaks and their southern counterparts are marked as A, *B,* C and *D* (see text). Note the clockwise progression in the position angles of the successively outer pairs of radio peaks. The central peak marked as *(A N, A ⁵) is* seen resolved into two peaks, A_K and A_S , in c. b A specially processed, high-contrast photograph covering a $\sim 2^{\circ} \times 3^{\circ}$ field around Cen A, reproduced from Malin (1978). The inset in the upper right corner shows a normally processed photograph of Cen A, the scale being the same as that of the main photograph. c The 5 GHz Parkes map of Cen A, reproduced from Haynes et al. (1983), after appropriately contracting their published map in east-west direction and thereby compensating for the expansion of the right ascension scale relative to the declination scale, as present on their map. The 'plus' mark near the centre refers to the position of the stellar nucleus of the galaxy, as defined by Kunkel and Bradt (1971). The dotted curve running northeast from the nucleus represents the outer **parts** of the optical jet, as published by Graham and Price (1981) (see text). The dashes plotted in the region of the radio lobe B_N indicate the orientation of magnetic field, as inferred from the linear polarization map made by Gardner and Whiteoak (1971) at 5 GHz. The dash-dotted curve is a schematic representation of the giant shell-type structure of radius $\sim 1^\circ$, seen on the optical photograph in b. surrounding the main body of Cen A. The designations to the various radio peaks are given in a

Fig7.2 a The 1.4 GHz VLA map of the inner double source in Cen A (Schreier et al., 1981), superposed on the sketch of the optical features discovered recently in Cen A by Malin et al. (1983)and reproduced here from their paper. The shaded areas show absorption regions while the crosses indicate the positions of bright reference stars using which we have drawn the position coordinates. Full arcs represent the sharpest structures, broken arcs those more blurred. b same as a except that the radio map has been substituted with a high resolution, soft X-ray map published by Schreier et al. (19811. The X-ray peak coincident with the shell segment 9 has been designated as "G" by these authors

Fig.7.2(c) The optically detected shell segment 9, described by Malin et al. (1983), is superposed on the VLA 5 GHz map of the inner double radio source of Centaurus A, made by Burns et al. (1983). Absolute position of the shell segment was determined using the bright reference stars in its field, plotted by Malin et al.

The optical photographs

For both the optical photographs that are used by us for the study, the dynamic range has been greatly enhanced by employing techniques of unsharp masking and photographic amplification (Malin, 1977). The first photograph shown in The optical photographs

For both the optical photographs that are used by us for

the study, the dynamic range has been greatly enhanced by

employing techniques of unsharp masking and photographic

amplification (Malin, For both the optical photographs that are used by us for
the study, the dynamic range has been greatly enhanced by
employing techniques of unsharp masking and photographic
amplification (Malin, 1977). The first photograph \sim 1.2[°] in PA \sim 30[°], in agreement with the earlier results from Johnson (1963). Also, a ring like feature with a radius of \sim 1^o is seen to surround the galaxy. Its possible role in shaping the radio morphology of Cen A will be discussed below.

The second deep optical photograph (Malin et al., 1983) \sim 1.2° in PA \sim 30°, in agreement with the earlier results from
Johnson (1963). Also, a ring like feature with a radius of
 \sim 1^o is seen to surround the galaxy. Its possible role in
shaping the radio morphology o nucleus of Cen A These authors have provided a sketch of the shell segments observed in the photograph. This is reproduced shaping the radio morphology of Cen A will be discussed below
The second deep optical photograph (Malin et al., 1983)
shows a system of shell segments within ~ 20 kpc of the
nucleus of Cen A These authors have provided on the north-eastern (NE) side. In the south-western (SW) side however detection of such shells may be hampered due to the presence of the dust lane. The feature marked 15, is a shell segments observed in the photograph. This is reproduced
in Fig.7.2. It can be seen that the shells are more regular
on the north-eastern (NE) side. In the south-western (SW)
side however detection of such shells may optical jet extending up to the NE "Middle radio lobe" (marked B_N in Fig.7.la; Blanco et al., 1975; Peterson et al., 1975; also see Fig.7.lc). According to Malin et al. (1983) the presence of the dust lane. The feature marked 15, is a
gaseous emission filament and is probably related to the
optical jet extending up to the NE "Middle radio lobe"
(marked B_N in Fig.7.1a; Blanco et al., 1975; Pet interpreted as being remnants of a smaller disk galaxy that

US.

merged into Cen A about 10⁹
incorporating the model devel-
seqments are expected to ro yrs ago. In their scheme, ¹¹⁹
merged into Cen A about 10⁹ yrs ago. In their scheme,
incorporating the model developed by Quinn (1982) the shell
segments are expected to rotate in order to counter the
gravitational pull of the central elliptical 119
merged into Cen A about 10⁹ yrs ago. In their scheme,
incorporating the model developed by Quinn (1982) the shell
segments are expected to rotate in order to counter the
gravitational pull of the central elliptical g gravitational pull of the central elliptical galaxy. We shall assume hereafter that the general sense of rotation is clockwise for all the optically detected shell segments seen around Cen A (Fig.7.lb and Fig.7.2). As will be seen below, segments are expected to rotate in order to counter the
gravitational pull of the central elliptical galaxy. We shall
assume hereafter that the general sense of rotation is
clockwise for all the optically detected shell se explanation for the rather complex radio morphology observed in this galaxy. France Contributed A (Fig. 7.1b and

this plausible assumption

explanation for the rather

in this galaxy.
 7.3 RESULTS AND DISCUSSION

In Fig. 7.1, the four

In Fig.7.1, the four radio peaks B_N , A_N , A_S and B_S fall around Cen A (Fig.7.1b and Fig.7.2). As will be seen below,
this plausible assumption seems to lead to a consistent
explanation for the rather complex radio morphology observed
in this galaxy.
7.3 RESULTS AND DISCUSSION
I One could therefore imagine them to represent the inner (A_M, B_M) 7.3 RESULTS AND DISCUSSION

In Fig.7.1, the four radio peaks B_N , A_N , A_S and B_S fall

on a straight line passing through the nucleus of Cen A.

One could therefore imagine them to represent the inner $(A_N$,
 A_S) a past, the component B_S was believed to be unrelated to In Fig.7.1, the four radio peaks B_N , A_N , A_S and B_S fall
on a straight line passing through the nucleus of Cen A.
One could therefore imagine them to represent the inner $(A_N$,
 $A_S)$ and middle $(B_N$, $B_S)$ radio lob background elliptical galaxy (Cooper et al., 1965; also Haynes et al., 1983). From the recent 5 GHz Parkes map (Fig.7.lc) whose absolute positional accuracy is believed to One could therefore imagine them to represent the inner (A_N) ,

A_S) and middle $(B_N$, $B_S)$ radio lobe pairs. However in the

past, the component B_S was believed to be unrelated to

Cen A, and instead thought to be ass peak B_S Haynes et al., 1983). From the recent 5 GHz Parkes map

(Fig.7.1c) whose absolute positional accuracy is believed to

be better than 30" arc we measured the position of this

peak B_S as: RA(1950)=13^h18ⁿ12.2⁵ \pm past, the component B_S was believed to be unrelated to
Cen A, and instead thought to be associated with a 15-mag
packground elliptical galaxy (Cooper et al., 1965; also
Haynes et al., 1983). From the recent 5 GHz Parkes (Fig.7.1c) whose absolute positional accuracy is belie
be better than 30" arc we measured the position of
peak B_S as: $RA(1950)=13^h18^h12.2^S \pm 1.5^S$ and Dec (19
 $43^O28'15'' \pm 20''$. A check with the SRC/ESO survey
revea displaced by 2'.1 \pm 0'.7 from the radio peak B_S along be better than 30" arc we measured the position of
peak B_S as: RA(1950)=13^h18^h12.2⁵ \pm 1.5⁵ and Dec (19
43⁰28'15" \pm 20". A check with the SRC/ESO survey
reveals that the centre of the said 15-mag gal.
dis PA 25° . Thus although part of the emission from B_S may be associated with the background elliptical it seems more

120

natural to consider the peak B_S as the counter-part of B_N ,

particularly in view of its good alignment with the peaks B_N ,
 A_N and A_S , and also considering its extension towards the particularly in view of its good alignment with the peaks B_N , A N 120

tural to consider the peak B_S as the counter-part of B_N ,

rticularly in view of its good alignment with the peaks B_N ,

and A_S , and also considering its extension towards the

cleus (Fig.7.1c). We therefore in nucleus (Fig.7.1c). We therefore interpret the radio peak B_S as having formed due to the impact of the counter-jet into natural to consider the peak B_S as the counter-part of B_N ,
particularly in view of its good alignment with the peaks B_N ,
 A_N and A_S , and also considering its extension towards the
nucleus (Fig.7.1c). We therefore surrounding Cen A. (see Fig.7.lb and 7.1c). This view is substantiated by the good spatial coincidence between the radio component B_S and the relevant section of the optical An and A_S , and also considering its extension towards the
nucleus (Fig.7.1c). We therefore interpret the radio peak B_S
as having formed due to the impact of the counter-jet into
the south western section of the giant extension of B_S, which could conceivably result from the ter
A.
Beg
S' jet
as sweeping of the jet fluid by the shell in clockwise rotation about the galaxy as mentioned above (Fig.7.lc).

A radio enhancement is similarly seen near the shell (Fig./.1) and furthermore by the eastward radio
extension of B_S , which could conceivably result from the
sweeping of the jet fluid by the shell in clockwise rotation
about the galaxy as mentioned above (Fig.7.1c). -41 $^{\circ}$ 40', and we pair this radio peak $\texttt{C}_{_{\rm N}}$ with the peak $\texttt{C}_{_{\rm S}}$ in sweeping of the jet fluid by the shell in clockwise rotation
about the galaxy as mentioned above (Fig.7.1c).
A radio enhancement is similarly seen near the
northern section of the giant optical shell close to Dec. =
 $-41^$ clearly paired with the peak D_S . Although the deep optical about the galaxy as mentioned above (Fig.7.lc).

A radio enhancement is similarly seen near the

northern section of the giant optical shell close to Dec. =
 $-41^{\circ}40'$, and we pair this radio peak C_N with the peak C cover the region of the radio peaks D_N , D_S and C_S , we suggest -41^o40', and we pair this radio peak C_N with the peak C_S in
the southern lobe (Fig.7.1). The outermost peak D_N could be
clearly paired with the peak D_S. Although the deep optical
photograph shown in Fig.7.1b is shells paired with the peak D_S . Although the deep optical
photograph shown in Fig.7.1b is not extensive enough to
cover the region of the radio peaks D_N , D_S and C_S , we suggest
that these peaks too owe their existe a distance of \sim 200 kpc from the nucleus) but still embedded photograph shown in Fig.7.1b is not extensive enough to
cover the region of the radio peaks D_N , D_S and C_S , we suggest
that these peaks too owe their existence to the presence of
shells farther out from the nucleus (optical shells have been seen to occur at distances of as that these peaks too owe their existence to the presence of
shells farther out from the nucleus (requiring them to be at
a distance of ~ 200 kpc from the nucleus) but still embedded
within the giant radio lobes. It can Athanassoula and Bosma, 1985). This postulated scenario is substantiated by the interpretation given below for the formation of the inner double radio source. Presently, it can be noted that all the 4 pairs of radio peaks, as proposed in our scheme are reasonably well aligned with respect to the galactic nucleus their axes showing a systematic progression in position angle (Fig.7.1).

In Fig.7.2a we have superposed the contours of the inner radio double and the shell segments found embedded inside the main body of Cen A described earlier. The most remarkable by well aligned with respect to the
galactic nucleus their axes showing a systematic progression
in position angle (Fig.7.1).
In Fig.7.2a we have superposed the contours of the inner
radio double and the shell segments fou coincidence of the shell segment 9 with the point from where onwards the jet outflow is no longer straight but begins to deflect towards northwest, accompanied by an abrupt rise in brightness and flaring in the transverse direction. It appears therefore that at this point the jet flow has been interrupted by the rotating shell (see below). The outermost X-ray knot detected in the jet of Cen A, designated as knot "G" by Schreier et al. (1981), also coincides with the shell, strengthening the case for the proposed collision of the jet with the shell segment 9 (Fig.7.2b). The bending of the jet is even more clearly visible on the 5 GHz map reproduced in Fig.7.2c from Burns et al. (1983).

If under the gravitational influence of the central galaxy, this shell segment is also rotating in the clockwise with the shell segment 9 (Fig.7.2b). The bending of the jet
is even more clearly visible on the 5 GHz map reproduced in
Fig.7.2c from Burns et al. (1983).
If under the gravitational influence of the central
galaxy, this sh around the main body of Cen A, the northward bending of the

jet, soon after its being interrupted by the shell 9, might have resulted due to the transverse momentum imparted by the shell medium to the jet fluid. Also the eastward extension observed in the SW inner radio lobe $A_{\rm g}$ may have arisen due to the counter-jet being interrupted by a possible southwestern counterpart of the shell 9, whose detection would be rendered have resulted due to the transverse momentum imparted by the
shell medium to the jet fluid. Also the eastward extension
observed in the SW inner radio lobe A_S may have arisen due to
the counter-jet being interrupted by (Fig.7.2). Below, we shall explore the condition under which the postulated encounter with the shell 9 could have deflected the jet. erpart of the shell 9, whose detection would be rendered
cult due to obscuration caused by the dust lane
7.2). Below, we shall explore the condition under which
postulated encounter with the shell 9 could have
cted the je

velocity would be V_S = {GMg(θ)/R_S}^{1/2} \simeq 413 km S⁻¹ at the observed separation $\hat{\sigma} \sim 3'$ arc from the nucleus (which the postulated encounter with the shell 9 could have
deflected the jet.
For the shell segment 9, the Keplerian rotational
velocity would be $V_S = (GMg(\theta^-)/R_S)^{1/2} \approx 413$ km S^{-1} at the
observed separation $\theta \sim 3'$ arc fr a distnace D = 3Mpc for Cen.A) and taking the galaxy mass to et al., 1982). In the case when the galactic mass is a few times higher as inferred from the recent analysis by Hesser et al. (1984), a value for $V^S_s \sim 645$ kmS⁻¹ would be more appropriate. For the width of the shell 9 no good estimate is available presently. But from inspection of the photograph published by Malin et al. (1983), we estimate that the shell width d_S is unlikely to be smaller than the width of the jet which is $d_i = 2r_i \approx 34$ " arc at the position where the jet appears to encounter the shell segment. Thus $(d_S/d_{\frac{1}{1}}) \geq 1$. The above estimate of d_i given by Burns et al. (1983) refers to the main jet which as found by these authors, is surrounded

kinetic energy of the jet fluid of density \int_{j}^{3} is converted
into radio emission inside the NE-inner lobe with a net
efficiency ℓ , then
 $L_{r} = \pi r_{j}^{2} v_{j} \gamma_{j} (\gamma_{j} - 1) \rho_{j} c^{2} \epsilon (\frac{r_{j}}{r_{\text{lobe}}})^{2/3} \dots (7.1)$
wh by a 2-3 times wider sheath of radio emission. The energy flux I_j flowing through the jet is estimated as follows: if the energy flux L_j through the jet carried in the form of into radio emission inside the NE-inner lobe with a net efficiency ℓ , then

$$
L_r = \pi r_j^2 V_j Y_j (Y_j - 1) P_j c^2 \epsilon (\frac{r_j}{r_{\text{lobe}}})^{2/3} \dots (7.1)
$$

where

L_r = observed radio luminosity of the N_E inner lobe
\n= 1.44.10⁴⁰ erg s⁻¹ (Burns et al., 1983)
\nV_j = bulk velocity of the jet fluid
\nY_j = bulk Lorentz factor =
$$
[1-(v_j/c)^2]^{-1/2}
$$
,
\n(r_j/r_{lobe})^{2/3} = 0.303 for r_{lobe} = 6.r_j (Burns
\net al. 1983)

which is the factor accounting for the adiabatic expansions, and c = velocity of light.

Eing for the detection of shell 9, $\frac{\rho_s}{\rho_j} \frac{v_s^2}{v_j^2}$ ($\frac{d}{d} \rho_j \frac{v^2}{v_j^2}$) ection of
shell 9,
shell and
 $s = \frac{v_s^2}{s}$ ($\frac{d_s}{d_j}$
 $(\frac{\alpha}{d_j})$ Elections
 $\frac{\rho_{\rm s}}{\rho_{\rm s}}$ $\frac{v_{\rm s}^2}{v_{\rm j}}$
 $\frac{p_{\rm j}}{\rho_{\rm j}}$ $\frac{v_{\rm j}^2}{v_{\rm j}}$
 $\frac{p_{\rm j}}{\rho_{\rm j}}$ $\frac{v_{\rm j}}{\rho_{\rm j}}$ The angle of deflection of the jet, ϕ due to the transverse pressure of the shell 9, can be expressed as the ratio of the momenta of the shell and the jet, given by, of the
9, can
and the
 $(\frac{d_s}{d_j})$
(we obt
 $\frac{d_s}{d_j}$) ($\frac{d_s}{d_j}$

$$
\tan \phi = \frac{\rho_s}{\gamma_j^2 \rho_j v_j^2} (\frac{d_s}{d_j})
$$
\n
$$
\frac{d_s}{d_s^2} (\frac{d_s}{d_j})
$$
\n
$$
\frac{d_s}{d_s^2} (\frac{d_s}{d_s^2})
$$
\n
$$
\frac{d_s}{d_s^2} (\frac{d_s}{d_s^2}) (\frac{d_s}{d_s^2}) (\frac{d_s}{d_s^2})^2
$$
\n
$$
\frac{d_s}{d_s^2} (\frac{d_s}{d_s^2}) (\frac{d_s}{d_s^2})^2
$$
\n...(7.3)

From the equation (7.1) and (7.2), we obtained

transverse pressure of the shell and the jet, given by,
ratio of the momenta of the shell and the jet, given by,

$$
\tan \phi = \frac{\rho_s v_s^2}{\gamma_j^2 \rho_j v_j^2} (\frac{d_s}{d_j})
$$
...(7.2)
From the equation (7.1) and (7.2), we obtained

$$
\tan \phi = \frac{\pi \epsilon d_j^2 \rho_s v_s^2 c^2}{4 L_r v_j} (\frac{\gamma_j - 1}{\gamma_j}) (\frac{d_s}{d_j}) (\frac{d_j}{d_{\text{lobe}}})^{2/3}
$$
...(7.3)

From this relation one can obtain a useful limit to the density of gas in the shell. The true angle of deflection of the jet plasma can be derived from the apparent angle of deflection $\eta \sim 40^\circ$ (Fig.7.2c) using the following expression from Readhead et al. (1980). t
=
-

$$
\eta = \tan^{-1} (\frac{\sin \phi \sin \psi}{\sin \theta \cos \phi + \cos \theta \sin \phi \cos \psi})
$$
\n(7.4)

Here ψ is the angle between the plane containing the tangent at the origin of the jet and the line of sight, and the plane containing the longitudinal axis of the jet. θ is the angle of inclination of the jet from the line of sight.

Because of the nearness of Cen A, detailed kinematic studies of the dustlane have been possible which yielded a measure of the orientation of its rotation axis with respect to the line of sight of 73° + 3° (Graham, 1979; Marcelin et al., 1982). From studies of radio galaxies with jets and having dust lane in their parent galaxies (Kotanyi and Ekers, 1979; Ekers and Simkin, 1983) it has been inferred that the inner radio jet in Cen A, is likely to be within $\sim 20^{\circ}$ of the rotation axis of the dustlane. Thus the inclination angle of the jet from the line of sight, . is likely to be > 53° + 3° .

Now, the true angle of deflection ϕ would be minimised for

$$
\psi = \tan^{-1} \left(\frac{-\cot \eta}{\cos \theta} \right)
$$

For,
defle For, $\eta \sim 40^{\circ}$ and $\theta \ge 50^{\circ}$, from Eq.(7.4), the true angle of For, $\eta \sim 40^{\circ}$ and $\theta \ge 50^{\circ}$, for deflection ϕ is atleast $\sim 30^{\circ}$
From Eq.(7.3), therefore the various parameters deflection ϕ is atleast \sim 30[°].

125
 $\sim 40^{\circ}$ and $\theta \ge 50^{\circ}$, from Eq.(7.4), the true angle of

on ϕ is atleast $\sim 30^{\circ}$.

From Eq.(7.3), therefore, using the values discussed

or the various parameters, we obtain, for the gas

in the shell 125

For, $\eta \sim 40^{\circ}$ and $\theta \ge 50^{\circ}$, from Eq.(7.4), the true angle of

deflection ϕ is atleast $\sim 30^{\circ}$.

From Eq.(7.3), therefore, using the values discussed

above for the various parameters, we obtain, for density in the shell $\theta \ge 50^\circ$, from
least $\sim 30^\circ$.
.3), therefore
ious parameter
1
 $39 \left[\frac{v_j}{\epsilon} \left(\frac{\gamma_j}{\gamma_j-1}\right)\right]$
ralues of $V_j =$ 50°, f:
t \sim 30°
theref(parame)
parame)
 $\frac{V_j}{\epsilon}$ ($\frac{\gamma_j}{\gamma_j}$)
xs of V_j be ψ is atleast ~ 30 .

From Eq.(7.3), therefore,

be various parameters

in the shell
 $\rho_s > 9.6. 10^{39}$ [$\frac{V_j}{\epsilon}$ ($\frac{\gamma_j}{\gamma_j - 1}$)]

$$
\rho_{s} > 9.6. 10^{39} \left[\frac{v_{j}}{\epsilon} \left(\frac{\gamma_{j}}{\gamma_{j} - 1} \right) \right]
$$
 ... (7.5)

For the limiting values of $V_i = C$ ($Y_i = \infty$) and $E = 1$ the right hand side approaches a minimum yielding

$$
\int_{S} 5 2.9.10^{-28} \text{ gm cm}^{-3}
$$

Adopting more realistic values of $\epsilon \leq 0.3$ a gas density of $\geq 1\boldsymbol{.} 0\boldsymbol{.} 10^{-27}$ gm cm $^{-3}$ is obtained for the shell. This is the minimum gas density in the shell needed to deflect the jet plasma through the observed angle of $\sim40^{\circ}$. more realistic values of $\epsilon \leq 0.3$ a gas density of $.0.10^{-27}$ gm cm⁻³ is obtained for the shell. This is
imum gas density in the shell needed to deflect the
ma through the observed angle of $\sim 40^{\circ}$.
endent Estim

An Independent Estimate of the Lobe Magnetic Field

Is 2^{10010} ym cm is obtained for the shell. This is
the minimum gas density in the shell needed to deflect the
jet plasma through the observed angle of $\sim 40^{\circ}$.
An Independent Estimate of the Lobe Magnetic Field
As impinge on it. The clockwise rotation of the shell with the An Independent Estimate of the Lobe Magnetic Field
As seen from Fig.7.2, the shell 9 extends by $\alpha \sim 2'.8$
arc west of the point where the jet is currently seen to
impinge on it. The clockwise rotation of the shell with t imply that it began to interrupt the jet (thereby initiating the formation of the NE inner lobe) at a time $\hat{\Gamma}$ ago, where, west of the poorman velocity

erian velocity

y that it began

formation of the

D/V_S = 6.0.10⁶

The apparent γ = \propto D/V_s = 6.0.10⁶yr.

The apparent break in the radio spectrum of this lobe at $\bm{\mathsf{V}}_\texttt{b}$ $\bm{\mathsf{\sim}}$ 5 GHz (Fig.7.2 of Slee et al., $\,$ 1983) may then $\,$ have arisen owing to synchrotron losses in a magnetic field H

given by H = $10^8/({\Uparrow}^2 {\cal V}_h)^{1/3}$ G. Using the above estimate \Uparrow of \sim 6.10⁶ yr we obtain H = 18.3 μ G. This value of H is 2 $H = 10^8 / (\gamma^2 \gamma_b)^{1/3}$ G. Using the above estimate γ of
yr we obtain $H = 18.3 \mu$ G. This value of H is 2
wer than the equipartition magnetic field of 39 μ G
by minimising the internal energy (Feigelson 126
given by $H = 10^8 / (\gamma^2 \gamma_b)^{1/3}$ G. Using the above estimate γ of
 $\sim 6.10^6$ yr we obtain $H = 18.3 \mu$ G. This value of H is 2
times lower than the equipartition magnetic field of 39 μ G
estimated by minimising t 126
given by H = $10^8/(\hat{\tau}^2)_{\text{b}})^{1/3}$ G. Using the above estimate $\hat{\tau}$ of
 $\sim 6.10^6$ yr we obtain H = 18.3 μ G. This value of H is 2
times lower than the equipartition magnetic field of 39 μ G
estimated by 126
given by $H = 10^8/(\hat{\gamma}^2 \nu_b)^{1/3}$ G. Using the above estimate $\hat{\gamma}$ of
 $\sim 6.10^6$ yr we obtain $H = 18.3 \mu$ G. This value of H is 2
times lower than the equipartition magnetic field of 39 μ G
estimated by minimi field strength of 14 μ G obtained by Burns et al. (1983) by given by $H = 10^8 / (\gamma^2 \gamma_b)^{1/3}$ G. Using the above estimate γ of $\sim 6.10^6$ yr we obtain $H = 18.3 \mu$ G. This value of H is 2 times lower than the equipartition magnetic field of 39μ G estimated by minimising the i times lower than the equipartition magnetic field of 39μ G
estimated by minimising the internal energy (Feigelson
et al., 1981). But our estimate is quite close to the
field strength of 14 μ G obtained by Burns et a deduced value of H is quite insensitive to uncertainties in the various parameters, excepting in the distance D which is fairly well known. It may be internal pressure due to relativistic

s and magnetic field. It may be noted that the

value of H is quite insensitive to uncertainties in

ous parameters, excepting in the distance D which is

ell known.

It may

particles and magnetic field. It may be noted that the
deduced value of H is quite insensitive to uncertainties in
the various parameters, excepting in the distance D which is
fairly well known.
It may be mentioned here th shocks (Norman et al., 1988), the morphology of the northern lobe of the inner double in Cen A was reproduced via an fairly well known.

It may be mentioned here that recently in the

numerical simulation studies of jet disruption caused by

shocks (Norman et al., 1988), the morphology of the northern

lobe of the inner double in Cen A w Fairly well known.

It may be mentioned here that recently in the

numerical simulation studies of jet disruption caused by

shocks (Norman et al., 1988), the morphology of the northern

lobe of the inner double in Cen A w segment used in our explanation. However, the possibility of shocks (Norman et al., 1988), the morphology of the northern
lobe of the inner double in Cen A was reproduced via an
oblique shock at the end of the jet. In this picture, the
hypothetical oblique shock replaces the observe shocks remains to be demonstrated. Moreover the idea of the twin jets interacting with the rotating shell segments hypothetical oblique shock replaces the observed shell
segment used in our explanation. However, the possibility of
the observed optical emission (non synchrotron) in such
shocks remains to be demonstrated. Moreover the id double. s remains to be demonstrated. Moreover the idea of the
s remains to be demonstrated. Moreover the idea of the
jets interacting with the rotating shell segments
ally explains the S-shaped structure of the inner
e.
The post

shell $\,$ segment 9 for the past \sim 10^7 yr is consistent with the conspicuous lack of radio emission between the radio peak A_c

and the next-peak- $B_N^{\phantom i}$ (Fig.7.la; 7.lc). The relativistic particles that had already advanced beyond the location into which the rotating shell segment subsequently moved in (and thus began to interrupt the jet flow) have, in the meanwhile, continued to advance further into the region of the radio peak $B_N^{\phantom i}$ and possibly further out, thus creating an emission trough between A_N and B_N . The lack of radio emission just beyond A_{N} (the NE inner lobe) is seen clearly on the VLA map (Fig.7.2a). In Fig.7.lc, the dotted curve drawn near the central region marks the location of several optical emission features and dust patches observed out to about 25' arc from the nucleus (as described e.g., by Blanco et al., 1975; Graham and Price, 1981). Within $\sim 4'$ arc NE of the nucleus, i.e., in the region where the jet is almost straight and discernible in radio and X-rays, the optical filaments appear to line up along the jet (Brodie et al., 1983; Dufour and van den Bergh, 1978), but subsequently their chain gradually bends clockwise, ending up in the region of the radio component B_N (Fig.7.lc; 7.la). It has been suggested by several authors that the formation of these filaments lying close to the trajectory of the jet has been triggered due to compression produced by the passage of the jet material in past (e.g.,Osmer, 1978; Graham, 1983; see also DeYoung,1981).

The gradual clockwise bending of the optical jet between the peaks A_N and B_N , as described above, could again be understood within the framework of the postulated clockwise rotation of the circumgalactic medium. But the rather abrupt

128
bending towards north, exhibited by the radio contours just
beyond the peak B_N seems more difficult to comprehend
(Fig.7.1c; 7.1a). This is particularly so because the region 128
bending towards north, exhibited by the radio contours just
beyond the peak B_N seems more difficult to comprehend
(Fig.7.1c; 7.1a). This is particularly so because the region
of the abrupt bend seems to be devoid of 128

bending towards north, exhibited by the radio contours just

beyond the peak B_N seems more difficult to comprehend

(Fig.7.lc; 7.1a). This is particularly so because the region

of the abrupt bend seems to be devoid of the abrupt bend seems to be devoid of any conspicuous, beyond the peak B_N seems more difficult to comprehend (Fig.7.1c; 7.1a). This is particularly so because the region of the abrupt bend seems to be devoid of any conspicuous, sharp optical feature like a shell segment (Fi bending towards north, exhibited by the radio contours just
beyond the peak B_N seems more difficult to comprehend
(Fig.7.lc; 7.la). This is particularly so because the region
of the abrupt bend seems to be devoid of any polarization properties of the region seem to give some clue about the origin of the abrupt bend in the jet flow near B_M . According to Gardner and Whiteoak (1971), the degree of linear polarization at 5 GHz is very high in this region, attaining a maximum of \sim 70% but generally remaining above bolarization properties of the region seem to give some clue
about the origin of the abrupt bend in the jet flow near B_N .
According to Gardner and Whiteoak (1971), the degree of
linear polarization at 5 GHz is very high ordered magnetic field which they found to be aligned in PA \sim 144 $^{\rm O}$ $\,$ near $\,$ the peak $\rm B_N$. The field would thus $\,$ be $\,$ roughly linear polarization at 5 GHz is very high in this region,
attaining a maximum of ~ 70 but generally remaining above
50 over a sizable area around B_N . This implies a highly
ordered magnetic field which they found to b of B_N . Note that the jet momentum and energy density has by over a sizable area around B_N . This implies a highly
ordered magnetic field which they found to be aligned in PA
 $\sim 144^\circ$ near the peak B_N . The field would thus be roughly
orthogonal to the direction of the jet f attaining a maximum of \sim /0% but generally remaining above
50% over a sizable area around B_N . This implies a highly
ordered magnetic field which they found to be aligned in PA
 $\sim 144^{\circ}$ near the peak B_N . The fie 50% over

ordered m
 $\sim 144^{\circ}$ ne

orthogonal

of B_N. N

presumably

expansion

plausible

determined

Fig.7.lc, sizable area around B_N . This implies a highly
netic field which they found to be aligned in PA
the peak B_N . The field would thus be roughly
to the direction of the jet flow into the region
e that the jet momentum and determined by the (well ordered) magnetic field. As seen from Fig.7.lc, there is indeed a striking agreement between the radio continuum ridge and the magnetic field orientation, as given by Gardner and Whiteoak, for the region beyond the peak B_{N} . Indeed, an analogous process may be responsible for the radio spur seen extending eastward in the southern lobe of Cen A between declinations -44° and -44° .5 (Fig.7.1c). The linear polarization observations of this region, also carried out by Gardner and Whiteoak (1971), again indicate a very

high degree of polarization (generally between 30% to 50% at 5 GHz) and a highly ordered magnetic field oriented eastwest, i.e., parallel to the radio spur observed in this part (Fig.7.lc).

CONCLUSIONS

A detailed comparison of the deep radio, optical and Xwest, i.e., parallel to the radio spur observed in this part

(Fig.7.1c).
 CONCLUSIONS

A detailed comparison of the deep radio, optical and X-

ray maps of the nearest double radio galaxy Centaurus A has

provided evide provided evidence to show that both the jet and counter-jet west, i.e., parallel to the radio spur observed in this part

(Fig.7.1c).
 CONCLUSIONS

A detailed comparison of the deep radio, optical and X-

ray maps of the nearest double radio galaxy Centaurus A has

provided evide impinging on optically visible shell segments located many kiloparsec away from the galactic nucleus. This circumstance clearly appears to be responsible for the formation of radio hotspots marked as A_N and B_S (see Fig.7.1c and Fig.7.2a). The clockwise extension of radio contours, as witnessed in both these and several other prominent radio peaks in this source (Fig.7.l and Fig.7.2), as well as their inversion symmetric configuration with respect to the nucleus can be understood if one postulates a general clockwise rotation field for all clockwise extension of radio contours, as witnessed in both
these and several other prominent radio peaks in this source
(Fig.7.1 and Fig.7.2), as well as their inversion symmetric
configuration with respect to the nucleus medium asociated with Cen A. This scenario could be an alternative to the hypothesis of a sustained anti-clockwise precession of the central engine, as proposed by some authors (e.g., Haynes et al., 1983). Our proposition gains support from the observed spatial coincidence between the bright radio and optical features revealed by the recent deep observations of Cen A. Further, in view of such spatial coincidence, it appears likely that the radio peaks often develop where the relativistic plasma, either inside the jet or within the lobes, happens to encounter complexes of thermal gas and stars. Thus, it may not be essential to invoke repetitive outbursts of nuclear activity in order to understand the multiplicity of radio peaks on the opposite develop where the relativistic plasma, either inside the jet
or within the lobes, happens to encounter complexes of
thermal gas and stars. Thus, it may not be essential to
invoke repetitive outbursts of nuclear activity in or within the lobes, happens to encounter complexes of
thermal gas and stars. Thus, it may not be essential to
invoke repetitive outbursts of nuclear activity in order to
understand the multiplicity of radio peaks on the o high-contrast photograph of Cen A similar to that reproduced in Fig.7.lb, but covering the entire area all the way to the outermost radio peaks in the lobes of Cen A.

The deflection of the jet due to encounter with the analysis of the situation would be possible by obtaining a
high-contrast photograph of Cen A similar to that reproduced
in Fig.7.1b, but covering the entire area all the way to the
outermost radio peaks in the lobes of Ce in Fig. 7.1b, but covering the entire area all the way to the
outermost radio peaks in the lobes of Cen A.
The deflection of the jet due to encounter with the
shell segment 9 and the resultant formation of the north-
east seems feasible for a gas density in the shell of $\geq 3.10^{-28}$ gm cm^{-3} . If, as in the case of this radio lobe, the shell responsible for the formation of any given radio lobe can be shell segment 9 and the resultant formation of the north-
eastern inner radio lobe (A_N) , as proposed in our model,
seems feasible for a gas density in the shell of $\geq 3.10^{-28}$ gm
cm⁻³. If, as in the case of this rad The deflection of the jet due to encounter with the
shell segment 9 and the resultant formation of the north-
eastern inner radio lobe (A_N) , as proposed in our model,
seems feasible for a gas density in the shell of \geq knowledge of the age, coupled with any observed break in the cm⁻³. If, as in the case of this radio lobe, the shell
responsible for the formation of any given radio lobe can be
identified, the age of the lobe could be estimated by
considering the dynamics of the interacting shell. seems reasible for a gas density in the shell of ≥ 3.10 ⁻⁻ gm
cm⁻³. If, as in the case of this radio lobe, the shell
responsible for the formation of any given radio lobe can be
identified, the age of the lobe cou responsible for the formation of any given facto fobe can be
identified, the age of the lobe could be estimated by
considering the dynamics of the interacting shell. A
knowledge of the age, coupled with any observed break energy or minimum pressure condition.

CHAPTER VIII

CONSTRAINTS ON SOME PHYSICAL PARAMETERS OF CLASSICAL DOUBLE RADIO SOURCES

8.1 INTRODUCTION

CHAPTER VIII

CONSTRAINTS ON SOME PHYSICAL PARAMETERS OF

CLASSICAL DOUBLE RADIO SOURCES

INTRODUCTION

Radio galaxies with their classical double radio

ology are best understood in terms of the continuous

model (Blandfo morphology are best understood in terms of the continuous beam model (Blandford and Rees, 1974; Scheuer, 1974). In this model, basically there is a continuous supply of energy from the active nucleus of the parent galaxy to the outer regions, in the form of a pair of anti-parallel "jets" or "beams" of relativistic plasma and magnetic field. In the case of Radio galaxies with their classical double radio
norphology are best understood in terms of the continuous
beam model (Blandford and Rees, 1974; Scheuer, 1974). In this
model, basically there is a continuous supply of ener supersonic, which upon impinging on the external medium create shocks on either side of the 'contact discontinuity'. In the region after the reverse shock, the directed flow of the beam plasma gets disrupted and the velocities are significantly randomized. The ensuing substantial radiative losses in that region give rise to a radio "hotspot". Only a fraction of the kinetic power of the beam plasma is used up in producing relativistic plasma inside the hotspot and of that only a fraction is lost as radiation. While radiating away part of their energy inside the continuously advancing hotspot, the particles are subjected to the ram pressure of the external medium and, thus, stream in the direction of the nucleus, filling an extensive region called a "lobe" or "bridge". In this region the electrons with reduced energies

132
(due to adiabatic expansion losses) radiate in diluted
magnetic fields. magnetic fields.

Intrinsic parameters derived from the observations of these sources are essential for arriving at an understanding of the relevant physical processes. In this chapter we obtain some of the diabatic expansion losses) radiate in diluted
magnetic fields.
Intrinsic parameters derived from the observations of
these sources are essential for arriving at an understanding
of the relevant physical proces sample of 10-bright, powerful $(\texttt{L}\,{\sim}10^{\textstyle 44}\textstyle\overset{\textstyle +}{\textstyle -}1\textstyle \textstyle \textstyle \text{e}^{-1})$ hotspots (Saripalli and Gopal-Krishna, 1985). This approach, also these sources are essential for arriving at an understanding
of the relevant physical processes. In this chapter we obtain
some of the intrinsic parameters using a representative
sample of 10 bright, powerful $(L \sim 10^{44 \pm$ and dynamics of the jet-hotspot interaction. Such a study is some of the intrinsic parameters using a representative
sample of 10 bright, powerful $(L \sim 10^{44} \text{H}^{-1} \text{erg s}^{-1})$ hotspots
(Saripalli and Gopal-Krishna, 1985). This approach, also
employed by Perley et al. (1984), is ba which possess hotspots near their extremities (Fanaroff and Riley, 1974). palli and Gopal-Krishna, 1985). This approach, also
yed by Perley et al. (1984), is based on the energetics
ynamics of the jet-hotspot interaction. Such a study is
lly possible only for powerful double radio sources
posses

intrinsic parameters of a radio source like its beam power, it is essential to know the level of efficiency with which the bulk kinetic energy of the beam gets converted into radio power. For example, a powerful radio source could be formed with intrinsically weak beams provided the conversion efficiency is high and vice versa. Giant radio galaxies are examples where although they appear to be relatively weak in their radio output (Saripalli et al., 1986), their beams are, very likely intrinsically powerful (Gopal-Krishna, Wiita and Saripalli, 1988; also see Chapter VI). The determination of this efficiency factor is difficult, as one must include all possible loss mechanisms like adaibatic expansion losses, inverse Compton losses, losses incurrerd due to entrainment

(De Young, 1986), - thermal plasma heating (Eilek, 1982) etc. Moreover, these are all model dependent (see Rawlings and Saunders, 1988). Even so, values of 1-30% have been estimated 13:
(De Young, 1986), thermal plasma heating (Eilek, 1982) etc
Moreover, these are all model dependent (see Rawlings and
Saunders, 1988). Even so, values of 1-30% have been estimated
for the conversion efficiency in the li 1984; Begelman, Blandford and Rees, 1984; Gopal-Krishna and Saripalli, 1984a; Gopal-Krishna, Wiita and Saripalli, 1988). bung, 1986), thermal plasma heating (Eilek, 1982) etc.

ver, these are all model dependent (see Rawlings and

ers, 1988). Even so, values of 1-30% have been estimated

the conversion efficiency in the literature (Dreher,

properties of 10 powerful sources, possessing bright, compact hotspots, to calculate the efficiency of conversion of beam power into synchrotron radio power from the hotspot, making some simple assumptions, which are spelled out in the next In this chapter we use the observed jet-hotspot
properties of 10 powerful sources, possessing bright, compact
hotspots, to calculate the efficiency of conversion of beam
power into synchrotron radio power from the hotspot, unity, the analysis yields rather stringent lower limits to the bulk velocity of the beam material (which cannot be measured directly).

From a variety of observational evidences, it is well established that the beams are relativistic on parsec scales (see, Bridle and Perley, 1984; Begelman, Blandford and Rees, 1984). However, on the kilo-parsec scales the situation is far from being clear (see review by Bridle, 1986). Support for relativistic velocities on kiloparsec scales comes from the observed one-sidedness of parsec and kilo-parsec jets occurring on the same side of the nucleus (Scheuer, 1987), and more recently, from the depolarization asymmetries in the lobes of classical double radio sources (Laing, 1988). for relativistic velocities on kiloparsec scales comes from
for relativistic velocities on kiloparsec scales comes from
the observed one-sidedness of parsec and kilo-parsec jets
occurring on the same side of the nucleus (S

134

quasars (Bridle, 1986) is taken as evidence against

relativistic jet velocities on kilo-parsec scales (see

however, Kundt and Gopal-Krishna, 1981). Employing the above relativistic jet velocities on kilo-parsec scales (see however, Kundt and Gopal-Krishna, 1981). Employing the above mentioned idea of jet-hotspot interaction, we obtain limits IS4
Indians (Bridle, 1986) is taken as evidence against
relativistic jet velocities on kilo-parsec scales (see
however, Kundt and Gopal-Krishna, 1981). Employing the above
mentioned idea of jet-hotspot interaction, we obta quasars (Bridle, 1986) is taken as evidence against
relativistic jet velocities on kilo-parsec scales (see
however, Kundt and Gopal-Krishna, 1981). Employing the above
mentioned idea of jet-hotspot interaction, we obtain l the relativistic electrons outflowing from the hotspot into however, Kundt and Gopal-Krishna, 1981). Employing the above
mentioned idea of jet-hotspot interaction, we obtain limits
for the beam bulk velocities for sources in our sample of
compact, powerful hotspots. The bulk stream mentioned idea of jet-hotspot interaction, we obtain limits
for the beam bulk velocities for sources in our sample of
compact, powerful hotspots. The bulk streaming velocity of
the relativistic electrons outflowing from th mentioned idea of jet-hotspot interaction, we obtain limits
for the beam bulk velocities for sources in our sample of
compact, powerful hotspots. The bulk streaming velocity of
the relativistic electrons outflowing from th compact, powerful hotspots. The bulk streaming velocity of
the relativistic electrons outflowing from the hotspot into
the lobe is again poorly known. The distribution of the
magnetic field in the hotspot might significant the relativistic electrons outflowing from the hotspot into
the lobe is again poorly known. The distribution of the
magnetic field in the hotspot might significantly govern the
flow speeds of the electrons (Eilek, 1982). T and Gopal-Krishna, 1985). speeds of the electrons (Eilek, 1982). The method
ibed in Section 8.1 provides limits to the outflow
ity of the plasma within individual hotspots (Saripalli
opal-Krishna, 1985).
The dependence of radio structure on the lum

radio galaxies is well known (Fanaroff and Riley, 1974). As shown by Jenkins and McEllin (1977), the fractional flux in the hotspots [defined as $C =$ (Flux density from hotspot < 15 kpc in extent)/(total flux density-flux density excluding the and Gopal-Krishna, 1985).

The dependence of radio structure on the luminosity of

radio galaxies is well known (Fanaroff and Riley, 1974). As

shown by Jenkins and McEllin (1977), the fractional flux in

the hotspots [def luminosity, L, of the source. In Section 8.2, we sketch a The dependence of radio structure on the luminosity of
radio galaxies is well known (Fanaroff and Riley, 1974). As
shown by Jenkins and McEllin (1977), the fractional flux in
the hotspots [defined as C = (Flux density from assumptions namely, an equipartition of energy between the radiating particles and magnetic field and a spherical shape for the hotspots, to explain the C-L correlation. New interluminosity, L, of the source. In Section 8.2, we sketch a
scenario based on the beam model, and on the simple
assumptions namely, an equipartition of energy between the
radiating particles and magnetic field and a spheric properties are derived. It is found that hotspots powered by non-relativistic beams $(V_h \leq 0.1c)$ can atmost ce. In Section 8.2, we sketch a
am model, and on the simple
ipartition of energy between the
netic field and a spherical shape
n the C-L correlation. New inter-
source luminosity and hotspot
is found that hotspots powered

luminosities of $\sim 10^{44}$
relativistic beams can a
distinct change in the mo erg s $^{-1}$ 135

While those powered by

uch higher luminosities. A

p of the hotspots is found to relativistic beams can attain much higher luminosities. A distinct change in the morphology of the hotspots is found to occur for luminosities $\geq 10^{46}$ erg s $^{-1}$ (Gopal-Krishna and Saripalli, 1984a). The slab-like geometry inferred for such powerful hotspots resembles the reported sub-arcsecond resolution maps of hotspots in some powerful radio sources (Dreher, 1981; Begelman, Blandford and Rees, 1984). Saripalli, 1984a). The slab-like geometry inferred for such
powerful hotspots resembles the reported sub-arcsecond
resolution maps of hotspots in some powerful radio sources
(Dreher, 1981; Begelman, Blandford and Rees, 19

8.1.1 Constraints on the jet/hotspot parameters

is radio luminous (L \sim 10⁴⁴ \pm 1 erg s⁻¹) and compact, having a radius $r_{\rm hs}$ \leq 1 kpc which is atleast 100 times smaller than the overall size of the associated radio source. The observed parameters of these representative, bright hotspots are listed in Table 8.1.1. Also listed are the flux density S_{α} at some frequency $\sqrt{2}$ and the ratio of the hotspot flux to that of the radio lobe associated with it. A Hubble constant of H_0 $=$ 75 kms $^{-1}$ Mpc $^{-1}$ and q° = 0 have been used in this section.

Assumptions : The hotspots are assumed to be spherical and filled uniformly with relativistic electrons and magnetic field, radiating under the condition of minimum energy density (Burbidge, 1959). The radio spectrum of the hotspot is assumed to be straight between a turnover frequency ϑ_+ , due to synchrotron self-absorption, and an upper limiting frequency $\delta_{\rm u}$ = 10 GHz (Scheuer, 1982).

Source (hot spot)	\overline{z}	Overall size of the radio source							
				r_{hs}			S_0 (hot spot) atv _o		
		$($ ")	(kpc)	$($ " $)$	(kpc)	(Jy)	(GHz)	$\left(\frac{S_0}{S_{\text{lobe}}}\right)_{\mathbf{v}_0}$	
$0312 - 034$ (SW 2) $(4C - 03.11)$	1.072	42	317	0.12	0.91	0.076	(4.87)	0.46	1
$0610 + 260$ (NW) (3C.154)	0.580	51	297	0.025	0.15	0.75	(0.327)	0.10	$2 - 4$
$0835 + 580$ (SW 1) (3C 205)	1.534	17	140	0.011	0.09	0.66	(1.666)	0.50	5, 1
$0843 + 136$ (SW) (4C13.39)	1.875	\overline{c}	17	≤ 0.01	$\lesssim 0.08$	0.18	(1.417)		6
$1137 + 660$ (SE) (3C263)	0.652	44	272	$\lesssim 0.11$	≤ 0.68	0.516	(4.87)	0.74	1, 7
$1206 + 439$ (SW) (3C268.4)	1.400	10	81	0.1	0.81	0.5	(1.417)	0.33	6, 8
$1957 + 405$ (SE) (Cygnus A)	0.056	124	127	0.6	0.62	10	(22.5)	0.36	9,10
$2325 + 293$ (SE 2) (4C29.68)	1.015	50	370	0.14	1.04	0.07	(4.87)	0.33	1
$2338 + 042$ (SE) (4C 04.81)	2.594	$\overline{3}$	27	0.01	0.09	0.46	(1.417)		6, 11
$2354 + 144$ (SE) (4C14.85)	1.810	11	93	0.015	0.13	0.05	(1.417)	0.07	6, 8

Table 8:1.1 The observed parameters of the 10 hot spots

References: (1) Swarup et al. (1984); (2) G. Swarup (private communication); (3) Kapahi et al. (1974); (4) S. Ananthakrishnan (private communication 1983); (5) Lonsdale and Barthel (1984); (6) Barthel (1983); (7) Owen et al. (1978); (8) Hintzen et al. (1984); (9) Dreher (1981); (10) Dreher (1979); (11) Barthel and Lonsdale (1983)

 $\mathcal{S}^{\text{max}}_{\text{max}}$

8.1.2 The Estimated Jet/Hotspot Parameters

The value of v_t is computed using the following 9.1.2 The Estimated Jet/Hotspot Parameters
The value of v_t is computed using the following
expression (Kellermann and Pauliny-Toth, 1981) and is
adjusted iteratively to become consistent with the minimum
energy conditio adjusted iteratively to become consistent with the minimum energy condition timated Jet/H

ue of V_t i

(Kellermann

ratively to b

ion

(MHz) = 33 B^{1/5}

he magnetic f 8.1.2 The Estimated Jet/Hotspot Parameters

The value of v_t is computed using the following

expression (Kellermann and Pauliny-Toth, 1981) and is

adjusted iteratively to become consistent with the minimum

energy cond

$$
v_t
$$
(MHz) = 33 B^{1/5} $\theta^{-4/5}$ S^{2/5}_{peak} (1+z)^{1/5} ... (8.1)

(arcsec), $\,$ is redishift and S $^{\rm peak}$ is the peak flux density (Jy) extrapolated from the observed flux density S_o at a frequency ϑ where the hot spot is transparent, using a spectral index

$$
S_{\text{peak}} = S_{\text{o}} (v_{\text{o}} / v_{\text{t}})^{\alpha}
$$

Now, assuming the hot spot to be in a steady state, maintaining a pressure balance with the directed pressure of the jet fluid, one gets in the frame of the hot spot: $S_{peak} = S_o(v_o/v_t)^{\alpha}$

ing the hot spot to be in a steady state

a pressure balance with the directed pressure c

id, one gets in the frame of the hot spot:
 $\rho_j v_j^2 \gamma_j^2 = u_{hs}/3$

...(8.2)

and V. are the density and bulk vel

$$
\rho_{j} v_{j}^{2} \gamma_{j}^{2} = u_{hs}/3
$$
 (8.2)

where β_{i} and V_{i} are the density and bulk velocity of the jet fluid, respectively and γ is the bulk Lorentz factor = [1the jet fluid, one gets in the frame of the hot spot:
 $\rho_j V_j^2 \gamma_j^2 = u_{hs}/3$...(8.2)

where \int_{j}^{2} and V_j are the density and bulk velocity of the jet

fluid, respectively and \int_{j}^{2} is the bulk Lorentz factor = $\rho_j v_j^2 \gamma_j^2 = u_{hs}/3$...(8.2)
where \int_{j}^{∞} and V_j are the density and bulk velocity of the jet
fluid, respectively and Y_j is the bulk Lorentz factor = [1-
 $(V_j/c)^2]^{-1/2}$. Now, if the jet kinetic power, L_j, gets efficiency ϵ , then: 2. Now, if
into radiation
 ϵ , then:
hs $\epsilon = \pi r_j^2 \rho_j c$ density and bulk velocity of the jet
 \int_{j} is the bulk Lorentz factor = [1]

the jet kinetic power, L_j, get

in inside the hot spot with a ne
 $V_{j} \gamma_{j} (\gamma_{j} - 1)$...(8.3)

8.2) and Eq.(8.3). where \int_{j}^{s} and V_{j}^{+} are the density and bulk to
fluid, respectively and V_{j}^{+} is the bulk Lor
 $(V_{j}/c)^{2}]^{-1/2}$. Now, if the jet kinetic
converted into radiation inside the hot
efficiency ϵ , then:
 $L_{j} = L$ ti
 $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ is $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ converted into radiation inside the hot spot with a net
efficiency ϵ , then:
 $L_j = L_{hs}/\epsilon = \pi r_j^2 \rho_j c^2 v_j \gamma_j (\gamma_j - 1)$...(8.3)
Eliminating β_j from Eq.(8.2) and Eq.(8.3):

$$
L_{j} = L_{hs}/\epsilon = \pi r_{j}^{2} \rho_{j} c^{2}V_{j} \gamma_{j} (\gamma_{j} - 1)
$$
 (8.3)

$$
L_{j} = L_{hs}/\epsilon = \pi r_{j}^{2} \rho_{j} c^{2}v_{j} \gamma_{j} (\gamma_{j} - 1)
$$
\n
$$
L_{j} = L_{hs}/\epsilon = \pi r_{j}^{2} \rho_{j} c^{2}v_{j} \gamma_{j} (\gamma_{j} - 1)
$$
\n
$$
L_{j} = \text{from Eq. (8.2) and Eq. (8.3):}
$$
\n
$$
E = 3.18.10^{-11} \cdot \frac{L_{hs}}{v_{hs} r_{j}^{2}} \frac{\gamma_{j} + 1}{\gamma_{j} - 1} \gamma_{2}
$$
\n(8.4)

A lower limit to E is obtained by considering the maximum A lower limit to ϵ is obtained by considering the maximum
possible values for γ_{j} and r_{j} (i.e., $\gamma_{j} = \infty$ and $r_{j} = r_{hs}$);
these values of ϵ_{min} are given in Table 8.1.2. We adopt 0.3
as the maximum possib these values of $\epsilon_{\texttt{min}}$ 137

and r_j (i.e., $Y_j = \infty$ and $r_j = r_{hs}$);

are given in Table 8.1.2. We adopt 0.3

ble value of \in , which is well below

fraction of the energy supplied to the as the maximum possible value of ϵ , which is well below unity, since a good fraction of the energy supplied to the hot spots does not get radiated away within them but flows out, giving rise to diffuse radio lobes (Table 8.1.1; also these values of ϵ_{min} are given in Table 8.1.2. We adopt 0.3
as the maximum possible value of ϵ , which is well below
unity, since a good fraction of the energy supplied to the
hot spots does not get radiated away wit possible values for Y_j and r_j (i.e., $Y_j = \infty$ and r
these values of ϵ_{min} are given in Table 8.1.2. We
as the maximum possible value of ϵ , which is we
unity, since a good fraction of the energy supplie
hot spots $max = 0.3$ = r_{hs}), Eq.(8.4) yields a lower limit to V_j (Table $8.1.2$). The v_j^{min} , ise to diffuse radio lobes (Table 8.1.1; also

shna and Saripalli, 1984a). Thus, for the

le values of \in and r_j (i.e., $\in = \in_{max} = 0.3$), Eq.(8.4) yields a lower limit to V_j (Table

min, in turn, yields via Eq.(8.2) rest-mass density of the jet material. The computed values of are given in Table 8.1.2, together with those of the max maximum rest-mass flux flowing through the jet: M_i^{max} , where $\mathbf{M}^{\text{max}}_{j} = \pi r$ 1s), Eq.(8.4) yields a lower

y^{min}, in turn, yields via

1sity of the jet material.

iven in Table 8.1.2, toget!

1 mass flux flowing through
 $\frac{2}{j} \rho_j v_j \gamma_j = \pi r_j^2 \rho_j (u_{hs}/3\rho_j)^{1/2}$

1 max/3)^{1/2} [see Eq.(8.2)]. and $r_j = r_{hs}$, Eq.(8.4) yields a lowe

8.1.2). The V_j^{min} , in turn, yields

rest-mass density of the jet material
 \int_j^{max} are given in Table 8.1.2, togen

maximum rest-mass flux flowing through
 $M_j = \pi r_j^2 \rho_j V_j \gamma_j = \pi r_j$ $r_{\rm bs}$ = $r_{\rm bs}$, Eq.(8.4) yields a lower limit to V_j (Table

. The V_j^{min}, in turn, yields via Eq.(8.2) the maximum

aass density of the jet material. The computed values of

are given in Table 8.1.2, together wi n, yields
et material
8.1.2, tog
wing throug
 $\frac{2}{j} \rho_j (u_{hs}/3 \rho_j)$
ee Eq.(8.2) *J* ty of the set of the set of the set of the set of V_j $\gamma_j =$
 \max_{j} /3) $^{1/2}$ e
2
hs lensity of the jet material.

given in Table 8.1.2, toge

st-mass flux flowing through
 $\pi r_j^2 \rho_j v_j \gamma_j = \pi r_j^2 \rho_j (u_{hs}/3\rho_j)$
 $(u_{hs} \rho_j^{max}/3)^{1/2}$ [see Eq.(8.2)].

sove estimates of the effici test-mas
 $\pi r_j^2 \rho_j$
 $\frac{2}{\text{hs}} (u_{\text{hs}} \rho_j^{\text{max}})$ ned by considering the
 j (i.e., $\gamma_j = \infty$ and r_j

en in Table 8.1.2. We added to the action of the energy supplied J

The above estimates of the efficiency ϵ with which the jet fluid (synchrotron plasma) injected into the hotspot gets converted into radiation can be used to determine the bulk outflow speed, V_{out}, of the synchrotron plasma from the The above estimate
jet fluid (synchrotron
converted into radiat
outflow speed, V_{out} ,
hotspots. If $\hat{\zeta} \sim r$
volume element of the hs $^{\rm 7V}$ out ^{is} the average time spent by a volume element of the synchrotron plasma inside the hot spot of total volume V_{hs},starting from the moment of its injection at the jet outlet (=shock front) presumably located near the centre of the hot spot, then volume V_{hs} , starting from
jet outlet (=shock from
f the hot spot, then
 b ol $/V_{hs}$)(U_{hs} $/V_{hs}$) ~ r_{hs} L_{hs}^{bol} e article in the control

(a) the control

(a) the control of the control

(a) the control of the control of

(a) the control of the control of the

= τ (L^{po1}/V_{hs})(U_{hs}/V_{hs}) ~ r_{hs} L^{po1}/U_{hs} V $\dots(8.5)$

Here $U_{\text{h} \text{s}}$ is the energy in the hot spot. Now, from Eqs.(8.4) and (8.5): the energy in the hot spot. Now,

5):
 $V_{\text{out}} \sim 0.25c \{ (\gamma_j - 1)/(\gamma_j + 1) \}^{1/2} (\frac{r_j}{r_{\text{hs}}})^2$ $0.25c$ { (γ _j
 \sim outflow the hot spot. Now
 $\frac{1}{r}$
 $\frac{1}{r}$

$$
V_{\text{out}} \sim 0.25c \left\{ (\gamma_j - 1)/(\gamma_j + 1) \right\}^{1/2} (\frac{r_j}{r_{\text{hs}}})^2
$$
 ... (8.6)

Evidently, the outflow speed of the relativistic plasma from a hot spot increases with the jet velocity and attains a maximum, V_{out} \sim 0.25 c for the maximum possible values of ~ (
the
t ir
(i. and (8.5) :
 $V_{\text{out}} \sim 0.25c \{ (\gamma_j - 1)/(\gamma_j +$

Evidently, the outflow speed of

a hot spot increases with the j

maximum, $V_{\text{out}} \sim 0.25 c$ for the
 γ_j and r_j (i.e., $\gamma_j = \infty$ and
 V_{out} for each hot spot, derived $r_j = r_{hs}$). A lower limit to V out out a bizactif_j = $17/(1)$ + 1) $\frac{1}{100}$ + $\frac{1}{100}$...(8.6)

htly, the outflow speed of the relativistic plasma from

t spot increases with the jet velocity and attains a

um, $V_{\text{out}} \sim 0.25$ c for the maximum po Eq45), is given in Table 8.1.2. The range, thus estimated for V_{out} , defines a range for the average time $\tilde{\iota}$ which the synchrotron plasma is expected to spend within the hot spot. γ j and r_j (i.e., $\gamma_j = \infty$ and $r_j = r_{hs}$). A lower limit to v_{out} for each hot spot, derived by setting $\epsilon = \epsilon_{\text{max}} = 0.3$ in Eq.(5), is given in Table 8.1.2. The range, thus estimated for v_{out} , defines a r V_{out} for each hot spot, derived by setting $\epsilon = \epsilon_{\text{max}} = 0.3$ in Eq.(5), is given in Table 8.1.2. The range, thus estimated for V_{out} , defines a range for the average time $\tilde{\tau}$ which the synchrotron plasma is Eq.(85), is given in Table 8.1.2. The range
for V_{out}, defines a range for the average tsynchrotron plasma is expected to spend with
These limiting values of \hat{C} , in turn, yie
range for the frequency \hat{V}_{b} , above $\left(-3\frac{1}{r_{\rm hs}^2} \right)$. As seen Eq.(55), is given in Table 8.1.2. The range, thus estimated
for V_{out} , defines a range for the average time $\tilde{\tau}$ which the
synchrotron plasma is expected to spend within the hot spot.
These limiting values of $\hat{\$ synchrotron plasma is expected to spend within the
These limiting values of \hat{C} , in turn, yield the
range for the frequency \hat{V}_b , above which synchrotr
would steepen the spectrum ($\hat{V}_b = 10^{24}V_{out}^2B^{-3}r_{hs}^{-2}$ These limiting values of \hat{C} , in turn, yield the expected
range for the frequency \hat{V}_b , above which synchrotron losses
would steepen the spectrum ($\hat{V}_b = 10^{24} v_{\text{out}}^2 B^{-3} r_{\text{in}}^2$). As seen
from Table 8.1.2, 10 GHz. Such a consistency check was found to limit the
initial choice of λ_{H} to a maximum of the order of 100 GHz for all the 10 hot spots Table 8.1.2, the derived range for $V_{\rm b}$ for all the hot
encompasses the originally assumed value of $\hat{V}_{\rm u}$ =
z. Such a consistency check was found to limit the
al choice of $V_{\rm u}$ to a maximum of the order of 1

8.1.2, the estimated upper limit to the thermal gas density, $\rho_{\rm hfs}^{\rm max}$ (as well as the corresponding upper limit to the mass, ni or
.lma
.lma
.hs
.hs
.ee $M_{h_S}^{max}$). These are evaluated by considering that the outflow Fu

8.1.2,

² max

hs

(hs

seed V

should

a max out 10 hot spots

, for each hot spot, we have given in Table

estimated upper limit to the thermal gas density,

11 as the corresponding upper limit to the mass,

e are evaluated by considering that the outflow

of the relat should not exceed the Alfven speed: V_A = B_{hs} (4 $\pi \rho$ $_{hs}$) . This gives 2, the estimat

(as well as t

). These are

V_{out} of the

ld not exceed t

max = $(B_{\text{hs}}/v_{\text{out}}^{\text{min}})^2$ $\rho_{\text{hs}}^{\text{max}} = (B_{\text{hs}}/v_{\text{out}}^{\text{min}})$. The last column in Table 8.1.2

 \mathcal{L}

Table $8.1.2$				The derived physical parameters of the hot spots and of the associated jets [*]										
Name	v_t	L_{hs}^{bol}	U_{hs}^{min}	u_{hs}^{min}	B_{hs}^{min}	$\varepsilon_{\sf min}$	V^{\min}_j	ϱ_j^{\max}	$\dot{M}^{\rm max}_j$	$V_{\rm out}^{\rm min}$	Range for v_b	ρ_{hs}^{max}	$M_{\rm ks}^{\rm max}$	$\gamma_e^{\rm min}$
	MHz	$erg s^{-1}$	erg	$erg cm^{-3}$	Gauss			$gm \, cm^{-3}$	M_{\odot} yr $^{-1}$		GHz	$gm cm-3$	M_{\odot}	
$0312 - 034$ (SW 2)	28.7	4.210^{43}	6.210^{56}	7.110^{-9}	2.810^{-4}	0.025	0.163c	9.710^{-29}	0.187	0.021c	$2.4 - 349$	$1.610 - 26$	7.410 ⁵	230
	46.6	7.110^{43}	9.3 10 ⁵⁶	1.110^{-8}	$3.410 - 4$	0.028	0.186c	1.110^{-28}	0.248	0.023c	$1.7 - 191$	$1.810 - 26$	8.310 ⁵	266
$0610 + 260$ (NW)	115.0	1.710^{43}	3.210^{55}	$8.510 - 8$	9.610^{-4}	0.032	0.211c	$6.810 - 28$	0.044	0.027c	$3.7 - 320$	1.110^{-25}	2.110 ⁴	218
	125.2	1.110^{43}	2.8×10^{55}	$7.410 - 8$	$8.910 - 4$	0.024	0.162c	$1.010 - 27$	0.050	0.020c	$2.6 - 390$	$1.710 - 25$	3.310 ⁴	236
$0835 + 580$ (SW1)	336.9	3.410^{44}	8.01055	$8.810 - 7$	3.110^{-3}	0.159	0.829c	1.510^{-28}	0.026	0.133c	$7.0 - 25$	$4.810 - 26$	2.210 ³	262
	390.2	3.510^{44}	8.210^{55}	$9.110 - 7$	3.110^{-3}	0.158	0.823c	1.610^{-28}	0.027	0.131c	$6.5 - 24$	5.010^{-26}	2.310 ³	282
$0843 + 136$ (SW)	226.6	1.510^{44}	4.9 10 ⁵⁵	6.410^{-7}	2.610^{-3}	0.111	0.651c	3.210^{-28}	0.028	0.093c	$6.2 - 45$	7.110^{-26}	2.610 ³	250
	268.3	1.610^{44}	5.110^{55}	6.710^{-7}	2.710^{-3}	0.110	0.647c	3.410^{-28}	0.029	0.092c	$5.7 - 42$	7.610^{-26}	2.810 ³	267
$1137 + 660$ (SE)	58.1	8.31043	6.110^{56}	1.610^{-8}	4.210^{-4}	0.038	0.247c	$9.210 - 29$	0.154	0.031c	$2.8 - 179$	1.610^{-26}	$3.1\,10^5$	239
	88.1	1.310^{44}	8.41056	2.210^{-8}	4.910^{-4}	0.042	0.274c	1.010^{-28}	0.188	0.035c	$2.2 - 110$	1.710^{-26}	3.310 ⁵	272
$1206 + 439$ (SW)	52.4	2.410^{44}	1.410^{57}	2.210^{-8}	4.810^{-4}	0.059	0.378c	$4.810 - 29$	0.185	0.049c	$3.2 - 82$	$8.610 - 27$	2.810 ⁵	256
	71.1	2.910^{44}	1.610^{57}	$2.610-8$	5.310^{-4}	0.058	0.373c	5.910^{-29}	0.223	0.048c	$2.4 - 63$	$1.010 - 26$	3.310 ⁵	284
$1957 + 405$ (SE)	60.7	2.210^{43}	2.610^{56}	9.610^{-9}	3.210^{-4}	0.021	0.140c	$1.810 - 28$	0.137	0.018c	2.4-490	3.010^{-26}	4.310 ⁵	224
	106.5	4.710^{43}	4.3 10 ⁵⁶	1.610^{-8}	4.210^{-4}	0.027	0.179c	$1.810 - 28$	0.176	0.023c	$1.9 - 225$	3.010^{-26}	4.310 ⁵	259
$2325 + 293$ (SE 2)	24.5	3.410^{43}	6.710^{56}	5.110^{-9}	2.310^{-4}	0.021	0.141c	9.410^{-29}	0.204	0.018c	$2.2 - 438$	1.610^{-26}	$1.1 \, 10^6$	232
	40.4	5.910^{43}	1.010^{57}	7.710^{-9}	2.910^{-4}	0.024	0.160c	$1.110 - 28$	0.271	0.020c	$1.5 - 234$	$1.810 - 26$	1.210 ⁶	265
$2338 + 042$ (SE)	340.3	8.31044	1.210^{56}	1.410^{-6}	3.910^{-3}	0.244	0.979c	2.310^{-29}	0.013	0.203c	$8.2 - 12$	3.310^{-26}	1.510 ³	280
	388.2	8.5 10 ⁴⁴	1.3 1056	1.510^{-6}	4.010^{-3}	0.244	0.979c	2.310^{-29}	0.013	0.204c	$7.9 - 12$	$3.310 - 26$	1.510 ³	295
$2354 + 144$ (SE)	103.2	4.410^{43}	4.41055	$1.710 - 7$	1.410^{-3}	0.053	0.341c	$4.910 - 28$	0.040	0.044c	$4.4 - 143$	$8.610 - 26$	1.110 ⁴	228
	131.6	5.010^{43}	4.9 1055	1.910^{-7}	$1.410 - 3$	0.053	0.342c	5.510^{-28}	0.045	0.044c	$3.7 - 120$	9.610^{-26}	1.210 ⁴	257

The derived physical parameters of the hot spots and of the associated jets^{*}

The values given in the first and second row for each hot spot refer to $\alpha = -0.6$ and -0.9 , respectively. (α is defined as: $S_v \sim v^2$). These values of α essentially cover the range relevant for hot spots (e.g., Miley, 1980; Bedford et al., 1981)

_ gives for each hot spot the Lorentz factor v ein le down to 139
gives for each hot spot the Lorentz factor γ_{ρ}^{min} down to
which, at least, the energy spectrum of the relativistic
electrons should continue to rise. In terms of the spectral
turnover frequency ϑ (Table 8.1.2 electrons should continue to rise. In terms of the spectral gives for each hot spot the Lorentz factor $\gamma_{\rm e}^{\rm min}$ down
which, at least, the energy spectrum of the relativie
electrons should continue to rise. In terms of the spectrurnover frequency $\hat{v}_{\rm t}$ (Table 8.1.2), it nich, at least, the
lectrons should cont
urnover frequency V_t
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$ $\gamma_{\rm e}^{\rm min} \sim 0.5 [\nu_{\rm t}^{\rm (1+z)/B} _{\rm hs}]$ which, at least, the energy spectrum of the relativistic
electrons should continue to rise. In terms of the spectral
turnover frequency γ_t (Table 8.1.2), it is expressed as:
 $\gamma_{\rm e}^{\rm min} \sim 0.5[\nu_t(1+z)/\beta_{\rm hs}]^{1/2}$
8.1.

8.1.3 Discussion

The limits to the various jet parameters, as derived $y_e^{\text{min}} \sim 0.5 \left[v_t(1+z)/B_{\text{hs}} \right]^{1/2}$

8.1.3 Discussion

The limits to the various jet parameters, as derived

above, within the framework of the beam model, are

conservative estimates since they refer to the maximum
 possible value of the jet radius (i.e., $r^{}_{\tt i}$ = $r^{}_{\tt h c}$). As seen from Table 8.1.2, the hot spots in our sample must radiate away The limits to the various jet parameters, as derived
above, within the framework of the beam model, are
conservative estimates since they refer to the maximum
possible value of the jet radius (i.e., $r_j=r_{hs}$). As seen fro efficiency of 2-25%. Clearly, these lower limits to ϵ would conservative estimates since they refer to the maximum
possible value of the jet radius (i.e., $r_j=r_{hs}$). As seen from
Table 8.1.2, the hot spots in our sample must radiate away
the jet kinetic power supplied to them at a assumed condition of minimum total energy (Eq.8.4). But, from Table 8.1.2, the hot spots in our sample must radiate away
the jet kinetic power supplied to them at a minimum
efficiency of 2-25%. Clearly, these lower limits to ϵ would
have to be relaxed, should the hot spots depart apply for such extended radio structures (Scott and Readhead, 1977; Marshall and Clark, 1981; Scherier et al., 1982; efficiency of 2-25%. Clearly, these lower limits to ϵ would
have to be relaxed, should the hot spots depart from the
assumed condition of minimum total energy (Eq.8.4). But, from
the available evidence, this assumption bulk velocities $(v_i^{min}$ nce, this assumption appears to broadly

led radio structures (Scott and Readhead,

clark, 1981; Scherier et al., 1982;

bter VII). Secondly, the adopted upper

3 yields a range c/7-c for the minimum

in) for the beam flui the available evidence, this assumption appears to broadly
apply for such extended radio structures (Scott and Readhead,
1977; Marshall and Clark, 1981; Scherier et al., 1982;
Roland, 1982; (Chapter VII). Secondly, the ad 1977; Marshall and Clark, 1981; Scherier et al., 1982;
Roland, 1982; (Chapter VII). Secondly, the adopted upper
limit of $\epsilon_{\text{max}} = 0.3$ yields a range c/7-c for the <u>minimum</u>
bulk velocities (V_J^{min}) for the beam flui the hot spots. But, as in the case of ϵ , the derived lower limits to both $V_{\dot{1}}$ and V_{out} are dependent on the assumption of minimum energy for the hot spots. On the other hand, they would not be violated on account of the other assumption made in the previous section, that the spectra of the hotspots remains straight only up to 10 GHz. The same applies to the parameters $\rho_i^{\text{max}}, \dot{N}_j^{\text{max}},$ and $\rho_{h_5}^{\text{max}},$ given in Table 8.1.2. It may i
'Y
' also be noted from Eq.(8.6), that the outflow velocity V_{out} . of relativistic plasma from the hot spots is expected to be higher for faster jets, attaining a maximum value of $\sim 0.25c$ for an ultra-relativistic jet. The upper limit does not depend on the assumption of minimum energy condition [Eq.(8.6)]. Another parameter which is fairly insensitive to this assumption is $\gamma_{\rho}^{\text{ min}}$ which represents the Lorentz factor below which the energy spectrum of relativistic electrons responsible for the radio output from the hot spot cuts off [from Eqs.(8.1) and (8.7); $Y_{\text{e}}^{\text{min}} \propto B^{-2/5}$]. From Table 8.1.2, it is seen that the values of Y_{ρ}^{min} for all the 10 hot spots lie in a rather narrow range: $\gamma_{\rho}^{min} = 250 + 50$. It is interesting that Faraday rotation measurements have indicated a similar lower limit to the Lorentz factors of relativistic electrons present inside compact radio sources coincident with active galactic nuclei (Wardle, 1977).

8.2. CONSTRAINTS ON THE LUMINOSITY ATTAINED BY HOTSPOTS 8.2.1 Some General Constraints on the Hotspots

The theory of synchrotron radiation tells us that the synchrotron luminosity L of a source increases not only with U, the total energy present in the form of relativistic electrons and magnetic field, but also with the pressure p due to them: [L \propto U.p $^{3/4}$. Thus, for a given amount of beam

power being discharged into the hot spot, the nonthermal radiation from the hot spot would be maximum when the pressure of the synchrotron plasma inside the hot spot is at the highest possible value. Here, one could place two general constraints on hot spots. Firstly, in order to ensure the flow of the beam plasma into the hotspot, the internal pressure of the hot spot p_{hs}' , can at most be as high as the directed pressure of the beam plasma at the beam outlet, P_{bo} (we refer to this equilibrium configuration with $p_{bo} = p_{hs}$ as 'maximally radiating' hot spot). The second constraint is that the radius of the hot spot r_{hs} , cannot be smaller than the radius of the beam outlet, $r_{\rm bo}$, around which the hot spot pressure of the hot spot p
directed pressure of the b
(we refer to this equilibr
'maximally radiating' ho
that the radius of the hot
the radius of the beam out
forms ($\eta = r_{\text{hs}}/r_{\text{bo}} \geq 1$).
attainable radio luminosit attainable radio luminosity, we express the first constraint pertaining to a maximally radiating hot spot, in steady state, as e la
ius (η
ble ling
as:
 $[\mathbf{p}_{\text{bo}}]$
ere 1: C 1
2
2
2
bu 1). Thus, for estimating the maximum
osity, we express the first constraint
mally radiating hot spot, in steady
 $\begin{bmatrix} 2 \\ b_0 \end{bmatrix} = [p_{hs} \sim u_{hs}^{min}/4\pi r_{hs}^3]$...(8.7)
bulk velocity of the beam plasma whose

$$
[p_{bo} \sim L_{hs} / \pi \epsilon \beta c r_{bo}^{2}] = [p_{hs} \sim U_{hs}^{min} / 4 \pi r_{hs}^{3}]
$$
 (8.7)

Here β c is the bulk velocity of the beam plasma whose kinetic power $L_b = L_{hs}/\epsilon$ gets converted into radio luminosity L_{hs} of the hot spot with the net conversion efficiency ϵ . U^{min} is the total energy inside the hot spot in the form of magnetic field and relativistic electrons, computed for the usual equipartition condition defined by Burbidge (1959) (we shall ignore other possible forms of energy). If, now, one makes a reasonable assumption that the power radiated from the hot spot is mainly concentrated within the frequency range 100 MHz to 10^4 MHz (the results

are not very sensitive to an order-of-magnitude uncertainty in these figures) with a spectral index α = +0.75 (defined $\tilde{\mathcal{R}}$ are not very sensitive to an order-of-magnitude uncertainty

in these figures) with a spectral index α = +0.75 (defined

as : $S_y \alpha \overline{\delta}^{\alpha}$) one obtains from the synchrotron theory

(Moffet, 1968). (Moffet, 1968). to an
a spe
btains
 $\frac{L_{hs}}{reg/s}$, 2 very sensitive to an order-of-magni

e figures) with a spectral index \propto
 $S_y \propto \tilde{v}^{\infty}$ one obtains from the sy

1968).

U^{min} $\simeq 2.6.10^4$ ($\frac{L_{\text{hs}}}{\text{erg/s}}$)^{4/7} ($\frac{r_{\text{hs}}}{\text{cm}}$)^{9/7} erg.

9 Eq.8.7 an

1968).
\n
$$
U_{hs}^{\min} \approx 2.6.10^{4} \left(\frac{L_{hs}}{\text{erg/s}} \right)^{4/7} \left(\frac{r_{hs}}{\text{cm}} \right)^{9/7} \text{erg.}
$$
\n...(8.8)
\n
$$
T_{hs}/r_{bo} = \eta = 1.4.10^{7} (\beta \epsilon)^{1/2} L_{hs}^{-3/14} r_{hs}^{1/7} \dots
$$
\n...(8.9)
\n
$$
r_{hs} = \frac{1.4.10^{7} (\beta \epsilon)^{1/2}}{\beta \epsilon \epsilon \epsilon}
$$
\nwhere r_{hs} is the right side, we substitute a single

Combining Eq.8.7 and Eq.8.8 gives:

$$
r_{hs}/r_{bo} = \eta = 1.4.10^{7} (\beta \epsilon)^{1/2} L_{hs}^{-3/14} r_{hs}^{1/7}
$$
 (8.9)

For r_{hs} on the right side, we substitute a single $(x^2 \approx 2.6.10^4$ ($\frac{r_{\text{hs}}}{\text{erg/s}}$)^{4/7} ($\frac{r_{\text{hs}}}{\text{cm}}$)^{9/7} erg.
 1.8.7 and Eq.8.8 gives:
 (x^2) bo = n = 1.4.10⁷($\beta \epsilon$)^{1/2} $L_{\text{hs}}^{-3/14}$ $r_{\text{hs}}^{1/7}$.
 \therefore (8.9)

hs on the right side, we substitu typical value of 1 kpc (Readhead and Hewish, 1976; Kerr Combining Eq.8.7 and Eq.8.8 gives:
 $r_{hs}/r_{bo} = \eta = 1.4.10^{7} (\beta \epsilon)^{1/2} L_{hs}^{-3/14} r_{hs}^{1/7}$...(8.9)

For r_{hs} on the right side, we substitute a single

typical value of 1 kpc (Readhead and Hewish, 1976; Kerr

et al., 198 abnormally large deviation from this typical value would alter η very marginally). Eq.(8.9) thus reduces to: hue of 1 kpc (Readhead a

81; since the exponent

large deviation from thit

ry marginally). Eq. (8.9) t
 $\sim 5.10^{47} \text{ n}^{-14/3} (\beta \epsilon)^{7/3} \text{ erg s}^{-1}$

ciency and Bulk Velocity c

$$
L_{hs} \sim 5.10^{47} \text{ n}^{-14/3} (\beta \epsilon)^{7/3} \text{ erg s}^{-1}
$$

8.2.2. Efficiency and Bulk Velocity of a Beam and the Radio Luminosity

Among the 3 variables on the right side in Eq.8.10, both β and β must clearly be <1 and η must be > 1, as discussed earlier. In reality, the efficiency f is expected to be well below 100%. This reasonable expectation is also consistent with the observation that even in highly luminous double sources a small amount of radio emission does arise from lobes surrounding the hot spots (e.g., Swarup et al., 1984;

143
Barthel, 1983). Most probably such lobes are formed due to
relativistic electrons escaping out of the hot spots and
therefore radiating less efficiently owing to weaker magnetic 143
Barthel, 1983). Most probably such lobes are formed due to
relativistic electrons escaping out of the hot spots and
therefore radiating less efficiently owing to weaker magnetic
field, expansion losses and reduced ener therefore radiating less efficiently owing to weaker magnetic field, expansion losses and reduced energy density (e.g., Scott, 1977). Thus, even though the contribution of the lobes Barthel, 1983). Most probably such lobes are formed due to
relativistic electrons escaping out of the hot spots and
therefore radiating less efficiently owing to weaker magnetic
field, expansion losses and reduced energy d relativistic electrons escaping out of the hot spots and
therefore radiating less efficiently owing to weaker magnetic
field, expansion losses and reduced energy density (e.g.,
Scott, 1977). Thus, even though the contribut (1977), their total energy content is large, indicating a high rate of energy leakage from the hot spots. Based on such considerations we adopt a reasonable upper limit of 0.3 to the value of efficiency with which the power delivered at the hot spot gets radiated away within the hot spots itself. high rate of energy leakage from the hot spots. Based on s
considerations we adopt a reasonable upper limit of 0.3
the value of efficiency with which the power delivered at
hot spot gets radiated away within the hot spots 0.3, Eq.8.10 implies a maximum possible value of $\rm L_{hs} \sim ~10^{44}$ erg s^{-1} which can be attained for hot spots powered by n onrelativistic beams having bulk velocities upto 0.1c. Also, it is seen that for relativistic beams with $\beta \sim 1$, L_{hs} of upto \sim 3.10 46 erg s $^{-1}$ is attainable. In practice this limit would apply to the integrated radio luminosity of double sources, since it is known that in such highly luminous sources little relativistic beams having bulk velocities upto 0.1c. Also, it
is seen that for relativistic beams with $\beta \sim 1$, L_{hs} of upto
 $\sim 3.10^{46}$ erg s⁻¹ is attainable. In practice this limit would
apply to the integrated r Jenkins and McEllin, 1977; Swarup et al., 1984). In Section 8.2.3 we will discuss the possibility that the luminosity limit derived for relativistic beams may be surpassed because of a possible breakdown of our simplifying assumption of apply to the integrated radio luminosity of double sources,
since it is known that in such highly luminous sources little
emission arises from regions outside the hot spots (see
Jenkins and McEllin, 1977; Swarup et al., 19 luminosities. But this assumption seems justified for hot

144
spots of moderate luminosities attainable with non-
relativistic beams, which can emit upto $L_{max} \sim 10^{44}$ erg S⁻¹
for the case $\beta = 0.1$ and $\epsilon = \epsilon_{max} = 0.3$, as discussed relativistic beams, which can emit upto $\textrm{L}_{\textrm{max}}$ \sim 10^{44} erg \textrm{s}^{-1} 144
spots of moderate luminosities attainable with non-
relativistic beams, which can emit upto $L_{max} \sim 10^{44}$ erg s⁻¹
for the case $\beta = 0.1$ and $\epsilon = \epsilon_{max} = 0.3$, as discussed
above. If, for the moment, the assumption 144
spots of moderate luminosities attainable with non-
relativistic beams, which can emit upto $L_{max} \sim 10^{44}$ erg s^{-1}
for the case $\beta = 0.1$ and $\epsilon = \epsilon_{max} = 0.3$, as discussed
above. If, for the moment, the assumption geometry is retained for hot spots of all luminosities, then the following argument shows that the luminosity limits given above for non-relativistic and relativistic beams would hold max

for the case $\beta = 0.1$ and $\epsilon = \epsilon_{max} = 0.3$, as discussed

above. If, for the moment, the assumption of spherical

geometry is retained for hot spots of all luminosities, then

the following argument shows that the lu necessary to produce hot spots of such luminositis; i.e., for L_b >> L_{max} for the moment, the assumption of spherical
retained for hot spots of all luminosities, then
y argument shows that the luminosity limits given
n-relativistic and relativistic beams would hold
e beam power is much higher t Eq.(8.10) in terms of beam power L_b : sary to produce hot

b L_{max} (ϵ , β)/ ϵ .

10) in terms of be

L_{hs}/ ϵ = L_b = 5.10⁴⁷ n that that
d relations to the set of the set of

$$
L_{\text{hs}}/\varepsilon = L_{\text{b}} \approx 5.10^{47} \text{ n}^{-14/3} \text{ g}^{7/3} \varepsilon^{4/3} \text{ erg s}^{-1}
$$
 ... (8.11)

Sary to produce hot spots of such luminositis; i.e., for
 L_{max} (ϵ , β)/ ϵ . To illustrate this, let us rewrite

.10) in terms of beam power L_b :
 $L_{hs}/\epsilon = L_b \approx 5.10^{47} \text{ n}^{-14/3} \text{ g}^{7/3} \text{ g}^{4/3} \text{ erg s}^{-1}$

.. state with a balance between P_{hs} and P_{bo} (via Eq.8.7), it is Recalling that this expression characterizes a steady-
state with a balance between P_{hs} and P_{bo} (via Eq.8.7), it is
seen that for given ϵ and β there is a critical beam power Eq.(8.10) in terms of beam power L_b:

L_{hs}/ $\varepsilon = L_b \approx 5.10^{47} \eta^{-14/3} g^{7/3} \varepsilon^{4/3} \text{ erg s}^{-1}$...(8.11)

Recalling that this expression characterizes a steady-

state with a balance between P_{hs} and P_{bo} (via Eq.8.7 Eq.8.11 cannot be satisfied for physically meaningful values of η (i.e., for $\eta \geq 1$). For such an excessively powerful beam, therefore, the formation of the hot spot would involve seen that for given ϵ and β there is a critical beam power
 $L_b^* \sim 5.10^{47} \beta^{7/3} \epsilon^{3/4}$ such that for a more powerful beam

Eq.8.11 cannot be satisfied for physically meaningful values

of η (i.e., for $\eta \ge$ state with a balance between P_{hs} and P_{bo} (via Eq.8./), it is
seen that for given ϵ and β there is a critical beam power
 $L_b^* \sim 5.10^{47} \beta^{7/3} \epsilon^{3/4}$ such that for a more powerful beam
Eq.8.11 cannot be sati Eq.8.11 cannot be satisfied for physically meaningful values
of η (i.e., for $\eta \geq 1$). For such an excessively powerful
beam, therefore, the formation of the hot spot would involve
an <u>inequilibrium</u> situation. This $Eq.8.11$ ca

of η (i.e.

beam, ther

an <u>inequil</u>

constraint

continuousl

with P_{hs}

possible wh

factor η ${\rm P}_{\rm bo}$ which for beams having ${\rm L}_{\rm b}$ > ${\rm L}_{\rm b}^{\rm g}$ is only r Y

, t

m

1

om

bo
 ≤ 1

mor beam, therefore, the formation of the hot spot would involve
an <u>inequilibrium</u> sitution. This is because the physical
constraint $\eta \geq 1$ would force the hot spot to expand
continuously from the (fictitious) equilibrium factor η^{-1} or more implies rapid adiabatic loss, lowering of η (i.e., for $\eta \geq 1$). For such an excessively powerful
beam, therefore, the formation of the hot spot would involve
an <u>inequilibrium</u> sitution. This is because the physical
constraint $\eta \geq 1$ would force the h beam, therefore, the formation of the hot spot v
an <u>inequilibrium</u> sitution. This is because to
continuously from the (fictitious) equilibrium
with $P_{hs} \sim P_{bo}$ which for beams having L_b >
possible when $\eta \leq 1$ (Eq.8 4 below the

(fictitious) equilibrium situation (see Eq.8.8). Thus, for an excessively powerful beam with $L_{\rm b}$ > $L_{\rm b}$ * \sim 5.10⁴⁷ β $^{7/3}$ 6.4/3 (fictitious) equilibrium situation (see Eq.8.8). Thus
excessively powerful beam with $L_b > L_b^* \sim 5.10^{47}$ β
(see above), L_{hs} would be $\leq \epsilon L_b$ η $\stackrel{4}{\sim}$ 8.10⁴⁰ β ²
 $L_b^{1/7}$. This gives, even for a hi (see above), L_{bs} would be $\leq \epsilon L_{b} \eta^{4} \approx 8.10^{40} \beta^{2} \epsilon^{15/7}$
 $L_{b}^{1/7}$. This gives, even for a highly efficient ($\epsilon = \epsilon_{max} = 0.3$), and excessively powerful beam (L_{b} say 10^{48} ergs⁻¹) L_{hs}

of $\sim 4.$ (fictitious) equilibrium situation (see Eq.8.8). Thus, for
excessively powerful beam with $L_b > L_b^* \sim 5.10^{47}$ $\beta^{7/3} \epsilon^{4}$
(see above), L_{hs} would be $\leq \epsilon L_b$ $\eta^{4} \approx 8.10^{40}$ β^{2} ϵ^{15}
 $L_b^{1/7}$. This give 0.3), and excessively powerful beam ($\rm L_{\rm b}$ say $\rm 10 ^{48} erg s^{-1})$ $\rm ~L_{hs}$ -1 , of \sim 4.10⁴⁴ erg s⁻¹ if β = 0.1 and $\textrm{L}_{\textrm{hs}}\sim$ 4.10⁴⁶ erg s⁻¹ if $\beta \sim 1$. These values are broadly consistent with the limits respectively (see Gopal-Krishna and Saripalli, 1984a.) and excessively powerful beam $(L_b$ say $10^{48} \text{erg s}^{-1})$ L_{hs}
4.10⁴⁴ erg s⁻¹ if $\beta = 0.1$ and $L_{hs} \sim 4.10^{46}$ erg s⁻¹ if
1. These values are broadly consistent with the limits
ed above for non-relativistic and r

8.2.3. Dependence of Hot Spot Size on Luminosity

luminosity of a hot spot, its size and beam efficiency, as deduced above for non-relativistic and relativistic beams,
respectively (see Gopal-Krishna and Saripalli, 1984a.)
8.2.3. Dependence of Hot Spot Size on Luminosity
To illustrate the inter-relationship between the
luminosit respectively (see Gopal-Krishna and Saripalli, 1984a.)

8.2.3. Dependence of Hot Spot Size on Luminosity

To illustrate the inter-relationship between the

luminosity of a hot spot, its size and beam efficiency, as

expec Eq.8.10. The values correspond to an ultra-relativistic beam **8.2.3. Dependence of Hot Spot Size on Luminosity**
To illustrate the inter-relationship between the
luminosity of a hot spot, its size and beam efficiency, as
expected in our model, we have given in Table 8.2.1 the
values To illustrate the inter-relationship between the
luminosity of a hot spot, its size and beam efficiency, as
expected in our model, we have given in Table 8.2.1 the
values of η computed for a range of L_{hs} and ϵ us each value of L_{hs} we have also tabulated, in the last column, values of η computed for a range of L_{hs} and ϵ using
Eq.8.10. The values correspond to an ultra-relativistic beam
velocity ($\beta = 0.99$) except for those given inside brackets
which refer to a non-relativisitic bea Eq.8.10. The values correspond to an ultra-relativistic beam
welocity ($\beta = 0.99$) except for those given inside brackets
which refer to a non-relativisitic beam with $\beta = 0.1$. For
each value of L_{hs} we have also tabul column. These limiting values correspond to the case when β velocity ($\beta = 0.99$) except for those given inside brack
which refer to a non-relativisitic beam with $\beta = 0.1$.
each value of L_{hs} we have also tabulated, in the last colu:
the minimum value of beam efficiency ϵ_{min} P_{ho}) but also has the smallest possible size $(r_{ho} = r_{ho})$ ach value of L_{hs} we have also tabulated, in the last column,
he minimum value of beam efficiency ϵ_{min} that would be
equired to attain the luminosity L_{hs} given in the first
olumn. These limiting values correspond which refer to a non-relativisitic beam with $\beta = 0.1$. For
each value of L_{hs} we have also tabulated, in the last column,
the minimum value of beam efficiency ϵ_{min} that would be
required to attain the luminosity $L_{$ required to attain the luminosity L_{hs} given in the first
column. These limiting values correspond to the case when β
= 0.99 and the hot spot not only radiates maximally (P_{hs} =
 P_{bo}) but also has the smallest po beam efficiency \in , the factor $n \left(1 - \frac{r_{\text{hs}}}{r_{\text{ho}}}\right)$ increases towards = 0.99 and t
P_{bo}) but al
i.e., η =
(Eq.8.10). I
beam efficier
smaller L_{hs}, i.e., for lower beam power $(L_b = L_{hs}/\epsilon)$ which

<u>Table 8.2.1</u>. The computed values of η *(=* r_{h} *,* r_{b0} *) function of beam efficiency (* ϵ *) and hot spot* $(L_{h} = \epsilon L_b)$. The values of η given outside an brackets refer to $\beta = 0.99$ and $\beta = 0.1$, respectively *) as a* function *of beam efficiency (E) and hot spot* tuminceity $(L_{hg} = \epsilon L_b)$. The values of q given outside and inside *brackets refer to P = 0.99 and P . 0.1,respectively. The* minimum *required efficiency,* EnTin *,is computed for the 8.2.1. The computed values of* η (= r_{hg}/r_{b0}) as
function of beam efficiency (ϵ) and hot spot lumi
 $(L_{hg} = \epsilon L_b)$. The values of η given outside and ins
brackets refer to $\theta = 0.99$ and $\theta = 0.1$, respecti

$L_{bs} (erg/s) \in = 100\% \in = 30\% \in = 10\%$				$6 = 3\%$	ϵ_{\min} (%)
10^{41}	26.7 (8.5)	$\binom{14.6}{4.7}$	$({}^{8}_{2};{}^{5}_{7})$	$\binom{4.6}{1.5}$	$($ {:4}
10^{42}	16.3 (5,2)	8.9 (2.8)	5.2 (1.6)	2.8 (0, 9)	$\binom{0.4}{3.7}$
10^{43}	10.0 (3,2)	5.5 (1.7)	3.2 (1.0)	$(\frac{1}{0}:\frac{7}{5})$	(10.1)
10^{44}	6.1 (1.9)	3.3 (1.1)	1.9 (0.6)	1.1	2.7 (27.0)
10^{45}		$\begin{pmatrix} 3.7 \\ 1.2 \end{pmatrix}$ ($\begin{pmatrix} 2.0 \\ 0.6 \end{pmatrix}$	1.2	0.6	$(7^{\frac{7}{2}};4)$
10^{46}	$\begin{pmatrix} 2.3 \\ 0.7 \end{pmatrix}$	1.2	0.7		19.4 (194)
10^{47}	1.4	0.8			52.1
10^{48}	0.8				ţ 140

would produce weaker radio sources. Since outlets of beams associated with lower luminosity sources are neither known nor expected to be systematically smaller (Bridle, 1986), the 146
Would produce weaker radio sources. Since outlets of beams
associated with lower luminosity sources are neither known
nor expected to be systematically smaller (Bridle, 1986), the
above mentioned dependence of η wou spots associated with lower luminosity _sources should be larger in size and thus appear more diffuse. Quantitatively, if one were to define hot spot as a region falling within a circular aperture of a fixed linear radius of, say, a few kpc (e.g., Jenkins and McEllin, 1977), such an aperture would be nor expected to be systematically smaller (Bridle, 1986), the
above mentioned dependence of η would predict that the hot
spots associated with lower luminosity sources should be
larger in size and thus appear more diff sources of decreasing luminosity because of their being systematiclly larger. This could explain the known positive correlation between the radio luminosity of a double source and the fraction of the total extended radio emission that increasingly 'resolving' the hot spots associated with
sources of decreasing luminosity because of their being
systematiclly larger. This could explain the known positive
correlation between the radio luminosity of a doubl correlation was first noted by Jenkins and McEllin (1977) for 3CR sources and more recently supported by Swarup et al. (1984) from VLA observations of a sample of steep spectrum quasars.

8.2.4. The Beam Power and Morphology of Hot Spots

From the discussion following Eq.8.11, L_{hs} appears to SCR sources and more recently supported by Swarup et al.

(1984) from VLA observations of a sample of steep spectrum

quasars.

8.2.4. The Beam Power and Morphology of Hot Spots

From the discussion following Eq.8.11, $L_{$ for 3CR sources and more rec

(1984) from VLA observatio

quasars.

8.2.4. The Beam Power and Mo

From the discussion fo

saturate for beam powers a

could be as high as $(L_b)_{max}$

the maximum adoptable value

pointed out 10^{48} erg s $^{-}$, corresponding to 8.2.4. The Beam Power and Morphology of Hot Spots
From the discussion following Eq.8.11, L_{hs} appears to
saturate for beam powers above a critical value L_b which
could be as high as $(L_b)_{max} \approx 10^{46}$ erg s⁻¹, corres pointed out that higher beam power would induce onset of expansion of the hot spot from the equilibrium configuration, leading to a diminishing of volume emissivity as well as

147

magnetic field strength, which had both been increasing

steadily with beam power until the point of inequilibrium was

reached owing to the constraint $\gamma \geq 1$. But, of course, this steadily with beam power until the point of inequilibrium was reached owing to the constraint $\eta > 1$. But, of course, this magnetic field strength, which had both been increasing
steadily with beam power until the point of inequilibrium was
reached owing to the constraint $\gamma \geq 1$. But, of course, this
constraint could be meaningfully impose 147
magnetic field strength, which had both been increasing
steadily with beam power until the point of inequilibrium was
reached owing to the constraint $\gamma \geq 1$. But, of course, this
constraint could be meaningfully im valid at least until they reached the point of inequilibrium. If prior to this point, the hot spots were to somehow develop reached owing to the constraint $\eta \geq 1$. But, of course, this
constraint could be meaningfully imposed only provided our
assumption of speterical geometry for the hot spots remained
valid at least until they reached the slab along the beam direction, P_{hs} could be maintained equal to P_{bo} (to ensure equilibrium) while the surface of the slab walid at least until they reached the point of inequilibrium.
If prior to this point, the hot spots were to somehow develop
a slab-like geometry, then by arbitrarily compressing the
slab along the beam direction, P_{hs} co If prior to this point, the hot spots were to somehow develop
a slab-like geometry, then by arbitrarily compressing the
slab along the beam direction, P_{hs} could be maintained equal
to P_{bo} (to ensure equilibrium) whi If prior to this point, the hot spots were to somehow develop
a slab-like geometry, then by arbitrarily compressing the
slab along the beam direction, P_{hs} could be maintained equal
to P_{bo} (to ensure equilibrium) whi slab along the beam direction, P_{hs} could be maintained equal
to P_{bo} (to ensure equilibrium) while the surface of the slab
in contact with the beam outlet would continue to keep the
latter fully covered. Thus, once a arbitrarily high power and, accordingly, its luminosity could increase unconstrained. The crucial transformation from the latter fully covered. Thus, once a slab-like geometry has
developed, the volume of the hot spot could arbitrarily
reduce to maintain pressure equilibrium with a beam of
arbitrarily high power and, accordingly, its luminosi developed, the volume of the hot spot could arbitrarily
reduce to maintain pressure equilibrium with a beam of
arbitrarily high power and, accordingly, its luminosity could
increase unconstrained. The crucial transformatio latter fully covered. Thus, once a slab-like geometry has
developed, the volume of the hot spot could arbitrarily
reduce to maintain pressure equilibrium with a beam of
arbitrarily high power and, accordingly, its luminosi arbitrarily high power and, accordingly, its luminosity could
increase unconstrained. The crucial transformation from the
spherical to slab-like geometry while the luminosity and the
magnetic field of the hot spot are stil reduce to maintain pressure equilibrium with a beam of
arbitrarily high power and, accordingly, its luminosity could
increase unconstrained. The crucial transformation from the
spherical to slab-like geometry while the lum sufficiently high value. The relativistic electrons injected into the hot spot after randomization of their momenta at the increasing beam power (i.e., before the point of
inequilibrium is reached) could conceivably occur if the
megnetic field in the hot spot has increased to a
sufficiently high value. The relativistic electrons injected
into lifetimes, \mathcal{C}_{syn} , shorter than the light travel time, \mathcal{C}_{hol} , across the beam outlet, leading to the development of a slabshaped hot spot. Such a condition would simply be satisfied which travel time, \uparrow
development of a sl
d simply be satisf by electrons having Lorentz factors $^{9}/r_{\text{bo}}$ B_{hs}

where B_{hs} is the equipartition magnetic field equal to [3] $U_{\text{hs}}/\eta_{\text{hs}}$ ^{0.5}. Eq.8.8 thus leads to: here B_{hs} is the equipartition m
hs/ x_{hs}]^{0.5}. Eq.8.8 thus leads to:
 Y_{crit} > 2.10¹⁴ n $L_{hs}^{-4/7}$ $r_{hs}^{5/7}$

$$
r_{\text{crit}} > 2.10^{14} \, \text{n} \, \text{L}_{\text{hs}}^{-4/7} \, \text{r}_{\text{hs}}^{5/7} \tag{8.12}
$$

 B_{hs} is the equipartition magnetic field equal to [3

hs^{]0.5}. Eq.8.8 thus leads to:
 $\gamma_{\text{crit}} > 2.10^{14} \text{ n L}_{hs}^{-4/7} r_{hs}^{5/7}$...(8.12)

We substitute for r_{hs} a typical value of 1 kpc (see

on 8.2.1) and for L_{hs Section 8.2.1) and for $\tt L_{\rm hs}$ the limiting luminosity of \sim 10^{44} erg s⁻¹ attainable for a hot spot powered by a non- $\gamma_{\rm crit} > 2.10^{14} \text{ n L}_{\rm hs}^{-4/7} \text{ r}_{\rm hs}^{5/7}$...(8.12)
e substitute for $\text{r}_{\rm hs}$ a typical value of 1 kpc (see
n 8.2.1) and for $\text{L}_{\rm hs}$ the limiting luminosity of $\sim 10^{44}$
attainable for a hot spot powered b relativistic beam $(\beta \leq 0.1)$ before its equilibrium breaks down and the expansion of the hotspot begins. Since $\eta > 1$, Eq.8.12 thus gives γ_{crit} > 3.10⁴. Thus, the condition for the formation of a slab-shaped hot spot would not be satisfied by all but the most energetic electrons. But they only form an energetically insignificant tail of the steeply falling electron energy distribution which probably peaks at $\gamma \approx 10^2$, as inferred for the hot spots in Cygnus A from the Eq.8.12 thus gives γ crit $> 3.10^4$. Thus, the condition for
Eq.8.12 thus gives γ crit $> 3.10^4$. Thus, the condition for
the formation of a slab-shaped hot spot would not be
satisfied by all but the most energet absorption frequencies of \sim 70 MHz (see Hargrave and Ryle, 1974; Simon, 1977; Saripalli and Gopal-Krishna, 1985). In Falling electron energy distribution which probably peaks at $\gamma \approx 10^2$, as inferred for the hot spots in Cygnus A from the estimated magnetic field of $\sim 3.10^{-4}$ G and synchrotron self-absorption frequencies of ~ 70 beam velocity the point of inequilibrium would only be in met reg

in met reg

l

di

y

hs

al

bak 3.10^{-4} G and synchrotron

70 MHz (see Hargrave and

11 and Gopal-Krishna, 1985

ction 8.2.2, for a relativ

f inequilibrium would onl
 s^{-1} and this means that Y

(Eq.8.12). Since electrons

nergetically significant crit $\gamma \approx 10^{-}$, as interred for the
estimated magnetic field of \sim
absorption frequencies of \sim
1974; Simon, 1977; Saripal:
contrast, as discussed in See
beam velocity the point o:
reached at $L_{hs} \sim 3.10^{46}$ erg
could could decline almost to $\sim 10^3$ (Eq.8.12). Since electrons with $>$ 10^3 probably form an energetically significant part of the entire population of relativistic electrons, the hot spot could conceivably transform into a slab shape before its size contrast, as discussed in Section 8.2.2, for a relativistic
beam velocity the point of inequilibrium would only be
reached at $L_{hs} \sim 3.10^{46}$ erg s⁻¹ and this means that Y crit
could decline almost to $\sim 10^3$ (Eq.8. inequilibrium is expected to set in for a spherical hot spot.

Henceforth, with increasing beam power and L_{hs} ,
constraint $\eta > 1$ would no longer be meaningfully impose
obtaining an upper limit to L_{hs} , as discussed earlier. the constraint $\eta > 1$ would no longer be meaningfully imposed for obtaining an upper limit to $L_{h,g}$, as discussed earlier. Henceforth, with increasing beam power and L_{hs} , the
constraint $\eta > 1$ would no longer be meaningfully imposed for
obtaining an upper limit to L_{hs} , as discussed earlier.
8.3. CONCLUSION
within the framework of the b

8.3. CONCLUSION

sometraint $\eta > 1$ would no longer be meaningfully imposed for
obtaining an upper limit to L_{hs} , as discussed earlier.
8.3. CONCLUSION
Within the framework of the beam model we have deduced
some basic physical parameter associated with classical double radio sources, following a simple and upper limit to L_{hs} , as discussed earlier.

8.3. CONCLUSION

Within the framework of the beam model we have deduced

some basic physical parameters of the jets and hotspots

associated with classical double r hot spots radiate under the usual equipartition conditions and that they are roughly spherical in shape. For a sample of 10 bright hotspots and for the jets presumed to be feeding them, we have estimated the densities, bulk velocities, massflow rates and efficiencies of the jets. It is found that the bulk outflow velocity of the relativistic electrons present and that they are roughly spherical in shape. For a sample of
10 bright hotspots and for the jets presumed to be feeding
them, we have estimated the densities, bulk velocities, mass-
flow rates and efficiencies of the jets attains a maximum value of 0.25c (Saripalli and Gopal-Krishna,1985).

A rather natural explanation is found for the known the pess. It is found that the
bulk outflow velocity of the relativistic electrons present
inside the hotspot, increases with the jet velocity and
attains a maximum value of 0.25c (Saripalli and Gopal-Krishna, 1985)
A rath bulk outflow velocity of the relativistic electrons present
inside the hotspot, increases with the jet velocity and
attains a maximum value of 0.25c (Saripalli and Gopal-Krishna, 1985)
A rather natural explanation is foun argued that maximum value of $0.25c$ (Saripalli and Gopal-Krishna, 1985)

A rather natural explanation is found for the known

tendency of more prominent and compact hot spots to be

associated with sources of higher lumi inside the hotspot, in
attains a maximum value of
A rather natural extendency of more prominos
associated with sources
argued that the maximum
are $\sim 10^{44}$ and $\sim 3.10^{46}$
velocities of < 0.1c and
could be surpassed $erg s^{-1}$ aripalli and Gopal-Krishna, 1985)
1 is found for the known
compact hot spots to be
1uminosities. It is also
1uminosities of hot spots
6, respectively, for beam
However, the latter limit
0ssible breakdown of the velocities of $\langle 0.1c \rangle$ and $\langle \sim c$. However, the latter limit tendency of more prominent and compact hot spots to be
associated with sources of higher luminosties. It is also
argued that the maximum expected luminosities of hot spots
are $\sim 10^{44}$ and $\sim 3.10^{46}$ erg s⁻¹, resp associated with sources of higher luminosties. It is also
argued that the maximum expected luminosities of hot spots
are $\sim 10^{44}$ and $\sim 3.10^{46}$ erg s⁻¹, respectively, for beam
velocities of < 0.1c and \sim c. How luminosities where their morphology could undergo a qualitative change and become slab-like (Gopal Krishna and Saripalli, 1984a).

REFERENCES

Adams, M.T., Jensen, E.B., Stocke, J.T. : 1980, Astron. J. **85,** 1010.

Alexander, P., Leahy, J.P. : 1987, Monthly Notices Roy. Astron. Soc. 225, 1.

Andernach, H., Wielebinski, R.: 1982, Extragalactic Radio Sources, IAU Symp. 97, p.13, eds Heeschen, D.S. and Wade, C.N.

Athanassoula, E., Bosma, A.: 1985, Annual Rev. Astron. Astrophys. **23,** 147.

Auriemma, KC., et al. : 1977, Astron. Astrophys. 57, 41.

Baade, W., Minkowski, R. : 1954, Astrophys. J. 119, 215.

- Baars, J.W.M., Genzel, R., Pauliny-Toth, 1.I.K., Witzel, A. : 1977, Astron. Astrophys. **61,** 99.
- Baldwin, J.E. : 1982, Extragalactic Radio Sources, IAU Symp. 97, p 21, eds Heeschen, D.S. and Wade, C.N.

Baldwin, IE., et al. : 1985, Monthly Notices Roy. Astron. Soc. **217,** 77.

Banhatti, D.C. : 1987, Monthly Notices Roy. Astron. Soc. **225,** 487.

Barcons, X. : 1987, Astrophys. J. 313, 517.

Barcons, X., Fabian, A.C. : 1988, Monthly Notices Roy. Astron. Soc. **230,** 189.

- Barthel, P.D.: 1983, Astron. Astrophys. 126, 16.
- Barthel, P.D., Lonsdale, C.]. : 1983, Monthly Notices Roy. Astron. Soc. **205,** 395.
- Barthel, P.D., Schilizzi, R.T., Miley, G.K., lagers, W.J., Strom, R.G. : 1985, Astron. Astrophys. **148,** 243.
- Baum, S.A., Heckman, T., Bridle, A., van Breugel, W., Miley, G. : 1988, Astrophys.J. (in press).

Bedford, N.H. : 1981, Monthly Notices Roy. Astron. Soc. **195,** 245.

Begelman, M.C., Blandford, R.D., Rees, M.J. : 1984, Rev. Mod. Phys. **56,** 245.

Bicknell, G.V. : 1985, Proc. Astron. Soc. Aust. 6, 130.

Biermann, P., Kronberg, P.P., Madore, B.F. : 1982, Astrophys. J. **256,** L37.

Blanco, V.M., Graham, J.A., Lasker, B.M., Osmer, P.S. : 1975, Astrophys. J. **198,** L63.

Blandford, R.D., Rees, Mi.: 1974, Monthly Notices Roy. Astron. Soc. **169,** 375.

Boldt, E. : 1987, Phys. Report : **146,** 215.

Bolton, J.G., Stanley, G.J., Slee, 0.B. : 1949, Nature, 164, 101.

Bolton, J.G., Gardner, F.F., Mackey, M.B. : Aust. J. Phys. 17, 340.

Bosma, A., Smith, R.M., Wellington, K.J. : 1985, Monthly Notices Roy. Astron. Soc. **212,** 301.

Bridle, A.H. : 1984, Astron. J. **89,** 979.

Bridle, A.H. : Can. J. Phys. **64,** 353.

Bridle, A..: 1987, in Proc. of Georgia State University Conference on 'Active Galactic Nuclei' eds. Miller, R. and Wiita, P.J.

Bridle, A.H., Davis, M.M., Fomalont, E.B., Lequeux, J. : 1972, Astron. J. 77, 405.

Bridle, A.H., et al. : 1976, Nature **262,** 179.

Bridle, A.H., Fomalont, E.B., : 1979, Astron. J. **84,** 1679.

Bridle, A.H., et al. : 1979, Astrophys. J. **228,** L9.

Bridle, A.H., Fomalont, E.B., Cornwell, T.J. : 1981, Astron. J. **86,** 1294.

Bridle, A.H., Perley, R.A. : 1984, Annual Rev. Astron. Astrophys. **22,** 319.

Brodie, J., Konigl, A., Bowyer, S. : 1983, Astrophys. J. 273, 154.

Brosch, N., Krumm, N.: 1984, Astron. Astrophys. 132, 80.

Burbidge, G.R. : 1959, Astrophys. J. **129,** 849.

Burbidge, G.R., Crowne, A.H.: 1979, Astrophys. J. Suppl. 40, 583.

Burch, S.F. : 1979, Monthly Notices Roy. Astron. Soc. **186,** 293.

Burns, 10., Basart, J.P., De Young, D.S., Ghiglia, D.C. : 1984, Astrophys. J. **283,** 515.

Burns, 1.0., Feigalson, E.D., Schreier, E.J. : 1983, Astrophys. J. 273, 128.

Burns, J.0., Owen, FN., Rudnick, L.: 1979, Astron. J. **84,** 1683.

Burns, 3.0., et al. : 1987, Astron. J. **94,** 587.

Canizares, C.R., Fabbiano, G., Trinchieri, G.: 1987, Astrophys. J. **312,** 503.

Carter, D., Allen, D.A., Malin, D.F. : 1982, Nature 295, 126.

Christiansen, W.N., et al., : 1977, Monthly Notices Roy. Astron. Soc. **181,** 183.

Cooper, B.F.C., Price, R.M., Cole, D.J. : 1965, Aust. J. Phys. **18,** 589.

Cordey, R.A. : 1987, Monthly Notices Roy. Astron. Soc. 227, 695.

Cowsik, R., Kobetich, E.J. : 1972, Astrophys. 3. **177,** 585.

Danziger, I.J., Goss, W.M. : 1983, Monthly Notices Roy. Astron. Soc. **202,** 703. Cowsik, R., Kobetich, E.J. : 1972, Astrophys. J. **177**, 585.
Danziger, I.J., Goss, W.M. : 1983, Monthly Notices Roy. Astron. Soc. **202**, 703.
Danziger, I.J., Goss, W.M., Frater, R.H. : 1978, Monthly Notics Roy. Astron. Soc Demouline, M. : 1970, Astrophys. J. **160,** L79.

De Ruiter, H.R., Parma, P., Fanti, C., Fanti, R. : 1986, Astron. Astrophys. Suppl. **65**, 111
De Young, D.S. : 1981, Nature **293**, 43.
De Young, D.S. : 1986, Astrophys. J. **307**, 62.
De Young, D.S., Axford, I. : 1967, Natur

De Young, D.S.: 1981, Nature **293,** 43.

De Young, D.S. : 1986, Astrophys. J. 307, 62.

Dreher, J.W. : 1979, Astrophys. J. **230,** 687.

Dreher, J.W. : 1981, Astron. J. **86,** 833.

Dreher, J.W. : 1983, in Physics of Energy Transport in Extragalactic Radio Sources, p. 109, eds. Bridle, A.H., Eilek,

Dressel, L.L. : 1981, Astrophys. J. 245, 25

Duffey-Smith, P. and Purvis, A. : 1982, in Extragalactic Radio Sources, IAU Symp. 97, p 59, eds. Heeschen, D.S., Wade, C.N.

Dufour, R.J., van der Bergh, S.: 1978, Astrophys. J. **226,** L73

Dufour, R.J., et. al., 1979, Astron. 3. **84,** 284.

Dupraz, C., Combes, F.: 1986, Astron. Astrophys. **166,** 53.

Eales, S.A. : 1985, Monthly Notices Roy. Astron. Soc. **217,** 179.

Eilek, J.A. : 1982, Astrophys. J. **254,** 472.

Ekers, R.D. : 1982, in Extragalactic Radio Sources, IAU Symp. 97,p 465, eds Heeschen, D.S., Wade, C.N.

Ekers, R.D., Fanti, R., Lari, C., Parma, P. : 1978, Nature 276, 768.

Ekers, R.D., Fanti, R., Lari, C., Parma, P. : 1981, Astron. Astrophys. **101,** 194.

Ekers, R.D., Simkin, S.M. : 1983, Astrophys. J. 265, 85.

Ellis, R. : 1982, in Origin and Evolution of Galaxies, p 255, eds. Jones, B.J.T., Jones, J.E.

Ekers, R.D., Fanti, R., Lari, C., Parma, P. : 1981, Astron. Astrophys. 101, 194.
Ekers, R.D., Simkin, S.M. : 1983, Astrophys. J. 265, 85.
Ellis, R. : 1982, in Origin and Evolution of Galaxies, p 255, eds. Jones, B.J.T., Jo Ellis, R. : 1982, in Origin and Evolution of Galaxies, p 255, eds. Jones, B.J.T., J
Fabbiano, G., Miller, L., Trinchieri, G., Longair, M., Elvis, M. : 1984, Astrophys.
Fabian, A.C., Nulen, P.E.J., Stewart, G.C. : 1980, Nat

Fabian, A.C., Nulen, P.E.]., Stewart, G.C. : 1980, Nature **287,** 613.

Fanaroff, B.L., Riley, J.M. : 1974, Monthly Notices Roy. Astron. Soc. 167, 31 p.
Fanti, R., Gioia, I., Lari, C., Ulrich, M.H. : 1978, Astron. Astrophys. Suppl. 34, 341.

Fanti, C., et. al. : 1982, Astron. Astrophys. **105,** 200.

Fanti, C., [anti, R., De Ruiter, H.R., Parma, P. : 1986, Astron. Astrophys. Suppl. **65,** 145. Fanti, C., Fanti, R., De Ruiter, H.R., Parma, P. : 1986, *F*
Fanti, C., Fanti, R., De Ruiter, H.R., Parma, P. : 1987, *F*
Faulkner, M. : 1986, Ph.D. Thesis, University of Cambrid
Feigelson, E.D., Berg, C.J. : 1983, Astroph

Fanti, C., Fanti, R., De Ruiter, H.R., Parma, P.: 1987, Astron. Astrophys. Suppl. **69,** 57.

Faulkner, M. : 1986, Ph.D. Thesis, University of Cambridge.

Feigelson, E.D., et. al. : 1981, Astrophys. I. 251, 31.

Feretti, L., Giovannini, L., Gregorini, L., Parma, P., Zamorani, G. : 1984, Astron. Astrophys. **139,** 55.

Field, G., Perrenod, S.: 1977, Astrophys. J. **215,** 717.

Fokker, A.D. : 1986, Astron. Astrophys. **156,** 315.

Feretti, L., Giovannini, L., Gregorini, L., Parma, P., Zamorani, G. : 1984,
Field, G., Perrenod, S. : 1977, Astrophys. J. 215, 717.
Fokker, A.D. : 1986, Astron. Astrophys. 156, 315.
Fomalont, E.B., Miley, G.K., Bridle, A.H Field, G., Perrenod, S. : 1977, Astrophys. 1. 215, 717.
Fokker, A.D. : 1986, Astron. Astrophys. 156, 315.
Fomalont, E.B., Miley, G.K., Bridle, A.H. 1979, Astron. Astrop
Forman, W., Jones, C., Tucker, W. : 1985, Astrophys.

Forman, W., Jones, C., Tucker, W. : 1985, Astrophys. J. 293, 102. Frogel, J.A., et. al. : 1987, Astrophys. J. **315,** L129.

Fort, B.P.,et. al. : 1986, Astrophys. J. 306, 110.

Gardner, F.F., Whiteoak, J.B. : 1971, Aust. 3. Phys. **24,**

Giacconi, R., Zamorani, G. : 1987, Astrophys. J. 313, 20.

Giovannini, G., Feretti, L., Gregorini, L., Parma, P. : 1988, Astron. Astrophys. **199,** 73.

Gopal-Krishna, Chitre, S.M.: 1983, Nature 303, 217.

Gopal-Krishna, Saripalli, L. : 1984a, Astron. Astrophys. **139,** L19.

Copal-Krishna, Saripalli, L. : 1984b, Astron. Astrophys. **141,** 61.

Copal-Krishna, Saripalli, L. : 1985, Astron. Astrophys. **149,** 205.

Gopal-Krishna, Saripalli, L., Saikia, D.J., Sramek, R.A. : 1986, in Quasars, IAU Symp **119,** p 193. eds Swarup, G., Kapahi, V.K.

Gopal-Krishna,Wiita, P.). : 1988, Nature 333, 49.

Gopal-Krishna, Wiita, P.J.: 1987, Monthly Notices Roy. Astron. Soc. **226,** 531.

Gopal-Krishna, Wiita, P.J. : 1987, Monthly Notices Roy. Astron. Soc. 226, 531.
Gopal-Krishna, Wiita, P.J., Saripalli, L. : 1988, Monthly Notices Roy. Astron. Soc. (in Press).
Goss. W.M. McAdam. W.B. ellington. K.J. Ekers. Goss, W.M., McAdam, W.B., ellington, K.J., Ekers, R.D. : 1987, Monthly Notices Roy. Astron. Gopal-Krishna, Wiita, P.J., Saripalli, L. : 19
Gopal-Krishna, Wiita, P.J., Saripalli, L. : 19
Gos, W.M., McAdam, W.B., ellington, K.J.,
Soc. 226, 979.
Graham, J.A. : 1979, Astrophys. J. 232, 60.
Graham, J.A. : 1983. Astrop

Soc. **226,** 979.

Graham, J.A. : 1983, Astrophys. J. **269,** 440.

Soc. 226, 979.
Graham, J.A. : 1979, Astrophys. J. 232, 60.
Graham, J.A. : 1983, Astrophys. J. 269, 440.
Graham, J.A., Price, R.M. : 1981, Astrophys. J. 247, 813.
Graham, D.A., Weiler, K.W., Wielehinski, R. : 1981. Astro

Graham, D.A., Weiler, K.W., Wielebinski, R. : 1981, Astron. Astrophys. 97, 388. Graham, J.A. : 1983, Astrophys. J. **269**, 440.
Graham, J.A., Price, R.M. : 1981, Astrophys. J. **247**, 813.
Graham, D.A., Weiler, K.W., Wielebinski, R. : 1981, Astron
Groth, E.J., Peebles, P.J.E. : 1977, Astrophys. J. **217**

Guindon, B. : 1979, Monthly Notices Roy. Astron. Soc. **186,** 117.

Guthrie, B.N.G. : 1981, Monthly Notices Roy. Astron. Soc. **194,** 261.

Guilbert, P.W., Fabian, A.C. : 1986. Monthly Notices Roy. Astron. Soc. **220**, 439.
Guindon, B. : 1979, Monthly Notices Roy. Astron. Soc. **186**, 117.
Guthrie, B.N.G. : 1981, Monthly Notices Roy. Astron. Soc. **194,** 261.
Har

Hargrave, P.J., Ryle, M. : 1974, Monthly Notices Roy. Astron. Soc. **166,** 305.

Harris, A. : 1972, Monthly Notices Roy. Astron. Soc. **158,** 1.

Harris, A. : 1973, Monthly Notices Roy. Astron. Soc. **163,** 19p.

Haslam, C.G.T. : 1974, Astron. Astrophys. Suppl. 15, 333.

Haynes, R.F., Cannon, R.D., Ekers, R.D. : 1983, Proc. Astron. Soc. Aust. 5,241.

Heckman, T.M., Carty, T.J., Bothun, G.D. : 1985, Astrophys. J. **288,** 122.

Henriksen, R.N., Vallee, J.P., Bridle, A.H. : 1981, Astrophys. J. **249,** 40.

Hesser, J.E., Harris, H.C., van den Bergh, S., Harris, G.L.H. : 1984, Astrophys. J. 276, 491.

Hine, R.G.: 1979, Monthly Notices Roy. Astron. Soc. **189,** 527.

Hine, R.G., Longair, M.S. : 1979, Monthly Notices Roy. Astron. Soc. **188**, 111.
Hintzen, P., Ulvestad, J., Owen, F. : 1984, Astron. J. **88**, 709.
Hodges, M.W., Mutel, R.L. : 1986, in Superluminal Radio Sources, p. 168, eds

Hintzen, P., Ulvestad, J., Owen, F. : 1984, Astron. J. **88,** 709.

Hasiam, C.G. I. 1974, Astron. Astrophys. Suppi. 15, 333.
Haynes, R.F., Cannon, R.D., Ekers, R.D. 1983, Proc. Astron. Soc. Aust. 5,241.
Heckman, T.M., Carty, T.J., Bothun, G.D. 1985, Astrophys. J. **288**, 122.
Henriksen, R.N

Huang, S., Stewart, P.: 1985, Astron. Astrophys. 153, 189.

Henriksen, K.N., Vallee, J.P., Bridle, A.H. : 1981, Astrophys. J. 249, 40.
Hesser, J.E., Harris, H.C., van den Bergh, S., Harris, G.L.H. : 1984, Astrophy
Hine, R.G., Longair, M.S. : 1979, Monthly Notices Roy. Astron. Soc.

Hutchings, J.B. : 1987, Astrophys. J. **320,** 122.

Hutchings, J.B., rampton, D., Campbell, B.: 1984, Astrophys. J. **280,** p41.

Jagers, W.J. : 1986, Ph.D. Thesis, University of Leiden.

Jagers, W.J., van Breugel, W.J.M., Miley, G.K., Schilizzi, R.T., Conway, R.G. : 1982, Astron. Astrophys. **105,** 278. Jagers, W.J., van Breugel, W.J.M., Miley, G.K., Schilizzi, R.T., Conway, R.G. :
Astron. Astrophys. 105, 278.
Jenkins, C.J., McElli, M. : 1977, Monthly Notices Roy. Astron. Soc. 180, 219.
Jenkins, C.J., Pooley, G.G., Riley,

Jenkins, C.J., McElli, M. : 1977, Monthly Notices Roy. Astron. Soc. **180,** 219.

Jenkins, C.J., Pooley, G.G., Riley, J.M. : 1977, Me
Johnson, H.M. : 1963, Publ. Natn. Radio Astron.
Jones, D.L., et al. : 1986, Astrophys. J. 305, 684.
Jones, D.L., et al. : 1986, Astrophys. J. 305, 684.
Kanabi. V.K. : 197

Johnson, H.M. : 1963, Publ. Natn. Radio Astron. Obs. 1, 251.
Jones, D.L. : 1986, Astrophys. J. 309, L5.
Jones, D.L., et al. : 1986, Astrophys. J. 305, 684.
Kapahi, V.K. : 1978, Astron. Astrophys. 67, 157.
Kapahi, V.K. : 19

Jones, D.L. : 1986, Astrophys. J. **309,** L5.

Jones, D.L., et al. : 1986, Astrophys. J. 305, 66
Kapahi, V.K. : 1978, Astron. Astrophys. 67, 151.
Kapahi, V.K. : 1986, Highlights of Astr. 7, 371.
Kapahi, V.K. : 1986, Highlights of Astr. 7, 371.
Kapahi, V.K. Gopal-Krishn

Jones, D.L. : 1986, Astrophys. J. **309**, L5.
Jones, D.L., et al. : 1986, Astrophys. J. **305**, 684.
Kapahi, V.K. : 1978, Astron. Astrophys. 67, 157.
Kapahi, V.K. : 1985, Monthly Notices Roy. Astron. Soc. **214**, 19p.
Kapahi,

Kapahi, V.K., Gopal-Krishna, Joshi, M.N. : 1974, Monthly Notices Roy. Astron. Soc. 167, 299.

Kellermann, K.I., Pauliney-Toth, 1.I.K. : 1981, Annual Rev. Astron.Astrophys. **19,** 373.

Kellermann, K.I., Pauliny-Toth, 1.I.K., Williams, P.J.S. : 1969, Astrophys. J. 157, 1.

Kerr, A.J., Birch, P.A., Conway, R.G., Davis, R.J., Stannard, D. : 1981, Monthly Notices Roy. Astron.Soc. 197, 921. Exercise, D.L. : 1986, Astrophys. J. 309, L5.

Iones, D.L., et al. : 1986, Astrophys. J. 309, L5.

Kapahi, V.K. : 1978, Astron. Astrophys. 67, 157.

Kapahi, V.K. : 1978, Astron. Astrophys. 67, 157.

Kapahi, V.K. : 1986, Hi

King, C.R. Ellis, R.S. : 1985, Astrophys. J. **288,** 456.

Kundt, W., Gopal-Krishna : 1981, Astrophys. Sp.Sci. 75, 257.

Kundt, W., Krause, M.: 1985, Astron. Astrophys. 142, 150.

Laing, R.A.: 1981, Monthly Notices Roy. Astron. Soc. 195, 261.

Laing, R.A.: 1988, Nature **331,** 149.

Laing, R.A. Riley, J.M., Longair, M.S. : 1983, Monthly Notices Roy. Astron. Soc. **204,** 151. Lang, K.R., 1978, Astrophysical Formulae, p 602, Springer-Verlag.

- Large, M.I., Mills, B.Y., Little, A.G., Crawford, D.F., Sutton, J.M. : 1981, Monthly Notices Roy. Astron. Soc. **194,** 693.
- Leahy, IP., Williams, A.G. : 1984, Monthly Notices Roy. Astron. Soc. **210,** 929.
- Longair, M.S. : 1966, Monthly Notices Roy. Astron. Soc. **133,** 421.
- Longair, M.S., Ryle, M., Scheuer, P.A.G. : 1973, Monthly Notices Roy. Astron. Soc. **164,** 243.
- Longair, M.S., Seldner, M. : 1979, Monthly Notices Roy. Astron. Soc. **189,** 433.
- Lonsdale, C.J., Barthel, P.D. : 1984, Astron. Astrophys. **135,** 45.
- MacDonald, G.H., Kanderdine, S., Neville, A.C. : 1968, Monthly Notices Roy. Astron. **Soc.13,** 259.
- MacGillivray, H.I., Stobie, R.S. : 1984, Vistas Astr. **27,** 433.
- Machalski, J., Condon, J.J. : 1985, Astron. J. **90,** 973.
- Mackay, C.D. : 1969, Monthly Notices Roy. Astron. Soc. **145,** 31.
- Macklin, J.T. : 1981. Monthl Notices Roy. Astron. Soc. **196,** 967.
- Malin, D.F. : 1977, Am. Astron. Soc. Photogr. Bull No. **16,** 10.
- Malin, D.F.: 1978, Nature **276,** 591.
- Malin, D.F., Carter, D.: 1983, Astrophys. J. **274,** 534.
- Malin, D.F., Quinn, P.]., Graham, J.A.: 1983, Astrophys, J. **272,** L5.
- Maltby, P., Matthews, J.A., Moffet, A.T. : 1963, Astrophys. J. **137,** 153.
- Marcelin, M., Boulesteix, J., Courtes, G., Milliard, B. : 1982, Nature **297,** 38.
- Marshall, F.]., Clark, G.W. : 1981, Astrophys. J. **245,** 840.
- Masson, C.R. : 1979, Monthly Notices Roy. Astron. Soc. **187,** 253.
- Mayer, C.J. : 1979, Monthly Notices Roy. Astron. Soc. **186,** 99.
- Menon, T.K., Hickson, P. : 1985, Astrophys. J. : **296,** 60.
- Miley, G.K. : 1980, Annual Rev. Astron. Astrophys. **18,** 165.
- Miley, G.K., Osterbrock, D.E. : 1979, Proc. Astron. Soc. Pac. **91,** 257.
- Miller, L. : 1985, Monthly Notices Roy. Astron. Soc. **215,** 773.
- Miller, L., Longair, M.S., Fabbiano, G., Trinchieri, G., Elvis, M. : 1985, Monthly Notices Roy. Astron. Soc. **215,** 799.
- Moffet, A.T. : 196, in Astrophysics and General Relativity, p 219, eds. Chretien, M., Deser, S., Goldstein, J. Norman, M.L., Burns, 10., Sulkanen, M.E. : 1988, Nature **335,** 146.
- Norman, M.L., Smarr, L.L., Winkler, K. -H.A. : 1982, Astron. Astrophys. **113,** 285.
- Nulsen, P., Stewart, G., Fabian, A.C. : 1984, Monthly Notices Roy. Astron. Soc. **208,** 185.
- O'Dea, C.P. : 1985, Astrophys. J. **295,** 80.
- Oort, M.J.A., Katgert, P., Steeman, F.W.H., Windhorst, R.A.: 1987a, Astron. Astrophys. **179,** 41.
- Oort, M.J.A., Katgert, P., Windhorst, R.A.: 1987b, Nature 328, 500.
- Osmer, P.S. : 1978, Astrophys. J. **226,** L79.
- Owen, F.N., Porcas, R.W., Neff, S.G. : 1978, Astron. J. **83,** 1009.
- Parma, P., de Ruiter, H.R., Fanti, C., Fanti, R. : 1986, Astron. Astrophys. Suppl. **64,** 135.
- Valsen, P., Stewart, G., Fabian, A.C. : 1984, Monthly Notices Roy. Astron. Soc. 208, 185.
Nulsen, P., Stewart, G., Fabian, A.C. : 1984, Monthly Notices Roy. Astron. Soc. 208, 185.
O'Dea, C.P. : 1985, Astrophys. J. 295, 80. Pence, W.D. : 1986, IAU Symp. **127,** p 463.
- Perley, R.A., Bridle, A.H., Willis, A.G. : 1984, Astrophys. J. Suppl. **54,** 291.
- Peterson, B.A., Dickens, R.J., Cannon, R.D. : 1975, Proc. Astron. Soc. Aust. **2,** 366.
- Phillips, R.D., Mutel, R.L. : 1980, Atrophys. J. **236,** 89.
- Prestage, R., Peacock, J.A. : 1988, Monthly Notices Roy. Astron. Soc. **230,** 131.
- Purvis, A., Tappin, S.J., Rees, W.G., Newish, A., Duffet-Smith, P.J. 1987, Monthly Notices Roy. Astron. Soc. **229,** 589.
- Quinn, P.]. : 1982, Ph.D. Thesis, Univ. of Canberra.
- Quinn, P.J. : 1984, Astrophys. J. **279,** 596.
- Rawlings, S., Saunders, R. : 1988, Monthly Notices Roy. Astron. Soc. (in press).
- Rana, N.C., Wilkinson, D.A. : 1987, Monthly Notices Roy. Astron. Soc. **226,** 395.
- Readhead, A.C.S., Newish, A. : 1974, Mem. Roy. Astron. Soc. **78**
- Readhead, A.C.S., Napier, P.J., Bignell, R.C. : 1980, Astrophys.J. **237,** L55.
- Rees, M.J.: 1971, Nature **229,** 312.
- Rees, M.J., Setti, G. : 1968, Nature **219,** 127.
- Reynolds, J.E. : 1987, in NRAO workshop on Continuum Radio Processes in Clusters of Galaxies. p 59, eds., O'Dea, C.P., Uson, J.M.

Riley, J.M., Pooley, G.G. : 1975, Mem. Roy. Astron. Soc. **80,** 105.

Roland, J. : 1982, Astron. Astrophys. **107,** 267.

Rosen, A., Wiita, P.J. : 1988, Astrophys. J. **330,** 16.

Rudnick, L., Edgar, B.K. : 1984, Astropys. J. **279,** 74.

Ryle, M., Longair, M.S. : 1967, Monthly Notices Roy. Astron. Soc. **136,** 123.

Sandage, A. : 1973, Astrophys. J. **183,** 711.

Saripalli, L., Gopal-Krishna : 1985, Astron. Astrophys. **149,** 205.

Saripalli, L., Gopal-Krishna : 1987, in Astrophysical Jets and their Engines, p 247, ed. Kundt, W.

Saripalli, L., Gopal-Krishna, Reich.W., Kuhr, H. : 1986, Astron. Astrophys. **170,** 20.

Saunders, R. : 1982, Ph.D. Thesis, University of Cambridge

Saunders, R., Baldwin, J.E., Pooley, G.G., Warner, P.J. : 1981, Monthly Notices Roy. Astron. Soc. **197,** 253.

Saunders, R., Baldwin, I.E., Warner, P.J.: 1987, Monthly Notices Roy. Astron. Soc. **225,** 713.

Scheuer, P.A.G. : 1974, Monthly Notices Roy. Astron. Soc. **166,** 513.

Scheuer, P.A.G. : 1977, Radio Astronomy and Cosmology, IAU Symp. 74, p 343.

Scheuer, P.A.G. : 1982, in Extragalactic Radio Sources, IAU Symp. **97,** p 163.

Scheuer, P.A.G. : 1987, in Astrophysical Jets and their Engines, NATO ASI Series **208,** p 129, ed. Kundt, W.

Schilizzi, R.T., Kapahi, V.K. Neff. .G. : 1982, J. Astron. Astrophys. 3, 173.

Schilizzi, R.T., McAdam, W.B. : 1975, Men. Roy. Astron. Soc. 79, 1.

Schreier, E.J., Burns, J.0., Feigelson, E.D.: 1981, Astrophys. J. **251,** 523.

Schreier, E.J., Gorenstein, P.X., Feigelson, E.D. : 1982, Astrophys. J. **261,** 42.

Schwartz, U.J., Whiteoak, J.B., Cole, D.J. : 1973, Aust. J. Phys. **27,** 563.

Schweizer, F. : 1980, Astrophys. J. 237, 303.

Schweizer, F., Seltzer, P. : 1988, Astrophys. J. **328,** 88.

Scriwerzer, (", Serizer, F. 1980, Astrophys. J. 226, 88.
Scott, M.A. : 1977, Monthly Notices Roy. Astron. Soc. **179**, 377.
Seidner, M., Peebles, P.J.E. : 1978, Astrophys. J. 225, 7.
Seidner, M., Sipher, B. Croth, E.J. Peeb

Scott, M.A., Readhead, A.C.S. : 1977, Monthly Notices Roy. Astron. Soc. **180,** 539.

Seidner, M., Siebers, B., Groth, E.J., Peebles, P.J.E. : 1977, Astron. J. **82,** 249.

Simon, A.J.B. : 1977, Monthly Notices Roy. Astron. Soc. **178,** 329.

Singal, A.K. : 1988, Monthly Notices Roy. Astron. Soc. 233, 87.

Slee, 0.B., Sheridan, K.V., Dulk, G.A., Little, A.G. : 1983, Proc. Astron. Aust. 5, 247. Scott, M.A., Readhead, A.C.S. : 1977, Mon
Seldner, M., Peebles, P.J.E. : 1978, Astropl
Eldner, M., Siebers, B., Groth, E.J., Peebli
Simon, A.J.B. : 1977, Monthly Notices Roy
Singal, A.K. : 1988, Monthly Notices Roy.
Slee,

Smith, H.E., Spinrad, H. : 1980, Proc. Astron. Soc. Pac. **92,** 553.

Spangler, S.R. : 1980, Astron. J. **84,** 1470.

Sparks, W.B., Disney, M.J., Wall, J.V., Rodgers, J.W. : 1984, Monthly Notices Roy. Astron. Soc. **207,** 445.

Stockton, A., Mac Enty, J.W. : 1987, Astrophys. J. **316,** 584. Stocke, J.T.: 1979, Astrophys. J. 230, 40.
Stockton, A., MacEnty, J.W.: 1987, Astrophys. J. 316, 584.
Strom, R.G., Baker, J.R., Willis, A.G.: 1981, Astron. Astrophys. 100, 220.

Strom, R.G., Jagers, W.J. : 1988, Astron. Astrophys. **194,** 79. Strom, R.G., Baker, J.R., Willis, A.G. : 1981, Astron. Astrophys. **85, 36.**
Strom, R.G., Jagers, W.J. : 1988, Astron. Astrophys. **194**, 7
Strom, R.G., Willis, A.G. : 1980, Astron. Astrophys. **85**, 36.
Strom, B.C., Willis,

Strom, R.G., Willis, A.G. : 1980, Astron. Astrophys. 85, 36.
Strom, R.G., Willis, A.G., Wilson, A.S. : 1978, Astron.Astrophys. **68**, 367.

Subrahmanya, C.R., Hunstead, R.W. : 1986, Astron. Astrophys, **170,** 27.

Swarup, G. : 1985, J.Astron.Astrophys. 5, 139.

Strom, K.G., Willis, A.G., Wilson, A.S. : 1976, Astron.Astrophys. **66**, J67.
Subrahmanya, C.R., Hunstead, R.W. : 1986, Astron. Astrophys, **170**, 27.
Swarup, G., Banhatti, D.G. : 1981, Monthly Notices Roy. Astron. Soc. **194** Subranmanya, C.R., Hunstead, R.W. : 1986, Astron. Astrophys.
Swarup, G., Banhatti, D.G. : 1981, Monthly Notices Roy. A
Swarup, G., Bhandari, S.M. : 1974, Astrophys. Lett. **17**, 31.
Swarup, G., Bhandari, S.M. : 1974, Astrop

Swarup, G., et al. : 1971, Nature Phys. Sci **230,** 185.

Swarup, G., Sinha, R.P., Hilldrup, K. : 1984, Monthly Notices Roy. Astron. Soc. **208,** 813.

Tsien, S.C. : 1982, Monthly Notices Roy. Astron. Soc. **200,** 377.

Ulrich,M.-H., Meier, D.L. : 1984, Astron. J. **89,** 203.

Umemura, M., Ikeuchi, S. : 1987, Astrophys. J. **319,** 601.

Valtaoja, E. : 1984, Astron. Astrophys. **140,** 148.

van Breugel, W., et al. :1983, Astrophys. J. 275, 61.

van Breugel, W., Heckman, T.M., Miley, G.K., Filippenko, A.V. 1986, Astrophys. J. **311,** 58. Wardle, J.F.C. : 1977, Nature **269,** 563.

Waggett, P.C., Warner, P.J., Baldwin, J.E. : 1977, Monthly Notices Roy. Astron. Soc. **181,** 465.

White, G.L., McAdam, W.B., Jones, I.G. : 1984, Proc. Astron., Soc. Aust. 5, 507.

Whitford, A.E. : 1971, Astrophys. J. **169,** 215.

Wiita, P.]. 1985, Phys. Reports 123, 118.

Williams, R.E., Christiansen, W.A. : 1985, Astrophys. J. **291,** 80.

Willis, A.G., Strom, R.G. : 1978, Astron. Astrophys. **62,** 375.

Willis, A.G., Strom, R.G., Bridle, A.H., Fomalont, E.B. : 1981, Astron. Astrophys. 95, 250.

Willis, A.G., Strom, R.G., Perley, R.A., Bridle, A.H. : 1982, in Extragalactic Radio

Sources, IAU Symp. 97, p 141, eds. Heeschen, D.S., Wade, C.N.

Willis, A.G., Strom, R.G., Wilson, A.S. : 1974, Nature **250,** 625.

Windhorst, R.A. : 1984, Ph.D. Thesis, University of Leiden.

Wood, K.S., et al. : 1984, Astrophys. J. Suppl. **56,** 507.

Yee, H.K.C., Green, R.E. : 1984, Astrophys. J. **280,** 79.

Yee, H.K.C., Oke, J.B. : 1978, Astrophys. J. **226,** 753.

Young, P.J., Sargent, W.L.W., Kristian, J., Westphal, J.A. : 1979, Astrophys. J. 234, 76.

Zwicky, F., Herzog, E.: 1963, Catalogue of Galaxies and Clusters of Galaxies, (Cal. Tech.).