
CHAPTER III

FLUX-DENSITY MEASUREMENTS USING THE OOTY SYNTHESIS RADIO TELESCOPE

3.1: INTRODUCTION

In order to study low-frequency variability, it 	 was decided' to

measure	 the flux density of a sample of compact radio sources every three

months with a typical accuracy of - 5 %. Full synthesis mapping was 	 not

attempted because of the	 large number of sources in the sample. Also,

such full mapping was not necessary, since we selected only those sources

compact	 enough to	 be	 unresolved by the Ooty Synthesis Radio Telescope

(OSRT) and were interested in measuring only their total flux densities.

These	 observations	 could	 have	 been	 carried	 out	 with	 the

Ooty Radio Telescope	 (ORT) alone were it not for its high confusion limit

(3c) of - 1.5 Jy. However, while use of the OSRT considerably reduced the

confusion limit, it complicated both the observations and data analysis

procedure.

This chapter begins with a calculation of the confusion limit for the

ORT and we show how this is reduced for an aperture-synthesis instrument,

naturally justifing the use of the OSRT for the present experiment. 	 This

is followed	 by	 brief	 descriptions	 of	 the basic principles of

aperture-synthesis and the OSRT. 	 The following section	 deals with	 the
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usual OSRT observing mode and data analysis and the problems that arises

when these are applied to the observations of 	 'weak' sources over short

time durations.	 Finally, we discuss the method actually adopted for the

flux-density measurements and its limitations and accuracy.

3.2: CONFUSION LIMITS OF THE ORT AND THE OSRT

If a radio telescope is fixed and the sky is left to drift past it, a

random fluctuating response is recorded.	 The stronger peaks, with a

transit time characteristic of the telescope beamwidth, will be due to the

passage	 of radio sources through the beam but the high-frequency

smaller-magnitude fluctuations will be due to noise.	 Because of its

random nature,	 time averaging	 reduces the noise in proportion to laT

where, T is the integration time. However, if we continue to increase T,

the reduction of the ripple on the records ceases at a certain point and

any further time-averaging does not improve 	 the signal-to-noise ratio

(SNR). The ripple at this point is caused predominantly by the background

• of radio sources passing through the main beam and the side-lobes of the

antenna.	 If, for a particular observing 	 mode (i.e. some specified

integration time T), the rms value of these fluctuations is more than that

of the thermal noise of the system, the telescope is said to be confusion

limited.

1106. One way of	 estimating the	 confusion limit (3o)	 is to use the

practical criterion that the average source density (in any survey) should

[ not exceed one object in twenty-five beam-areas (Methods 	 in Experimental

[
Physics,	 Vol	 12, Part C).	 The main-beam area of the ORT (for

() 0 declination) is

(i) in	 the total-power (TP)	 mode	 = 1.133546 x 2°	 x 5 .6

	

= 6.445 x 10 -5	 steradian
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and (ii) in the correlator (or so-called

phase-switched, (1)-Sw) mode = 1.133546 x 2° x 3 .6

= 4.144 x 10 -5 steradian

	  (3.2.1)

One source per 25 beam areas requires that there should be about 620 and

965 sources per steradian down to the limiting flux densities in the TP

and (p-Sw modes respectively. 	 Using the cumulative source count at

408 MHz.	 (Ryle, 1968) and assuming an average spectral index for the

radio sources of 0.7 between 408 and 327 MHz, we find that this

requirement determines the confusion limit to be 1.59 and 1.17 Jy for the

TP and cp-Sw mode respectively. This is not an exact estimate as we have

neglected	 the effect of the side lobes which will be more pronounced for

p-Sw operation. Since this is a 3o limit, the r.m.s. contribution to the

noise from main-beam confusion amounts to about 500 and 234 mJy for the TP

and cp-Sw modes respectively. In comparision, the thermal noise for a 1

sec integration is normally about 140 mJy. At this point, one might argue

that since the confusion remains unchanged in an equatorial antenna for a

particular source (field), it should not affect any variability study.

However, the feed line of the ORT consists of 1056 dipoles, all of which

have to be consistently phased to maintain a particular beam shape. Hence

there is a likelihood of considerable apparent flux-density variations to

be caused by secular changes in the beam shape, which could have different

variations for different declinations.

Confusion noise in the OSRT

Perley and Erickson (1984) have calculated the rms noise in a complex

correlator due to the passage of a large number of background sources
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through the interferometer fringe pattern.	 For a particular baseline,
•

this is given by

2	 2	 2
Gcon = 0.5 [IS n(S) dS] [f P di2]

 

(3.2.2)

 

where,	 n(S) = the differential number count of radio sources

within the flux density range S to S+dS

and	 P = the synthesised beam

The second moment of the differential number count can be estimated using

a relation ( Sukumar et al., 1988),

f S2 n(S) dS = 1637 F23 (1.247) 6 = 7186.64 Jy 2 
ster

-1

 

(3.2. 3)

 

where,	 F = 408/y (MHz)

and 13 = the index of Log N - Log S distribution

= 0.7

As discussed below, the adopted observing method restricted the field of

view for	 the present observation to 2° x 7'	 (as compared to the usual

field of	 view of the OSRT of 2° x 42').	 Since	 a	 multi-element

interferometer measures the visibility at different U-V spacings, the

noise contributions due to confusion are summed with random phase, whereas

the signal from the source at the phase centre adds in phase. Hence, if N

independent points are averaged, confusion, like the thermal noise, gets

reduced by a factor of laTT . In the present application, we have taken

vector-averages of the visibility points from four baselines over 5

minutes (for reasons discussed below). The OSRT measures one visibility

point per min and hence, N = 20 (assuming there is an independent point

per min) in this case.
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X2 0 [0.5Therefore,

	

	 0 2 	 (OSRT) = ;/- 0 [0.5 x 7186.6 14 x 2 x (7/60) x	 (7/180)2]con

= 110 mJy	 	 (3.2.4)

This is consistent with the value of - 3 mJy for a 9-hr integration, as

quoted by Sukumar et al.(1988). Thus, in this method, the contribution of

confusion is reduced by a considerable amount.

3.3: BASIC PRINCIPLES OF APERTURE SYNTHESIS AND THE OSRT

Let us consider a distant source, subdivided into infinitesimal

elements of solid angle each with a brightness B
i

. Each of these source

elements generates Huygens wavelets which can be considered to 	 be	 plane

waves at the distance of the observer. Since these plane waves are coming

from various directions, their sum is a complex phasor, 	 E(2,,m), which

represents an "angular spectrum" of plane waves. The observer will note

that in the plane	 (x,y) perpendicular to the observer-source line, the

electric field E(x,y) produced by the source with direction cosines 	 (9.,m)

will vary with the position in the plane. 	 Booker and Clemmow (1950)

proved that the angular spectrum and the field distribution are related by

a Fourier Transform relation

E(x,y) = I	 f c(9.,m) exp [ j '1 (xV-ym)] dR, dm	 	  (3.3.1)

(neglecting sky curvature)

Conventionally, we consider u = x/A and v = y/A so that
+co

E(u,v) = I	 I e(9,,m) exp [ j27(19.+vm)] d9, dm 	 	 (3.3.2)

The required quantity is the intensity (or brightness) distribution	 over

the source,	 B(0,(0).	 The solid angle subtended by any source element is

dldm and the brightness of that element in the direction (.,m,) is

proportional to	 ic(2,,m)12.
	 Hence, the brightness distribution can be

written as
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Table III-1: Some useful parameters of the OSRT

Antennae
	

Five ORT sections (each 92m X 30 m), 0A,08,0C,OD,OE.

Seven smaller parabolic cylinders ('baby cylinders')

each with dimensions 23m X 9 m.

Maximum baseline	 4 km (EW) X 2 km (NS).

Frequency	 327 MHz.

Bandwidth	 4 MHz.

Sky coverage : HA

	

	 -04h 07 m to +05 h 26 m for ORT-sections

-05
h 

30
m
 to +05

h 
30

m
 for the baby cylinders.

DEC	 ± 50°

Field of view

Synthesised  beamwidth

Sensitivity

124' X 31' for the baselines involving ORT-sections.

170' X 42' for baselines between the baby cylinders

and the ORT-sections

40 X 90 at 0° declination.

15 mJy/Beam (5a) for 9 hr integration.
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B(e,q,)	 c4-(1,m)	 	  (3.3.3)

The lateral coherence function of the electric field is defined as

*
r(u,v)	 = < E(u,v) E (u+u',v+v') >	 	  (3.3.4)

Il Usi

where, < > denotes averaging over all values of u',v'. ng the

Wiener-Kinchin theorem, which can be stated as:

F.T.
If,	 G(s)	 => g(x)

and, H(a) = <g(x) g
*

 (x-a)> then the Fourier transform of H(a) is given by
+co

I H(a) exp(-27jsa) da = IG(s)I 2 	 	 (3.3.5)
-co

and taking a Fourier transform of (3.3.4), we get

•

I	 r(u,v)	 exp -271.j(u2+vm) du dv = 1E(2,m)1 2	= B (e,(15)	 	  (3.3.6)
-CO

Thus, the brightness distribution and the lateral coherence	 function of

the	 electric field are related by a Fourier transform relation. In an

aperture-	 synthesis	 instrument,	 we	 measure	 the	 normalized

lateral-coherence or 'visibility', defined by:

*
< E(u',v') E (u'+u,v'+v) >

V(u,v) - 	 	 	 (3.3.7)
< 1E(W,v')1 2	>

for a large number of u,v values (baseline vector b = t71+7).	 Then, using

an inverse	 Fourier transform, we can reconstruct the sky-brightness

distribution, B(e,(p).

THE OSRT:

The Ooty Synthesis Radio Telescope 	 (OSRT) consists of a	 30 x 530 m2

parabolic-cylindrical antenna, the ORT (Swarup et al., 1971), and seven
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and a detailed description is given by Sukumar et al. (1988).

The feed-line of the ORT consists of an array of 1056 collinear

dipoles and is grouped into 22 modules containing 48 dipoles each. For

use in the OSRT, The ORT is sub-divided into five segments which are

treated as five individual elements of the synthesis array (named OA, OB,

00, OD and OE). Each segment consists of 	 4 modules (the northern and

southern-most modules being excluded). The signal received by each module

at 326.5 MHz is amplified and down-converted to 30 MHz using a local

pp oscillator (LO) signal at 296.5 MHz.	 This is brought to the central

receiving room through underground cables. The dipole array and receiver

electronics for the smaller antennas are similar to those of the ORT.

All the antennas are equatorially mounted and are mechanically

steerable in hour-angle (some relevant parameters for the OSRT are listed

in Table III-1). Declination pointing is achieved by properly phasing the

dipoles in the feed lines using 4-bit diode-controlled phase-shifters

placed after each dipole. The positioning in hour angle and declination

or of all the antennas and the monitoring of the status of the electrical and

electronic systems at the remote stations 	 are achieved by means of a

computer-controlled RF telemetry system which employs VHF and cable links

to the central control room.

Local-oscillator signals at 296.5 MHz are transmitted from the

control room to the nearby (up to distances of - 300 m) antenna_ by

underground cables. For the more distant antennas, the coherent LO signal

are generated from the master oscillator using phase-locked loops at the

remote stations.

The 30-MHz IF signals (over bandwidths of 4 MHz) from the remote

stations are brought to the central receiving room using cable and

microwave links. These are then down-converted to video signals and fed
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through automatic level controllers (ALC) to the 256-channel digital delay

line correlator unit 	 (DDLC) which compensates the geometric delays with

respect to a phase-reference point at the centre of the 0RT element OC,

fringe-stopping and the formation of the visibility function. The on-line

PDP 11/24 mini-computer (which also _ controls the antennas and sets the

delays) reads and stores the sine and the 	 cosine correlator outputs of

each DDLC channel every six seconds through the DR11C interfaces.

The off-line data analysis is performed using locally-developed

software in the PDP 11/70 computer and the AIPS package installed on the

VAX 11/750 computer.	 Firstly, the 6-sec data points for a particular

source are added vectorially to obtain 1-min data averages. Phase

corrections to compensate for atmospheric refraction (Sukumar, 1986) are

then	 applied	 to	 these.	 Usually,	 a	 nearby point source with

accurately-known position and flux density is observed every 15-20 min.

Using	 the visibility data for this calibrator source, antenna-based

amplitude and phase gain factors are calculated. With the assumption that

tMIE,

the system and the atmospheric conditions vary only linearly between two

successive scans on the calibrator, interpolation of the gain factors

gives the appropriate factors to be applied to the source data. After

calibration, the visibility amplitudes are expressed in units of Jy, while

the phase values are relative to a point at the field centre. The

calibrated data are then Fourier transformed and CLEANed to produce • the

final map.

For a full OSRT synthesis	 observation of 9 hr, a fairly good

uv-coverage can be obtained.	 The equatorial (geomagnetic) ionospheric

phase fluctuations which is a major problem at Ooty because of its

'proximity to the Geomagnetic equator, can be corrected for using a
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self-calibration technique for strong (S
327 > 5 Jy) sources, leading to

improved dynamic range.

3.4:Difficulties in adopting the normal observing mode for	 flux-density

monitoring

With the large number of sources to be monitored every 	 3-months, it

was impractical to observe each source for 9 hr. In practise, we could

spend about 2 hr on each source per observation. 	 The expected	 327-MHz

flux densities of most sources in the programme were about 1 Jy and it was

difficult to find a nearby calibration source for each. These constraints

gave	 rise to the following difficulties with 	 the standard	 mode of

observations.

(A) The effect of ionospheric phase fluctuations:

The ionospheric phase fluctuations affected the interferometric

measurements in two ways, depending upon whether the baseline involved was

longer or shorter than the correlation length of the phase fluctuations.

The	 fluctuations along an initially plane wavefront, distorted by

traversing an irregular medium, can be characterized by the 'structure

function' of phase, defined by:

D(b) =	 (1)(x) - cp(x-b)] 2 >	 	  ( 3.4.1)

where, b represents the projected baseline of an interferometer. The rms

deviation in the visibility phase (for that baseline) is given by

a (1) (b)	 =	 	  (3.4.2)

Depending upon the scale-sizes of the irregularities in the ionosphere,

there exists a maximum separation d m , for baselines shorter than which

a	 _ 211-	 et,
- -5: a b P , for b < d

m
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where, a is a constant 	 	 (3.4.3)

while, a (1) =
m
, and is constant for d 	 d

m

The value of d
m
 for the ionosphere has been found to be - 5 km (Ratcliffe,1956)

For baselines shorter than d
m
, the measured visbility is 	 related	 to the

true visibility by the equation,

V
m
 = V

t exp(jcP)	
	  (3.4.4)

where, (1) is a Gaussian random variable with zero mean and the	 expectation

value of the measured visibility

<Vm> = V t <exp(jq)> = V t exp(-a 40 2 /2)	 	  (3.4.5)

II
If we assume S = 1, then using eqn. (3.4.3) we get

where, q is the magnitude of the projected baseline vector, b in units of A.

Therefore, in this case the visibility is multiplied 	 by a	 Gaussian

function, the ionospheric weighting funtion,

W(q) = exp (_ 272 a 2 q2)	 	  (3.4.7)

The map generated by the Fourier transformation of eqn.(3.3.6) 	 is then

convolved by the Fourier transform of W(q),

W(8) m exp (-6 2 /2a 2 )	 	  (3.4.8)

The effect would be that the source is broadened and 	 the resolution

limited by 'seeing' [For other values of S, W(q) can be calculated either

analytically or numerically].

For baselines where b 	 d
m
, two situations may arise:

(1) if the time-scale of phase fluctuations is shorter than 	 the

measurement interval, all the visibility measurements will be reduced by a

constant factor, exp(-a rV2). Resolution will not be degraded	 in this

<V
m
> = V

t
 exp (-27r2 a2 q 2 ) (3.4.6)
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case, although the flux density will be underestimated by a factor

exp(-o1/2).
m

(2) when the time-scale of phase fluctuations is longer than the

measurement intervals, each visibility value will suffer a phase error,

e j , which is time-varying but whose statistics are independent of the

baseline b. If there are N measurements of a point source of flux density

S, the map can be expressed as:

N.
1(6 x , 6 y
	 N
) =	 =	 e ict) i.	 exp[27j(6

x	.
u + 0y
	 1v.)]

i=11=1

The expectation value at the field centre is

   

(3.4.9)

   

-2
<I(0,0)> = S e am /2

  

(3.4.10)

  

The flux-density measured at the peak response is underestimated with a

rms deviation of a
s
 from its true value where,

s 
=	 V( 1 - exp(-am) )

 

(3.4.11)

 

The 'missing flux density' can be obtained by ignoring the thermal noise

and	 averaging the amplitudes over the map if there is no other source

within the field.

4100
	 The situation usually encountered with the OSRT 4-km baselines is

that described in case (2). Thus the estimated flux density from the peak

value at the phase centre is an underestimate when the data are

uncorrected for phase errors. Also, as the rms deviation a s depends upon

ionospheric conditions, it is time dependent. As an illustration of this

uncertainty, we present in Fig.III-2a and 2b two maps of the compact

source 0738+313 as observed on two consecutive days (22 and 23 April

1985).	 The source 0758+14 was used as a calibrator. On both days, four
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scans of 30 min duration each were taken on the source, with interleaved

5-min scans on the calibrator. The maps show clearly the effects of phase

errors. The source 0738+313 is a compact flat-spectrum (Fig.III-2a inset)

low-optical-polarization 	 quasar which is used as an L and C-band

calibrator at the VLA. Hence, it should be completely unresolved by the

OSRT	 (synthesised HPBW = 148x 22arcsec at 16°). The total expected flux

density at 327 MHz is - 1.6 Jy. In Figs III-2a and b, we see that the

source is	 broken up into several components with the peak flux density

changing from 0.6 Jy on 22nd April to 0.4 Jy on the 23rd. Integrated flux

densities over the boxes indicated are 1.34 and 1.13 Jy respectively - a

difference of - 20 %. The use of self-calibration technique would have

been	 beneficial here, but it could not be applied for the following

reasons,

for a source of - 1 Jy strength, the signal-to-noise ratio

for	 the	 correlations	 betweeen	 any two of the smaller antennas

(baby-cylinders) are so poor (SNR < 1) compared to the ORT-baby or

inter-ORT-element correlations that they had to be excluded. This led to

non-closure conditions for the antenna gain equations.

The ORT-elements and the baby-cylinders have very different

fields of	 view and contributedifferent levels of confusion, generating

large baseline-dependent errors.

(B) The problems of amplitude calibration :

The amplitudes of the antenna-based gain factors of the OSRT elements

are declination dependent. For the symmetric parabolic cylinders (seven

'baby cylinders'), the signal received through the back-lobe of the feed

line	 interferes with that received by the front lobe. Therefore, the net

power has a different declination dependence than just the projection
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Fig. HI-3: 'Back-lobe effect' in the symmetric cylinders.
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effect. In Fig.III-3, we represent the ray received through the back-lobe

by R, and that through the front lobe by R 2 with voltage gains A, and A2

respectively.

The phase difference between R, and R 2 is given by:

27	
[Ad) =	 L AO + OF -FC ]	 	 (3.4.12)

A
2f

Geometrically, FC = FA cos 0 = 2 AB cos 0 = tan 0 cos 0 = 2f cos
2
8/sin 8

Hence,

where, f is the focal length of the antenna

and, OA + OF - 
2f

.
sin 8

27
A	 [ sin

2f	 ,	 471-
Asb =	 L	 k1-cos28) ] =	 f cos 6

where, 6 is the declination of the source = 90 - 8

 

(3.4.13)

 

The net voltage received, V = A 2 exp[i(wt +	 + 40] + A, exp[i(wt + (1))]

 

= A 2 exp[i(wt + (1)-1- AO] [ 1 + G
b
 exp(-i AcP) ]

where, G
b
 = A i /A, = relative back-lobe gain

 

(3.4.14)

 

The received power = V V*

7
= 1A 0 1

2
 cos 6 [1 + Gb

2
 + 2G b cos( 	 f cos 6)]	 ---(3.4.15)

whre the "cos 6" term is introduced as both the feed line and the main

reflector fore-shorten as cos 6.

Therefore, the amplitude gain factor has the following declination dependence

	g = A	 cos 6 [ 1 + G
b
2
 + 2G

b
 cos( -- f cos 6 ]

}1/2
x	 x

where, A
x

is a normalizing constant the value of which depends upon the

effective area of an antenna at the equator.

As the ORT-elements are assymmetric (the cross-section being a half parabola),

the back-lobe does not contribute and the amplitude gain varies with

declination as:

g •oi = Aoi (c 056)
1/2 ( 3.4. 1 7)
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In order to verify eqns.	 (3.4.16)	 and (3.4.17) we have estimated the

antenna-based	 amplitude	 gain	 factors	 for 30 calibration sources

distributed over the declination range, -40° < 6 < +50°.	 Figs.III-4a-h

show least-square fits	 of equations (3.4.16) and (3.4.17) to the gain

factors derived from these observations as 	 a function of declination.

Although the mathematical form	 of this dependence can be calculated as

above, in actual observing situations the dependence could 	 be different

because of the finite 	 probability of malfunctions of some of the diode

phase-shifters in the dipole array. Hence, the declination dependence of

the amplitude	 gain factors has to be established for each observing run,
•

unless a calibration source is found exactly at the same declination as

Ol. the source.	 However, the use of just a single calibrator may lead to

artificial variability since many calibrators are themselves compact

sources (the	 chosen calibrators, nevertheless, have steep-radio-spectra)

and are likely to be variables

3.5: The Adopted Methodology

The above difficulties led us to measure the flux density with only a

minimal use of the visibility phase and a different amplitude calibration

procedure. The method is based on the principle of broken-coherence

averaging (Thompson, Moran and Swenson, 1986), as is frequently used in

VLBI data analysis. Essentially, the procedure involves the computation

of the mean	 square value of a series of coherent measurements of fringe

amplitudes, each made over a time shorter than the coherence-time.

The coherence time of an interferometer can be taken as the time over

which the rms phase noise is less than 1 radian. The phase stability is

normally characterised by a quantity called the Allan-variance which is
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defined as:

G; (T) = < l(P(t 4- 2T)	 2(1)(t+T)	 it(t)12>

 

(3.5.1)

 

and the definition of the coherence-time (T
c
) can be expressed as

a
qt' (T)
	 =	 1 radian	 	 (3.5.2)

Using visibility phase values recorded on the point source 3C 286, we have

estimated the Allan standard deviation (a ) for different baselines of the

OSRT for various values of T and estimated the corresponding coherence

times.

For baselines involving the ORT elements:

T
c = 2 hr

while, for the 4-km baselines: 	 	  (3.5.3)

T
c 

= 10 min

Therefore, we could add the visibility amplitudes of the 4-km baselines

coherently for 5 minutes, even without any phase calibration.

. To reduce the effects of confusion, the complex visibilities for

baselines involving one 4-km antenna and all the five ORT-elements were

averaged vectorially to generate the visibility points for a baseline

involving a baby-cylinder and the whole of the ORT,

5
= 1 where, 'o i ' represents an ORT-element

Vox
	 5 i. = 1 1

and 'x' represents a 4-km antenna

—(3.5.4)

This operation reduced the field of view for each baseline to 2° X 7', as

compared to 2° X 42' in the case of the normal OSRT configuration. The

averaging required a phase calibration which was achieved using a set of

calibrators at least one of which was observed about once per two hours.
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A least-square technique, identical to ANTSOL in the VLA calibration

software, was used to determine the antenna-based phase calibrations as a

function of time. This was then interpolated to find the appropriate

corrections for the sources. Considering the longer coherence time for

the inter ORT-element baselines, this method resulted in a good phase

calibration for the ORT-elements. 	 It was then possible to perform the

vector averaging described by eqn. (3.5.4) and generate visibility points

between the complete ORT and a 4-km antenna baseline (ox).

Assuming that the shape of the theoretical gain-declination curves

[eqn. (3.4.16) and (3.4.17)] do not change, from the observations of the

above-mentioned set of calibrators we have fitted the theoretical curves

to the derived antenna-gain-parameters by changing only the normalizing

constants (A
x
 and A

o
) for each antenna. 	 The appropriate fitted curves

were used for gain calibration in each particular observing session. The

advantage of this procedure is that the goodness of these fits could be

used as indicators of the conditions of the antennae and also measured

flux densities are not critically dependent on the assumed flux density of

any particular calibration source.	 The flux density of individual

calibrators can differ from the expected value either due to variability

or due to errors. However, so long as the mean value of the differences

is close to zero, there will be no systematic error in the estimated flux

densities of the sources.

After calibrating the amplitudes of the vector-averaged (over five

minutes) visibilities for the effective baselines between four 4-km

antennas and the complete ORT (Vox ), they are scalar averaged to obtain an

estimate of the source flux density.
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Fig. III-5a,b:	 The effect of noise bias in incoherent averaging of visibility amplitude (see text).
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As no	 maps were	 made,	 any additional source within 	 the

2° X 7'-sized field of view would get added to the flux density of the

target source at the phase centre.	 To avoid such a situation, we searched

the Molonglo Master Catalogue (Little et al.,	 1978) and excluded those

sources which have a neighbouring source of strength 	 0.7 Jy at 408 MHz.

This limits the applicability of the method to relatively strong sources

(>1 Jy) as the probability of finding a neighbouring source increases with

the lowering of the flux density limit.

Since we are using only the visibility amplitudes,	 there will be

a positive bias due to 	 noise in our estimated flux densities. We can

write the measured complex visibility as 	 the vector	 sum of the	 true

visibility and the system noise	 (E)

VV
T 	

+ E

If the real and the imaginary parts of the noise have Gaussian probability

distributions with zero means and rms deviations, o [or equivalently, a

Rayleigh distribution for the amplitude and a uniform distribution for the

phase], the probability distribution of the amplitude of %f mwill be a Rice

distribution (Papoulis, 1965):

I Vml	 1%12	 1Vt12	 IV	 IlVt.1
p(IVm I ) =	 - exp (- 	 -	 )	 I0 ( m	 )	 ----(3.6.2)2	 202	 02

where, I 0 is the modified Bessel function of order	 zero.	 For the	 case

where V
t
has zero phase (point source at the phase centre) the expectation

value of IV
m

i is:

iTr- 	 Ivt12	 lvt2	 Iv,I 2	lv,1 2	Iv„12
< v	 = -	 exp(- 	  ) [(1 + ----) I 0 (---= ) + ---= I

1 
(---=)] --(3.6.3)

2	 402	 202	 402	 202	 40.2



fi
(r)
i--z

0
0

40

30

20

10

i 

0 03 0.09 015 021 027 033 039 0.45 0 . 51 0 . 57 0-63 0 . 69 0.75 081 087
A -4.

Fig. III-6:	 Frequency distribution of visibility amplitude in the absence of any strong source.
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Figures III-5a and b,	 show <IVm l>/o and <111m l>/<IU t i> respectively plotted

as functions of the signal-to-noise ratio, <IV t l>/o. We have estimated

the value of o by taking data with all the antennas tracking 	 a 'blank'

field (no source	 0.7 Jy) and the diode phase-shifter values randomised

so as not to form a beam.	 This leaves just the system noise at the

correlator outputs.	 The	 frequency distribution of these 	 visibility

amplitudes (A N ) are plotted in Fig.III-6, after converting the counts into

mJy using a calibration	 source.	 The continuous curve is the best-fit

Rayleigh distribution of the form:

AN
p(AN ) = K	 exp	 (AN/a)z1	 	  (3.6.3)

The mean value of A
N
 gives an estimate of the rms noise, o in the actual

observing session.	 This	 has been obtained from the fitted value of a,

using the relation,

A
N 

=	 a	 	 (3.6.4)

The resulting value for the noise contribution is = 180 ± 94 mJy.

Hence, for a 1-Jy	 point	 source, the signal-to-noise 	 ratio	 for each

visibility point is - 5. From Fig.III-5b, we find that the positive noise

bias in <V
m
> is then	 2 % which is negligible compared 	 to other

uncertainties.

A further correction was included for the changes	 in the antenna

gains for sources in the galactic plane introduced by the automatic level

controller (ALC) at the input to the DDLC. We shall discuss this again in

Chapter V.

•

(C) Most of the measurement errors come from the uncertainties in the
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gain-declination fits, the calibration errors and the contribution of

confusion (passage of background sources through the fringe pattern). The

total error in Jy can be represented as:

2	 2
E
T
 = E

con	
( E cal X S)

2

 

(3.6.6)

 

where, E
cal 

depends	 upon the declination of the source with flux density

We have obtained the values of E
con 

and c
cal 

from the observations	 of

calibrators and control sources during the observing runs. It was found

that sources at higher declinations had larger measurement errors. 	 In

Figs. III-7a and b, we have plotted the rms intensity fluctuations over a

monitoring interval of three years (Chapter IV) versus the flux densities

for the calibration 	 and control sources with declinations less than and

greater than 15° respectively. The above error-equation was fitted	 to

these plots and the the values of the parameters were found to be:

E
con 

= 0.1

and

cal = 0.05 for Id'	 15°

= 0.07 for 161 >15°

The method described in this chapter has been used for 	 the

flux-density measurements presented in Chapter IV and V.
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