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Abstract

Pulsars are rapidly rotating neutron stars that emit synchrotron radiation at
radio wavelengths continuously, but the radiation appears pulsed because of the
misalignment of the magnetic axis and the axis of rotation. The main goal of
observing pulsars is to understand the physics of neutron stars. Pulsed radiation
is of immense experimental value to radio astronomers as an excellent probe of
the interstellar medium[4]. Binary pulsars, besides, are excellent laboratories for
testing gravitational theory and act as sources of gravitational waves.

Any radio telescope like the GMRT has its own peculiar problem of powerline
interference. For the GMRT, it is 50 Hz, and there are radio telescopes around
the world; some of them in countries that have a 60 Hz powerline frequency.
Moreover, the signatures of the powerline interference are unique to the observing
station due to the differing nature of the local electricity distribution schemes.
However, the exact frequency is unimportant; inasmuch the problems due .to
the powerline interference are a serious impediment to extracting meaningful
information from pulsar observations. To obtain valid results from pulsar radio
data, it is important to have as clean a record of data as possible. The GMRT
pulsar data (as also pulsar data from other radio telescopes) is corrupted by the
powerline sinusoid and its harmonics upto a considerable order. This substantially
distorts the single pulse shape. Moreover, presence of powerline harmonics in the
data can deteriorate the probability of detection of new, unknown, pulsars.

An attempt is made to quantify the powerline interference and therefore sug-
gest suitable parameters for its mitigation, especially when the frequency of the
interference is not stationary in time. Three methods are discussed, each progres-
sively more sophisticated. First, an ideal notch filter is devised and the data is
filtered in blocks, the size of which is fixed from preliminary experiments. Next,
an algorithm is devised, wherein instead of zeros, the notch is replaced by random
noise, the power of which is equal to the noise from the electronics. It is found
that these methods of filtering do not deal with the time-variant frequency of
the powerline harmonics. The shortcomings of these methods motivate a better
method, which allows tracking the frequencies in time from one block to the next.

The tracking filter starts with an apriori set of frequencies around which to
look for the interfering lobes. The number of bins on either side of the prior

to search for is programmable and is under the control of the user. In the first



powerline hunt, the local peak is picked and is updated as the prior for the next
block of data. From the peak, a descent is made to lower-valued bins on either
side upto a threshold value of Ao, where it stops. In the process those bins are
now replaced with random noise of power equal to that from the electronics.
The whole procedure is repeated for each block of data. The same procedure is
straightforwardly extended to the single channel raw data, where the algorithm
now runs over blocks of data for each channel one-by-one. The filtered data is
then de-dispersed. Results are presented with comparisons to the same before
filtering. Finally, the entire algorithin is fit into the pulsar data acquisition chain
of the GMRT to filter out the interference in real-time, as and when the pulsar is
observed. It is shown that this improves the probability of detection of unknown

pulsars during a targeted or an all-sky search.
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Chapter 1

Signal Processing in Radio

Astronomy

Radio Astronomy is impossible without signal processing. All signals collected
are essentially electrical, and as such are not immediately tangible to the human
intellect. Complex signal processing at all levels of the data chain of a radio
telescope render possible the results obtained, be it a radio map of a distant
galaxy, or the kinematics of a fast-spinning neutron-star. Radio telescopes across
the world are becoming increasingly sensitive and ambitious in the conquest of
the edge of the universe.

1.1 Large Synthesis Arrays

A radio telescope is a passive radio receiver. They can either be multi-element
arrays or single-element receivers. With single-element receivers radio maps can
be made although with limitations, but can continue to study pulsars, emission
spectra and even the ionosphere. But to make high resolution radio maps of radio
sources, an array is required. Such arrays are called synthesis radio telescopes.
Synthesis arrays typically consist of many antennas spread over a large area, so
that it effectively acts as a single antenna of a very large collecting area. Because
of the very large spread of the antennas, the signal from the same source reaches
the different antennas at different instants, depending on the location of the
source with respect to the antennas. If the antennas are tracking the source,

these delays are slowly changing with time as well. But a fixed delay in time
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could translate into different phase delays for different frequencies of observation.
Thus the phase delay between the signal reaching the different antennas varies
continuously as the antennas are tracking the source as well with the frequency
of observation even if antennas are pointing to a fixed co-ordinate in the sky.
This continuous phase information is also part of the data in radio-map making,.
This is called Interferometry[7][13]. In interferometry, the signals from all the
antennas are collected, and signals from each pair of antennas are correlated.
The correlated data thus obtained is inverse-Fouriér transformed to get the radio
map. The correlated data as such is called the visibility. Mathematically, the
visibility function of a source is sampled spatially using the radio telescope. A
Fouriér transformation yields the radio-image of the observed source.

1.2 Giant Metrewave Radio Telescope

1.2.1 Introduction

The National Centre for Radio Astrophysicst NCRA) has set up a unique facility
for radio astronomical research using the metrewavelengths range of the radio
spectrum, known as the Giant Metrewave Radio Telescope(GMRT). It is located
at a site about 80 km north of Pune. GMRT consists of 30 fully steerable gigantic
parabolic dishes of 45 m diameter each spread over distances of upto 25 km.
GMRT is one of the most challenging experimental programmes in basic sciences
undertaken by Indian scientists and engineers. Now fully operational, it is the
world’s most powerful radio telescope operating in the frequency range of about
50 to 1500 MHz.

The metre wavelength part of the radio spectrum has been particularly chosen
for study with GMRT because man-made radio interference is considerably lower
in this part of the spectrum in India. Although there are many outstanding
astrophysics problems which are best studied at metre wavelengths, there has,
so far, been no large facility anywhere in the world to exploit this part of the
spectrum for astrophysical research.

The number and configuration of the dishes was optimized to meet the prin-
cipal astrophysical objectives which require sensitivity at high angular resolution
as well as ability to image radio emission from diffuse extended regions. Fourteen

of the thirty dishes are located more or less randomly in a compact central array



Figure 1.1: GMRT Central Square

in a region of about 1 sq km.

The remaining sixteen dishes are spread out along the 3 arms of an approx-
imately ‘Y’-shaped configuration over a much larger region, with the longest
interferometric baseline of about 25 km. ‘

The multiplication or correlation of radio signals from all the 435 possible pairs
of antennas or interferometers over several hours thus enables radio images of
celestial objects to be synthesized with a resolution equivalent to that obtainable
with a single gigantic dish 25 kilometre in diameter! The array operates in six
frequency bands centred around 50, 153, 233, 325, 610 and 1420 MHz. All these

feeds provide dual polarization outputs. In some configurations, dual-frequency
observations are also possible.

s
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Figure 1.2: GMRT array configuration
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The highest angular resolution achievable ranges from about 60 arcsec at the
lowest frequencies to about 2 arcsec at 1.4 GHz.

The large size of the parabolic dishes implies that GMRT has over three times
the collecting area of the Very Large Array (VLA) in New Mexico, USA which
consists of 27 antennas of 25 m diameter and is presently the world’s largest
aperture synthesis telescope operating at centimetre wavelengths. At 327 MHz,
GMRT is about 8 times more sensitive than VLA because of the larger collecting
area, higher efficiency of the antennas and a substantially wider usable bandwidth

because of the low level of man-made radio interference in India.

1.2.2 Goals of the GMRT

Although GMRT is a very versatile instrument for investigating a variety of radio
astrophysical problerns ranging from our nearby Solar system to the edge of the
observable universe, two of its most important astrophysical objectives are:

o to detect the highly redshifted 21 ¢m spectral line of neutral Hydrogen
ezpected from protoclusters or protogalazies before they condensed to form
galazies in the early phase of the universe and

e to search for and study rapidly-rotating pulsars in our galazy

1.2.3 GMRT Pulsar Receiver System

A radio telescope of the scale of the GMRT has a justifiably sophisticated elec-
tronic receiver system. There are two separate data chains, one for the interfer-
ometric observations and the other for pulsar observations. A brief sketch of the
pulsar receiver system is given here. For a more detailed and complete technical
- explanation, refer to [3]. '

Each antenna has two orthogonally placed dipoles for the two polarizations.
Each polarization produces a bandwidth of 32 MHz for the two sidebands to-
gether, or 16 MHz for each sideband. Since there are 30 such antennas, a total
of 120 analog signal channels are produced. Data from each channel is sampled
at Nyquist rate of 32 Mc/s and digitized to four bits per sample. The signals
then pass through the delay units to compensate for the delays, and then Fouriér
transformed in real-time once over 16us to provide a continuous stream of 256
complex spectral channels. The first block of the pulsar receiver is the GMRT



SINGLE SIDE BAND . 'IDUTPUT FFIDM GMRT BASEBAND

30 ANTENNAS, P!DL =

30 ANTENNAS, POL 1

MOMTOR
BXATA

Figure 1.3: GMRT Pulsar Receiver System

Array Combiner(GAC). It combines the signals from a maximum of 30 antennas
for both incoherent and coherent phased array modes of operations. Currently

there are two pulsar back-ends for pulsar observations.

1. The search processor which preintegrates the data to the desired sampling
rate, subtracts long-term mean for each frequency channel and provides

1-bit samples to the data acquisition computer(sub-system of GAC rack).

2. The DSP platform which provides full multi-bit data at fast sampling rates.
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The DSP platform can handle both coherent phased array data as well as
incoherent phased array data. The coherent array observations are recorded
on the PC ACQPC2, whereas the incoherent array observations are recorded

.on ACQPCI1. Besides, the search processor also accesses PC ACQPC1 for
further processing. |

The control and monitoring is done via a Unix console, which is interfaced with
the control room systems and can be monitored continuously.



Chapter 2

The Physics of Pulsars

Pulsars were discovered serendipitously by Prof. Hewish and his Ph.D student
Jocelyn Bell. When they were trying to study interplanetary scintillations, they
observed extremely regular radio pulses with a period of 1.33 s appearing four
minutes earlier every day. The four-minute advance led them to conclude that

the signals were indeed of celestial origin, and not terrestrial RFI.

2.1 What is a pulsar?

When the initial mass of a star exceeds the Chandrasekhar limit[14], it may end
up exploding as supernove. In the middle of the mantle of expanding gas is a
tiny(in the astronomical sense) remnant of extremely dense material only a few
tens of kilometers in diameter. This remnant is chiefly made of neutrons, and
is hence called a neutron star. The neutron star may be 10'* times as dense as
water. It has extemely powerful magnetic fields of the order of 102 Gauss or
more. They rétate_ very rapidly, and this happens because angular momentum
is always conserved. Hence when the star shrinks in diameter, it spins up to

conserve angular momentum.
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Figure 2.1: A Pulsar

2.2 Why are pulsar signals periodic?

The radiation from a neutron star comes from a very small portion of the surface
of the star, and the star is also rotating at the same time. This way one can
readily explain a pulsating radio source. What kind of a star can emits radiation
in only one direction? Only if the radio beam is along one direction and if the
star is also rotating can one have a lighthouse effect. Such a thing can happen

| in a neutron star, as figure 2.1 readily explains.
The exact mechanism for radiation from a pulsar is still a mystery, although
at present a few models are available that explain the observed phenomena. One
such model is briefly discussed in the next section. The radiation, whatever

its originating mechanism, is indeed continuous, but the pulsed nature of the
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observed radiation is due to the fact that the axis of rotation and the magnetic
axis are misaligned. The radio beam from the pulsar sweeps through the observer
at a rate equal to its spinning frequency. Thus, if the Crab pulsar is emitting
radio pulses every 33 ms, it only means that it is spinning on its axis once every
33 ms. Astronomers study pulsar signals in an attempt to solve the mystery of
the radiation mechanism as well, besides studying the physics of the interior of
the neutron star.

2.3 Gold’s model of pulsars

It was T. Gold who first suggested a plausible mechanism by which the observed
radio pulses with clock-like precision in periods could be radiated by a rotating
neutron star. Many other theories have since been proposed by astronomers to
explain the mechanism of radiation by pulsars.

In the intense magnetic field of a pulsar, any charged particle that may escape
from its surface is constrained to move only along the magnetic lines of force. The
assemblage of particles is thus whirled around with the angular velocity of the
neurtron star. In this manner, a co-rotating magnetosphere (consisting of frozen-
in plasma) is formed around the star. The tangential velocity of these whirling
particles gradually increases as they move further from the stellar surface. At a
certain distance, depending upon the speed of rotation of the neutron star, the
velocity of the particles approaches that of light.. The circle described by particles
at this distance is called the velocity of light circle. The relativistic plasma beam
near this circle radiates radio waves perpendicular to the beam, but at the velocity
of light circle where the particles have attained the speed of light, they will break
away from the magnetosphere and flow out into the surrounding regions of space.

It is deduced that the radius r of the velocity of light circle for the Crab pulsar
is about 1600 km. It can be easily calculated from the simple formula

¢ cP
rE=— = (2.1)
P being period and ¢ being velocity of light. Near this circle the charged particles
move along the magnetic lines of force in helical paths producing sychrotron
radiation. According to Gold, magnetic activity will eject plasma from only one
or of most a few places on the surface of the neutron star. The emitting particles

are confined within a narrow cone. In fact, particles are confined in a narrow
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pitch angle & = 7/P in radian measure, where 7 is the duration of the pulse
and P is the pulsar period. Since the pulsars rotate with very high velocities,
the radiation will be strongly beamed in a narrow cone in the forward tangential
direction sweeping a particular region periodically, so that to a distant observer
the pulsar behaves like a lighthouse signalling radio waves.

A modification of Gold’s theory has been suggested by P. Goldreich and
W.H. Julian in respect of the mechanism for particle acceleration to high ve-
locities. They suggest that a rotating magnet will, due to unipolar induction,
generate an electric field E in its vicinity which can cause charge separation and
accelerate particles away from the surface to form a radiating magnetosphere.
This theory predicts that acceleration of particles to energy as high as 10’8 ¢V is
possible in this way.

Other models for pulsed radio emission have also been suggested. For a brief
discussion of various models, refer to [6].



Chapter 3

Radio Study of Pulsars

Pulsars emit strong electromagnetic radiation. It is not established that pulsars
radiate via synchrotron radiation - this is probably not the most accepted mech-
anism; rather, a variant of this - curvature radiation - is thought to be more
relevant. A substantial portion of this radiation is emitted at radio wavelengths.
A few pulsars are known to emit at other wavelengths, but most pulsars emit
at radio wavelengths. Therefore radio observation of such sources should reveal
their nature, and this has been the main reason why pulsars are studied through
the radio window of the electromagnetic spectrum. The main goal of the study

of pulsars is to understand the physics of the neutron star.

3.1 The Interstellar Medium

Radio pulses travel in the interstellar medium with the group velocity v,, given
by

: w2

vy =cq/1l~ w—’; (3.1)
In an ionised gas the group velocity is related to the phase velocity v, by

VgV = C* . (3.2)
The phase velocity at wavelength A is obtained from the refractive index p, as

.N-’.T'[)A2
T

Po=4/1+ (3.3)

12
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where ro = e?/mc? is the classical radius of the electron, and N is the electron
density. Hence for small N
Nr 0 )\2
=(1- 3.4
o= (1- 125 3.4

and the delay ¢ in travel time over a distance L, compared with free space, is

Nrocv™2

27
=1.345 x 1073y 2NL s Hz"2cm™2.

L (3.5)

It is convenient to characterize the transmission path by the product NL, which
in customary astrohpysical practice is measured in units pc! em™3. The product
is then known as dispersion measure DM. Observers commonly quote radio

frequencies in megahertz, so that the'dela,y in seconds becomes
t = 4.15DM vy, (3.6)

The frequency dependence of this delay has a very important effect on observa-
tions of radio pulses. A short broad-band pulse will arrive first at high frequencies

and later at the lower frequencies, traversing the spectrum at the rate

3

S 0 -1 '
V= —g3% 100001 T2 S (3.7)

The overall effect is that the pulse is smeared out if the signals from the different
bands are added without proper correction for dispersion. Now, a pulse with

length 7 occupies instantaneously a bandwidth

3

- VMHz
Bi=gax10omm’ MHe (3:8)

A receiver with a smaller bandwidth than B; will not receive the whole of the pulse
energy, and the sensitivity will be reduced. If the reciever has a larger bandwidth
B, the pulse will be detected for an extended time, while the frequency dispersion
takes the pulse energy across the receiver band.

1pe - parsec
1 parsec = 3.2593 light years
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3.2 Incoherent De-dispersion

The effect of dispersion is to reduce the sensitivity of a pulsar observation with
fixed receiver bandwidth B, to pulsars with high dispersion. One way to getting
around this problem is to have a large enough bandwitdh to accommodate pulsars
with the highest expectecable dispersion measures, and dividing the entire band-
width into narrow bands each with bandwidth of atleast B; and using separate
- receivers on each band. The output from receivers across each band can then
be added with appropriate delays so that the pulse components are superposed.
This process is called incoeherent de-dispersion. The GMRT pulsar system splits
the 16 MHz bandwidth into 256 channels, so that the effective bandwidth of a

channel is

16 MHz
Bsingle chaonnel = 756—— = 62.5 KHz (39)

The GMRT system allows flexibility in selecting channels for pulsar observation.
If there is, say, a particular channel which shows symptoms of harbouring RFI,
that channel can be excluded from the observation by simply setting the gain of
that channel to zero.

To perform the operation of de-dispersion, one must know apriori the DM
of the pulsar being observed. If the pulses from the individual channels are
added at zero DM, the added pulse will be smeared out, the breadth of smearing
depending upon the DM itself. However, if the pulses are added with proper
delays corresponding to the correct DM, the pulse shape is preserved to a great
extent, of course under the assumption that the dispersion within each of the
single channels is indeed negligible. Essentially, dispersion affects signal the pulse
energy even within the single band, but such efects are neglected. In cases where
such an approximation is not tolerable, the technique of coherent de-dispersion is
employed. This makes a full correction for the continuous dispersion across the
observing band. Though de-dispersion can be achieved at the hardware level, it is
easier done in software. The highest frequency channel can be taken as a reference
channel as it will be the one in which the pulse arrives earliest. For all other
channels, the delay from the reference channel is calculated from 3.5, where v must
be instead substituted by the centre frequency of the channel under consideration.
The time delay thus calculated is converted to number of bins, which depends
on the sampling frequency. Thereafter, the signal from the channel is shifted by

those many bins, and this whole process is continued for all channels. The amount
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by which to shift the signal in a particular channel depends on the frequency of

observation(which fixes the centre frequency of that particular channel as well),
and the DM.

3.3 Phased Arrays for Pulsar Observations

Pulsars are fascinating compact objects that are known to emit extremely strong
electromagentic radiation. They are powered by their inherently strong mag-
netic fields, the strengths of which are unimaginably high. However, because of
their compactness and also because the effective area from which this radiation
originates is very small, typically of the order of 100 km across, the fraction of
energy that reaches the radio telescope several light years away is insignificantly
small. Moreover the dispersive effects of the ISM come into play. To overcome
these stumbling blocks, one needs a large collecting area. Building very large
single-dish telescopes is prohibitive; and it can be circumvented by having a mul-
tidish radio telescope like GMRT. With an instrument like GMRT, the effective
collecting area is increased manifold; typically for the GMRT it is equivalent to
operating a single dish of diameter 25 km. The signal from a point source reaches
the different antennas at different instants in time, the inter-element delay being
a function of the geometry of the array, the location of the source in the sky
and the frequency of operation. Besides, the different path lengths of the sig-
nal paths from the various antennas to the radio receiver have be to taken into
consideration. Thus if the signals from the different antennas have to be added
coherently, these delays must be corrected for. Different delays are now added to
each antenna output at the radio receiver to offset the inherent delays, and this
mode of operation of the radio telescope is called phased array operation.

In the GMRT phased array mode, pulsar observations can be carried out in
two different ways: (%koherent phased array mode and (% incoherent phased array
mode. In the incoherent phased array mode, the signal from each antenna is put
through a square-law detector and the output from these is added in the GMRT
Array Combiner(GAC) to obtain the net signal. In coherent phased array mode,
the voltage signal from each antenna is added and the summed output is put
through a square-law detector to obtain the final power signal. For an array of

N antennas, the incoherently phased array gives a sensitivity of /N times that
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of a single antenna, while the coherent array gives a sensitivity of N times that
of a single antenna. The incoherent array has an effective beam that is the same
as that of the single dish, whereas the coherent array has a beam width that is
 much narrower than that of a single antenna dish being =xA/D, where D is the
largest spacing between antennas in the array. The coherent phased array mode
is ideally suited for observations of known pulsars. The incoherent phased array
mode is most useful for large scale pulsar search observations, where the aim is to

cover a maximum area, of the sky in a given time at a given level of sensitivity[2].



Chapter 4
Pulsar Time Series and Spectra

Pulsar signals are inherently periodic in nature, so that if the m® pulse has
arrived and the period P is known, then arrival time of the (m + n)th pulse can
be calculated precisely. However, one doesn’t see a regular pulse train satisfying
the well-known relation

Zmtn(t) = 2 (t); n=0,1,2,... (4.1)

because the amplitude of the pulses appear to vary randomly with time. At
radio wa,velengﬁhs scintillation is encountered in many different circumstances,
because there are many kinds of radio transmission paths which contain the
necessary phase irregularities[4]. The effects of the interstellar medium may be
thought of either as refraction of diffraction; in more general terms the waves are
scattered, giving rise to an angular spread of waves and to fluctuations in wave
amplitude. A significant part of this fluctutation is also thought to be intrinsic
to the pulsar emission mechanism. However, scattering in the ISM is always a
small angle scattering i.e. the direction of the intensity is redistributed in angle
to some extent, but most of it does make it to the observer — there is no real loss
of signal strength due to scattering.

4.1 Powerline Interference

Pulsar signals received on earth are inherently weak for the following reasons

e Pulsars are compact objects and the entire radiation comes from a very

small area near the surface of the neutron star, typically 100 km across.
18
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e They are scattered by the ISM and only a small portion of the beam sweeps
across the telescope These factors combined with the instrumental limita-
tions of an electronic receiver system render difficult the detection of very
weak pulsars. But there are other contributing factors that degrade the
probability of detection of pulsars. One of them is the powerline interfer-

ence.

Powerline interference is an extremely undesirable form of interference, whereby
the pulsar signal literally rides on the powerline wave and its harmonics. It wors-
ens the quality of data to so serious an extent that the single pulse shape is no
longer what it should like, but is invariably polluted with the signatures of the
50 Hz and its harmonics. The cumulative pulse shape is not affected much be-
cause the repeated superposition of pulsar pulses in phase annuls the 50 Hz effect
becuase of its random phase from pulse to pulse. But single pulse proile is like
the heartbeat of a neutron star; radio astronomers studying pulsars are now the
cardiologists diagnosing the electrocardiogram of a patient. Most of the physics
of the neutron stars can be revealed by the studying single pulse profiles, and
radio astronomers have a strong tendency to spend a good deal of time viewing
the single pulse profiles one-by-one. However, it is desirable to have a clean pulse
profile that is inherently free from powerline interference.

4.1.1 Dirty time series data

Many data files with significant amounts of powerline interference were analysed.
All of them invariably contain signatures of 50 Hz and its harmonics upto a con-
siderable order. An example time series is given below, which gives an indication
of the effect of the 50 Hz in resembling the periodicity of the real pulsar emission.
It therefore becomes important to filter out the powerline interference if one is to
get clean single pulse profiles.

4.1.2 Dirty spectra

The powerline interference may not be really obvious as such from the time series
data unless it is farily strong, but it leaves a distinct signature in the frequency

domain. Therefore, a Fouriér transformation of the time series should reveal the
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Figure 4.1: PSR b0943+10 time series with powerline interference

presence of these signatures. It is found that the powerline frequency is fairly
strong and stands out from the pulsar harmonics.

However by cumulative spectral averaging, one can as well make out other
interesting features of the powerline interference, The powerline frequency is not
stationary at 50 Hz. The frequency is centered at 50 Hz, but wanders slowly from
the mean 50 Hz. Thus, the whole data is segmented into several blocks within
each of which the interference frequency is stationary, and the spectra of all these
blocks are averaged. This reveals that the frequency of powerline interference has
indeed changed, because what is seen is not a single line but a significantly broad
lobe.

Ideally, one would want to see a spectrum that looks clean around 50 Hz, 100
Hz, 150 Hz etc. And filtering should be done in a manner that does not alter the
spectral shape at any of these frequencies drastically. Moreover filtering pulsar
data that has the pulsar fundamental close to 50 Hz can be very difficult, lest we
should lose the pulsar signal itself.

Some examples of pulsar spectra for a single block of 1M data samples and the

cumulative averaged spectra over the entire observational data are shown below.
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Figure 4.3: Cumulative averaged spectrum of PSR b1133--16

4.1.3 Why is 50 Hz undesirable?

Powerline frequency interference is extremely undesirable in data analysis where

extremely high precision and time resolution are crucial to robust interpretation
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and doing meaningful science. The 50 Hz can at times be so strong that single
pulse profiles look no different from the powerline spikes. However, this can be

overcome in the cumulative averaged profile because of the random phases with
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which the powerline interference signals add. Nevertheless, astronomers will be
much happier to have clean single pulse profiles so that they can study effectively
the pulse emission scenario in a pulsar.

50 Hz is also undesirable in a slightly more sophisticated manner. The pulsar
emission profile has fine sub-pulses drifting in phase cyclically every few pulses.
From the scientific point of view, these fine structures can tell a lot about the
physics of pulsars. Infact, astronomers look very carefully at these sub-pulses,
how they drift across the pulsar period, their phase relations, etc. to understand
the physics better. But the powerline interference can sometimes be so strong
that the sub-pulses are not clearly resolved and becomes very difficult to tell one
from another. It is now clear why powerline interference is undesirable.

Another avenue of pulsar research where 50 Hz and harmonics could be a
serious impediment to doing meaningful science is discovering new pulsars. More
than 1500 pulsars are now known. Nevertheless, pulsar astronomers always fancy
discovering new pulsars and do a complete study of an object whose dynamics
are not yet known.

Pulsars are searched for in two ways; one is by a targeted search and the other
is an all-sky search. Though the two are different methods of search, one looks
for signatures of periodicity in the data collected. There are two ways of doing
this. Periodicity can be searched for in the time domain, which is difficult if the
signals are very weak and also depends heavily on the telescope sensitivity. The
other way to look for pulsars is to transform the collected data to the Fouriér
domain and look for signatures of periodicity. This method yields better results
than the former because the collected data can be sectioned into many blocks of
reasonable length and cumulative spectra can be obtained. However, the second
method works well only with targeted search where the telescope is always pointed
at a fixed source in the sky. For an all-sky search, the methods to look for pulsar
signatures are rather sophisticated and require supercomputing power.

‘The presence of powerline interference in such observational data seriously de-
teriorates the probability of detection of pulsar signals. The complete derivation
substantiating this statement is given in section 7.1 on page 47.

1Refer pages 36 and 37 for plot of sub-pulse drifting .
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4.2 Preliminary Experiments

A good way to start thinking about a method for filtering out powerline inter-
ference is to study available data. These interfering harmonics must be rejected
doing minimum damage to the actual pulsar harmonics around the powerline
frequencies, lest the removal of pulsar harmonics should distort the pulse shape.
Therefore the nature of the interfering harmonics demands a close study, in order
for us to be able to quantify and characterize their effect on the required signals
- pamely the pulsar signals.

4.2.1 Broadband interference

Many data files were studied and they corresponded to different frequencies of
observation. Notably, observations at 225 MHz, 325 MHz and 610 MHz were
studied. And all of them invariably showed considerable powerline interference.
But it was observed that the strength of the interfering powerline signals also
depends on the frequency of observation. As a general rule, the strength decreases
as the frequency of observation is chosen higher. But however, the interfering
50 Hz is present across a very broad range of frequencies, from as low as 225 MHz
to atleast as high as 610 MHz in our case, but actually more. The interference
is broadband in nature, though sometimes it is also observed that it leaks in
through a particular 62.5 KHz channel that is polluted with a strong RFIL.
However, one has to resort to a zero DM de-dispersion to get a correct spec-
tral index of the 50 Hz interference. Otherwise, the actual non-zero DM spreads
out the 50 Hz sinusoids, the extent of which depends on the frequency of obser-
vation. For high DM, it is quite possible that more of the powerline harmonics
is left at the higher frequencies, and we may obtain a laterally inverted spectral
index. This can be overcome by studying the single channel data itself or time
series de-dispersed with zero DM, corresponding to simultaneous multi-frequency

observations.

4.2.2 Time scales of powerline frequency variability

The motivation for the project stems from the fact that these powerline frequen-
cies do not stay at a fixed frequency, but slowly undulate about the mean 50 Hz.
The same applies to its harmonics. Therefore, the most important study con-
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ducted towards understanding the interference was to quantify the time scales
over which these frequencies stay reasonably stationary.

The criteria to decide on the number of samples to FFT was to estimate the
time scale over which the movement of the powerline frequency was minimal, at
the same time bearing in mind to have sufficient bin resolution. It would be
better to keep the FF'T length as small as possible, because the smaller the FFT
length, the fewer the time samples considered and lesser is the movement of the
50 Hz line. However bin resolution of the spectrum should not be sacrificed for
stationarity of the 50 Hz line. Finer bin resolution is required to effectively filter
out only the powerline interference and effectively retain as much of the pulsar
harmonics in the neighbourhood, if any, as possible.

After many trials, it was decided to fix the time scale of stationarity as
8/16 seconds, which correspond to an FFT length of 16384/32768 for 32 inte-
grations(corresponding roughly to 2 KHz sampling rate). This should allow us
to track any movement of the 50 Hz line effectively, as well as achieve sufficient
bin resolution. The following table must help.

Table 4.1: Optimal FEFT lengths for different sampling rates
No. of integrations | Sampling rate | Signal duration | FFT length

32 2 Khz 16s 32768
16 -4 KHz 16s - 65536
8 KHz 16s 131072

16 KHz 16s 262144




Chapter 5
Filtering de-dispersed data

Now that the time scale over which the powerline frequency remains reasonably
stationary is known, the data can be segmented into blocks of that duration for
filtering. Three methods of filtering are devised, each more effective and elegant
than the previous.

5.1 The Brute Force Method

This is a very simple and straightforward approach to removing interfering signals.
The algorithm is as follows:

o The data is sectioned into blocks of length corresponding to 16 seconds.
¢ Each block is Fouriér transformed and magnitude spectrum is obtained

e The frequencies 50 Hz, 100 Hz,etc., are located and a few neighbouring bins
on either side of each frequency are replaced by zeros.

o The block is inverse Fouriér transformed to get back the time series.

A close look at the algorithm and some reflection reveals that sectioning the data
into blocks is meaningless, as it is a fixed notching process. However, since it
is computationally more efficient to Fouriér transform multiple blocks of smaller
lengths of data than a single large block, sectioning is resorted to.

There are two disadvantages to filtering data in this manner.

e The Paley-Wiener criterion states that that for a filter to be causal and

realizable, it should satisfy the following inequality:
26
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0]

J InHWw)| dw < o0
—C0
This integral does not converge for an ideal filter like the one above which

has zeros over a finite band of frequencies.

» An abrupt change in one domain manifests as an infinite ringing in the other
domain for Fouriér transform pairs. So zero-padding is not an effective way
of filtering undesirable interference lines since the ringing introduced in the
time series is as bad as the interference itself. This may not be very obvious
in the time series but theoretically this is true; and every care must be taken

to avoid such an ad-hoc method of filtering.

o It has been seen that the powerline frequency varies about the mean 50 Hz,
and so do the harmonics about their respective means. So when these move
away from the notches defined for zeroing, they are not at all rejected. This
is as bad as not filtering the data at all, since portions of the time series

are still polluted with the powerline interference.

But the advantages as such are not too few. If we can meke the notches
sufficiently broad — broad enough to take into account the leftmost and rightmost
extents of the powerline frequencies throughout the data, then we can be sure
that there is no remnant of these interfering sinusoids in the filtered data. This
is computationally a very simple approach. But making the notches so broad
may result in some of the pulsar harmonics to be rejected as well, a prospect

that is nightmarish enough for the pulsar researcher. Sacrificing a few Fouriér

coefficients may result in the pulse shape getting distorted, which though may

not be severe, may be quite sufficient to do misleading physics.

5.2 A Better Method

A slightly better method of filtering is now described. The algorithm is almost
the same, except for replacing interference lines with zeros. Simple though it may
appear superficially, some explanation is proper at this point. The spectrum of
the pulsar data series exhibits three distinct features.
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Figure 5.1: b1133+16 time series before filtering

1. The spectral envelope of the actual pulses.

2. The floor noise which can be considered almost white, except for the slightly
higher power level at the red portion of the spectrum. This contribution
comes chiefly from the slow gain variation of the electronics. The floor noise
itself comes from the electronics, and is hence Gaussian in nature. Hence
it manifests as a GGaussian noise in the frequency domain as well, since a
Gaussian random variable remains Gaussian under any linear transforma-

tion.

3. Interference signatures if any.

Therefore when replacing the interfernce lobes with some interpolating values,
care must be taken that the statistics of these interpolating samples be commensu-
rate with those in the neighbourhood. So, an estimate of the statistics is obtained
from a few bins that are sufficiently proximal. The complete algorithm is given
below for clarity.

e The data is sectioned into blocks of length corresponding to 16 seconds.

e Each block is Fouriér transformed and magnitude spectrum is obtained,
which is used only for the computation of the statisties.

e The frequencies 50 Hz, 100 Hz,etc., are located. Bins from 5 Hz to 10 Hz
to the right of each powerline harmonic, including the fundamental, are
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Figure 5.2: b1133416 time series after filtering

considered and the sample mean and sample variance of these samples are
calculated.

¢ A pair of uniformly distributed random variables is generated using a linear
congruential generator implemented as a C subroutine. This pair of uniform
deviates is tranformed into mormal{Gaussian deviates using the Boz-Muller
method,

11 = v/ —2Inx; cos 2mr, (5.1)
Yo = v/ —2Inz sin 2mx, (5.2)

e The pair of random variables thus generated replace the real and imaginary

parts of the Fouriér transform values at the frequency bins defined apriori.
o The block is inverse Fouriér transformed to get back the time series.

This method scores better than the previous one in terms of theoretical feasi-
bility and practical effectiveness. The discontinuity introduced in the spectrum
associated with the previous method has been overcome by interpolating the bins
containing the interference lobes. This effectively filters out the powerline inter-
ference without causing undesirable ringing effects in the time series. However,
this method requires slightly more computational effort to estimate the floor noise
statistics and generation of random numbers — a worthwhile effort which is of no

concern in an offline solution to a so serious a problem as powerline interference.
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But the most outstanding issue still remains to be addressed. How do we filter

out the interference when it does not fall into the designated bins as it frequently

happens? This method does not take care of movement of the interference lobes;

hence data blocks containing powerline harmonics that have moved away from
the designated bins are not filtered at all.

5.3 Variability of Powerline Frequencies

The powerline frequencies exhibit slow variability, and their characteristics have
been studied for quite a few data files. There appears to be a strong correlation
between the strengths of the interfering lines and the frequency of observation.
For low DM pulsars, the powerline interference is stronger at the lower frequencies
of observation. Typically, at around 325 MHz, it appears very strong, getting
progressively weaker at higher frequencies. However, the reverse appears to be
true for high DM pulsars.

Since most of the results are quantitative, they are given in the form of plots.
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Figure 5.3: Variability of 50 Hz in b0943+10 data

There are two features that are striking about the trajectory of the 50 Hz

interference line.

e There is a trend which shows a slow variation of the frequency over a very
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Figure 5.5: Variability of 150 Hz in b0943+10 data

large interval of time. This trend will be apparent if we try to fit a running

median to the curve.

o The rapid variations that manifest from block to block - which is a more

local phenomenon. This comes from the finite bin resolution of the FFT.

The frequency is actually varying continuously given by the trend, but the
finite bin resolution - 0.05965 Hz/bin in this case, and sectioning the data

into blocks result in granulation.



32
'The same can be said for the higher harmonics as well, though the granulation
will be more rapid. Though the general trend will look almost the same, it will
be scaled for the harmonics - the scaling factor being equal to the order of the
harmonic.

5.4 The Tracking Filter

We now therefore have a very strong case for a filter that follows faithfully the
movements of the powerline frequencies and replaces them with noise. Though not
adaptive in the strict sense of the word, the filtering algorithm that is proposed
tries to adapt the notches in accordance with the movement of the harmonics
about their current locations.

The general structure of the filtering routine as a whole remains unchanged.
The quintessential fracking algorithm, which is the most imaportant addition to
the previous algorithm is explained in all its detail below.

1. The powerline frequencies are located in the Fouriér magnitude spectrum

for the first block using the apriori values defined in an input parameter
file.

2. A local search is made around each powerline harmonic that is marked for
filtering, for a few bins on either side and the peak magnitude is found out.
The peak magnitude and its bin number are both collected in different
variables.

3. Starting from the peak bin and moving to the right, the value of the magni-
tude is compared with a threshold. If the value exceeds the threshold, the
real and imaginary parts of the spectral magnitude in that bin are replaced
by Gaussian noise. This is continued as long as the magnitude at that bin
is above the threshold. Once the threshold is reached, this procedure is
stopped.

4, This is carried out on the other side of the peak bin as well and the whole

process is repeated for all blocks of data from steps 2 through 5

5. The bin number corresponding to the peak is made the central bin around
which to hunt for the peak for the next block of data. The peak magnitude
is gathered in a file for statistical study.
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Step 5 always ensures that the peak bin remains within the few bins around

which to hunt in every subsequent block. Thus an effective way to track the

powerline frequencies has been devised. This is chosen as the standard method

to filter out the interference because of its obvious superiority over the previous
two filtering methods.

e There is no abrupt discontinuity in the spectrum as seen in the discussion
of the first method.

e There is no remnant of the powerline interference because all of it has been
removed by the tracking them and replacing them with the interpolating
(Gaussian noise.

The improvement in the qualilty of the data after filtering is apparent from
the plots given on page 35'. However, it is difficult to qualitatively obtain a
measure of the improvement.

012 T T T T

04 |
008 [
0.08

0.04 |

Sub-pulse covariance

0.02

0

-0.02

1 L
o 50 100 150 200 250 300 350 400 450
Sub-pulse lag - bing

Figure 5.6: Sub-pulse covariance before and after filtering

The sub-pulse evolution is clearer after filtering out the powerline interference
and this should be obvious from the two plots ? given on pages 36 and 37 for the
sub-pulse evolution of pulsar p0826-34.

But an unambiguous test of the effectiveness of the filtering method just
described is the sub-pulse covariance plot. It was earlier discussed in section 4.1.3

1Courtesy: Y. Gupta
2Courtesy: B. Bhattacharyya

!,
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on page 21 that pulsar astronomers study the sub-pulse structures to understand
the emission mechanism of a pulsar. Any presence of 50 Hz and its companion
harmonics will severely degrade the estimate of the sub-pulse covariance. The
sub-pulse covariance plot for a single pulse is shown before and after filtering.?

" Before filtering, the covariance plot has ripples caused by self-convolution of
the 50 Hz sinusoids. However, the absence of interference should result in no

such features, and the sub-pulse covariance plot after filtering is indeed devoid of
them.

3Courtesy: B.Bhattacharyya
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Chapter 6
Single Channel Filtering

Filtering becomes more effective if it is done earlier in the data processing chain.
Filtering de-dispersed data was found to be effective. But filtering prior to de-
dispersion can be better for the following reasons

o De-dispersion adds signals from all channels without taking into account
the contribution of individual channels to the powerline sinuoids of the
final de-dispersed data. As a consequence, even an RFI channel modulated
by 50 Hz is considered for de-dispersion, unless it is flagged. At the end,
this channel contributes substantially to the total powerline interference in
the de-dispersed data. Instead, if the interference is rejected at the single
channel level itself, de-dispersion later could give better results.

o Filtering before de-dispersion is better for the other reason that the pulse
power in each channel is lower than the pulse power in the de-dispersed data.
But the powerline sinusoid and its harmonics are appreciably stronger than
in the de-dispersed data because de-dispersion has de-dispersed the data but
has dispersed the powerline sinusoids from all the channels. Therefore, it is
easier to locate and track the powerline sinusoids in the single channel data
format since the powerline interference is very strong. This is particularly
effective if we are dealing with a very strong pulsar(like b1133+16), in which
case it is very difficult to track the powerline sinusoids properly because
the pulsar harmonics in the neighbourhood are quite strong and we could

wrongly conclude one as a powerline harmonic instead.

e The powerline sinusoids across the channels is highly correlated, and as a
38
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result the gaussian noise riding on the powerline interference is also cor-
related. The central limit theorem applies only to independent random
variables. However, if the individual channels are devoid of 50 Hz inter-
ference, the noise across the channels is uncorrelated. If now the data is
dedispersed, we can expect a sqrtN improvement in the SNR, N begin the
number of channels.

6.1 Filtering - the method and its results

The main algorithm for filtering single-channel data is exactly the same as the
improved and final version of filtering algorithm in place for the de-dispersed data.
Though, the program required certain modifiations to take into account the raw
data format(as the single channel data is called), and accounting for the GPS bit
in the two different array modes, namely IA and PA. The following changes have
to be noted for the raw data case:

1. The data type is short int, and it is stored inverted.

2. The data is available sample by sample, where 256 channels are available

one after the other in serial fashion for each sample

3. All samples across all channels have a GPS bit, the location of which is
MSB for IA mode and LSB for PA mode

An outer loop in the program runs over blocks of data, each block of data being
32768/65536 samples{depending on the sampling rate) with 256 channels each.
The inner loop runs over all the channels, each channel consisting of 32768 /65636
samples. On each such block of data the filtering algorithm operates on and
writes the output in the same format as the input raw data. There is an inter-
mediate inversion and GPS bit-masking followed by typeéasting to float so as to
enable Fouriér transformation(since it requires floating point numbers to repre-
sent numbers between 0 and 1). The operations are repeated in the reverse order,
except bit-masking(as it makes no more sense) to retain the data format in the
output file. The number of data samples to consider in a block and the number
of harmonics to filter out are read as input from the input parameter file.

The raw file as such is of little value as the power in a single narrow channel

is hardly sufficient to show pulses for most pulsars. With de-dispersion comes

R
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the improvement, and the effect of filtering on the raw data can be tested by
de-dispersing the original raw data file and the filtered raw data file separately,
and comparing the single pulse profiles and their signal-to-noise ratios.

6.2 Statistics from Single-channel data

The statistics of the interfering frequencies must give us a very useful insight into
their behaviour. The filtering program gathers some statistics in a file with the
same name as the input file, but with an extension noich.history in the same
directory as the input raw file. The various plots are given in the following few
pages so that we may get a more complete understanding of the workings of the

interfering powerline frequencies.

6.2.1 Variability of powerline frequencies

The following plot corresponds to the movement of the 50 Hz line in the frequency
axis, for all the 256 channels block by block. The cross-section viewed from the

channel axis gives a picture almost similar to figure 5.3 on 30. The trend for the
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Figure 6.1: 50 Hz variability across 256 channels

harmonics is similar except for the more local variations. But the general trend
of the curve in figure 5.3 is preserved across all the channels.
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6.2.2 Strenghts of powerline frequencies

The strengths of the interfering sinusoids also varies with time. The contour
plots for the strengths for the frequencies 50 Hz, 100 Hz, 150 Hz and 200 Hz
across all 256 channels are given below, as a function of the block count. Some
striking features are noticeable from the contour plot. Notice the strong trajectory
at channels 41 and 42. Besides, there is a diagonally sweeping pattern very
prominent from blocks 20 to 50, about 30 channels across. This could be an RFI
source modulated by the powerline sinusoid, whose centre frequency is gradually
changing. There are also some irregular clumps that could be RFI modulated by
50 Hz, briefly very strong at those areas.

The pattern looks similar but clearer in the frequencies 100 Hz, 150 Hz and
200 Hz. The diagonal trajectories are better pronounced. All the plots have a
very strong and stable trajectory at channels 41 and 42. But is this an RFI source
radiating at a fixed radio frequency, modulated by 50 Hz and its harmonics? The
only way to ascertain this is to get an averaged bandshape for the whole data
and compare the same with these plots.
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Figure 6.2: 50 Hz trajectories across 256 channels
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Figure 6.3: 100 Hz trajectories across 256 channels
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Figure 6.4: 150 Hz trajectories across 256 channels

6.3 The entry point of 50 Hz

It is now established that pulsar observational data obtained with the GMRT is
polluted with powerline interference. But what is the mechanism by which this
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Figure 6.5: 200 Hz trajectories across 256 channels

interference enters the data? Is there a correlation between the averaged band-
shape of this data and the powerline trajectories shown in the plots above? This
is an interesting question, and some inferences can indeed been drawn from such a
comparison. Figures 6.6 and 6.7 give the grand bandshape plots® of the b0943+10
raw data before and after filtering. Since the raw data is in a very convenient
format that allows us to deal with the data sample-by-sample for all channels,
the grand bandshape is simply obtained by averaging all the samples taken 256
channels wide. Comparing the grand bandshapes before and after filtering, and
considering the powerline trajectories in figures 6.2 to 6.5, the following inferences
can be drawn about the powerline interference.

e The grand bandshapes before and after filtering look very similar, although
they are imperceptibly different. This shows that filtering has very little
effect on the bandshape of the raw data. The bandshape should not be
confused with the spectrum of the pulsar data.

e Corresponding to channels 41 and 42 in figures 6.2 through 6.5, there is

a small spike in the same channels in the grand bandshape plot. This

!Courtesy: B.Bhattacharyya

o
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means that the powerline interference could actually be modulating the
RFT in channels 41 and 42, although the spike is not very strong in the
grand bandshape plot. This means that it is a low power RFI, but strongly
modulated by 50Hz and its harmonics.

e There are other strong spikes in the grand bandshape plots that do not
show up in the contour plots of the powerline trajectories. These could be
RFT channels that are not modulated by the powerline sinusoids.

¢ Since filtering has little modified the grand bandshape plot, it means that
the powerline interference is a broadband phenomenon. This is substanti-
ated by the fact that all channels showed significant powerline frequency
and its harmonics in the Fouriér domain. The plots in figures 6.2 through

6.5 also show broadband powerline interference apart from the strong con-
spicuous patterns.

Grand Bandshape plot
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Figure 6.6: Grand bandshape for b0943+410 data before filtering

The broadband nature of the powerline interference can be explained by its
origin itself. The high tension lines carrying electrical power carry a sinusoid of
frequency 50 Hz. Since the voltages carried by these lines are of the order of a
hundred kilovolts, there is a breakdown of the surrounding air every sinusoidal
cycle. This breakdown causes braodband electromagnetic radiation; and if this
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Figure 6.7: Grand bandshape for b0943+-10 data after filtering

happens at both the peaks of the sinusoidal cycle, then 100 Hz is the observed
data. This phenomenon has been occasionally observed: Besides, the higher
harmonics also result.

Many other data files were observed, for different pulsars and at different fre-
quencies of observation. It was observed that higher frequencies of observations
behave better than the lower frequencies in terms of strength of powerline in-
terference. As an example, the following plot gives the 50 Hz trajectory for the
pulsar b0031 observation at 610 MHz. Unlike the lower frequencies, there is not
much broadband 50 Hz power in the data. There are occasional stripes, which

could be some sources of RFI modulated by 50 Hz, that were switched on during
that period.
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Figure 6.8: 50 Hz trajectory for pulsar b0031 at 610 MHz
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Chapter 7
Real-Time Filtering

Powerline interference can be filtered offline and good results have been achieved.
However, it would be good to strike the problem at the root and reject the
interference at the earliest opportunity in the data flow chain. This amounts to
filtering the interference real-time even before it is recorded for analysis. The
motivation for such a filtering scheme, the requirements on the data acquisition
system in such a case and the effectiveness of this scheme are the contents of this
chapter. '

7.1 Motivation for Real-Time Filtering

'7.1.1 Some mathematics

Inorder to deal qualitatively with the problem in hand, we need a well-defined
model. At the outset, it is defined as follows:

Hi:r({t)=s) +n() (7.1)

Hy:r(t) =n(t) (7.2)
Hypothesis Hy is called the null hypothesis and has a prior probability Fy; H is
called the alternative hypothesis with a prior B;.

We decide on hypothesis H; if a signal is detected or the hypothesis Hy if not,
depending on the likelihood ratio exceeding the threshold 7 or not.
_nlr@®lh

po [ (1)) Po
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p1 is the conditional p.d.f. of hypothesis H; and pg is the conditional p.d.f. of the
hypothesis Hy. Since the additive noise is from the front-end electronics of the
radio telescope, it is natural to proceed further under the Gaussian framework.
Hence the noise p.d.f. is given by

1 L0}

n(t) = e % 74
pln(t)] = — o | (7.4)
assuming zero-mean noise. Henceforth, explicit mention of ¢ will be suppressed
for notational simplicity. Moreover, the ratio of priors is taken across the equality

sign; consequently 7 = Pyr/Py.

P~ 2B0] =]

= 7.5
pr@  pof] 9
now therefore becomes
—%-(rj:.;ﬁ r2—{r—g)?
L= =" (7.6)
€T o7
ramgl 3(2r=—3
= 3"15[2";7_] = e%[_@?rl] (77)
Since the natural logarithm is a monotone increasing function,
_ s |
n(Lp]="2"2 5 mr =+ (7.8)
o
_ _s 2 —
—s(r 2) >o‘lnT =171 (7.9)

Therefore, a sample from the observed data is taken and compared with a thresh-

old i.e.,

o*r s

—_— = d
r> 3+2 (7.10)

~ for hypothesis H; to be favoured. The probability of detection of the pulsar signal
is evaluated as

/ " o (r (8) dr(t) (7.11)

Simple though it may appear superficially, a careful and closer study of the math-
ematical analysis will reveal practical difficulties in retrospect, which are enumer-
ated below:

1. It requires prior knowledge of the signal s(¢), its period and instantaneous
values.
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2. It also requires prior estimate of the statistics of the noise n(t), though this
is not a difficult or exacting requirement.

Despite these difficulties, some generalizations can be introduced at this junc-
ture that can lead to considerable simplification of the atmosphere for further
progress.

If r(¢) is the instantaneous time sample of a thermal noise process, then it can
be hazarded without loss of generality that it is a sample from a noise process
which generates independent and identically distributed random variables. Under
such an assumption, the dependence of the threshold on time can be dropped.
7.10 becomes independent of time and 7.11 can be rewritten as

f ) pi(r)dr (7.12)

" Figure 7.1: The binary hypothesis testing problem

For a picture like this, the threshold can always be expressed as po, where
p is a positive real number corresponding to the point of intersection of the two
conditional p.d.fs for a simple binary hypothesis testing case with equal priors.
When the priors are not equal as in the present case, po is not the abscissa of the
point of intersection[9].

7.1.2 One-bit encoding for pulsar search

Pulsar search is carried out by looking for signatures of periodicities in the data.
However, when search data is recorded, it is quite uneconomical to record data in
the full 16 bit format. It can be represented by as few bits as possible, but this
is possible only if there is no d.c. bias in the signal. D.C. bias contributes to the

highest encoded bit in the data; hence removing the mean will be a significant
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step towards more economical data storage. If the data is now encoded to 1 bits
after subtracting the running mean from a few samples of the data in a buffer,
the event to look for is the regular and periodic occurence of a string of 1's,
because all positive excursions above zero will be encoded as ‘1’ and all negative
excursions below zero will be encoded as ‘0. _

However, after bit-packing, the calculation of the probability density function
for the encoded data becomes extremely diffcult analytically due to the fact that
one-bitting is akin to a hard-limiter(or signum function for the mathematically
inclined) which is a‘classic non-linear operation. Due to the analytical difficulty
presented in calculéting the probability of detection of a string of ones through
the Bayesian, or likelihood ratio, approach, it would be better to obtain bounds
on performances. For the present case, this problem becomes fantastically simple.

The Chebyshev inequality is infroduced now. Because of its great generality,
this limit is often too low to be more than a rough guide in determining probabil-
ities in particular cases, but such inequalities are invaluable in proving limiting

properties.

PlIX — | > Ao] < X (7.13)

~ ol
which gives a loose upper bound on the probability of a random variable over-
shooting the Ao limits on either side for a two-sided distribution. Now one has
to invoke the ergodic theorem to effectively deal with time averages rather than
statistical averages. This is true because the law of large numbers can be safely
invoked where observations consisting of a few million samples are considered.
Armed with these invocations we reinterpret 7.13 now. The upper bound on the

probability of finding a noise excursion beyond the Ao limit on either side at most

is given b
& Y VarX
o VarX
ar
5 ()\0)2 (7.15)

at most for excursions above the positive Ao limit. In other words, when we
observe above the positive Ao level, only at most (%{g X 100) % of the time

do we expect the excursions to be due to noise. This means that (1 — E"({%“}')%)
portion of the time we must observe no signal. Now consider the situation where

a pulsar signal is riding on the noise, and its peak is well above the positive Ao
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limit. Now, except for the noise excursions above Ao there is possibly nothing
other than the pulsar signal. In summary, (1 — 5‘-{%\%‘}) of the time, any excursion
statistically corresponds to the pulsar signal. Interpreting probability as a ’rel-
ative frequency of occurence’(which is allowed under the present circumstances
as already discussed), the probability of those signal samples exceeding the Ao

threshold being pulsar signal is given by

VarX
2 (\o)?

(7.16)

PD=1—

For the one-bitting operation, this translates into the following. The proportion
of the occurence of continuous string of ‘1's, the count of which exceeds a pre-
determined value, is given by 7.16 and the proportion of the occurences of the
irregular sequence of "1's and '0's above the positive Ao threshold is given by 7.15.
Thus with sufficiently high probability we must be able to detect pulsar signals
that exceed even as low a threshold as 20. For A = 2, the brobability of correct
detection of such a string of 'l's is at least 87.5%. Table 7.1 gives the values for
other threshold values.

Table 7.1: Probability of detection of pulsar signals for various thresholds

A Pp

2 87.500%
3 94.444%
4 96.875%
5 98.000%
6 98.611%

The table, though self-explanatory, is better supplemented with a graphical plot.
Notice the asymptotical behaviour of probability, which is quite expected. At
this point, it is worth reminding that when we speak about the probability of
detection of pulsar, we are actually referring to the probablitiy of correct detection
of pulsar signals. The probability of finding pulsar signals above the A threshold
level increases, as it can be explained in the following two ways:

1. The higher the threshold level A, the lower do we expect the noise excursions
to reach that level
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Figure 7.2: Probability of detection of pulsars as a function of A

2. The higher threshold level also means that if the pulsar is strong enough
for us to fix such a high threshold, the better is the probability of detecting
it

However for weak pulsars, a lower value for ) is preferred, and even a value of
A = 2 is satisfactory. While it must be remembered that Chebyshev inequality
gives only a loose lower bound, values obtained from actual observations should
not be really discouraging as 87.5% is quite a promising value for probability
of correct detection. The graph also provides for a pictorial guide to choosing
the optimum threshold level, depending on a case-to-case basis. A wvalue for A
between 2 and 3 should be satisfactory for most cases.

7.1.3 Preservation of SNR by one-bitting

One-bitting reduces storage space when doing search observations. But how much
of the SNR do we lose because of a non-linear operation such as one-bitting? It
is now shown that if the SNR of the input signal is itself small, then the loss
in SNR is not severe and the degradation is asymptotic. However for the high
SNR signals, the detection probability improves with signal strength inspite of a
deterioration in SNR, as has been shown previously.

Again, reminding that the noise is zero-mean Gaussian, the signal plus noise
model has a slightly biased mean because of the signal pulses. The bias will be



53
stronger towards the positive for stronger pulsars. The bias also depends on the
duty cycle of the pulse. Due to the bias in the mean, the one-bitting will result
in more '1’s than ’0’s. In the case of noise only, statistically we expect an equal
number of ’1’s and ’0’s. Let us call the proportion of '1’s p and the proportion
of '0’s g, of course it being understood that p + ¢ = 1. Now the contribution to
the "1’s by the signal is actually p — 0.5 because the contribution from the noise
has to be decoupled. When the signal alone is present and there is no noise the
proportion of '0’s will be

1-(p—05)=1-p+05=¢g+0.5

Let us now calculate the SNRs before and after the one-bitting.
Call {P) the signal power and o2 the noise power.

SNR, = ) (7.17)

o2
After one-bitting, it will be

| N@=08)
N 21 (1)2
R T g
SNR, = lim —aT (7.18)
% >, (1)

=1

which simplifies to
p— 0.5

0.5
As a matter of fact, p is always greater than 0.5. This formula is consistent with

common-sense because when there is no signal, p = 0.5 and the SNR=0. The
maximum achievable output SNR is now only 1. Therefore even if the input SNR
becomes indefinitely high, the output SNR. saturates at the value of 1. However
for low input SNR values for which p falls in the range (0.5,1], there is a one-to-one
correspondence between the input and cutput SNRs as given by the straight-line
portion with a non-zero slope in the plot. We conclude that for low SNR signals,
there is no substantial degradation in the output SNR due to the one-bitting
operation. ‘

SNR, =

(7.19)

7.1.4 Effect of powerline harmonics

Powerline interference can affect the probability of correct detection of a string

of '1's in the follwing manner: If the noise is riding on the 50 Hz sinusoid, one-
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Figure 7.3: Output SNR as a function of P

bitting can play havoc with the data. If the 50 hz is extremely strong as we have
found in some observational data, all one can get after one-bitting is a regular
string of '1's and '0's alternating 50 $imes a second.

Therefore the above analysis holds good without the 50 Hz presence because
it has been derived altogether ignoring the powerline interference. Hence it is a
vefy lucrative idea to filter out the 50 Hz interference before the running mean
subtraction and one-bitting is done. This will pay rich dividends in terms of
probability of detecting pulsars.

7.2 Performance in Real-Time

The real-time version of the filter is tested and its performance is evaluated
through various parameters like the time it takes for various values of integrations
and FFT lengths. The different modes in process_psr are also explained.

7.2.1 Modes in process_psr

The program process_psr is a very flexible and feature-packed program. It can
run in the following modes:

e Through mode: In this mode the filtering routine is bypassed. The data is
acquired and various checks such as marker checks and GPS time-stamping
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proceed as usual.

¢ Filter mode: In this mode, the data passes through the filtering subrou-
tine. There are again two submodes within the filtering subroutine. It can
either return float type data or short int type data. In the former, there
is no extra computational effort. In the latter, however, a type conversion
from float to short int is required. This introduces a substantial computa-
tional overload.

¢ Bit-packing mode: In this mode the data is buffered and the running
mean is subtracted. Thereafter, the data is encoded into one, two, four,

eight or sixteen bits, which is user-programmable.

Each of these modes can be invoked independently of all other modes, meaning
there can be any combination of these modes. The timing estimation proceeds
when all the modes are enabled, except the bit-packing which is by-passed.

7.2.2 Real-Time Processing Cost and Timing Estimation

When filtering is done in real-time, there are a lot of issues to be taken care
of. The GMRT pﬁlsar data flow chain is very flexible allowing the observer to
set the sampling interval in multiples of 16us, which is given as the number
of accumulations or integrations. This number is usually aﬁ integral power of
two, ranging in principle from 2 to 64 or 128. The default for most pulsars is
32 integrations. However if higherresolution data is required, one may opt for
fewer integrations. In this case, the real-time filtering program should be flexible
enough to accommodate the changes in the number of integrations.

The filtering program for the real-time data chain is the same as the one for of-
fline filtering. The number of blocks to filter is not calculated apriori because the
filter has to run for as long as the pulsar is observed. However, the number of sam-
ples to accumulate in one block for Fouriér transforming is user-programmable.
This also defines the time duration for which the powerline sinusoid is assumed
stat.iona,ry. The upper bound on this measure was estimated earlier through
preliminary experiments as 16 seconds. For smaller lengths of FFT, the time du-
ration also goes down and the powerline frequency is more stationary. But, the

compromise for stationarity of powerline frequency is the coarse bin resolution of
the FFT.



56

The various time estimates for the real-time data acquisition program into
which the filtering algorithm has been seamlessly merged, have been measured
and should serve as a rough guide to the observer for choosing the proper param-
eters.

The real-time data acquisition program® incorporates within itself as a small
subroutine the real-time filtering program. But it was found that the filtering
subroutine takes the lion’s share of processing power. Therefore, with the fil-
tering subroutine included, it is necessary to check whether the data-acquisition
program is able to keep up with the data rates served by the radio telescope signal
processing engine. To this end, a few tests were performed. Before explaining
them, a brief sketch of the output formats available at the filtering subroutine
follows. The filtering subroutine takes its input data as blocks of length equal to
the FET length, for all the 256 channels. The format of this data is float. This
is absolutely essential because the FFT rountine requires float data type to work
with sines and cosines of angles, whose values are always real-valued between 0
and 1. At the end of filtering, the filtering routine passes the filtered raw data to
the process_psr program from where it was called. Now, the filtering program has
the option of returning the result in either float format or returning it as a short
int by typecasting it. Typecasting from float to short int is.a very expensive
operation as we found out, and hence the timing estimates are available for these
two options separately.

. When using the normal 32 or 16 integrations, the observer can safely choose

a default FF'T length of 32K or 64K. Since this corresponds to 16 seconds of
data, there is no process lag, besides these FFT lengths also ensure sufficient bin
resolution. However for smaller FF'T lengths, to achieve the same bin resolution,
the FF'T length has to go up the same factor by which the number of integrations
goes down. The load on the system becomes too heavy in this case for it to
successfully keep up with the data rates. However, the bin resolution can be
compromised to some extent because we are now dealing with smaller durations
during which the powerline sinusoids are much more stationary than when it is
for 16 seconds.

For short int data output from the filter

e 4 integrations - maximum FFT length = 8K

P¥ritten by R.M.Dabade
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o 8 integrations - maximum FEFT length = 16K

For float type output from the filter
¢ 4 integrations - maximum FFT length = 16K
¢ 8 integrations - maximum FFT length = 64K

It is very obvious that the typecasting from float to short int takes heavy
processing power; consequently the program is not able to keep up with the high
data rates at fewer integrations.

7.3 Optimized FFT for accelerated performance

The volume of literature available on FFT is immense. Early work on FFT
consisted of optimizing the mathematical operations, namely additions and mul-
tiplications. Many efficient algorithms for FFT like the Winograd DFT and
Cook-Toom algorithm found ready applications in FFT hardware. These were
available as software routines for programming on PCs as well[11]. However,
with the exponential improvement of processor speeds, better algorithms have
been devised that exploit the inherent architecture of the processor itself. The
best known and perhaps the friendliest of such a family of FFT routines is the
FFTW library of Fast Fouriér Transforms{5]. The realft routine takes 4 ms to
compute an FFT of length 32 K, whereas the FFTW took just 1 ms. Since it is
faster than the realft routine of the same length by a factor of four, it is highly
desirable in a real-time environment where the system requirements are dictated
by the data rate. In order to give the data acquisition program enough time to
keep up with the data rate, we decided to exploit the adaptive capabilities of the
FFTW routines.



Chapter 8
Results and Discussion

Filtering was performed on a few data files which had notoriously high strengths
of powerline harmonics and good results have been obtained. Numerically, the
performance of the filtering routine can be quantified if we have measures of SNR
before and after filtering, We expect low values for SNR before filtering because
of the contribution to the noise power from the 50 Hz and its harmonics. The
SNR should show reasonable improvement if the interference has indeed been
filtered.

The SNR before and after filtering for each of the following cases was observed

and the results are summarized below in a table.
¢ De-dispersed data before and after filtering
¢ Data de-dispersed before filtering and after filtering with true DM

e Data de-dispersed before filtering and after filtering with zero DM

Table 8.1: SNR values for average pulse profile of pulsar b0943+10 before and

after filtering
Mode Peak SNR | Best SNR

Data de-dispersed with true DM 33.877491 | 73.5323563
Filtering after dedispersion with true DM 44.113739 | 149.072739
Dedispersion with true DM after filtering 46.0323296 | 162.669907
De-dispersion with zero DM before filtering | 4.9392066 | 9.74692345
De-dispersion with zero DM after filtering | 5.25243902 | 25.0268936

58



59
A discussion of the above table now proceeds.

e When data is de-dispersed with the true DM value and not filtered, it shows
a poor SNR due to the presence of the 50 Hz in the average pulse profile.

o When the same de-dispersed data is now filtered for the powerline harmon-
ics, there is a considerable improvement in the SNR. The peak and best
SNRs have both increased dramatically.

¢ When the raw data itself is filtered prior to de-dispersion, the improvement
over the first case is quite along expected lines. But there is a marginal
improvement in both the peak and best SNRs over the second mode. This
can readily be explained as follows: When the data is de-dispersed before
filtering, the noise is not uncorrelated across channels due to the presence
of 50 Hz. Whereas when the data is first filtered prior to de-dispersion,
the removal of 50 Hz actually guarantees, to some extent, that the noise
across channels is now uncorrelated. When uncorrelated random variables

are added, the central limit theorem can be applied with good validity.

e When data is de-dispersed with zero DM, the delay spread is not corrected
for and pulse smearing results. However the powerline harmonics may add
up almost coherently if the channel-to-channel phase difference is too small.
This severely degrades the SNR as the result shows.

o However, if the data is filtered and then de-dispersed, there is a marginal
improvement in the SNRs. Though the powerline harmonics have been
filtered out, the noise due to electronics still dominates; the pulse energy
across a narrow band of 62.5 KHz is not sufficient to make drastic cha.nges in
the SNR. However,with channel collapse with proper DM, the improvement
is substantial as case 3 clearly shows.
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Chapter 9
Conclusion and further work

Three methods were devised and the tracking filter is found the most satisfactory
solution. It is therefore chosen as the standard algorithm. It is used to filter both
de-dispersed data as well as raw data.

A solution for filtering the powerline harmonics in real-time from pulsar data
now exists in the GMRT data chain. The performance is found to be satisfactory
when run on a few data files in the simulation mode. This is a software solution
running on the PC in the data chain. In future, one can think of integrating the
filtering algorithm in the hardware itself so that there is little or no powerline
interference in the observation data. This also does away with the need of over-
heads on the data acquisition PCs as it is found that the forward and inverse
FFTs load the processor intensively.

The outcome of the project, other than the filtering routine itself, is the
handle on the mechanism of interference entering into the data. The statistics
of the movement and strengths of the powerline harmonics collected from the
raw data file give us meaningful plots of the powerline trajectories in the data.
Comparing with the grand bandshape, one can also identify the RFI channels
that are modulated by the powerline sinusoid and those RFI channels that are
not.

The probability of pulsar detection improves because of filtering as shown
semi-qualitatively. This is a major step towards all-sky pulsar search observations
using the GMRT.

Looking into the future, the following remedial meaasures are suggested.

e We find that 50 Hz sometimes leaks in through strong RFI channels, as in
60
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channels 66 and 182 of the USB of 225 MHz, for example, and sometimes
through low power RFI channels strongly modulated by 50 Hz, as in chan-
nels 41 and 42 of b0943+4-10 data, also at 225 MHz. Since GMRT now has
the facility to locate RFI sources, these potential interferors can be located
and remedial action be taken.

Achieve the targeted bin resolution of 0.06 Hz/bin at 4 integrations.

Identify antennas picking up 50 Hz and turning them off before every ob-
servation run .‘

Have a facility to automatically turn-off in real-time those channels picking
up 50 Hz, i.e., setting their gains to zero.
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