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2.1 Introduction

in tnis chapter we rill derive various theoretical relationships

which will enable Us to estimate, from the observed intensity fluctuations,

the properties of the IP medium and the structure of the scintillating

source.	 The obaJrved intensio fluctuations Lrise because of scattering

of radio waves in the IP medium. The IP medium, which is in a plasma state,

Las a refractive inde.: n given by

/,.

where 	 is sine plasma frequency, given by

t\J 	 Thrt,,
	 O

	 D ., rg

Nhere ' in the number of electrons per cubic centimetre and e and

are the charge and -leadLi of the electron. The density of the II' plasma is

not uniform but varies irregul,:riy with position and thus the refr-active

index of the medium also c lance s irreguirly with poAtion. It is these

fluctuations in the refractive index of the medium that scatter radio waves

androauce	 fluctutions.	 To derive an expres3ion relating the

observed intensity pattern on the ground to the refractive inde: fluctuations

in the medium we have to solve the wave equation in the IP medium. This

presents considerable problems, since for arbitrary functional forms for the

refractive index vari,tions t e wave equation can be solved only under very

restricted conditions. Even if the wave euation could be solved, the

solution would not be of much use since the variation in the refractive

index are so complicated that an exact description of it is of little value.
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jnat is more usefl is a statistical_ description of the fluctuations in

the medium, in terms of their corTelation functions and probability diAri-

butions. 'Thus what we raluire from the theory are relationships between

the correlation functions of the intensity fluctuations on the ground and

the corzelatien functions of the refractive index fluctuations in the

medium. To estimate the auto correlation function (acf) of the intensity

fluctuations on the ground we have to estimate the intensity at two different

points on the ground, tai,e t_eir product and find the avera e value of this

product.

The problem is of considerable complexity and two approaches have

been developed based lbrgal on the actual physical situation encountered.

In optical	 where the observer is located almost in the random

!led-lum, the direct solution of the wave equation has been attempted by

making various appraKimations. • However in interplanetary and ionospheric

scintillation where the random medium is fairly localised and the observer

is located	 a large distance from this region, the phase screen model has

been develoed, in which twa random medium is replaced by a thin screen

Which impresses on the incident wavefront the same phase fluctuations that

the medium :qould have produced. Once the properties of the phase screen a re

specified, the problem reduces to one of diffraction in free space, which,

as rjuLl. ae sho4n, is fairly' tractable. The only problem in this approach

is to relate the pro p erti3 of the screen to the actual properties of the

medium. For this one has to go bach. and try to solve the wave equation in

the random medium. Ins its of this, the thin screen model is able to provide

results under a number of condiions and we will be concerned with this model
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in most of our discussions. However before going into the thin screen

model, we will, in the next section, give a brief discussion of the

different approximations that have been used for studying the propagation

of waves in a randomly inhomogeneous medium.

In section 2.3 we will discuss the use and validit of the thin

screen approximation in the stud, of iFj. ,.;ven with the thin screen

approximation it is not alwaye po3sible to derive simple mathematical

relationships between the properties on the ground and t-ose on the screen.

while numerical calculations are possible, and have seen made, au2dytical

expressions can be derived only if 	 make suitable appro. ,aaJtions. Three

appraKia,tione that have been made are the deak scattering, Geometrical

optics and the far field appro,cimations. The derivation of these upproJdzaote

results huve been made by differen :3 workers who have used different methods

to arrive at the final expressions. In section 2,4 we study the thin screen

nodel in detail and derive an expresilon for the spatial poorer spectrum

of the intensi fluctuations which is in the form of an integna of a

fdnction which contains the corelLtion functions of the phase fluctuations

on tie screen.

shoe in

the interation cwano :3, in general, be perforoed, but, as

the subsequent sections, the integral can be used to derive

simple d strei ;,;_ -t forward f,:shion the three approximations mentioned

earlier and the formulae used for numerical computations. In section 2.9

and 2.10 we examine ho the observed intensity fluctuations are affected by

the bandwidth of the observation and -die finite size of the scintillating

source. In section 2.11 Jo see how the temporal intensity fluctuations are

reLted to the spatial fluctuations when the screen is moving with respect



to the observer. The cases of a frozen in pattern on the screen and of a

pattern that evolves as it drifts, are considered and it is shown that in

the latter case the lifetime of the in tensity pattern on the ground is, in

the stron„, scattering regime, much smaller than the 	 of the phase

pattern on the screen. The conse. iu3nces of this on various observations

are discussed. In '.;he last section we sumlarise the various theoretical

results.

In this chapter we 	  riot discuss the angular broadening of radio

sources due to scattering in an innomo eneous medium. A good discussion of

the problem can be found in Itatcliffe (155). i,. result we will frequently

use is that for small angles, the angular spectrum that is produced when a

plane .wave pasties through a thin screJn which ilaloses random phase fluctuations,

is given by the Fourier transform of the autocor.elation function of the

electric field on the screen, with distance weasured in units of )\ , the

wavelength. In section	 we will derive an expression for the acf and show

that the correlation length is eAual to a, the scale size of the phase

fluctuations, if the r.ni. s. phase fluctuation, 00 .<< 1 and eusal to a/00,
if 0'0 >> 1. Thus the width of the anelar spectrum, which is the typical

scatterin, angle, &seat, is given by

e sQJ:u 	 140
	 1

scat if 4::>,-/ 1

It can be shown (f.atciiife 01956)) that the autocorrelation function of the

electric field across t a wavefroat does not change as the wavefront propagates,

and so the scale size of the electric field at the plane of the observer
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is liven by

aMo	 )4o b7- 1

ode will frevently use these rosulis in the discussions that follow.

2.2 via ve Propagation in a random Pled iUM

Ja.ve propagation in a medium wnose refractive index. varies irre-

gularly with position has been studied in confection with a number of

different problems like atmospheric scintillation at optical frequencies,

and ionospheric and interplanetary s cint	 1 .t is at radio f re .jue,n cie s

considen!ble body of literature exists on the subect and good discussions

can	 fozzli in Chernov (1930), -.2atarski (1961), Frisch (1963), Strohbehn

(1938) and Liarabanenitov at al. 	 (1971). In this chapter wa will briefly

touch u)on various aspects of the problem and derive some results that are

of use in interpreting the observations.

vie consider plane mono chromatic electromagnetic waves travelling

in the positive z direction and incident on a region where the refractive

index	 n varies irregularly with position. The in egg far medium extends

from +	 in the z direction and + a)	 in the x and y directions. The

irregula r variation oi the refractive index i s such a core,licated function

of position that the situation can be described only satistically. we

will separate the mean and fluctu,ting -parts of the refractive index a s

10
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, 	\
and reg rd	 ,-)to be a homo,-eueous isotropic random variable chose ace

is defined as

) 	} 7

where the angular bracket stands for averaging over space, which, with the

assnui	 on of ergodicit:i, is equivalent to ensemble averagin6. The problem

is to express the electric field, intensity- and their correlation functions

at	 plane z-Z, which can be either inside or outside the medium, in terms

/
of	 1 ) and 1 , .

To estimate the electric field at any point in the medium we have to

solve the wave equation in the medium. In all our discussions we will assume

that the variation of sne refractive index about the mean value is small i.e.

' —
	 and that the scale size of the irregularities is much larger than the

wavelength of the observations. Both these assumptions are quite justified

for the IP medium. 	 e will-also assume that the mean electron density is

maLL, so that	 1. Since the scale size 2.	 we can describe the

electric field of the waves in the random medium by the scalar wave equation

which is

(=?	 ..)	 r-	 ,7 	 'c (	 \	 i	 ,	 ( .. \.	 (..._ ,... 	 ',	 * Y■ 1	 i	 L._	 , '	 ) (2.1)

Where

li;xact solution of partial differential equations with random coeffi-

cients is not possible -nd so one is forced to make approximations. Three

methods commonly used are the

Geometrical optics approximation

Born approximAion

c) Method of smooth perturbation.
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r, =
(2.3)

ir'or plane waves the electric field varies roughly as

(2.4)

so

12

2.2a u-eometrical Optics itpproximation

This is the short wave length approximation and is useful ,rhea the

wavelength i3 much shorter than the scale size of the irregularities, as

is the case in the IP medium, so that wave affects like interference and

diffraction can be neglected. 2his approxim,:tion has Deer' extensively used

in ionospheric and interplanetary scintillation and is used in most of the

thin phase screen models to relate the properties of the screen to those

of the medium.

Jsing the identity

\i

the W,..eve equation (2.1) can be written as

) 4 7	 17-J	 t (2.2)

If we expres	 in the form

and subs t it u te this in e' uation (2.2) , we get, by equating the real and

ry parts,

k	 , ST/	 is of the order of 1„. however the amplitude It, which

C.1

)L.) (1 I,.,A,
.■)

varies oecause of the perturbations in the medium, canno6 change appreciably
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in distances smaller than the scale size of the irregularities. Therefore

,	 .
I

, .t--,V	 ( ,:::,	 /.... v	 ,.....,

	

::.]	 •-i

(2.5)

is
1 / -

of t.'le order of be if the condition X 4:,_< a is satisfied, we

call neglect the first teo terms in equation (2.3), 'which reduces to

(2. 6 )

quation (2.4) and (2.3) form the basic equations of Geometrical

optics. Equation (2.3) can be solved by integratin the phase along the

.k/
trajectory of the ray

q) ff. ? (.. '--., ) )

giving

-- 	 r. (	 3r‘ k, 	) ) 21 S*
2\	 j

where s denotes the arc leivth along the ray and, the ray trajectory is

given by (see -1?risch (1968))

( (2.7)

while equations (2.6) and (2.7) can be solved for non random media

by usinb numerical techniques, these equations can seldom be used for random

media because of their complexity. dhst is usually done is to solve equations

(2.4) and (2.6) ey perturbation tachni.iies.

da expand 41. and Ø as series in	 mere
	

is a parameter

ladicatin the sallnes_:; of the -erturoation. As set

...../.)
._•.	
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3ubstitutin tnasa in a ‘ivation (2.6) and collectin 6 terms of equal powers

of	 we ,,et

-1)

(2.8)

(2.)

t	 )

(1 1!	 ,	 (1)

since Ile are considerir	 plane waves propagating in the z direction the

unprtureed phase

30 tnat aLiuutlon (2.3) becomes

i	 ---,, •-t.N
I	 n	 ..	 . .	 ____	 J	 i & 1	 ^ '

i	 ...	 ,

/-

This is the expression generally used to relate the phase fluctuations

in the thin screen to the deusi fluctuations in the medium. 4e have an

f
extra 2 in the denomin r-to:' which has come because we have taken . 14`,-to be

the fluctuating p-rt oi n2 and not of n.

for mot applications of the thin screen model it is enough if qe know

the t,do disaensionai acf of the phase fluctuations across the (--y plane. This

is iven by

L/

< )

fi

1/4 A 4-J	 r3	 •
/) A
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where Ae have used the definition of the acf of the refractive index variations.

ChunLing the vi,riaollJs of intaration to 	 = z - z and	 = z",

goes to zero when	 is much LAr,sJr than the correlation6 ) 

distance a, we can, if	 , replace the limits of the	 integral by

+ a)• The fraction:A error we mo..ke is of the order of (" L which is

negli6 ible when	 •	 1ith this, the phase acf becomes

- 1	 •	 )	
. 3

r
	

)

t:

The value of the intam is roughly equA_ to th. 	 s	 le size	 a, but its

exact value depends on the actudishape of the acf.	 If we assume th-A the
....

c.,,	 ,..- 	 ,	 ,eel' is a Gaussian o.12 the form • 	 , we can remdily perform the inte-.....

,,ration over	 aad	 e 6ot

P,(1)	 c",)	 J,74	 	 •
1 7",	 '7,	 r (2.12)-  

//1.
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The parameter /0 which is the r.m.s.. phase fluctuation produced

the medium, pia:Ts an impor .6ant role in all the ,..Tpra.4..imate solutions of

the wave equation. for the Gaussian act /0 is given. by

L-)
A

/4.

where	 , N is the r.si. a. ejactron density- fluctuation.

01 is just the firs term of the perturbation expansion of	 and

it will be a good approz:iilltion for the phase fluctuations only if the higher

order ter.as are neL1i4ble compared to 01. To examine the condition under

which this is true, we have to solve euation (2.9) for 09 . 4ith	 =

equation (2.9) reduces to

6iving

\

(7‘N

..„1	 \

4.1"L order of magnitude astimte of 0 2 can	 got by pLutind 77I (150

SO thLtt

/q

For tf perturbation expansion with only 0 and	 to be u good

appra-Kimtion, we -faust have

	

,	 \	 A	 ■ '

	

A	 0,,,	( 2.13)\,,,, ' K k i 1 - .	 )

\ - ri'Ircr'

(2.14)
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if the thickness of the medium is so large that the inequality (2. i..) is

violated, we have to rata:in core terms in the partarxition series.

6iliiarly, one can write down the perturoation expansion for the

amplitude ...which

„ (2. 1,)

\-1 •

'7 11 U,	 V

'
\	 v

= kz equation (2.1-) becomes

("N

which shoJs that the ampllude of the unperturJed radiation is independent

of z, vihich is as it should se. l;quation (2.16.) then reduces to

-7==:

giving

(2.17)

Using J1 as given in e,atio,1 (2.10) we can in principle,solve

this eyuation to ,_et	 OurOur	 interest in ometricai optics is to

relate the properties of tha medium with th.J properties of the thin screen

and as such our interest U not to solve equation (2.17) for n1 , but to

know under lihat conditions the amplitude fluctuations are negligible and

the phase screen approximation 1;3 adequate.	 Ai is the fluctuation of the

of the amplitude and Al	 and	 can be regarded as the real
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and imaginary part of a complex phase. For amplitude fluctuations to oe

negli idle ie must have

Thus only then I /

phase screen. dhen

Ap, ci< 1. From equation (2.17) we can get

/;; giving.

, can we replace the extended medium by a thin

I amplitude fluctuations develop and if we

an order of magnitude estimate of A l cy 3etting V

want to replace the medium by a thin screen we would require both the

amplitude and the phase to vari on the screen.

In the situation where Je _have a sla p of irregular medium of

thickness L and we are interested in inc field at a large distance L( "771 L)

from the clan the .first order perturbation solution of the Geometrical

optics a ivat ons is of limited use oacause it neglects diffraction and inter-

ference effects hich are now important. 1140C
	 . ) vanishes outside the

sla3 and 30 01 (equation (2.10)) is independent of z outside the slab.

tl)But	 and	 , do not vanish outside the alaJ and so 07 and

continuously increase with . z. Thus for sufficiently large z the first

order )arturjation theor,y preaks doe/a. Solving for nigher orders terms is

mesq and has seldom been attempted. Ho4evar, if the thickness of the slab

is sure. iciently small so that the first order Geometrical optics solution is

valid for the exit plane of the sla p , then, since the further propagation

is is free space, the field at any distance can be got by stud ing the

diffraction of this pertur,ed wave front. Such an approach is not limited

to small distance from the	 as is the first order perturbation solution

of Geometrical optics, and this is the motivation )e -hind the thin phase

screen model ,which will	 discu-sed later.



2.2o 3oin	 :roximation

Je can re.4ritE,, e ration (2.1 as an inhomogeneous equation of the

form

whose formal solution can De :.-Jritten as an integral equation of the form

(l'iorse and Feshbaci (19.3))

   

----is':	 (2.18)
A

there
	

is a solution of the homogenous lieltholtz equation

. 	,

LO is the fieia in the a:Jsence of the perturoing medium and for plane

waves ;propagat,ing in the z di. ction

A.

iritil; ti dif fe nen '6 jai equation in the form of the integral equation (2.18)

does not solve anything since .`__';('t), which is tIe unkno n appears on

the right hand side also. 'Lae 13or.l approxia Lion consists of replacing

L( \t) inside the integral by
	

( 4 ). ,fith this, the integrAl can be

)evaluated	 ▪ ) determined. Th-J condition for the validity of the

approximation is that .2.;( '- ‘ ) should not differ auch from	 i.e.En( ) 

L

..Je write

( A

(2.19)
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where	 and /. a re the phase and ampli tude change produced by the

medium, the condition (2.1;') becomes

or

20

.3ince the amplitude fluctuations are generally small3 r than the

phase fluctuation, the condition for the validity of the Tiorn appra:.:imation

reduces to	 1, '.4113 re 00 i i the r.m. s. phase fluctuation produced

by the medium. Thus,	 so long as • / 3 are in the .-,Teak scattering regime

is e. 00 ,7,z. 1 we can use the .3orn 4.eppro.‘c.imation and derive res :tits which

have no restrictions on the tilicknes of the m::dium and which take into

account wave effects lit i intrirfe.lence and diffraction.

2.2c The idethod of .3 . :.looth. Pertur.Dation
•

This method has peen descrioed in considera -lie detail by Tata.rskii

(1:-)31).	 11 3 I •	 3trohoedm (1:)53) and give a bri:, ,f descrition

b'-)=	 *(s{:lin the wave equation. (2.1)of the ,.aethod. Tf	 SWDS-b

re get

If sr
phd

IS the logar_Lthm of t .1,i amplitude and 3 is the

if ie .:make a pertur)ation eLpansion of I and substi'3ute

and
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into equativa (2.20), we gat, by equating eval powers of E

FL

j

10

\/	 4.,	 I	 •
V	 I

rC/7 \'/j

, i	 ...._ ...,	 ..

The first equation corresponUs to the free space solution and

though non linear, the equation can cc readily solved. The remaining

equations are of the form

V	 1 , I, ' IS' \	 -+	 (,	 \,/ ''''	 f , N \	 .

where f(') is kno4n if one has solved the lo4er order equations. This

equation can be soived by using Cireen f s function if •e make the substitution

• r.
	 )

which converts a. tion (2.21) to

77	 (v,,)	 , 

idhich has the solution
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1
K

where Li	 ,

Since we are considering plane waves travelling along the z

direction	 ik6 and we gat the first order perturbation term as

  

4 k

    

In the first order approximation the electric field is

(2.23)

The range of	 over which this approximation is valid is a matter

of some controvaie. (see Liaraoanankov at al. (1971)). For the validity of

411 which can be shown to

be equivalent to the condition	 This is just the condition for the

valiUity of the born approxim•..tion and und3r this condition equation (2.23)

reduces to the .porn approximation. However, this condition may 	 too rigid,

and it has oeen shown that	 is a L ood approximation over tne larger range

•
>	

2 .rd	 > <<

Thus the method of smooth perturbation is aJle to handle larger phase fluctuations

than the born approximation but is not valid when large amplitude fluctuations

develop. The method in superior to 6eometrical optics in that it tales into

account wave effects ana thus gives a batter description of the amplitude.

she phase, however, is no so sensitively dependent on wave effects and there

is not much difference between the estimates of the phase in two methods.

this perturbation expansion we must have

<<,
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2.3 the Than :screen ebbed in

then the thickness of the scattering medium is small, the electric

field ut any point inside the medium can be got using Geometrical optics.

However, if one is interested an tae field at a large distance from the medium

the Geometrical optics approximation breaks down because wave effects become

important. The 3orn approimation does take wave effects into account, but

its ran e of validity is small, being . restricted to A) <-<, 1. A much better

approximation, under these coniitions is the thin screen model in which one

determines, using Geometrical optics, the field emerging from the irregular

medium, and then uses the f 11 wave equation to study the propagation of the

perturbed wave front from tale medium to the ooserver. wince the propagation

from the medium to the observer is in free space, the solution of the wave

equation, as ii11 be shown in the next section, poses no great problem and

useful results can be derived even for large Ithase and amplitude fluctuations

at the round.

Ia the nsi screen model the irregular medium is replaced by a thin

phase screen which imposes on the incident waves the same phase fluctuations

that the extended medium	 have p.coduced. In the Geometrical optics

approximst ion, s he phase fluctuation imposed ay the screen is related to the

refractive index fluctuutionJ La the medium by equation (2.10) Which gives

4)	 ■ = (2.24)

If is assume th,t the acf of the refractive index fluctuations is a Gaussian,

the acf of tha phase fluctuations on the screen is (equation (2.12))
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TC j 0I
x ■•(

+	 )/N	 2e-
(2.2b)

The condition for the validity of the deometrical optics expression (2.24)

id (section 2.2a)

L/ka 2 	1
	

( -2.26 a)

J-00 Aca if 0	 1
o (2.26 b)

For e uation (2.2,;) to be valid ,--, lust have the additional condition

>.> a	 (2.2 c)

In this section we will a-,;amine the validity of these inequalities

for the If medium and see under what conditions the thin screen model can

be used.

The geomet-, for the scatteria4 in the IF -medium is shown in

figure 1. The angle, 	 , ,)etween the line of sight to the source and the

line of itht to the Sun is called the elongation. The per:,endicular distance

from the Sun to ,1.3 line of ,sight to the source	 be called p and this

is related to	 by

p = Sin	 A. iJ.	 (2.27)

Ae Jill rebard the equivalent thin screen to oe located at the point ,,,here

the line of siht to the source comes closest to the Sun. Thus, for any

elongation, the dist-ance z oi the screen from the observer is given by

ce3



TO SOURCE

24a

      

Z fie Cos E A.U.

       

EARTH

notIre 1. Geometry for scattering by the W medium.
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The IP medium is present everywhere along the line of sight to

the source and the problem is to define an equivalent thickness L for

the scattering region, Which 4iIl enasle us to check the validity of the

conditions (2.26). In definiri 	 an equivalant thickness for the medium, we

are facilitated by the fact that the scattering power of the IP medium

decreases with distance from the 3un roughly as t"-± so that most of the

scattering comes from tno e parts 01 the line of sight that are closest

to the sun. The thickneJs of the scattering region has been variously defined,

but if de define it as the distance along the line of sight where the contri-

bution to the scattering falls to half its maximum value, then, from the

assumed	 -4 dependence of the scattering power, we get the thickness as

L = 1.3 p A.J.	 (2.23)

For most of the ooservations descriJed here p is in the range

0.05 to 1 41..J. and since inc scale size of the irregularities is in the

range 10 to 100 km, the condition L >," a is always weld_ satisfied. 	 If we

.uustita_e for ,	 from e i	 Lion (2.2'3) into the condition (2.23a) and

express it in Liractiul units, the coldluion	 )ecomes

/A1 	
(2.29)

tk	 is

For all the oa,erv_,tionb descried here,	 = 0.9 metre and	 p is in

range 0.1 to 1	 for	 j 0.25	 the scale size is founu to oe

roughly inlepindelt 	 elongation having a constant value of 100 :cm.	 If we

sub,tituue for a	 in eia,tion	 4,3 iind that the inequality is violated

for P	 and here iris thin :screen	 iodel is not	 good since
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amplitude fluctuations develop inside the medium and the first order

ueometrical optics approximation or the phase does not take this into

account. However, we iill silo , that for our observations 00 goes as

Ø0 = 0.04 p -  radian	 (2.30)

so that fo:: p > 0.35 	 the scattering is wea- and so the Born approxi-

mation can be used to get the field at the observer. The results of the

born approximation can be Got by re,:dacin6 the extended medium by a number

of independent thin screens at different distances from the observer and

adding the fields produced by all the screens. The weakness of the scattering

ensures that multiple scattering oi• the radiation can cc neglected.	 Thus

the resits of the thin screen modal are of use even for p 0.3 . 4,U. since

they offer a relatively siml,le -way of estimating the actual field produced

by the extended medium. this approach of dividing the extended into a number

/ of screens has the advan -tae that intrinsic variations of the properties

of the medium aloa, the line of sight can 53 easily incorporated into the

calculation.

!ielow 0.25 i.U. the scale size decreases as the line of sight

approuches the Bun and in this region we Jill show (e4aution ( ,. .32)) that

1.4
a = 900 p	 km (p < 0.2 A.U) (2.31)

inserting e.putions (2.60) and (2.61) in the inesualities (2.26a,b) they

'oecome, .jith	 = 0.9 metre

0.035 p
.

.
3
	<< I

0.0014 p	 <.
A • U

(2.32a)

(2.32b)
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Both the:Je inequalities ace violated when p is less than 0.15 A.d. and

here equation (2.24) cannot se used to relate the phase fluctuation on the

screen to the density fluctuations in the medium not only because amplitude

fluctuations develop, out also because hiGhir order terns in the perturbation

axbansion for the phase, Jhich have been. neglected in equation (2.24), nos

become important. If the first inequalit alone sere violated we could still 

derive useful exI:,ressions for the intensity fluctuations on the ground by

using the multile screen model described earli;r, but When the second

inequality is also violated this is not possiole since noJ the scattering

is strong; and multiple scattering effects have to se taken into account.

Thus, thou,n the thin screen model does give relations between the intensity

fluctuations on the ground and the phase fluctuations on the screen even

for A) 1, thee results cannot be used in the interpretation oi' the IfS

observations close to the cnn at 327 Adz since for p .I 0.15 A.U. we do not

have a simple expression relatin, the properties of the aedium to those of

the screen. 2he evaluation of the higher order terms in the pe/	 urbation

expansion for the phase and amplitude in the Geometrical optics approximation

has not seen attempted.

To summarise, for 327 Ads, we can, using; the thin screen or multiple

than screen model, derive relations setween the intensity fluctuation on the

ground and the density fluctuation in the medium only for p > 0.15 A.U.

we have no adequate theory for 1Pj.

2.4 Mathematical ire, tment of the Thin 3creen Aodel

In this section 4e will develop the thin screen model in detail and

derive relations eetween the correlation functions 01' the dhase fluctuations



4 (2.63)
)

31	 `-f
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on the screen and the spatial po - der e ctra of the intensity fluctuations

on the L,round. ale 111 i t assume that a plane mono cnromAic vrave of unit

amplitude	 trave,lian:; in the po.3i6ive, z direction and is incident on

a phase screen located at z = 0. .Che geometry is sho .4n in figure (2).

The screen extends frool +	 In the x and y dire ctions and imposes 	 a

phase fluctuation	 (x,y) on the incident wavefront. Since the eIi c trio

field at the plane	 z = 0 is no,/ completely specified, the field at the

o °servers plane at a distance	 z, u ( ), can be written

there -e is an: point on the o..:, se rver s plane, 1. is any point on the

screen,	 •)( ) is an element of area around c. and 	 isis the physical
, 	.	 _distance of ':71, ..;L:', )from (., .  _Liotn '.-; and ,..E. are 2 dimensional vectors

in the x-y plane and the distance is given by

3-Lnce the exact solution of e 1uution (2;33) is not possible se

ailL expand t as a bi.norni._ L se rie s of	 form

(2.34)
-t-  3

and retain only	 first	 terms. This approximation is valid onl; for
// !	 cland since, in the integral, sa are going to let 	 Yrange

from +_ .30 , se must examine the validit: : of this approximation in more

etail.	 	  snow that if the irre--ular,Gl,s are large, so that the angle



	

2. Useale4r,y for tthe thin szreen	 rhe field at tiny
Et- on the 0 3 ti rvari a	 no is deterained by the

phase fluctuations in the eireuidr ye ti:ion ot: the phane
Jort:,,.,en, with centre	 4-	 and	 radius e



29

of scattering is sufficiently small, then most of the contriouion to the

integral in quation (2.3'6) comes from a small part of the screen located

around.	 -	 dud if L 	 this region, the approximation

me are making is reasonably good.

In the ray pictara tne electric field at the poin p is affected

only by that po:- bion of the screen th%J.5 is within the scattering cone which

is a cone with vertex at	 , axis in th z direction and semi vertical

angi ,3 e.inal to the angle of scatterinbj, 03c„it, 22he rays from outside this

c:area cannoc reach since the scat 'Gering angle is not large enough.

‹.<

t■

(2.5bd)

0 C (2.3„)o)

the ma.ximum value of 4 ?:f	 that is of importance

:471	 -
/-	 '17

C".

to,. rt
(2.33a)

71-	 /
`-/

(2.360)

This resalt can be derived directly from e Auation (2.36). The integrand

in elation (2.3)) is the prodac'L; of 	 -'and . If -we use

tie binomial expansion for
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4 k f ° •

is see that	 cenaves a s a ivasi sinusoidal •scilla.tion whose frequency

S'	 I . The i requencj of oscillation is zero forvaries with and

it increases linearly it ia j p iI for small values of	 . Regions

of the screen at lame values of will not contribute appreciably

to th integral 'because the fraTaancy of the oscillation here will be large
cp(

and the re. will 03 ,nuny o sci 1 1 tions before

widen causes the integrand to average out to Z310 The integral is affected

by only those parts of the screen where ths rate of change of the geometrical

i cbcc)
phase with respect to e: is small compared to the rats of change of e	 -

I	 .;
An estimate of tile 4.1a.cinum value of	

I
Co of importance can be got by

ettin, came two rates e..ival ihich gives the equation

st."
(2. 37)

rr- -

changes appreciably

wzi.2,re , as a meusu.-e of the rate oi variation -)1.
P(J:\ , we take the

reciprocal of V, the width of the a utocorrelation function of the

fiLictuations of the electric field on the screen, which is

E >

\ t
	 LL 44-

( - t	 _))	 3

	 0(6.)_

>< €

\ L



7z.

 

(2.39)

rn,3 Jid-tb. of
	

I V\ cia,:r1 deands on the value of 00 . If 0o (( 1

we have

\
- • •	 ) /	 (2. 38)
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To ootain the ensemble averages we have to RnoJ the probability distribution

for the phase fluctuation at any point on the screen. 	 de will assume that

the -orobabilit distribution is a Gaussian, which is not an unreasonable

assumption to mare since the phase at any point on the screen is the sum

of a large num per of smmli phase fluctuations produced by the medium along

tne line: of sight, and whatever be the -,00asility distribution of the

alanentar fluctuations, by the Central L-4mit Theorem, the prooa)ility

distribution of the stun tends to oe a Gaus_ian. For a Gaussian distribution,

the averagin, in the &Jove euuation can be performed b using a theorem by

Aercier (1952) which states that if 	 are ry complex

gaantitias whose 2n real and	 p: its have a Gaussian distribution,

then

Jsia- this rJsult and the definition of the autocorrelatien function of the

phase fluctuation



1

-■

/1t.
E.iva-bion (2.37) ,42aehrittj i lull is

I

77.

•
4-

or

ij

hick is identical to the limit derived from (ieoi.astrical optics.

14'3 get-Substitut.-in for

—	 I
i	

-

qi
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and the ',Vidth 0 4-JE is of the order of a, the scale size of the phase

irregularitiJs.

\

, 2j ecal,Lie	 the (00 in the e.-Konential, 	 will fall to very small

, 	.
i.,3 cah exd '"f ) as a, T , -,;_Lor eari:.,s and re-tain only the first to terms,

ir-3	 \
dhich g 1ve3, since th,..- first derivative of	 \ k( \t")is zero,

_\,2.(..,,.:
...k....i x. r,....) L (1'	 .(" 	 I

\s/'■I- (.. )_,.(,k )	7:'-•

e have a sL;i.med that	 ( "')	 circularly symmetrical. de thus see
where 4 

th,t th.is appfa?cime.tio 4- 
behaves as a daussian and has a width equal to

:414$
017	 .-4

evaq for a small dc,-creseof 6)( i from 1 and so for this range of t

(2.40)
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	Thus since we are not affected by values of	 -,'L;,1 larger than

6iven in e iaation (2.40), ins ar2or Je make in retaining only the fir3t

tJo tome in tj-1	 Ofi::S expansion (2.34) for	 T	 is roughly equal to the

value of the third terdat 	 - 1 to I	 r"s-ie. aqua	 o	 - _	 ‘;.nd so
2--	 c:3 7-

long as this is much less than a waveienth our approximation is good.

inserting the value	 i1	 the condition for tha validity of the

approdcim_tion is

r 4 	44
/	 le)	 ',-

tj. <-<

I
•	 ,

'/!:'.

, ,

.
r

Evan if .we tah.e, tie wort posoisle parameters for the IP medium and put

= 10 metres, z = 1_.d., a = 10 km we get 	 10 shich

311043 that tue approicimtion is valid for any frequency, for any region

of tne IP medium provided 
4 is not too large. For A = 10 n, a = 10 km,

10 but for more realistic values -)f the parameters

the approximtion is valid for much larger values

If Je put the axnsion of )' in equation

/	 k 1 9 ( 1)
(2.41)

of 
Oo•
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