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The intensity at any point in the observers plane is given by

It

17-_	

r	 ,:	 \ [	 , )-..	 .	 il '1., .

A 1:5_ (' (J4,- -i, ) - (‘ -\ --- t,- ) (r,...	 .........	 -

	

....	 ....
_

•

	 4.------

	

\ :i 1 i 7:- ,)	 /-

(2.42)

The autocorreIltion function of the intensity fluctuations on

the ground is defin3d as

(1.

since I S 1.	 ubstituting for I from (2.42) and taking the angular

.pruchets inside the integral we ,at

ce
A

c6(



;

(
(-	 r 1 	 *-1'

transform of e•.ivation (2.43) vie get

/ A \\
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Using equation (2.38) and the definition of the phase autocorrelation

functioi sae caxi. wife

)	 ce l is a function of only the dif erence of the -c,.

taken inin pairs. Thus

(2.43)

The spatial pcder spectrum of the intensity fluctuations on the

grounu	 11	 is the Fourier transfo of the acf. £akin the :Fourier



•
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(,.\ 	.C-Usin„; the fact that ; , •t )depends only on the difference on the	 this

five fold integrU can oe reduced to a single integral (see Appendix A)

IVlflb

( q
v

' 	(-1.̀•
1""	 I

( et
LO)

If we write F explicitl:;- in terms of the L.: we dot

 

(--(_-	 c-	 •
-

(2.44)

This scintillation index ' )(1 a is the r.m.s. variation of the intensity on

the ground and it is equal to th.:: square root of the intensity acf at zero

lad thich is related to the ,ower apectrium by

r	 9

quLtion (2.44) for the power spectrum cannot be simplified further

without making approximations. jb will in the follo4in sections derive some

expressions for the scintillation index and the power spectrum under various

approximations.

2.5	 2he deak Scattering Approximation	 <.< I

othen e) <'.‹ 1 the exponential in equation (2.44) can be expanded

as a S3r133 in	 and only the lo.lest order terms in 	 need be retained.

ole then



tv (
- )	 (2( ,

(2.4b)

and the shift theorem of FourirJ r Transforms which says

(71

A .E.7.

Jd
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UsinE; the definition of the poser spectrum of the phase fluctuations
•

'

-x Fourier transform of

.._]quation (2.45) oecomes

 

- A-

 

t,	 ',
''7' .' '	 /,,,,	 - k......0 "-,	 -ii ,-

)

'1

(2.43)

Thus in the ,:leak scattering appro.:cimation the spectrum of the

intensity fluctuations on the ground is the se as the spectrm of the phase

fluctuations on the screen multiplied by 4ein
2 	which will be referred

to as the .b'resnel iltor. if :4e.

%.„ (2.47)

the Fresnel filter is
'7) /	 / •	 \	sin" 4 1.)"'	 and all spatial f reTae,ncie s less than
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/NJ jp are heavily attenuated which means that the intensity pattern on the

ground is not sensitive to irregularities on the screen with scale sizes

larger thari ajout	 So even if the IP ,AedIum contains a hierarchy of

scale sizes, by stAying IPS we can study the propertiis of only those irre-

gularities whose size is less than a fee hundred kilometres. The reason for

this is that the intensity fluctuations arise because of interference between

the scattered rays.. 1-i.s we have seen, the field at any point on the ground

is affected by only '6hat part of the phase screen that intersects the

scattering cone and for intensity fluctuations to occur we must have more

than one irregularity in thi,	 area. Since the radius of the region of the

screen that affects us is 7= 0 ..4k A the condition for intensity fluctuations36a
to be observed Is	 ' 7	 '	 (:k<	 which is equal to -,	 9

r4.	 4 p

Irre ulariti,s of larger size can produce only phase fluctuations on the

ground.

Two quantities that are used to descriee the observed scintillation

are ril-t , the ci i til l pion index and	 th3 scale size of the intensity

fluctuation on the ground.. 	 4e sill use the second momen t o.L' the po ,: ar spectrum

of the intensity fluctuatio s to estimte the scale si a. The second moment

of the spatial power spectrIm in any direction x is defined as

_I 11. trA 	,'	 Lt:•

- 	'' 	 ,__ y c f
1	 11and is related to the spatial auto correlation function by '-r = -

„4x	 —	 .....)(. •

Thus '2:2x is the reciprocal of the scale size in the x direction. 	 If

we ussuile that the irregularities are circularly symmetrical then 	 (v-

(1.48)r 	 ;	 \(	 )



(2.49)1)".	 c-5

•

'4	•

anu	 ( 	 are functions of	 11 alone and by dritin the

intaoral in poi,:r	 e iva.tion (2.0) simplifies to

39

Jitaera	 have dropped the suffix x since	 is independent of direction.
_

Sith the assumption ol circjlar sy,m.aetry tie scintillation index

e.i aal to

(2.50)

Se /ill su.Jstitute for from equation (2.43) and derive the dependence

of
' and .1
	

on o and a. Fol. thL se have to assume the form of the

a.utocorrelation function of ,-,he phase irre b ±1,.trities. In all our analysis

de ,JILL unle:$s othefsise specified, assume tiiat the a.cf has a circularly

symEletrical Gauesian stractu:,:e of the form

(
	 5 /	 ■75,7`

so that

and

It

t. 
'4) .."7)

(

(2.52)
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3u3stitutih: for	 0:\ in equation (2.49) and (2.50) we 3 ee
that to obtain 7Di, and	 ,Je have to evaluate to integral of the form

•	 ,
a LA

I .
1.;

) 
tJ e

can y readily- evalua-ted by sub3titutin8 y = q2 and putting

4- ;), 11))

Q

                    

\kt

J	 . 	r.;( 	 I
I	 )

       

(2.53)



•

(,)
(..;

C cl:C1 :De , 0 t from I	 by differentiating it with respect to 	 .

41

(2.54)

(2.55)

2h scintiLL- tion index Li gIven by

H

  

,r-)71')

here zo = ka2 i.EJ called t	 zeam:i distance.

i2113 second mom3nt of the intensity spectrum is Givenby

1 q

f (2.

the behaviour of G113 scantillation under two liniti cases is of interest.

A
in the far field appro.,;:irtLAion „Ler° --/, 	 1Gne -w.r) terra in

equation (2.46) oscillates very rapidly and can be replaced by its mean

valuei/2 givin6



\rfl 	 ie,e

ljt.) k^."
If Ae a.,sume treat :77 > 0.7	 which is true for our

oi l 	 \7\

L.	 v
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(2.57)

(2. 58)

In this limit the scale size of the intensity fluctuations on the ground

is the sade as the scale size on the screen and the scintillation index

h,.:s its largest val,.te for a given value of 00. As z decreases the

scinti1lation index and the scale size on the gro ind decrease because low

fre,juencies in the power spectrum get filtered out by the Fresnel filter.

tralen	 "Z/	 we have

)1;-.	 I

1Va

(2. 59a )

putting jin & = e in e,-uation 2.46

approximation as

We get the power spectrum in this

(2.59b)

In lour.: 3	 with a distance

pa

(2.60)

oedema-blot-is, and take a = 100 km, than at 327	 d j 5 for all our
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Figure 3. Dopendoncs of the scintillation inotex and second
momant of the spatial power spectrum on dist,nge
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(2.61)
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ooservations. froia figure 3, the far field aproximation for n1 and c.:1

(tv000404m (3.w7) 444 (.0M)) dt,Cfard trnm th4 (14,10t v 1,q10 by li443 than 6

and 160 respactivei. Thus at 327 ivaii the far field approximation is good

for the range of elongations over which observtions exist. In general,

hoJev,r, this will not be true and the exact folmulae :ill have to be used.

2. 	 wometricAal A'tics ApEroxination X	 0	 OV

Tr k is sufficiently large so that	 1,nco, -,.-L<I/a i.e./'7 4(1
bk.

(")(we can expand	 as a Taylor seris about

() FE\o -± 7	 --L Y (7/ PQ ?- -71	 qtzcz
Lis()

•i3h tie approximations eAdation (2. ,A) for the spatial power spectrum

If, :u' additiai, the argument of the exponential is much less than 1, which

1
relir...)s (using order or magnitude estimates by putting 	 P

74. / I
/	

le-

Phis can be integrated fairly simply if we write the integral in cartesian

coordintes. Ae have
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tL))/?)i

SO
( 1>< -f\d-1)1)

e

trX

Ct)

.....c.,
:,,,J 	..... A	 ,4(	 .....,,,	 ...,	 v	 6.,)

1	 i.-, -x-- .--
../	 ak.-4

Takin6 one berm

J ) '

.where we have performed the intagrtion over .z by parts and assumed that

xfl
(' and YL	 vanish at	 c.4)	 • The ther tio terins can oe similarly

-7"))
calcula-bed. If .;e, put these res its back in equa.tion (2.61) ae get

(

L

'.71+	 (-44	 d'Vp1)1 a(1-1\42- e(\'°)(	 "2\ iti x to,	 0

c"`
/;'•-•	 (0, ‘).c 

(2.62)



and their Fourier tran,forms

4-}

)
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•
This expression is identical to e4uation (2.59b) which was derived assuming

6	 and	 / 2 67.1 I . The present result was derived under the less

restrictive assumptions that. 	 / 2. and	 -- .1":)//  44. ,from which it

is clear that this expression is valid even for	 .

The Geometrical optics approximation is valid if the phase variations

are :small over that portion of the phase screen that intersects the scattering

cone because then, wave effects like interference between wavelets fro::

different parts of the phase screen can be safely neglected. In the L.134.1k

scattering region the condition for this was derived	 I . In the

strong scattering case if „le re.aember that the angle of scattering is -t--.,/qc,„

the radius of the screen affecting the field is	 Setting this less

than the scale size we immediately get the second condition 7:1 0//.1 ‘,4< also.

The expressions for the scintillation index and the second moment are the

same as given in eduction (2.59). They are

„■

o

Ua

2.7 Far Field approximation

Let us assume that the phase autocorre.Lation function has a cut

\off at	 =	 t.	 for	 A. Let us define t../o functions



(4 NI

7 c:12
11:(`-'1)

•

i3oth g ( ) and f ( ) are equal to C for	 1	 A. Jith the se

definitions, e,.ivation 0..“) for the power spectrum DOC:0404
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X 1 ( C(,. \ 	4 ) (•

r	
,.

L-7
	\' x D 1 -	 '1.,	 (... i - (c' ( 7-4-k--- 1 ) )

A... (.11

'X

ci -1-

9

Let us assume that z is sufficiently large so that for any 11 We choose,

>	 Than the 3 functions	 L't	 and -1.-(`71 -

sa non zero in non-overia iri.g regions of .‘st and so the various products

	

of these teritis are equal to zero for all 	 . Under this condition
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As s becomes larger and larger the lower limit on q for which this

result is valid becomes smaller and smaller and in the limit 'F -------0 this is

valid for all Ck.	 In the limit when z-%-co the second term oscillates
V

a.Jout zero with infinite freuency. If we consider tne fact that any

measurement of the spectrum has a finite frequency resolution and so what

1:. ( qu ) over a small frequency range,

then it is clear that the second term in equation (2.33) can be ignored

since its average value over any frequency range is zero. Thus, as z co
_,

ICI (q\	
_ Qw	 r /

11-	 -__	 e	 1 °	 L...T1(..'2, )
_...

The inverse io:trier transform can se readily performed and we get the

intensity autocorrel tion function as

(Yy, •
- r	 (-)N)

-	 (2 64 )

This resuL., (which is valid for all 60 ) was first derived by Aercier (1952),

though using a different appro,i6h.

The scintillation index is ,riven by

) (2.65)

The second moment	 of the poser spectrum of the intensity fluctuations

is given by (assuming	 N 0 is circularly c;;mmetrical),

	

—	 I	
(Q)

/

	

( 
__
	 a

—0

one measures is the average value of



From equation (2.64)

.2 .P. PLY)0
PT CI	

- 

°

P6in
rr(
aka 	 a,0
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so that

P4561(4 J o zz

-6 NZ'

Since r(C) 1	 0 for an autocorrelation function,
'	 k 1-0

For 10 <4, 1

a
ez

(/)

^^° - I

these two expressions reduce

Ok1Z (i - e
k

to TY) • •=.	 and 1,
which is similar to equations (2.57, 58). For large values of 00 however

a
try

(2.67)

So we sea that for small values of 00 the scale size on the

ground is the sane as the scale size on the screen and the scintillation

index increases linearly with A) . As 4 becomes of the order of one the

scale size on the ground starts reducing and the rate at which )1')increases

with 00 drops. For large values of 00 , )Y saturates at 1 and the scale

1
size decreases as 40 . The complete dependence of .1)'), and Ott on

v),

is shown in figure 4.

Oo

(2.66)
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Figur 4. Dependence of the acintillation index and second moment
of tam spatial power spectrum on fio in the far field
rogion (z/Z0 >> 1).



2.8 Numerical Methods

Using approximations ae have derived expression for 1 Yi 7 	 and

in the regions

1 , -)11 z ( gear scattering)

near screen or Cieometrical optics)

	  j-Z0 (Far field approximation)

2Q ,;et any information in the region - 1r--	 1 ,	 we

have to use numerical methods. Mercier (1%2) studied the dependence of

the scintill;ition index on the distance from the screen for various	 /0
cl2

upto 00 = 2 and pointed out for the first tine the existence of focussing

effegts . if Gna slots the variation of the scintillation Index with distance

frem the screen, for po	 1, (*((, goes through a maximum before saturating

at the value given by the far field approximation and the maximum value of

the scintillbtion index can ce much larger than 1. 3raaley and Young (1967)
J7

have extended the calculation to f4.1'(; = 10 and have found similar results.

Dramley and Young have also computed the dependence of tne scale size on 4.

The basic approach in the num.3. rical .dethods has seen to express

the required quantity as a power series in 00 and to numerically evaluate

the coefficients of this series. For illustration „Je ri11 derive the series

expansion for the scintillation index. .&quation (2.44) gives the power



4-

)r	 ts,

04 •

spectrum Qi the intensity fluctuations as

p; 
•

!	 i
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_' A r) 
I	 ' ,	 (..

1.1 	 •	 7.

t 7 L ) — r —	 1-	 ;

The scintillation index is given by

77, ( (7 )

,.< e

1 	 (3( il .	 , ))i j	 .	Di 	 ,--,. (2,,	 .....\	 Ns	 ,	 - I1	 _	 I/
.,. i	 —

I-
e's •

(:‘1'

L

7	 "
1- CI \)--"

Usink; the series expansion for the exponential and tai;:ing. the suimiut ion

sin eu b 3 id. Q the irit e 6- ral s we et
,")	 -,)	 L.) ^r,

21,	 ,'71)
--_-_.	 4:),	 ' 0I )

d 3i

 4

Usia6 the expansion

where the sumLilition includes all combinations of positive and zero values



where

e

If we take

5
%

7- (IL.	 _+	 --
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of k1 , k2 , lc ,6 and k1 sub lcot to the constraint k1 + k2 + k3 + k4 = n,

we get

'r CA'	 ,	 !k4,
.	 'srl ,

To evaluate, this irv.:.egra-1 one has to as:sane the functional form. for	 )

C
to be a circularly sym aetrical Gaussian of the foni

_ ‘)/‘- 2-

and write everythirk; in cartesian coordinates, we see that the integrand

can ba If/1*i tten as a product of -Lao identical functions, one involving only

the x component of r and .1 , and the other involving only the y

components. 60 the integral can be 4ritten as

where

7 /.
Jj

ch da
v)(

x

The evaluation of this integral is straight for •iard but tedious.

One first makes the terias containing x a perfect square, integrates



over x o then makes the 'terns containing qx a perfect square and

integrates over clx , to get

•	 two 4 L.

whe.ie d =	 -„ as defined earlier. The scintillation index is then

given by

52

X

-

This expression is identical to the expresion derived by Bramley and Young

(1(J6'7), if one takes into account the difference in the definition of the

acf (they define e( N:'	 ). It is this series that is summed on a

computer. The largest value on n upto which the summation is carried out

is determined by the largest value of o one is interested in. Bramley

and Young nave gone upto n = 40 to get the scintillation index for values

of 0(2j upto 10. In figure 5 we have reproduced their results on the

vari,tion of	 with d for various vices of 0 2 . The focussingo

effect is clearly sen. It is also seen that the maximum occurs at smaller

valu.Js of d as we go to larger values of 4, and BraAley and Young find

that d	 and 0o	 are related bylax

= 1.35
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hramley and Young have also computed the variation of the scale

size on the ground with	 d and 00 . In figure 6 we have reproduced their

results giving the variation of u o , which is the distance measured in

units of the scale size at Which the acf falls to e 1 . It is difficult to

get a simple relation between u o and the seal size as we have defined

i
it ( – —-1 ), but we 4111 assume that the two seals sizes are

„pproxim ‘ tely proportional to each other.

In figures 7 and 8 we have shown the variation of numerically

estimated values of 	 and	 with 00 for different values of d.

Un the same figures we have, for comparison, plotted the prediction of the

:leak scattering aid the Far field approximation.

2.9 &ffects of Source Structure

So far we have considered a • aane wave to be incident on the phase

screen i.e. we have considered the source of radiation to have no angular

diameter.	 Since one of the main aims of IPS is to get an idea of the angular

diameter of tile scinti 1 I  ating source, we have to find out how the structure

of the sourci affects the observed uuantities. "Jet b 	 tp(j,,O)riormalised
-

so that	 j	 , be the brightness distribution of the source. The

effect of the finite source size is to reduce the coherence of the radiation

Incident on the phase screen. Now, instead of a single plane wave incident

on the screen we have incident a numeer of plane waves, each travelling in

a different direction -7– what is called the angular spectrum. because of

this if we take a plane perpendicular to the line of sight to the source and

measure the acf of the electric field, the acf will not be constant at 1
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for  I1 separations, as is the case fur a plane wave, but w111 decrease as

se go to larger separations. If the separation is measured in units of ,

this aef is the same as tns v_Lsi)jlity function 	 ( .t5") used in radio

interferometr.

( h
\i( w`	 •

It is well known (Kraus, 1b66) that the visibility function is the same

as the Fourier transform of the brightness distribution of - the source, i.e.

77-
(2.67)

Because it is the Fourier transform of the brightness distribution of the

source, the width of the visibility function is given b	 1
y 	 /;7171.1".,?,,7where

is the diameter of the source. Thus the actual width of the acf

of the electric fiAd is roughly, . If the width of the acf

is ,:such larger than the region of the phase screen that affects the field

at any point on the ground, which is given by 7 (7.)-':,c„,t the intensity pe.tter^

on the ground wi it not differ much from that of a point source. do the

condition for the source size to af.oact the intensity puttein on the ground is

I 
‘,c e

which becomes

7 9 $0. A	 ‘-- 1	 4) /4

T j)

_Another way of looking at the problem is as follows. If we move

a point source through d. emu  I 1 angle	 9 , the effect on the intensity

pattern on the ground a to shift it in the opposite direction through
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ti

a linear distance 	 If the angular diameter of the source is so

large that	 ?.7/--C	 is Greater than tha scale size or the intensity

fluctuations on the bround then the intensity pattern on the E round gets

smeared out and the scintillation index is reduced. Thus the condition for

the source size to affect the scintillation is

7	 -	 t

which is

lL *>,--77

which is the same as what we derived earlier. One can 0 further. If

IC C) is the intensity pattern produced by a point source at 9 = 0, a

point source at 0 produces an intensity p.:ttern I( - i70 ). If the

source has a brightness distribution r_ (0), the intensity pattern on the

,round is

0

( 	,

J

where we have used the symbol * for convolution. U3in L; the standard results

of Fourier transforms (Lracewell, 1965) that if

)

CITT
then	 r)	 (Nd	 ( Gonvolution theorem

s),t
+ 4/(A

7- 7 ,
f	 )- 6caiin theorem



we gat for the po.•er spectrIm of the intensity fluctuations
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7-r
A . N.1

v

NC

)
(2.68)

where V is the visibility function of the source. The extra 21 ,..	 comes

in the visibility function because of the difference between our definition

of the Fourier transforma and the definition in ejuation (2.57).

This result can also be derived using the methods 4e have developed

earlier. Because of the finite source size, the phase of the incident

radiation is not constant in the z = 0 plane but varies with position.

The relative phase between two points fluctuates in time with a time

scale --, iiwheze	 is the bandwidth oi the radiation. The field of the

radiation can be characterised by its acf, the visibility function given by

(E0	
,

)	 (.{

The electric field at the observer's pl .aie is ci,t by generalizin 6 equation

(2./.11) to give

ie.	 •̂
r	 7--

Tha intensity is b iven by
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axp.ession for the intensiJy becomes

( \\4-	 (1 A	 e4
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since any measurement of	 I	 is made Aitn instrueents which have

a finite time constant and since, the time constant ia generally much larger

than 1	 , each measure value of	 I is the average over a large number

of fluctuations of the phase of	 F	 P	 Lio we wili replace I by

its average value Ahich is got by replacing L)	 0 (	) by its
average value which by definition is	 V

	
. 'dith this the

AS befoie we can define the spAial acf of the in'tenaity fluctuations and

perform the ensemble averaging by assuming that 0 is a Gaussian random

variable and Jeet as the generalization of equation (2.43)

('1' I c \ \) \I 

/	 s--0 4

t	

A.

"-C	 j';--L-
The function

— 4 ,

/.‘ .-
)	 ;	 41 )

is a function of only the difference of its arguments taken two at a time.

3o ja call 1w;.3 the Fourier transform of the acf and using the result derived

	in append 2C	 ge t
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0) =
1

(

27
\t'	 •-	 0 )
-	 K v	 )

V is in general a cnmplex function, but since its Fourier transform is

the brightness distribution dhich is alwa s real, V satisfied the property

■

(,)) 	, u-rj )

(
I)

4

does not depend on 1' ge can take it outside

the integral una if we tae the (S function to the riAit hand side within
the integral jaget

,-;...	 c_.,, i	.,	 '- t (.i- P ( ti ))	 (6, e, 	,...,_.	 ...., 0,

	

i, f;-.--7- u 1	 .-,_-,.._

..-
_1.	

')

1	 k	 --,	 LT ) - e(I 4- ' `-',_	 _	 12	 T.- ) i - I ..,
potr\-1.„

which is identical to equation (2.68).

from this expression we see that the effect of the finite source

size is to filter out the higher spatial frequencies in the intensity

pattern on the ground. Since the high spatial frequencies are attenuated,

the second moment of the power spectrum is less than that for a point

source i.e. the scale size on the ground is larger for broad source than

for a point source. Since tne scintillation index is the area under the

power spectrum, the scintillation index is smaller for an extended source.

'V
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So in principle the detereinetion of the soufce structure is

straight foreard. ell we have to do is measure the spatial power spectrum

for a known point source and for the extended source. Dividing the second

spectrum by the first we get the square of the visieility function of the

source from which we can estimete tne structure oL the source. In practice

ho .ever it is not poesible to do this since the spatial poier spectrum

cannot easily be measured. that one usually has is some integral property

of the spectrum like the scintillation index or the second moment and we

have to estimate the s'6ructure of the source by comp .ring these with the

corresponding quantities for a point source. For this we have to know how

and	 change for different source modals and this can be got only

if we have an ex ;licit expression for the point source power spectrum. AS

we have seen, we can set useful expressions for the spectrum only under

limited conditions like	 4 <' 1 or	 . For arbitrary values of 4

and	 can get estimates of tL effect of the source sIze only by

maeino ed hoc aesumptions ,)out the shape of the spectrum of the intensity

flactucA.ons on the groune, Following Little and Hewise (1966) we eill 

assume tii,At the acf of the intensity fluctuations on the ground is a

symeetrical Gaussian of the form ei (2-!, ) -_- 4:1Kr, fc	 /;:c y ) and derive

results for some simple source models. If a 	 is the scale size on the

screen we will take	 to oe equal to a for 00 « 1 and equal to
for j3 >> 1. The epatiel power spectrum is proportional

/
to

a) Girculer4 3ymAetrical Gaussian Source

For a circularly sym,fietrieel_ Gauesien source the erightnees is

'•/rt)
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and

u	
-t- (13

4_

)

1
cd,

If	 and	 are the scintillation index and thu scale size

paint source and m s and	 these quantities for an extended source
using equation (2.68) we have

J 
d
	

—	 7 '	 -t-
	

)	 (2 . 6	 )

is
J

These results show that the decrease in Ye\ and the increase in	 is

determined solely by the parameter 7-/). The scintillations are unaffected

by the source size if -7-,	 <<	 . If we take	 _'›L(X,-;,100 km, z = 1 A.J.

and define G- as the half power diameter of the source, the above condition

be

t.) <<,"

If	 ,3/. the scintillation index is reduced to zero and the scale

size on the ground is determined purely by the diameter of the source and

ahas a value ,J,`:? 	 0, • In the strong; scattering regime 	 is equal
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,i	 77
to	 /4.7,, 7./ and so in this regime 	

: g
increases linearly with 00.

3o even if we take a source with diameter 4a_ much less than 0".15, when
2

is large enough to make
,3	

0".15 the scintill,tin will start,

showing the effect of source size. If we -t:e a source with diameter

6.4. (P.15 and study the variation of the scintillation index with 00,2-
the scintillation index will increase with	 00 in the weak scattering regime

until it reaches a value of unity. 48 00 	 increases 47) will remain constant

at one until 00 is large enough to ,make 00 e,	 0'1.15 and then with increase

the sa_Lntillation index will start reducing. For sources of different

diameters the value of 00 at anion m will start decreasing qill oe

different. In the stron, scattering regime the scale size decreases as

001
with increasing, 0 until 00 a	 O1!15 and than it stays constant

at a value equal to

:elongated Gaussian Source

For an elongated Caussian we have

12 we carry out the calculation as in the prev,ous section we get (Little

and Lowish (1)56))

V,.....4_ ....:;, 	, 6... 	 .- I 4.-	 -‘-

--:---	 !	 1-
.,	 Ii	 - - if o

L

1 I

The scale size on the ground is no longer circularly synaetrical. For the

x any y directions we have



62

In this case also the scintillations behave as that of a point source

provided coth	 and T Q, are muCh less than one. .ihen one of them

approaches one m starts to decrease. The redaction in the ciatillation

index is much less rapid than in the circuLrly symmetrical case until both

of them become greater than one and from this one can infer that the source

is extended. The extended nature of the source and its dimensions can be

estimated more directly by studyin g, the shape of the irregularities on the

ground because for an elongated source the irregularities on the ground

are anisotropic.

bore halo sources

In core halo sources we have a core of intensity I i-, which may be

a point or a symmetrical or an elongated Gaussian source, surrounded by a

_
halo of intensity 12 , whose angular size is much greater than	 0".1b.

The halo component does not scintillate and all the intensity fluctuations

are due to the corn.	 If we take the core to be a point source we can write

the visibility function for the core halo source as

I )-1

 

i.
.jsia, this we get

r

(2.70)

which shows that the scintillation index is reduced by a factor	
// 

it, 4

which is an obvious result since only this fraction of the incident flux
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contricutes to the scintilintion. The scale size is unaffected by the

halo. The extension of the core halm modal for cases where the core has

a finite diaaeter is straight forward.

The interpretation of most of the so .arces observed in IF3 will be

made in terms of these three models. 	 The use of more complicated models

for the source is not usually justified since the 11°6 observations cannot,

unambigously, decide between them.

2.10 3and4dth Effect

In deriving equation (2.44) for the power spectrum it was assumed

that the incident radiation was monochromatic. In practice the radiation

is only quasi monochromatic i.e. there is a spread of frequencies but the

bandwidth is generally much less than the central frequency. For quasi

monochromatic radiation, the phase of the electric field at any point varies

randomly with a time scale of 	 j- where AA) is the bandwidth. The
ZYV

temporal acf of the electric field ec: (71:,	 C-Jel f, (iis the Fourier

transform of the spectrum of the radiation Which is the same as the bandpass

of the receiver system. The affect of the finite bandwidth is to reduce the

scintillation index because each frequency in the uand produces a slightly

different intensity pattern on the ground and the observed intensity pattern,

which is the sum of the individual patterns, tends to get smoothed out.

An estimate of when the bandwidth will start affecting the intensity

fluctuations can be got by the following arguments. The electric field at

any point on the ground, say r = 0, is given by the sum of the wavelets from

different parts of the phase screen.	 The wavelet coming from an element
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of area at	 on .1-2ue screen has to travel a distance 1\	 and so

is delayed by a time ';,••;/..'-').c_. 	 with res-2ect to the wavelet from 	 0.

If this delay ts larger than the coherence +..).:rie C;,, :--	 l'/ ) , the se two

wavelets will not be coherent. kJ we have seen earlier, the larges'6 value

of	 that affects us is	 —	 and so for the decoherence
• max	 scat

due •to the finite bandwidth to be negligibie, we must have

- cok• 	 /	 C

i.e.

c

_ s the scale size of the intensity fluctuations on the ground

4‹
77-72-	 A V'1T CC

which in practical unii,s is

/\\
— A	 '

(2 . 71)

we can write	 • —	 and tha above condition becomes

For our observations if we take = 0.0 metre, z = 1 A.U., and 	 ).-/= 4

which is the bandT_dth used, the effect of the bandwidth is ne gligible

provided

For elongations greater than 0.25 A.0. from the Sun the scale si ze

a is ar0 and 100 km. and so lle effect of bandwidth can be safely neglected

in tLe weak scattering regime.	 the strong scattering regime, since

, this is not always true and bandwidth starts playing an

inufn rt ant role when	 is greater than 20 or so.
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ihe intensity is given by

•	 t .	 ,

\	 If
cr>.	 I	 j

(
-

-e

T

)

2.

j

t c ,?(

The formal Incor-20:4'ation of the effect of bandwdth into the

r /	 \expression for the intensity is straforward. If wa denote by E 3 t_q, the

e-eciic field at	 on the screen at time t ; then, by tsing into account

the differences in the time of arrival, equation (2.-A) for the electric
field on hie ground can be wilten as

Since any measurement of the intensity is always made withinstruments

whose time constant is much larger than 1LN_, V us' ng the same

)2.,
average value which is	 _ _  	 ) waere t. is the

—

we did for the case of the finite source size, we will replace

arguments as

L. I: by its

temporal acf

of the elec'Gric fie..Ld and is the Fourier Iris 	 of the bandpass function.
So we get

1
t 4	 4_	 p ( 	 ( )

sf. L Cs; ) -
1 -)

A . .L	 ( '17f	 ) - 7

be spatial acf is given by
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1,4
L

-r X

F

 

/
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qis a function of the (-fand is not a function just of the difference.

of tlie two arguments. So now. we canno as we did earlier, make the various

simplifications that were passible because the function IT( ) depended only

on the difference of its arguments. The best we can do is to take the

Courier transform of the above equation and ::et an expression for the power

spectrum with 3 interals in it, bu further simplifications is not possible.

Numerical integration of this triple 5.nte:ral is a formidable task. 6o

thougll we hi've an expression for the effect of the bandwidth the extract .on

of useful information is not possible because of mathematical difficulties.

In the far field r gion where	 Little (1918) has derived

some expressions for the effect of the bandwidth on the scintillation index

and the shape of the acf by assuming that the angular spectrum produced by

the screen is a Gaussian and that the phases of tho different components in

t;::.e spectrum are Independent random variabless which is a good approximation

for	 . The results are expre6sed in terms of a parameter 1C which

in our definition. of a Gaussian is

,/)O{ 11 cot

wilerc	 is the width of the passband which is assumed to be a Gaussian.

factor b, by which the scintillation index is reduced, is given in



both the weak and the stren: scattering regimes as

= 472'k 7:z K	 -	 (	 k•

67

where

For is	 the scintillation index is unaffected and b = 1, but for	 >> 1

the expression for b	 becomes b 2  1.25

The behaviour of the shape of the acf is different in the weak and

strong scattering regimes. In the weak scattering ineirae the acf keeps on

setting broader as	 increases, showing tI.e.-e ;: the effect of the bandw_dth

is to filter oat the high frequencies in the spatial rower spectrum. In

the strong scatterine: regime the width does not increase as merkedly as in

weak seas iering enu for large K the width tends to saturate, becoming

independent of the bandwidth. Thus in this regime the effect of the bandwidt1

is to attenuate all the spatial frequencies.

In the near field region no adequate theory exists which gives the

variation of the observed quantities with bandwidth. i3ut so long as the

inequality (2.71) is satisfied, we can safely neglect the finite bandwidth

and .use the resu.Lts got by assuming, a monochromatic wave. All the above

discussion is based on L ine thin screen model. For an extended medium we have

no detailed theory. however when the total r.m.s. phase fluctuation 00 is

ratc:: less than 1, we can replace the extended mediuri by a number of independert

t:lied screens at different distances from the observer and the intensity

:!at-:.,ern on the ground is simply the sun of the patterns produced by the indi-

7/idual screens. Under these conditions the bandwidth can be neglected if the
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inequality (2.71) is satisfied for all the screens. In the stroiv scattering

regime multiple scattering between the screens has to be considered but even

here, we can neglect the bandwidth if we take the most distant screen and

_ 00)\U 	 —

2.11	 -1:4:yvin :  Screen

So far we have not botaered about ',law the intensity pattern on the

. ground was actually measured. If the screen is stationazy, one must either

have a -large num:Jer of detectors at different places on the ground or one

must have a single detector to various points on the ground in order to measure

the intensity pattern. 	 these alternatives are quite impractical and

useful observations of IFS are 1:essible only because the solar plasma is

flowing away from the Sem in a fairly well ordered waz. :-, causing the intensity

pattern on the ground to also drift with the same velocity. So the intensity
-eam•

pattern on the ground varies with time and this can be observed easily with

a single anknna. If we assume that the time variation in the intensity pattern

is dcc only to the motion of the screen, we can infer the s-eatial dependence

I the intensitz' from the observed time variations. hor this one has to know

the velocity of the solar wind which has been estimated by observing the

intensiy fluctuations at 3 well separated points on the ground and by measuring

fe difference in the time at which the pattern reaches the 3 stations. however

tie idealised situation where the intensity pattern drifts without changing is

unlikely to be a good approximation and so we w .L.1 first consider the general

case where the pattern changes w hile drifting and see how the temporal acf

tIe intensiy fluctuations is related to the spatial acf.

/

put and find that the inequality (2.71) is satisfied.
2Tra
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We will again consider the thin screen model where 0 ( Fr ,	 ) is

the variation of Le phase about the mean value at the point • 	 tine t.

The general acf isriven by

-s? t., z))>

The intensity at any y.oint on the ground at time	 t is (equation (2.42))
0":	

)( Es , t	 1 I	 c$,	 ' _	 _ • j
- 	-

t (	 )	 ( c5L t)

The gena:calisea acf of the intensity Xluctuation on the ground is

	= 	 <	 T (
	

k*-r	 )-(‘

all our earlier di  secessions we have been dealing with
	

0 ) while

what we measure with a single antenna is 	 o c) and we have to see how

the two are related. If we regard.	 (Ep , e-C) to be a random Gaussian variable.

we can generalise equation (2.43) and get

,	 /	 ! cie:„ 314,4

ex i,
_ -	

le-	 „
\‘'	 -'6 )

	

.	 _	 (
- 7 )
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Taking the Fourier transform of the acf o the intensity fluctuations and

(,--	 <
noting that •. 1 , :10'	 T's e function of only the difference of the1' 1 W-#. > )\ 1

s so that all the sim plifications we made earlier can still be made,

we get

N ( a -0, - I
J

4:1-t
-e

4. r

■?.. X	 co, T)-e(t+-1-, (2.72)

The acf of the innsity fluctuations is given by

F1(1‘-,T)=-• H(q)z)
J	 - (2.73)

The ;emporel acf is given by

N

The scintillation index estimated from the time variations of the intensity

at a point is given by

o	 fq (.1 ) 0 )rri" (o 0t	 .

which is ,identical to the scintillation index as estimated from the spatial

variatiol of the intensity at a given instant of time.

The situation is more complicated in the case of the actual acf

and the pOwer spectra. In view of the complexity of N( 1 :0 we will

consider only two limiting cases 1) 00 -<( 1	 ?/;,,, -77 I 

1)	 0CI) <<

Under this approximation N(1 0 7.') becomes

_	 2_
vo 72) . 4 I) (0 T) .
	 (	 )

• (2.74)



the tauporal acf is given by

doi	 ,T) = 41d1 r) cr.\'' 1-1)
cak

(2.76)

while the temoral power spectrum is given by
— .4)

Fourier transform of the acf of the

(2.77)

phase fluctuations ) ddsfined by

is the space timewhere

71

where

S
(_ 01; 71= Zia'

 't
( c)) N4('

J (2.75)

q51e,

4,,>.> I

iffcildZ
(2.78)

Under this approximation we can go through the same arguments as

was done from the far field approximation in the time independent screen and

we get

1\1( 0:n= -e r im)!P c\(_) i)} -11

which gives

    

(2.79)■1111010
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So far the discussion has been quite general but now we have to

mak. 3 S.•.8 model for the time varying pattern and assume some form for

before .:Je can relate the quantities measured with a singie

antenna with the parameters of the screen. we will consider in some detail

the model in wnich the pattern is assumed to drift without changing and

then discuss briefly the more general fnrns of the acf.

2.11a Moving Screen  with lime Independent Phase Pattern

In this model we assume that the phase fluctuations nn the screen

are independent of time and consider the screen as a whole to move with a

u.uf*rm velocity V. In the frame of reference in w aich the screen is at

rest,the acf of the phase fluctuations is independent of time and will be
r),

denoted by	 1A tae irate of reference in which the screen is moving,

the acf is a function of both space a :id time, but it has tne simple Loris

 
N/ 7,

fne space time Fourier transform of the acf has the form

JJ

(	 I	 (.,C? '.1tis	 j
7.)

e,
f 3 ' t	 q.)*-

-

if we insert this into equation 2	 for the power spectrum and if we7)	 f

choose the coordinate system so that V is in the direction of the x axis,

We find that for

j„) ) -=. \\O .	 C,"0—Y't (
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In practice the temporal power spectrum is generally expressed in terms of

fre,duency f	 rather thda aa6 ular frejuenby t . Si ace 	 wewe have

V(4)	 ,D5"	 (

From the above expression we see that the temporal power spectrum

is related to the 2 dimensional power spectrua in the same way as a strip

scan over d radio source is related to tha actual 2 dimensional structure of

tree source. 4 conseslaance oi this is that the 2reshel modulation is smeared

	

out and so is not ver	 prouineat in the cx.jiserved taaporal power spectrum.

It is of interest, ha,Jever, to see the Fresael modulation in the
0po,ler 3pectrum because if one sees the nulls •i the sin- term mne can

estimate tae velocit ,y of the screen by ass,mirk; only the distanoe to the

screen. if we assane that the 2 dimensional spatial power spectrum is

symetrical we Itrlo',4 from the theory 0- tine restoration of strip

scans (.6racewell, i35) that the Abel transform of the observed strip scan

gives the circularly s-jmnetricai 2 dimensional structure of the source. So

if we	 the a.oel transform of the observed temporal power spectrum we get
6 ,

= Abel rani ores of0 = -...)	 --	 01	 C	 4	 c-)1)(-	 v l i !In/	 t

	

1 	 -17	 1	 ot .f i	 / A ± -4..)4. 

	

— 	-	 .—

	

i,,, 	.	 (2.80)
/1,- 	 i :),.11 4 \ .,	 2- (1 	 7._	 ( _'N, 74 \	 1

	

, IL	 (	 \/	 /	
'Lv* ''\ ‘\	 N	 i	 1

	

. H'	 )	 -	 u0	 )_,	 ,3 ,.. y .i	 ia 	 „...„ ..r) (
- r	

1

Thus the Fresael modulation is more clearly . scea on the Abel

transform. fahin8 the Abel transform of the Fourier transioru of a lunction

is e_iuivaleat to the sic, le operation of Lakin, the Jessel transform of the
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function. 30 ► the above result could also have ben got by taking the Bessel

transform of trle observed temporal acf i.e.

-7,	

Jo

1 71	 '6171T\ 4"( r-C	 P,.	 0

	
(2.81)

where J o (x) is the 3.;ssel fanction of zeratn order.

.elr the case of a daussiaa acf, in the wedk scattering limit, we

•
ca . : derive an explicit expression for the tem oral power spectrum. Let the

acf of tne phase flatuaLdons be of tne Porn

( ./	
11-''+ \,, )7) ?,,---.., (4

hie, p,,,ar 4 	 r,4 4if. the phase 1.14GtuaLiQns is

a.

2he spatial power spectrum of the inensity fluctuations on the ground is,

in the vieak scattering limit, given by

(.1	 4	 •
)1	 (	 X	 o,„

L	 )'s

The tecapordi power spectrum is given Oy
c.. 	 .	 ,

4 ;, 
z44' i d )	

•	 -,'11 ,1 4 )
P( -;, 	 ux • `', - -	 \ d' (0 * + cr) -), 	 , 	 _........ 

' 	 '':	 ..f\	 -,	 , r	 bx L	 -4 1
\ ,
4

fnei.ILegraloverq_can be perforded in a fairlystraigrt forward way by

expressing the	 in term as tue sum of two exponentials, collecting the terms

contaiaing	 axpressin, them as a perfect square and integrating overd

the resultini, daassian functions. the resulting expression is

—03



75

    

(2.32)

      

where z	 ka and
-1 -tan	 zo)

\1/4/

-77

The power spectrum as we have defined it has broth positive and

negative freAuendies, i.e. I goes from - :LC to t CS) . It is cus ..;oinary to

define the power spectrum for only positive freAuencies, in which case, since

the area unaar the pacer spectran should be a lual to the %ex-lance, the

eAaat,ion (2,32) fpr the o peder spectrum should. be multiplied by two

The second moment of the tempmral power spectrum

(	 •-)1	 (

T
I 	 )

/

can oe got by inertia a the acove expression for P(f) axl by performin6 the

integration. Howe\,er, if we substitute for P(f) from e Auation (2.79a) we

see that the ex,ression for f2 is the same as that in e ivation (2.43) with

the place of that from equation (2.56) we have

(2.8:5)

£ha extension of these resulSs to an unsymnetrical Ciaussien phase

If we assune that

)	 .jrt	 \
0:-

we can show that	 DSC

	

-7- 1-7	 V-I-

	

T5 IT	 'to

)
1	

(2.34)
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act is straightforward..
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The scintillation index and the second noment of tue temporal

here

where
_i /2

= tan 
(	

and

76

From tnis akpra,;SiOn	 see that while the wid .Gh of the power

spectrum is determined mainly by the scale size in the direction of motion

of to a screen, the amplitude of the Eresdai .doduldtijta i3 determined by

r.

tie scale size in the perpendicular direction. Jhen b 7 0 i.e.

tip' Frenzel mod ration vanishes. 	 ,i'nen	 -9 or (±-.'	 0, tue two dimensional

screen reduces to a one didensional screen and the power spectrum tams the

power spec brim for the unsy.nmetrioal dau3sian acf are given by

>,
I 	 j 	 7

V 	  (	 4/7 )

CA)

we he. ,. a substitu.-,ed	 tan t3 X 	 = 2
/
	, tan e.-y = 2	 and *.-7. 0+ey

0,‹

It is of interest to see how the liesce_L transform will look when

irregLa.arities use not circularly symmetrical. Bourgois (1172) has

derived as ax cession for the Je,se_L transform,

"77'QLI
t.,	 \I	 ,1

1
,

.	 \\
(50,r

hen	 tc.) we get back the circularly s-ymmetrical case. then 	 t.)	 the

which in our notation is

c_,J g  -ex

(2.85)
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amplitude of the modulation is reduced. When	 the amplitude increases

and the iieisel transform even goes negative for certain values of f. In

principle, sy stalying the amplitude of the j'resnel modulation one could

deduce tne elongation of the irregularities but, as we will see later,

there are other processes that reduce the amplitude of the modulation and

it is not possible, from single station ob-erv_,tions to unravel these effects.

2.1Ib Effects  of an Evolving Pattern

the assumption that the phase pattern on the screen moves without

chan6ing is unlikely to be correct for the actual If medium. In the Uaome-

trical optics approximation the phase pattern e ..un the screen is related to

the density fluctuations in the medium by

•kx,y,t) 2

;
t) dz	 (2.9o)

_No conuitions have to be satisfied for the phase pattern to drift without

changing its shape. The first is that the density fluctuations themselves

shout drift without changing their shape, which is unlikely to be true in

the If medium since because of diffusion and other processes the density

fluctuations would at smoojhed out. heaever, if the time scale for this

smoothing is more than a few seconds, we can, without much error, assume

that the density fluctuations are frozen into the medium and )1.ite

= n(x- -\./ t,y, z)

where V, the velocity of the medium perpendicular to the line of sight, is

assumed to be in the x direction. Even if the density fluctuations are
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