
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



PREFACE 
 
 There was a lot of demand for a tool to analyze the data from the RFI 
monitoring system of GMRT which could make the 3 dimensional plots, contours, 
percentage RFI occupancy plots and directional averaged spectrum plots. I had earlier 
made these as on a scripting language (MATLAB) but because of restricted user 
license, this tool was not accessible to the normal users. Therefore it was felt that 
there is a necessity of the software to be MATLAB independent. The present work 
has been initiated with this in mind. The software analyzer tool has been made 
independent of MATLAB. The first version of the software has been made for 
Windows 2000/XP/etc. and is released. The next step would be to convert the tool for 
a UNIX/LINUX operating system. New features shall be added with the growing 
demand and feed-backs from the users. I am thankful to Sri Arijit Banerjee, third year 
B.Tech. (Electronics and Communication) student of Kalyani Government 
Engineering College who has also put a tremendous effort in completing this work to 
its final details.  
 
        
 
                 Shubhendu Joardar 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements    
 
 I  am thankful to Mr. Shubhendu Joardar for his guidance I  am thankful to Mr. Shubhendu Joardar for his guidance I  am thankful to Mr. Shubhendu Joardar for his guidance I  am thankful to Mr. Shubhendu Joardar for his guidance 

encouragement and involvement thencouragement and involvement thencouragement and involvement thencouragement and involvement throughout the work. I am also roughout the work. I am also roughout the work. I am also roughout the work. I am also 

thankful to the Director thankful to the Director thankful to the Director thankful to the Director PPPProfessor rofessor rofessor rofessor RRRRajaram Nityananda and staff ajaram Nityananda and staff ajaram Nityananda and staff ajaram Nityananda and staff 

members of  GMRT .members of  GMRT .members of  GMRT .members of  GMRT .    

                

                        Arijit BanerjeeArijit BanerjeeArijit BanerjeeArijit Banerjee    

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



CONTENTS 
 
 
 

CHAPTER 
No. 

TITLE Pg. 
No. 

 
 

1 

 
OVERVIEW OF THE OMNI-
DIRECTIONAL RFI 
MONITORING SYSTEM FOR 
GMRT 
 

 
 

1 

 
 
 

2 

 
DESCRIPTION OF THE OMNI 
DIRECTIONAL RFI 
MONITORING SYSTEM DATA 
ANALYZER WITH BLOCK 
DIAGRAM & FLOWCHART 
 

 
 
 

3 

 
 
 

3 

 
STANDARD OPERATING 
PROCEDURE OF THE OMINI-
DIRECTIONAL RFI 
MONITORING SYSTEM   
DATA ANALYZER  
 

 
 
 

37 

 
4 

 
RESULTS OF THE DATA 
ANALYSIS DONE BY ORMSDA 
WITH FEW *AVG.rfi FILES 
 

 
 

77 

 



 1

Chapter 1 
 

OVERVIEW OF THE OMNI DIRECTIONAL RFI     
MONITORING SYSTEM FOR GMRT 

 
Introduction:  
 
All terrestrial radio sources are categorized as RFI from the radio astronomical point of 
view. These could be narrow band type like communication signals or wide band type 
like arc-welding, automobile ignition, high voltage power lines etc. Terrestrial radio 
spectrum monitoring assists radio astronomy by providing information like free cosmic 
frequency bands, out-of-band and spurious emissions form transmitters, power line 
interference and the growth of new transmitters in the region. It has other applications 
like studying radio propagations and radio direction finding. Magnitude spectrum of radio 
signals available from a region is useful for generating radio availability statistics and 
studying RFI properties over time, etc. The RFI monitoring system of GMRT [1], [2] is a 
magnitude spectrum monitoring system but posses the capability of radio direction 
finding [3] [4] using software. The system has been developed for assisting radio 
astronomy.  
 

Fig.1: Block diagram of the OMNI DIRECTIONAL RFI MONITORING SYSTEM. 

 
 



 2

System Hardware: 
 
Fig.1 shows the top view of the antenna mountings on a tower and the block details of the 
omni-directional RFI monitoring system of GMRT [1] [2]. It consists of four identical log 
periodic dipole arrays with their maximum directivity pointed to east, west, north and 
south directions, and are mounted over a tower of twenty meters height. The antennas are 
positioned in the E-plane parallel to the ground. The computer selects the antennas in a 
cyclic order, viz. East, West, North and South. The corresponding multiplexed RF 
powers from the antennas are amplified suitably and fed to the spectrum analyzer kept 
inside the lab building through an RF-cable. The output from the spectrum analyzer is 
displayed and saved by the computer, which is a 401-point data with time stamp for 
individual directions. Presently, the frequency range of the system is from 70 MHz to 
1500 MHz. Settings of the spectrum analyzer and observation period are user defined and 
taken care by the computer. The computer continuously cycles the antennas over the 
entire period of observation and records the data in different files corresponding to the 
antenna direction. 

 
The new software tool: 
 
The data from the four antennas are recorded in four individual files corresponding to the 
antenna directions, viz. East, West, North and South. Additionally there is a separated 
single file containing the data from all directions in a cyclic order. All the files begins 
with a header containing information of the spectrum analyzer settings, viz. center 
frequency, span, RBW, VBW, attenuation, amplitude scale, number of averages, 
etc.The data files are written in ASCII and can be edited with any text editor if necessary. 
The instantaneous time of the data is recorded first followed by the 401 points of data. In 
the *AVG.rfi  file the data is written sequentially as East, West, North, South, East, West 
…. so on. This is a file containing the complete data from all the four directions. In order 
to work with the data, the header is extracted first and then the data is related with the 
header. In the present work we have made a software tool to analyze the data content of 
the *AVG.rfi  files and thereby saving in various image formats. Provision for browsing 
the plots with a mouse cursor is also added for the advantage of the users. The tool has 
been named as the Omni directional RFI Monitoring System Data Analyzer 
(ORMSDA). 
 

References: 
 
[1] Shubhendu Joardar, “The Omnidirectional RFI monitoring system of GMRT-TIFR”, 
Summer School on Spectrum Management, June 2002, NRAO, West Virginia, USA. 
[2] Shubhendu Joardar, Lecture presentation “The E-plane Omnidirectional RFI 
monitoring system for GMRT”, NCRA Engg. Committee-2003 Intenal report, GMRT, 
Pune. 
[3] Shubhendu Joardar, “Radio Direction finding using 'N' switchable antennas and RFI 
estimation”, INC-URSI, November 2003, NPL, New Delhi. 
[4] Shubhendu Joardar, “RFI monitoring system of GMRT and radio interference 
analysis on various radio-astronomy bands”, URSI, Oct. 2005, NPL New Delhi (paper 
accepted for publication on May 2005). 



 3

Chapter 2 
 

DESCRIPTION OF THE OMNI DIRECTIONAL RFI 
MONITORING SYSTEM DATA ANALYZER 

WITH 
BLOCK DIAGRAM & FLOWCHART 

 
                          
We will discuss on the following points in this chapter:- 
 
 
 
1) GUI Concepts.  
2) System Calls.  
3) Callback Objects.  
4) Push-button Callback Objects.  
5) Menu-item Callback Objects.  
6) Dialog box.  
7) Message Dialog box.  
8) Wait bar Dialog box.  
9) Input Dialog box.  
10) File-open Dialog box.  
11) Exit Dialog box.  
12) Figure Dialog box.  
13) Input-text Callback Objects.  
14) Output-text Callback Objects.  
15) Static-text Objects.  
16) Exit Callback Objects.  
17) Main Form.  
18) Flowchart of the Operation of the ORMSDA.  
19) Description of the Flowchart of Operation.  
 
 
 
 
 



 4

GUI Concepts:  
                        
The word GUI is the abbreviation of 'Graphical User Interface'. It signifies that the user 
can have an access to the interface of computational task graphically. We usually write 
programs to execute in 'Command Mode', which is difficult to a new user as well the 
processing speed is slow enough along with 'Single Tasking' capabilities are present, that 
means one task in one time. But GUI provides the scope of graphical interface, easy & 
friendly to use environment, 'Multi Tasking' capabilities, that means many a task at a 
time, 'Multi Threading' capabilities, that means multiple flow of control, high speed of 
performance. In general GUI is provided on 'Multi Tasking' operating systems like 
'Microsoft Windows 2000', 'Microsoft Windows XP', 'Microsoft Windows 2003 Server',  
'Red hat Linux', 'Linux Fedora', 'Linux Mandrake', 'Linux Suse', 'Linux Ubantu', 'Mac Os' 
etc. There exist usually no pointing devices in command mode of operation. GUI 
provides 'Mouse' as the pointing device. Here in GUI, maximum work is accomplished 
by mouse other than inputting a text. GUI provides the components like buttons, menu 
bar, task bar, dialog boxes, popup windows, balloons, check boxes, sliders, radio buttons, 
list boxes, toggle buttons, frames, editable text, static text etc.  
 
In general GUI works on an event-based model. This means we don't just go on 
executing codes after codes, the same way we do in procedural programming. Our 
program waits, in an idle state, until the user specifically gives an input message to the 
program. The message may be given by clicking a push button or entering a text in an 
editable field etc. Hence the message is a certain event. Our program then acts on the 
event by executing whatever code we have associated with it.  
 
Our GUI, ORMSDA is an Object oriented approach along with event-based model. 
Objects are everywhere in ORMSDA, from a simple button to complex objects like 
callback objects. Objects can be meant by separate routines that have a unique 
identification number to the main program. Generally it is defined as: - “An object is an 
identifiable region of memory that can hold a fixed or variable values or set”. What 
ever it may be, the unique identification number is called the handle of that object. 
Whenever the main program calls an object, it calls by handle. Objects have some 
features like Inheritance, Polymorphism etc. Objects can be inherited to form new 
objects. Any object oriented programming language like C++, Java etc provides the 
scope of creating GUI's. Our program, ORMSDA is a fully functional GUI created with 
combined C & C++ codes generated by MATLAB. Basically it contents a main 'Form' 
and many a child object. Hence ORMSDA is also can be regarded as Parent-Child type 
of model. If the main form is considered to be the Parent object then menu bars, buttons, 
editable texts, figures etc sub-items are considered to be as Child objects. It is a multi-
tasking, multi-threaded GUI. It is user friendly, fast enough to process megabytes of data 
in minutes. Most of all, the GUI does not go hang if some problems occur in input data 
files i.e. corrupted data files.  
 
 
 
 
 
 



 5

Screen shot of ORMSDA is given in Fig.2 below.  
 

                                                                                                         

Fig.2: Screen shot of GUI of ORMSDA. 

  
Here we can see that as a GUI, ORMSDA has main application window named 
ormsda.exe. It has a menu bar with File & Help menu objects. The text OMNI 
DIRECTIONAL RFI MONITORING SYSTEM DATA ANALYZER is a static text 
object, i.e. it can not be modified or changed during runtime execution by writing codes. 
The Date, File name, X, Y, Input Figure Number and Status are the dynamic text 
objects i.e. these texts can be edited either by key board input or by writing codes. The 
Authors :..  is again a static text object. One of the pictures, we see, is a tower containing 
four LPDA which is a picture object and the block diagram is also the same. Below we 
can have a vision of three buttons. One of them, named Process data is a push button 
object. The other two buttons named Select Figure & Exit are also push button objects. 
In the menu-bar, if we glance at, we can find a submenu child object named Open which 
is under the parent File object. Another submenu under File object is Exit object. On the 
other hand, in the Help menu, an object is there. Help is a parent object to the 
Documentation submenu object. The About Authors submenu child object is also under 
the parent Help menu object. Many a hidden object, other than GUI objects, is in the 
ORMSDA which has not a graphical feature, like callback objects. Most of all we say 
that ORMSDA application Form is the main parent object in the entire program which 
has the described Child objects or Child processes or events.  



 6

2) System Calls: 
 
In figure 2, we can have a glance that there exists another command window named 
Launch ormsda.exe. This command window has a great importance in the whole GUI. In 
General, as far as the term System Call is considered, different operating system has 
different system calls for a same operation to be accomplished. Thus if we write different 
codes for doing the same jobs in different operating systems, which are equivalent to 
system calls, it will be a laborious as well as a huge coding along with low performance 
of executables and slow speed of operation. Hence we have to find an alternative 
solution. The solution is system call. The command window is linked with the application 
ORMSDA in such a manner that whenever there is a requirement of indirect system call, 
the operating system should provide the necessary facility to the application program 
ORMSDA. Here we have 'Windows 2000' and we find that the 'DOS' prompt to be there 
for service. If we make the application ORMSDA for 'LINUX' or 'Mac OS' their own 
command prompt window should be there. Thus if there is an error, the command 
window will definitely show it. Even if the error, in such a case be not defined in the 
application code, will be showed in the command window. Thus the command window 
associated with ORMSDA is like a debugger which will trace the bug there in the 
execution of the ORMSDA.  
 
So far, the only thing we've done was to use well defined kernel mechanisms to register 
/proc files and device handlers in Linux. This is fine if we want to do something, the 
kernel programmers thought we have want, such as write a device driver. But what if we 
want to do something unusual, to change the behavior of the system in some way? Then, 
we are mostly on our own. The real process to kernel communication mechanism, the 
one used by all processes, is system calls. When a process requests a service from the 
kernel (such as opening a file, forking to a new process, or requesting more memory), this 
is the mechanism used. If we want to change the behaviour of the kernel in interesting 
ways, this is the place to do it. By the way, if we want to see which system calls a 
program uses, run strace <arguments>.  
 
In general, a process is not supposed to be able to access the kernel. It can't access kernel 
memory and it can not call kernel functions. The hardware of the CPU enforces this (that 
is the reason why it is called `protected mode').  
System calls are an exception to this general rule. What happens is that the process fills 
the registers with the appropriate values and then calls a special instruction which jumps 
to a previously defined location in the kernel (of course, that location is readable by user 
processes, it is not writable by them). Under Intel CPUs, this is done by means of 
interrupt 0x80. The hardware knows that once we jump to this location, we are no longer 
running in restricted user mode, but as the operating system kernel is there we are 
allowed to do whatever we want.  

 

The location in the kernel a process can jump to is called system_call. The procedure at 
that location checks the system call number, which tells the kernel what service the 
process requested. Then, it looks at the table of system calls (sys_call_table) to see 
the address of the kernel function to call. Then it calls the function, and after it returns, 
does a few system checks and then return back to the process (or to a different process, if 



 7

the process time ran out). If we want to read this code, it's at the source file 
arch/$<$architecture$>$/kernel/entry. after the line ENTRY 
(system_call).  

So, if we want to change the way a certain system call works, what we need to do is to 
write our own function to implement it (usually by adding a bit of our own code, and then 
calling the original function) and then change the pointer at sys_call_table to point 
to our function. Because we might be removed later and we don't want to leave the 
system in an unstable state, it's important for cleanup_module to restore the table to 
its original state. This all about 'Linux' or 'Unix' system calls.  

 

Now if we consider about 'Windows' system calls, we can have the DOS3Call API 
function in Windows 3.x must be called from assembly language. It is typically used to 
perform file I/O. In Win32, we should replace assembly language code that calls 
DOS3Call with the appropriate Win32 file I/O calls. Other (non-file) INT 21H functions 
should be replaced with the portable Windows API call as shown in the following table.  

 

INT 21H 
subfunction 

MS-DOS operation Win32 API equivalent 

0EH Select Disk SetCurrentDirectory 

19H Get Current Disk GetCurrentDirectory 

2AH Get Date GetDateAndTime 

2BH Set Date SetDateAndTime 

2CH Get Time GetDateAndTime 

2DH Set Time SetDateAndTime 

36H Get Disk Free Space GetDiskFreeSpace 

39H Create Directory CreateDirectory 

3AH Remove Directory RemoveDirectory 

3BH Set Current Directory SetCurrentDirectory 

3CH Create Handle CreateFile 

3DH Open Handle CreateFile 

3EH Close Handle CloseHandle 

3FH Read Handle ReadFile 

40H Write Handle WriteFile 

 



 8

41H Delete File DeleteFile 

42H Move File Pointer SetFilePointer 

43H Get File Attributes GetAttributesFile 

43H Set File Attributes SetAttributesFile 

47H Get Current Directory GetCurrentDirectory 

4EH Find First File FindFirstFile 

4FH Find Next File FindNextFile 

56H Change Directory Entry MoveFile 

57H Get Date/Time of File GetDateAndTimeFile 

57H Set Date/Time of File SetDataAndTimeFile 

59H Get Extended Error GetLastError 

5AH Create Unique File GetTempFileName 

5BH Create New File CreateFile 

5CH Lock LockFile 

5CH Unlock UnlockFile 

 

67H Set Handle Count SetHandleCount 

 

 

These are all about 'Windows' system calls. As we mention we are using indirect system 
calls in ORMSDA i.e. not calling the Kernel's processes directly but with the help of 
command line interpreter. In the case of 'Windows', the command line interpreter is 
'command.com', in 'Linux' it is terminal, what ever it may be, we are using system calls 
through the system commands, interpreted by command line interpreter or terminal. A 
block-diagram of indirect 'System Calls' implemented in ORMSDA is shown in Fig.3. 



 9

Fig.3: Block diagram of ORMSDA application program's performing system calls. 

                     

3) Callback Objects: 
 

Callback is some thing like: - execution of some event after the happening of another 
event. We know about objects any how; hence Callback Objects are one type of object 
those can be called by the end time of execution of an event object. Suppose we have a 
GUI button. If the button has an embedded object associated with it, it can call the object 
after being clicked by mouse or being rolled over by mouse or by some other possible 
events to be considered. Simply we can embed any kind of embedded object into another 
object. Let us have the view of ORMSDA's Callback Objects in Fig.4.  



 10

Fig.4 : Screen shot of Callback objects of ORMSDA 

 

Here we can see some of the callback objects, like push buttons, menu items etc. Now if 
we click the button named Process data, a dialog box appears. This is because the 
Process data button has an embedded 'Callback Object' to call the dialog box object. 
Whenever the push button is clicked the embedded 'Callback Object' is executed to create 
the dialog box objects. The Select Figure button has a complex callback object. Select 
Figure button callback object has a link with Input Figure Number callback object. 
Whenever a number which is greater than equal to 1 as well as less than equal to 4 is 
given as a text input to the embedded text input object and the Select Figure callback 
object is executed, it calls the figure object specified by the figure handle number and the 
specific figure object is displayed in a figure window. Now we can have a glance in the 
figure 3 that there is a push button named Exit. Here the Exit push button also has an 
embedded callback object which executes, after a mouse click is found to be there on the 
Exit button. Something is special about the Exit push button callback object. It is due to 
that reason that the Exit push button has an embedded callback object to destruct all 
objects or may be considered to be as an object which deletes all objects which is of 
course the main form object and the child objects of the main form also. But the figure 
objects are out of reach of the Exit callback object. They are separate objects or not child 
objects of the main form. Whatever it may be, the menu bar has objects like File menu 
object and Help menu object. File menu object has two callback child objects which are 
designed by us. One of the File  menu child object is Open submenu object which has 
also an embedded callback object to open files having *AVG.rfi  extensions from user 



 11

specified directories. In the File menu object, there is also an embedded callback object 
named Exit which is a submenu object of File  menu object. Telling about Help menu 
object, we can say that it has two child submenu objects. One of the Help menu object is 
Documentation submenu object which has an embedded callback object linked with 
Adobe's Acrobat Reader software that invokes the documentation files to be loaded. On 
the other hand, the second submenu object of Help menu object is About Authors 
submenu object which has also a callback embedded object to a dialog box displaying the 
name of the authors. This is all about callback objects in ORMSDA. A block diagram of 
how callback objects are executed is shown in Fig.5 below:- 

 

Fig.5 : Block diagram of ORMSDA's Call backing 



 12

4) Push-button Callback Objects: 
 

Push buttons are such a kind of object which can serve many a subroutines in a single 
callback. Push button objects have a graphical embedded object which has the look of the 
button. We can change the embedded graphics object of a button by some extent, as per 
the power of the programming language. In general the embedded graphical object has 
two states. One is the normal view and another is the view after a button is pressed or the 
object being executed. The normal view is the three dimensional general look of the 
button and the exceptional look is the look after the button is pressed with dotted 
rectangular box inside the button. We can have the screen shot of a push button named 
Process data in Fig.6. The Process data push button object has an embedded object that 
opens the files, i.e. *AVG.rfi  files, for processing. Here the call backing is implemented 
by linking a file-open dialog box to the push button object named Process data. 
Whenever the button is clicked, the callback object executes and the file-open dialog 
object, linked with it, is also triggered.  

 

Fig.6: Screen shot of ORMSDA's Process data push button callback object. 

 

Next we have another push button callback object named Select Figure. See Fig.7. The 
specified push button object has an embedded graphical object which has a three 
dimensional looks also. The button has two state of operation as stated on the previous 



 13

case. But the call backing object is the most complex one and completely different from 
that of the previous one. To have a look of the call backing of this object let us deeply 
analyze it. The callback object of the push button named Select Figure is not triggered at 
the 'Initialize' state of 'Status', because there is a filter object which search for whether the 
data is processed. If any how, the data is processed, the filter object gives access to the 
other call backing objects to be executed. But, in case of the data being not processed, the 
filter object hinders all callback objects under the Select Figure push button object and 
sends control to the error handler object. Error handler object is such a kind of object 
which maintains whenever an error occurs in the application. In this case the error 
handler object passes a message to a warning dialog object and the warning dialog object 
is executed and displayed. The most complex type of callback occurs in the case of status 
being 'Processing Completed'. In this case, if we trigger the callback object with proper 
values for operation, the callback object grasps the handle of the specified figure and the 
axis handle is also transferred to the callback object. The axis handle of the figure object 
is linked with the scaling of the axis. Hence we can easily have the control over the x and 
y coordinates of the axis. The x and y coordinate values associated with a mouse click 
object, is passed to the X and Y fields of ORMSDA.  

 

Fig.7: Screen shot of ORMSDA's Select Figure push button callback object. 

 

The Exit button object has the other features of a push button object also. It has an 
embedded graphical object which is a bitmap, looks like a three dimensional figure. The 



 14

Exit push button has two states, one is general state and other is pressed state which has a 
look of dotted rectangle within the main bitmap. The push button has an embedded static 
type text object. See Fig.8. We give the name Exit in the same object to display the name 
in the button. In the screen shot below, we have the highlighted push button object named 
Exit. As the name suggests, it is an object that perform the operation of quitting the main 
application. The push button has a callback object which indirectly has a control over the 
main application window object. The callback object of the push button has an embedded 
object which calls a dialog box object. The dialog box object has two push button objects. 
One is for quitting the application named Yes and another is No for canceling the dialog 
box object. If No is clicked, the push button has an inbuilt call backing object which 
destroys the dialog box from the memory. On the case that Yes is clicked, the call 
backing object gets the handle of the main application window and executes a destructive 
operation to unload the application from memory. Hence the main window goes quitted. 
Here we see that the Exit push button don’t have the direct access to the deletion of the 
main application object from the memory, but it executes another call backing to unload 
the main application. Here it seems to be the example of a callback object which is again 
under a callback object. We can associate many a callback object under a single callback 
object or something like that.  

 

Fig.8: Screen shot of ORMSDA's Exit push button callback object. 



 15

5) Menu-item Callback Objects: 
 

Menu items are the pull down type objects i.e. on a mouse click it will opens up in the 
downwards direction. They have an embedded graphical bitmap object. There is also a 
static text object associate with it. The name of the menu is displayed in the static text 
object field. Whenever a mouse roll-over is detected, the static text is highlighted with a 
blue, in general, patch of rectangle. Below, the magnifier window highlights the Open 
sub menu object in Fig.9. The word suggests the obvious operation of the sub menu. It is 
to open a *AVG.rfi  file from a user specified directory. But the sub menu has not had the 
direct control over opening a file. It has an embedded callback object that creates an 
open-file type dialog box. With the help of the open-file dialog box user can specify the 
desired file to be loaded in the memory. The file-open dialog has two embedded call 
backing object which are Open and Cancel named push buttons. On clicking the Cancel 
push button the file-open dialog object get destroyed. But after selecting the specific file, 
if the user clicks on the Open button, it callbacks and executes another object which 
grasps the path specified and load the file in memory.  

 

Fig.9: Screen shot of ORMSDA's Open sub menu callback object. 

 

Here the screen shot of the File menu's sub menu Exit is given in Fig.10. The Exit sub 
menu is used for quitting the main application or to unload the main application from the 



 16

memory. It has a static type of text embedded object which shows the name of the sub 
menu. Whenever a mouse roll-over is detected, the static text is highlighted with a blue, 
in general, patch of rectangle. The sub menu has a callback object which indirectly has a 
control over the main application window object. The callback object of the sub menu 
has an embedded object which calls a dialog box object. The dialog box object has two 
push button objects. One is for quitting the application named Yes and another is No for 
canceling the dialog box object. If No is clicked, the push button has an inbuilt call 
backing object which destroy the dialog box from the memory. On the case that Yes is 
clicked, the call backing object gets the handle of the main application window and 
executes a destructive operation to unload the application from memory. Hence the main 
window goes quitted. Here we see that the Exit sub menu don’t have the direct access to 
the deletion of the main application object from the memory, but it executes another call 
backing to unload the main application. Here it seems to be the example of a callback 
object which is again under a callback object. We can associate many a callback object 
under a single callback object or something like that.  

 

Fig.10: Screen shot of ORMSDA's Exit sub menu callback object. 

 

Here we have the Documentation sub menu in Fig.11. This is completely different from 
all sub menus. The reason is it has a callback object that performs indirect system-call. 
The embedded object has an indirect linkage with another application named Adobe's 
Acrobat Reader through the command window. As the documentation is written in PDF 



 17

file format, we here use the Acrobat Reader to access the documentation. Here one thing 
should be notified that this call backing object is completely different from others, 
because the call backing object performs another application to be loaded through system 
call.  

Fig.11: Screen shot of ORMSDA’s Documentation sub menu callback object. 

 

The screen shot shows the highlighted object which is a sub menu named About Authors. 
See Fig.12. As the name suggests, it displays the name of authors along with some other 
information. It has an embedded graphical bitmap object along with a static type text 
object. Whenever the mouse is rolled over the sub menu, it is highlighted by an inbuilt 
object causing a blue rectangular patch. The sub menu has a callback object, when it is 
executed; it creates a message dialog box. The message dialog box has a child push 
button object named OK. The message dialog object carries the authors'  information and 
shows the same. On clicking the OK button the message dialog box unloads itself from 
the memory.  

 

 

 



 18

Fig.12: Screen shot of ORMSDA's About authors sub menu callback object. 

 

6) Dialog-box: 
 

Dialog boxes are considered to be the most exciting features of GUI. Basically dialog 
boxes are child windows and they have certain handle numbers to the parent controls. 
Dialog boxes are also GUI objects and they have child objects too. Mainly dialog boxes 
have child objects like push buttons, toggle buttons, radio buttons, check boxes etc. 
Dialog boxes can be classified into many a number like 1) Message dialog boxes, 2)Help 
dialog boxes, 3)Error dialog boxes, 4)Wait bar dialog boxes, 5)File-open dialog boxes, 
6)Warning dialog boxes, 7)Exit dialog boxes etc. We have incorporated all the seven 
types of dialog boxes mentioned above in ORMSDA application. Let us have a view of 
how dialog boxes work in GUI 's. Now if we consider about the flow of control in a 
dialog box then we have the following view:-  

A dialog box is mainly a child object under a parent window. The push button is of 
unidirectional flow of control because it has to notify that whether the mouse is clicked, 
whether the mouse is rolled over, whether the mouse is moved over it etc. Then the push 
button is there only to inform the dialog object of a message that is a mouse event has 
occurred. Check boxes are of simple type of event-catchers, that is if we check the box by 
clicking a mouse on it, it will send a message to the parent dialog box. Considering the 
Static text objects we have in general no flow of control. But we can embed an object 
associated with the very Static text that it has a flow of control in one direction to the 
parent dialog. Next we consider Toggle button. Toggle buttons generally have 
unidirectional flow of control towards the parent dialog. Radio buttons also have 
unidirectional flow of control. But Dynamic type text objects are considered to be bi 
directionally controlled objects. It is due to that fact that if we use the Dynamic type of 
text as input text objects then the flow of control will be from Dynamic text object to 
parent dialog object. But depending on the usage of the program writer it may have a 
look of output text object. There the flow of control will be from parent dialog to the 



 19

child type Dynamic text object. Hence Dynamic text type objects are with bidirectional 
flow of control. It is important that the dialog box itself is a child object of a main 
window. Hence it has to obey the bidirectional control mechanism with the main 
window. Dialog boxes are associated with icons. A help dialog has a specific type of icon 
like thinking etc. An error dialog box has cross type of icon associated with it. A warn 
type of dialog box has exclamatory icon within it. These icons are bit-maps with 
embedded properties. In general there are three types of buttons available in main 
window on the upper right corner of the window for minimize, restore and close 
operation of windows. But in child dialogs it is a completely different scenario. There 
exist only two button objects, one is for minimizing and another is for close operation of 
the child dialog box. In general the resize object of the dialog box is disabled by default. 
If some has to resize the dialog then the embedded resize object must be made on.  

 

The flow of control of the dialog boxes is given in Fig.13:- 

 

Fig.13: Block diagram of Flow of control of dialog's child object and communication 
with parent window. 

 

The diagram is self explanatory.  



 20

7) Message Dialog box: 
 

Message dialog box has the basic characteristics of dialog boxes. See Fig.14. The name 
suggests the cause of nomenclature. This kind of dialog box conveys some message to 
the user on particular event being occurred. As we see below that the message type dialog 
object has embedded information for the user which is to covey the information that the 
authors of the application are Shubhendu Joardar & Arijit Banerjee. Message dialog box 
object has in general only one push button is that OK button object. Whenever the push 
button object OK is executed, the message dialog box object is deleted from memory. 
Hence OK push button is an object which calls a destructive routine to delete the message 
box object. Message type dialog objects can be classified into 1) help message box 
object, 2) warn message box object, 3) Error message box object, 4) Welcome message 
box object etc. Message box objects are always child objects to a main program. 
Whenever an event occurs, and the programmer wants to give a message to the user, the   
main     application     program    calls    the  message  box  object.  Message  box  objects  

 

Fig.14: Screen shot of ORMSDA's message dialog box object. 

 

generally have a bidirectional flow of control, because if the message is sent by 
application program to the message box, the user is accepting the message by executing 
the OK push button object. On the previous page we gave the example diagram of help 



 21

message box. In this page we have shown a screen shot of waning type of message box. 
Here the basic criteria for constructing the message dialog object are same as previous, 
but the difference lies in the fact of information. The warn dialog box object serves for 
giving warning messages only. There is an embedded graphical object, an exclamatory 
sign, to specify the warning. Warning type message dialog box object has in general only 
one push button i.e. OK button object. Whenever the push button object OK is executed, 
the warn dialog box object is deleted from memory. Hence OK push button is an object 
which calls a destructive routine to delete the warn message box object. This type of 
message dialog objects are always child objects generated from an exception in the 
program to aware the user that the user is making some mistake or going to make a 
mistake or the program is suffering from some ill codes or execution. Whatever it may 
be, warning type of message dialog box are generally can not be resized because the 
object is disabled to be resized by default. But a programmer’s trick can enable the 
resizability by turning on the resize object property. On the upper right corner, not only in 
a warn message dialog object but also in any ordinary message dialog object, there are 
three buttons. One of the objects is a minimizing type object and the other is a closing 
type object. In here the restore down object is disabled. See Fig.15. 

 

Fig.15: Screen shot of ORMSDA's Warn type message dialog box object. 



 22

8) Wait bar Dialog box: 
 
The wait bar dialog box object is a simple dialog box object. It has an embedded 
graphical bitmap that gives the looks of the dialog object. The object has no child type 
push buttons. But it has an embedded static type text object. There is the main attraction 
which is a progressing status bar. The default color of the status bar is red. There can no 
callback object be made embedded in the wait bar dialog object, because it is a 
readymade object. The percentage of amount of task processed is linked with the 
progressing bar. See Fig.16. 

Fig.16: Screen shot of ORMSDA's Wait bar dialog box object. 

 

9) Input Dialog box: 
 

Input dialog box object is a special type of dialog object. It is an inbuilt object, but many 
other objects can be made embedded into it. The screen shot of an input dialog box is 
given in Fig.17. This type of dialog object, basically, if another object is linked with, is 



 23

the main input dialog object providing two fields for each object. One is a static text 
object to the linked object and another is an input text object to the linked object. Thus 
the name of the linked object can be specified as well the data from the user can be 
accessed by the linked object. There are two push button objects in the input dialog type 
objects. One is OK another is Cancel. Clicking the OK button triggers the next object to 
which the flow of control is to be handed over. But the clicking of Cancel button triggers 
the callback object of the dialog itself and the dialog object is unloaded from the memory. 
See Fig.17. 

Fig.17: Screen shot of ORMSDA's Input dialog box object. 

 

10) File-open Dialog box: 
 
The file-open dialog box object is the most important one from the stand point of 
initialization of processing of the rfi data. The user have to provide the specified path for 
the rfi file and the path input should be known to the file-open dialog object. This type of 
object is readymade i.e. programmers can not have an access to contribute another object 



 24

to the file-open dialog or unable to modify the object settings. Taking a view into the 
inside of the file-open dialog box object, we have a lot of embedded objects to find. First 
of all let us consider the input static type text object named File name. It is required to 
provide the path of the rfi file into the text input object associated with the File name 
object. Just below the File name object another static text object is there named File of 
type. The associated input field for the object specified is an input text object as well as a 
popup menu object. It is basically a filter object which lets the user to find *AVG.rfi  files 
only. The other objects are push buttons, menu bar objects etc shown in the screen shot in 
Fig.18.  
 

Fig.18: Screen shot of ORMSDA's File Open dialog box object. 

 

11) Exit Dialog box: 
 
Exit dialog object is an object that is use to unload the main application from memory. 
Simply it is used to quit the program in GUI mode. It is also a readymade object. 
Programmers can not change the same as well can not contribute some objects to the exit 



 25

dialog object. There are some objects embedded in the Exit dialog object. Those are push 
button objects, static text object, and graphical object. The static text object is to convey 
the information whether the user wants to quit the application or not. As there are two 
push buttons obviously, one is Yes for closing the application which will unload the main 
application from the memory and other is the No which callbacks and destroy the exit 
dialog box object. The graphical object is a bitmap which looks like the question mark '?' 
in a balloon. Exit type dialog box are always a child object to the main application 
window. See Fig.19. 
 

Fig.19: Screen shot of ORMSDA's Exit dialog box object. 

 

12) Figure Dialog box: 
 
Figure dialog box object are independent objects from the main application window, i.e. 
they are not the child of the main window. These are the most complex types object in 
ORMSDA. Figure dialog objects, better to say figure windows have a lot of child objects 



 26

for various types of application. Only figure windows have no push buttons included 
inside the object. The child objects of the figure window are menu items like Open, 
Close, Save, Save as etc options, function bar objects like new figure, Open, Save, Print, 
Zoom in, Zoom out, rotate 3-D etc objects. We will discuss each object later. Now in rfi 
analysis the output figures are four in numbers. The first or the figure number 1 shows 
the statistics plot of the rfi data file specified. Screen shot of the figure 1 of a given data 
file is provided. See Fig.20.  
 

Fig.20 : Screen shot of ORMSDA's Figure No. 1 

 

The second figure i.e. the figure number 2 is the contour plot of the specified rfi data file. 
The contour plot screen shot is given in Fig.21.  

 

Fig.21 : Screen shot of ORMSDA's Figure No. 2 



 27

The third figure i.e. the figure number 3 is the three dimensional plot of the specified rfi 
data file. The screen shot of 3-D plot is given in Fig.22.  

 

Fig.22 : Screen shot of ORMSDA's Figure No. 3 

 

The fourth figure i.e. the figure number 4 and last one is the average power plot of the 
specified rfi data file. The average power plot screen shot is given in Fig.23.  

 

Fig.23 : Screen shot of ORMSDA's Figure No. 4 

 

Let us have the complete view of the child objects of the figure window. First component 



 28

of the function bar is New figure object. The object is to create new figures. The function 
of the object is to generate a free handle to the main application window and create the 
new figure to provide the handle for the same. The new figure is a blank figure object 
with no graphics object. If user wish to plot graphs, the handle of the figure should be 
grasped first then user may plot any thing into it. The screen shot of the object is given in 
Fig.24 along with magnifier window.  

 

Fig.24 : Screen shot of Figure window's New Figure function object 

 

The open file function object in the function bar is obviously designed for opening file 
specified by the user. After clicking the icon, the object is executed and a file-open dialog 
box is opened. Hence it is clear that the object has a callback embedded object for 
creation of file-open dialog box objects. The file-open dialog box object is the most 
important one from the stand point of initialization of processing of the rfi data. The user 
have to provide a specific path for the rfi file and the path input will be known to the file-
open dialog object. This type of object is readymade i.e. programmer can not have an 
access to contribute another object to the file-open dialog or unable to modify the object 
settings. Taking a view into the inside of the file-open dialog box object, we have a lot of 
embedded objects to find. First of all, let us consider the input static type text object 
named File name. It is required to provide the path of the rfi file into the text input object 
associated with the File name object. Just below the File name object another static text 
object is there named File of type. The associated input field for the object specified is an 
input text object as well as a popup menu object. It is basically a filter object which let 



 29

the user to find *AVG.rfi  files only. The other objects are push buttons, menu bar objects 
etc. See Fig.25. 

 

Fig.25 : Screen shot of Figure window's File Open function object 

 

The save function object has a callback object which calls the system utility and saves the 
figure in different formats. It is also a readymade object. Programmer can not modify the 
object. See Fig.26. 

 

Fig.26 : Screen shot of Figure window's Save function object 

 



 30

Print function object is to print the figure in printers avail to the system. Here also the 
object calls system utility to print the figure. See Fig.27. 

 

Fig.27 : Screen shot of Figure window's Print function object 

 

The zoom in function object performs the operation of digital zooming of image. Here 
image processing algorithms are use in the callback object of the same. See Fig.28. 

 

Fig.28 : Screen shot of Figure window's Zoom in function object 

 

The zoom out function object has the similar but opposite properties of zoom in function 



 31

object. It has also an embedded callback object to implement image processing 
algorithms. See Fig.29.  

 

Fig.29 : Screen shot of Figure window's Zoom out function object 

 

The rotate 3-D function object is the most complex image processing object. Here the 
callback embedded object is based on very complex image processing algorithms. See 
Fig.30. 

Fig.30 : Screen shot of Figure window's Rotate 3-D function object 

 

The file menu of the figure object has the same objects like a general file menu object as 
shown in Fig.31.  



 32

 

Fig.31 : Screen shot of Figure window's File menu object 

 

13) Input-text Callback Objects: 
 

Input text objects can be called back, hence they are also callback objects. Basically we 
have to give some input to the input text object. Whenever call backing occurs, the text is 
scanned by the help of the input text object and further processing progresses. In general 
the input text callback objects are linked with buttons. We mean the button triggers the 
callback text object to be scanned from the text field for input. On the other hand the 
input text object can be linked with mouse or keyboard operations, that is a mouse click 
or a key press may cause the input text object to callback. An example of this kind is a 
text editor. Here only one text object in the main window is programmed to behave like 
an input text object which is Input Figure Number. See Fig.32. 

  



 33

Fig.32 : Screen shot of ORMSDA's Input text callback object 

 
14) Output-text Callback Objects: 
 

Output text callback objects are just opposite to the input text callback objects. Here a 
specific text is given for displaying it in the output text object. In ORMSDA there are 
many an output text callback object like Date: and File name: objects shown in the 
screen shot in Fig.33 and Fig.34. 

 

Fig.33 : Screen shot of ORMSDA's Date:  Output text callback object 

 



 34

Fig.34 : Screen shot of ORMSDA's File name Output text callback object 

 

The X: and Y: fields are the x and y coordinates fields of the application window for 
analyzing the figures. This output text callback object is some bit complicated. The object 
is linked with mouse’s left-click, right-click and key press of Esc key. The figures being 
generated and selected, a mouse left click causes the coordinates to be returned in the x & 
y fields. See Fig.35. 

 

Fig.35 : Screen shot of ORMSDA's X: and Y: Output text callback objects 

 

The Status callback output text object is directly linked with the current state of flow of 
processing. The object displays the processing status in Fig.36.  



 35

Fig.36 : Screen shot of ORMSDA's Status Output text callback object 

 

15) Static-text Objects: 
 

The static text objects are very simple objects. Programmer can modify the text object at 
the time of compilation. But the object can not be used for inputting purpose.  

 

Fig.37 : Screen shot of ORMSDA's  Authors Static text object 

 

ORMSDA has two main static text objects given in the screen shots in Fig.37 & Fig.38.  



 36

Fig.38 : Screen shot of ORMSDA's  Title Output text callback object 

 
18) Flowchart of the Operation of the ORMSDA: 
 

The flowchart of ORMSDA is given in Fig.39.  

Fig.39 : Flowchart of ORMSDA 

 

The flow chart is self-explanatory.  



 37

                                            Chapter 3 
 
  STANDARD OPERATING PROCEDURE  
     OF THE 
OMINIDIRECTIONAL RFI MONITORING SYSTEM 
          DATA ANALYZER  
                         
In this chapter we will give a vivid view of how analysis can be done by ORMSDA. 
We will discuss the following topics below: 
 

 1) Installation of ORMSDA. 
 
         2) Running the application. 
 
         3) Main screen overview. 
 
         4) Opening a *AVG.rfi  file. 
 
         5) Settings of input parameters. 
 
         6) Analyzing the data. 
 
         7) Generating the figures. 
 
         8) Automated saving of figures. 
 
         9) Analyzing the figures. 
 
       10) Printing the figures. 
 
       11) The command window. 
 
       12) General user errors. 
 
       13) Uninstalling the application. 
 



 38

1) Installation of ORMSDA: 
 
 
To install the ORMSDA, just follow the steps below:- 
 
a) Locate the ORMS DATA ANALYZER.msi named windows installer file. See Fig.40. 
 
b) It will look like the icon below in the screen shot named ORMS DATA 
ANALYZER.msi. 
 
c) Double click the icon named or select the icon of ORMS DATA ANALYZER.msi and 
press the enter key. 
 
d) A window will appear named ORMS DATA ANALYZER – Install shield wizard. As 
the set up program for ORMSDA is created through install shield, the name is there. 
 

Fig.40 : Screen shot of running the  ORMS DATA ANALYZER.msi 

 
e) If you do not want to install, press the Cancel button. 
 
f) To install the program ORMSDA in your computer, press the button named 'Next'. 
 
g) Here one thing should be notified that ORMSDA is specially build for the platform 
'Microsoft's Windows 2000', 'Microsoft's Windows XP', 'Microsoft's Windows 2003 
Server' and upwards. If you install it for 'Microsoft's Windows 98' or 'Microsoft's 
Windows 95’ etc, it will not run correctly or give a dozens of error. Hence we 
recommends ‘Microsoft’s Windows 2000' and upwards. 
 
h) Install shield wizard will let you to modify, repair or remove the application 
ORMSDA. 
 



 39

i) To continue with the wizard, press Next. See Fig.41. 
 

Fig.41 : Screen shot of Install Shield wizard for ORMSDA 

 
 
j) After pressing the Next button a new window will appear. 
 
k) It gives you the option of changing your installation directory. 
 
l) If you want to go back for something, press the button named <Back. 
 
m) If you don't want to install and go further, press the button named Cancel.  
 
n) If you want to change the installation directory, press Change... 
 
o) The default directory for installation of ORMSDA is C:\Program Files\ORMSDA. If 
you wish to continue with the default settings, click Next. See Fig.42. 
 
 



 40

Fig.42 : Screen shot of Specifying the installation directory 

 
p) After clicking the Change button a new window will appear like in Fig.43. 
You can create your own destination directory for installation or specify the installation 
path on the Folder name field below. We here choose D:\ORMSDA\ as destination 
directory for installation. 
 
q) If you do not want to install the program now, quit the installation program by pressing 
Cancel. To continue further, press OK, then the previously described window will appear 
again with your newly given path, specified for installation directory. See Fig.43. Then 
click the button named Next. 
 

Fig.43 : Screen shot of Providing the path of installation 

 



 41

r) After clicking the button named Next, a new window will appear as shown below.  
 
s) It shows ready to install dialog. If you want to review or change the installation 
settings you may click <Back and do whatever you want. It is the last step for installation 
settings. 
 
t) If you do not want to install the application, quit it by pressing the Cancel button. 
 
u) To install the application, press the Install button. See Fig.44.  
 
 

Fig.44 : Screen shot of Ready to Installation window 

 
 
v) After clicking the Install button a new window will appear like in Fig.45. 
 
w) If you want to abort installation, press the Cancel button. If you want to install, do not 
disturb the setup until it is completed.  
 



 42

Fig.45 : Screen shot of Installation progress 

 
 
x) At the end of installation another window will appear showing that the install shield 
wizard is completed.  
 
y) To finish the installation click Finish and ORMSDA is installed in your computer. 
See Fig.46. 
 

Fig.46 : Screen shot of Finishing Installation 



 43

2) Running the application: 
 
 
To run the application, follow the steps below:- 
 
a) The ORMSDA will be installed in the start menu’s programs menu. Go to the Start 
menu: - Programs: - GMRT-TIFR: - ORMS DATA ANALYZER as shown below in the 
figure. You will find a Launch ormsda.exe shortcut. To run the application, click on the 
Launch ormsda.exe shortcut. See Fig.47. 
  

Fig.47 : Screen shot of Launching the application 

 
b) After clicking the shortcut a new command window will appear like below in Fig.48. 
Wait a while. 



 44

Fig.48 : Screen shot of Launched command window 

 
c) After waiting a while a new GUI window will appear like below in Fig.49. This is our 
main window of ORMSDA application. Now you can go further in processing the 
*AVG.rfi  files. 
 

Fig.49 : Screen shot of Launched ORMSDA.exe 

 

3) Main screen overview: 
 
a) The screen shot in Fig.50 shows most of the components of the main window. Here in 
magnifier window we see the file menu. File menu has two sub menus. One is open sub 
menu to open *AVG.rfi  files. The other one is Exit sub menu to quit the application. 



 45

 

Fig.50 : Screen shot of File menu in main window 

 
b) In the screen shot in Fig.51 help menu is highlighted in the magnifier window. The 
help menu has two sub menus one is Documentation sub menu by which user can read 
the ORMSDA documentation file. The other sub menu is About Authors in which the 
authors' name is provided. 
 

Fig.51 : Screen shot of Help menu in main window 

 
c) In the Fig.52 below, screen shot of the highlighted thing named Date: is an output text 
object which displays, after processing, the date of the input *AVG.rfi  file. 
 



 46

Fig.52 : Screen shot of Date field in main window 

 
d) The below picture in Fig.53 shows the highlighted object named File name in the 
magnifier window. The object is an output text, it shows the name of the *AVG.rfi  file 
after processing. 
 

Fig.53 : Screen shot of File name field in main window 

 
e) The screen shot shows the highlighted component X & Y. These are the x & y 
coordinate position of the mouse pointer after processing and selecting one of the figures. 
See Fig.54. 



 47

Fig.54 : Screen shot of X and Y coordinate fields in main window 

 
f) The highlighted component shown in the magnifier window is the Status field of the 
application. It shows the initialized, processing and completed states. See Fig.55. 
 

Fig.55 : Screen shot of Status field in main window 

 
g) The highlighted object in the magnifier window is the push button Process Data. It is 
an alternative to file menu's open option. See Fig.56. 
 



 48

Fig.56 : Screen shot of Process data push button in main  window 

 
h) The magnifier window shows the highlighted object named Input Figure Number, 
which is for inputting a digit between 1 to 4. See Fig.57. 
 

Fig.57 : Screen shot of Input Figure Number field in main window 

 
i) The magnifier window shows the push button named Select Figure in Fig.58. After 
inputting a valid figure in the input figure number object, clicking the select figure button 
selects the valid figure. 



 49

Fig.58 : Screen shot of Select Figure push button in main window 

 
j) The magnifier window highlights the push button named Exit. To quit this application, 
press it and follow the instructions. See Fig.59. 
 

Fig.59 : Screen shot of Exit push button in main window 

 
 



 50

4) Opening a *AVG.rfi  file: 
 
To open a file for processing, just follow the instructions below:- 
 
a) Go to the file menu. Select the sub menu named Open and click it as shown in the 
screen shot in Fig.60 below. 
 

Fig.60 : Screen shot of Opening a file through Open sub menu 

 
b) After clicking the Open sub menu a new window will appear as shown in the screen 
shot. It has an embedded filter of *AVG.rfi . See Fig.61. 
 

Fig.61 : Screen shot of File Open dialog box for opening a *AVG.rfi file 



 51

 
c) Now specify the path of the input file and click the Open push button. If you don't 
wish to continue, click Cancel. See Fig.62. 
 

Fig.62 : Screen shot of Specifying the input file 

 

5) Settings of input parameters: 
 
a) After opening a file, an input system parameters’ dialog box appears. Here the 
magnifier window shows the ST4W Switch Insertion Loss (dB). It is seen that the 
default value is 2.0dB. See Fig.63. To change it, just click the mouse and edit the setting. 
  

Fig.63 : Screen shot of ST4W Switch insertion loss (dB) input field 



 52

 
b) The magnifier window shows the highlighted object input text named Insertion Loss 
of filter (dB). See Fig.64. It has a default value of 2dB. If required change the setting. 
 

Fig.64 : Screen shot of Insertion Loss of filter (dB) input field 

 
c) The highlighted object is Gain of amplifier (dB) in the magnifier window. It has a 
default value of 25.0dB. Change it as per requirements. See Fig.65. 
 

Fig.65 : Screen shot of Gain of amplifier (dB) input field 

 
d) The screen shot shows the output text object Cable Loss (dB). It has a default value of 



 53

6.0dB. You can change it as required. See Fig.66. 
 

Fig.66 : Screen shot of Cable Loss (dB) input field 

 
e) The last input setting is highlighted in the magnifier window as Antenna Gain (dBi). 
It has a default value of 4.5dBi. User can modify it as per requirements. See Fig.67. 
 

Fig.67 : Screen shot of Antenna Gain (dB) input field 

 
f) After setting the all apt values of the input dialog box, click OK to continue or Cancel 
to abort the processing. See Fig.68. 



 54

 

Fig.68 : Screen shot of Finalizing the input parameter settings 

 

6) Analyzing the data: 
 
a) After clicking the input setting dialog box to ok, a new message dialog window will 
come to give you a waiting message. Mean while the message window will be gone and a 
wait bar will appear messaging Processing data! Please wait.... Please wait until the 
processing go completed and the status field shows Processing Completed. See Fig.69. 
 

Fig.69 : Screen shot Analyzing the data 



 55

7) Generating the figures: 
 
a) The application generates four figures named figure 1, figure 2, figure 3, and figure 4 
automatically. Figure 1 is a Statistics plot, figure 2 is a Contour plot, figure 3 is a three 
dimensional plot and figure 4 is an Average power plot. See Fig.70. 
 

Fig.70 : Screen shot of Generating figures 

 

8) Automated saving of figures: 
 
a) The application saves the figures automatically. For verification open [install 
directory]\bin\win32\. You will find a folder named AvgRFIanalysis. Just double click it 
to open. See Fig.71. 
 

Fig.71 : Screen shot of Opening the folder containing the generated pictures 



 56

b) You will find that there are two folders; - one is named images and another xyzdata. 
See Fig.72. 
 
c) Double click the images folder. 
 

Fig.72 : Screen shot of Opening the images folder 

 
d) You will find that in the images folder there exists another folder with the same name 
of the input file name except extension name. 
 
e) Double click it to open. See Fig.73. 
  

Fig.73 : Screen shot of Opening the created folder containing the generated pictures 

 



 57

f) You will find eight picture files, four of them are of the jpg or jpeg format and other 
fours are of esp. format. See Fig.74. These are the same files which are generated in the 
four figures. 
 

Fig.74 : Screen shot of Generated picture files 

 
g) If you open the xyzdata folder, you will find the files in processed data format like 
shown below in the screen shot in Fig.75. 
 

Fig.75 : Screen shot of Generated data files 

 



 58

9) Analyzing the figures: 
 
a) To analyze the figures, just input the figure number you want to select which is from 1 
to 4. You must specify the figure number in the Input Figure Number text object. See 
Fig.76.  
 

Fig.76 : Screen shot of Inputting a Figure Number 

 
b) Now click the push button named Select Figure. See Fig.77. 
 

Fig.77 : Screen shot of Selecting a Figure 



 59

c) The specified figure window will be selected and displayed along with a big cross hair 
over it. The cross hair is highlighted in the magnifier window as shown in Fig.78. 
 

Fig.78 : Screen shot of Cross hair appearing in the selected figure 

 
d) Now you can view the x and y coordinates of the selected figure. 
 
e) Just left click on the point of which you want to know the coordinate. The x and y 
coordinates will be displayed on the outputs X: and Y: fields. See Fig.79. 
 
f) For deselecting the figure just right click the mouse on the same figure. Another way to 
deselect the figure is to press the Esc key of the key board.  
 

Fig.79 : Screen shot of coordinates after mouse left clicking 



 60

g) You can again select another figure or the previous one. See Fig.80. 
 
h) To select another figure input a different figure number and press the select figure 
button. It will select a new figure and the so called big cross hair will appear on it. 
 

Fig.80 : Screen shot of selecting again a specific figure 

 

10) Printing the figures: 
 
a) To print a figure just click the print button on the figure and the figure will be printed 
on the network printer or local printer associated with the computer. But make sure that 
the Print button is active. See Fig.81. 
 
b) If you are analyzing the figure first disable the cross hair by right clicking or pressing 
the escape button. 

Fig.81 : Screen shot of Printing a figure from function bar's print button 

 



 61

c) You can alternatively print your analyzed figures by going to the print sub menu 
option of the file menu. See Fig.82. 
 

d) You can also use the hot keys to print it is Ctrl + p.Fig.82 : Screen shot of Printing a 
figure from print sub menu or hot key 

 

11) The command window: 
 
a) The command window, in Fig.83, is the launcher program for ormsda.exe as well as it 
creates a link with the system console. 
 
b) Whenever an undefined or defined error occurs, it reacts on it and gives the message 
output to the command window. 
 
c) If you get a problem with processing and it seems to be that the application hangs, do 
not try to close the ormsda.exe, but better close the command window that is launch 
ormsd.exe. It will instantly abort the application. 
 
 
 



 62

Fig.83 : Screen shot of Command window 

 

12) General user errors: 
 
a) Error due to selecting a figure when Status is initialized and 
Input Figure Number is null: 
 
Here in the screen shot shown in Fig.84, we see that the status field is initialized, that is 
no processing is done and the input figure number is also blank. 
 

Fig.84 : Screen shot of Error No a, Input Figure number is null 

 
In these circumstances, if the user clicks the Select Figure button in Fig.85, it will give 



 63

an error message. 
 

Fig.85 : Screen shot of Error No a, Selecting a figure 

 
The error message dialog is shown in the screen shot in Fig.86 as well as highlighted in 
the magnifier window. 
 
Hence do not select a figure when Status is initialized and Input Figure Number is 
null. 
 

Fig.86 : Screen shot of Error No a, Displaying error message 

 
 



 64

b) Error due to selecting a figure when Status is initialized and 
Input Figure Number is specified:  
 
Here in the screen shot shown in Fig.87, we see that the Status field is initialized that is 
the processing is not done yet and the input figure number is specified. 
 

Fig.87 : Screen shot of Error No b, Status is Initialized 

 
In this situation if we click the Select Figure button as shown in Fig.88, it will cause an 
error.  
 

Fig.88 : Screen shot of Error No b, Selecting the figure 



 65

 
The error message dialog box is shown in the screen shot in Fig.89 below. 
 
Hence do not select a figure when Status is initialized and Input Figure Number is 
specified. 
 

Fig.89 : Screen shot of Error No b, Displaying error message 

 
c) Error due to selecting a figure when the Status is Processing 
Completed and Input Figure Number is invalid: 
 
In the screen shot shown in Fig.90, we see that the Status field is Processing Completed, 
that is the processing is done, yet the input figure number is invalid. 



 66

Fig.90 : Screen shot of Error No c, Input figure is invalid 

 
In this situation if we click the Select Figure button as in Fig.91, an error will occur. 
 

Fig.91 : Screen shot of Error No c, Selecting the invalid figure 

 
The error dialog box will show a warning as shown in the screen shot in Fig.92. 
 
Hence do not select a figure while the status is Processing Completed and the input 
figure number is invalid. 
 



 67

Fig.92 : Screen shot of Error No c, Displaying the error message 

 

d) Error due to selecting a figure when the Status is Processing 
Completed and Input Figure Number is a character: 
 
Here in the screen shot shown in Fig.93, the Status field is Processing Completed, that is 
the processing is done, yet the input figure number is a character. 
 

Fig.93 : Screen shot of Error No d, Inputting a character 

 
In this situation, if we click the Select Figure button, an error will occur. The error dialog 
box will show a warning as shown in the screen shot in Fig.94. 
 



 68

Hence do not select a figure while the status is Processing Completed and the input 
figure number is a character. 
 

Fig.94 : Screen shot of Error No d, Displaying error message 

 
The character error is not defined in the application, but we can see that the command 
window gives an error message. See Fig.95. 
 

Fig.95 : Screen shot of Error No d, Displaying error in command window 

 
 



 69

e) Error due to selecting a figure when the Status is Processing 
Completed and figures are manually deleted and Input Figure 
Number is specified: 
 
Here in the screen shot shown in Fig.96, we see that the Status field is Processing 
Completed and figures are manually deleted. 
 

Fig.96 : Screen shot of Error No e, Status is Processing Completed 

 
 Here the Input Figure Number is specified in the input object text field in Fig.97. 
 

Fig.97 : Screen shot of Error No e, Inputting a figure number 



 70

Under these circumstances, if Select Figure push button is pressed then a blank figure 
window will be opened which will be of no use. This is not an error in the truest sense of 
the term, but algorithmically it is an error. The cross hair will also be there to get the 
coordinate information’s. 
 
Hence do not select a figure while the status is Processing Completed and figures are 
manually deleted and Input Figure Number is specified. 
 

Fig.97 : Screen shot of Error No e, Invalid and irrelevant figure 

 
f) Error due to deleting an irrelevant figure when the Status is 
Processing Completed and input figure is specified: 
 
Here in the screen shot shown in Fig.98, we see that the Status field is Processing 
Completed and irrelevant figures are manually deleted. 

Fig.98 : Screen shot of Error No f, pressing Process data button 



 71

Under these circumstances, the command window will show an error message. The 
screen shot of the error message in the command window is highlighted in the magnifier 
windows as shown in Fig.99. 
Hence do not delete an irrelevant figure when Status is Processing Completed and 
input figure is specified. Better do not try to create an invalid figure. 
 

Fig.99 : Screen shot of Error No f, Displaying Error in command window 

 
g) Error due to opening and analyzing a corrupted *AVG.rfi file: 
 
Here in the screen shot in Fig.100, we see that the user is going to open a *AVG.rfi  file. 
Now we see that the user wishes to select a 111KB file, named abcAVG.rfi, which is a 
corrupted file (insufficient data). 
 

Fig.100 : Screen shot of Error No g, Selecting an corrupted data file 



 72

After opening the corrupted file and tending to process, it results on an error in the 
command window. The command window shows an insufficient data message along 
with a divide by zero warning and some internal object error messages. See Fig.101. The 
wait bar stands still with a little bit of processing indicator level. Just close the wait bar 
manually. 
 
Hence do not try to process corrupted/insufficient data files and also not try to load 
and process invalid data files. 
 

Fig.101 : Screen shot of Error No g, Displaying error in command window 

 
h) Error due to selecting the documentation sub menu while the 
documentation file named ORMSDADOC.PDF is manually 
deleted: 
 
Here in the screen shot shown in Fig.102, we see that the user is going to open the 
documentation file named ORMSDADOC.PDF which is manually deleted before by 



 73

some one.  
 

Fig.102 : Screen shot of Error No h, Clicking the Documentation sub menu 

 
In this situation, clicking the documentation sub menu results on an error. The error is 
something like ORMSDADOC.PDF is not recognized as an internal or external 
command, operable program or batch file. The magnifier window shows the error 
message clearly. See Fig.103 below. 
 
Hence do not delete the documentation file manually and click the documentation 
sub menu thereafter. 

Fig.103 : Screen shot of Error No h, Displaying error in the command window 

 



 74

13) Uninstalling the application: 
 
To uninstall the application just follow the steps below:- 
 
a) Open the Start menu. Go to Settings. Click the Control Panel. The operation is 
displayed on the screen shot as shown in the magnifier window in Fig.104 below. 
 

Fig.104 : Screen shot of Opening Control Panel 

 
b) After entering the control panel window double click the Add/Remove Program icon. 
The screen shot is showing the process in the magnifier window. See Fig.105 below. 
 

Fig.105 : Screen shot of Double clicking Add/Remove Programs 

 
 



 75

c) A new window opens up. It shows the list of installed program in your machine. Select 
the program named ORMS DATA ANALYZER. 
d) If you want to change the settings, click the Change button and follow the instructions. 
 

e) If you want to remove the application completely from your machine, click Remove. 
The screen shot displays the process graphically as shown below in Fig.106. 
 

Fig.106 : Screen shot of Selecting ORMSDA to uninstall 

 
f) After clicking the remove button a new dialog window appears. 
 

g) If you do not want to remove the software, click No. 
 

h) If you wish to uninstall the application from your machine, click Yes. The screen shot 
shown in Fig.107 shows the process. 



 76

Fig.107 : Screen shot of Clicking the Yes button to uninstall the application 

 
i) The uninstallation process continues and ORMSDA application will be uninstalled 
completely from your computer. 
 
j) Please manually delete the installation directory named ORMSDA. 
 

Fig.108 : Screen shot of Uninstalling ORMSDA from computer 



 77

Chapter 4 
 

RESULTS OF THE DATA ANALYSIS DONE  
BY  

ORMSDA WITH FEW  *AVG.rfi FILES 
 

 
In this chapter we will show the results of some analyzed data files 
for the frequency ranges as mentioned below:- 
 
1) 135 MHz – 175 MHz. 
 
2)  110 MHz – 155 MHz. 
 
3)  110 MHz – 155 MHz. 
 
4)   50 MHz – 150 MHz. 
 
 
Four plots are made from each data file, viz., three dimensional 
plot, contours, percentage RFI occupancy plot and time averaged 
plots for all the four directions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 78

        1) 135 MHz – 175 MHz 
 
 

  

  

 
 
 
 
 
 
 
 
 
 
 
 



 79

        2)  110 MHz – 155 MHz 
 
 

  

  

 
 
 
 
 
 
 
 
 
 
 
 



 80

        3)  110 MHz – 155 MHz 
 
 

  

  

 
 
 
 
 
 
 
 
 
 
 
 



 81

 
        4)   50 MHz – 150 MHz 
 
 

  

  

 
 
 
 
 
 
 
 
 
     -------------- 


	ban1.pdf
	ban.pdf

