
Giant Meterwave Radio Telescope
National Center for Radio Astrophysics

Tata Institute of Fundamental Research

ABCcom Software

of GMRT Telemetry System

Description and implementation

Author : Laurent Pommier

Project Supervisor : Prof. Pramesh Rao

Date : 05/01/06

Table of Contents

1.Introduction..4
2.General presentation of the Telemetry System...5
3.ABCcom project..6

3.1. ABC current state...6
3.2. ABCcom and Teleset, a new Telemetry software chain...6

4.ABCcom PC configuration..7
4.1. Serial links to other systems..7
4.2. Configuration file for ABCcom program..7

5.ABCcom general organization..9
5.1. List of ABCcom functionalities...9
5.2.ABCcom global block diagram..11

6.Programming techniques...13
6.1. POSIX multi threading...13
6.2. Kernel module, C, C++..13
6.3.Inheritance and templates in C++...13

7.ABCcom main objects...14
7.1. AbcShell class..14
7.2. AbcPlus class...14
7.3. ABCcom state diagram..15

8.System Com classes...16
8.1.Abstract base Com classes..16
8.2.Final System Com objects..17

9.Servo System Thread class..18
9.1.Servo class...18
9.2.WriteCmd and ReadResp classes..18
9.3.Track class...19

9.3.1.Coordinate systems..19
9.3.2.Sidereal time..20
9.3.3.Angles conversion..20
9.3.4.Tracking routine...21

10.MCM System Thread classes..23
10.1.LowMcm and LowFps file classes...23
10.2.Sysbase<> abstract base class...24
10.3.SysM abstract base class...24
10.4.Final System Threads classes...25

10.4.1.Expsystm...25
10.4.2.Fpssystm...25
10.4.3.Losystm, Ifsystm and Fesystm..26

11.PortMulti and Comh classes..28
11.1.PortMulti, FileMcm and ListMcm classes..28

GMRT-TIFR Technical Report
ABCcom software Page 2

11.2.Comh and LocalComh classes..29
12.Serial Port communications...30

12.1.Teleset link communication..30
12.2. Servo link communication...30
12.3.MCM link communication..30

13.Conclusion...31
References and label index ..32
Appendix A: Tables of ABCcom file contents...33
Appendix B: ABCcom history file...35
Appendix C: ABCcom UML class diagrams...36
Appendix D: ABCcom source code...37

Illustration Index
Illustration 1 : Components of the Control and Monitoring system..5
Illustration 2 : Links between ABC and antenna systems ...7
Illustration 3 : ConfigABC file...8
Illustration 4 : (a) and (b) Examples of ABCcom PC configuration ...8
Illustration 5 : ABCcom block diagram...11
Illustration 6 : ABCcom blocks description...12
Illustration 7 : UML state diagram of ABCcom program..15
Illustration 8 : Inheritance tree of System Com classes...16
Illustration 9 : Coordinates systems (left: equatorial, right: horizon)..19
Illustration 10 : Sidereal Time..20
Illustration 11 : Angles conversion formulas...20
Illustration 12 : (left) GMRT antenna AZ, (right) astronomical AZ..21
Illustration 13 : Tracking parameters...22
Illustration 14 : Inheritance tree of MCM System classes...23
Illustration 15 : SystM derived class parameters ..26
Illustration 16 : PortMcm structure..28

GMRT-TIFR Technical Report
ABCcom software Page 3

1. Introduction

The Giant Meterwave Radio Telescope (GMRT) is a radio telescope located in Khodad, at 80 km from Pune
(Maharastra, India). It is composed of an array of 30 antennas spread over distances up to 25 km. Each
antenna is 45 m in diameter, and has been designed to operate at a range of frequencies from 50 to 1500
Mhz.

Modern radio telescopes are complex assemblies of electronic and electro-mechanical subunits. To allow a
successful observation, all these subunits have to be set as per the user requirements. For example, antennas
have to track the selected source, front-ends have to be tuned to the chosen frequency band, all the
amplifiers along the signal path have to be set up to the appropriate value which would give the optimum
signal to noise ratio, local oscillators have to be tuned to select the desired frequency, and the correlator has
to be set up to do the appropriate fringe and delay tracking.

In an interferometer like the GMRT, this means that in a coordinated manner, one has to control systems
which are several tens of kilometers separated from one another. In addition, systems must be periodically
monitored, so that should any of them fail, the affected data can be flagged and remedial action can be taken
to fix the faulty unit. Besides since it is not humanly possible to remember all the various safety limits of
each subsystem, the telescope control system must also forbid any wrong operation. The Telemetry System
is the one in charge of all these control and monitoring tasks in GMRT.

This report introduces ABCcom, a Linux PC software which aims at replacing and improving the ABC
element of the Telemetry chain. ABC is the unit inside each antenna, communicating with the telescope
control room on one side, and with antenna systems on the other side. A Teleset software is implemented to
be a new control room program adapted to ABCcom, but antenna systems remain unchanged. Thus
ABCcom is a part of a new generation software for GMRT Telemetry.

This document first gives an overview of this project context in parts 2 and 3. Chapters 4 and 5 detail the
ABCcom configuration, functions and design. After a brief note on programming techniques in part 6,
ABCcom implementation is described from high level layer (parts 7 to 10), down to low level
communication layer (parts 11 and 12).

GMRT-TIFR Technical Report
ABCcom software Page 4

2. General presentation of the Telemetry System

The GMRT Telemetry is the system whose goal is to control other systems operations in a coordinated
manner and to monitor their current state to check parameter values and detect any dysfunction. Its main
tasks are:

� To rotate all the 30 antennas in azimuth and elevation, to track a celestial source
� To bring the required feed in the feed turret to the focus via the Feed Position System (FPS).
� To select the Front End system parameters like observing frequency band, noise calibration...
� To set the Intermediary Frequency (IF) and Local Oscillator (LO) systems including frequencies, IF

bandwidths and attenuations, Automatic Level Controller (ALC) operation...
� To set the Base Band and Correlator parameters
� To monitor hundreds of systems parameters at all points along the signal flow path

This system is divided into many components based whether inside the CEB or in antennas shells:

Legend:
. MCM
. FPS
. COMH
. CEB

Monitor and Control Module
Feed Positioning System
Communication Handler
Central Electronic Building

. ABC
(=ANTCOM)
. SSC

Antenna Based Computer
(=Antenna Computer)
Station Servo Computer

Illustration 1 : Components of the Control and Monitoring system

GMRT-TIFR Technical Report
ABCcom software Page 5

ONLINE PC

ABC SCC

MCM 0 MCM 1 FPS

Optical fiber (HDLC/FSK)

To 30 antennas

RS 422

RS 485

...

...

CEB

Antenna

PC RouterEthernet

Base BandCorrelator

COMHRS 232

Ethernet

3. ABCcom project

3.1. ABC current state
An ABC (Antenna Base Computer, also called an ANTCOM) is located inside each antenna shell. All
communication between the antenna and the CEB is routed through the ABC in that antenna. The ABC has
3 communication links:
(i) the main link between COMH and ABC which operates at 250 kbps,

(ii) an asynchronous 9.6 kbps RS-422 communication between ABC and the Station Servo Computer
(SSC),

(ii) an asynchronous 9.6 kbps RS-485 communication link between ABC and up to 16 Monitor and Control
Modules (MCMs).

The actual ABC is a Plug In Unit (PIU) composed of an electronic card including a 80C186 processsor, a
82510 USART, a 85C30 controller... It transmits all commands from Online operator PC to MCMs and
SSC, and send back their respective answers. As a part of its implementation, ABC is also generating the
tracking commands to SSC.

3.2. ABCcom and Teleset, a new Telemetry software chain
The ABCcom project aims at replacing the ABC PIU by an ABC Pentium PC. Under Linux OS, this PC
runs ABCcom program presented in this document. This replacement offers the following advantages:
� better hardware stability, less maintenance and small risks of electronics failures.

� better performances and capacities (PC memory, processor, human interface...)

� more flexible and easy to evolve (C++ program)

With ABCcom, the heavy part of the telemetry intelligence is shifted from the Online PC, to the ABC PC.
Indeed in the actual system, all data packets are generated from Online PC and ABC PIU just transmits
them. The ABC PC is now generating all the commands, and only high level parameters are sent by Online
PC.
For instance, monitoring the LO system implies to generate 30 commands to MCM 2 and 3. This task is
now performed by ABCcom instead of Online, which then sends just one short LO monitor command.
ABCcom can also generate this monitor operation automatically at regular time intervals if this mode is set
by Online.
The communication between CEB and antennas is reduced and thus the information is transmitted faster.
The Online PC load is also reduced, and new advanced sets of operation are implemented in ABCcom
program (resetting automatically system parameters in case of power failure, human interface for local
maintenance...).
Installing the ABCcom PC required to change as well Online program, since all the communication
protocol between Online and ABC is changed. This new Online program is Teleset, running on a Linux PC.
At this date it is completed as far as the communication with all antenna ABCcoms is concerned (with sub-
array user processes, shared memory, and a display program Teledisp, cf. [6]).

GMRT-TIFR Technical Report
ABCcom software Page 6

4. ABCcom PC configuration

4.1. Serial links to other systems
The ABC is connected on one side with the CEB, via the optical fiber link up to Online PC, and on the other
side to the various antenna systems. Antenna systems are connected to ABC as follow:

System Connected Components Link
Servo system (SSC) Servo Station Computer RS-422

Local Oscillator system (LO) MCM 2, MCM 3 RS-485
Intermediary Frequency system (IF) MCM 10 RS-485

Front End system (FE) MCM 2, MCM 5 RS-485
Feed Positioning System (FPS) MCM 14 Rs-485

Illustration 2 : Links between ABC and antenna systems

RS-232 is the standard for serial full duplex communication. RS-422 extents it to long distance
communications. Finally RS-485 allows long distance multi-point communication, but restricts it to half
duplex. Thus a master (ABC) and many slave components (MCMs) can be connected to a single link. A
mcmdriver Linux module had been developed for this RS-485 link (cf. [5]).

The optical fiber link connection has first been replaced by a simple RS-232 link directly between ABCcom
and Teleset PCs.

A PC is originally equipped with one or two serial ports, therefore a multi serial port card is needed. The ISI
4608 – PCI from Multi Tech Systems company offers 8 additional serial ports on a Linux PC. The
mcmdriver program, which implements UART registers, is not compatible with this card.

4.2. Configuration file for ABCcom program
ABCcom program first configures the PC serial ports to communicate with all the systems according to a
configuration file. It is named ConfigABC and is placed in a specific directory. By changing this file, the
user can choose which systems he wants and where he connects them.

GMRT-TIFR Technical Report
ABCcom software Page 7

##
ConfigABC
#
configuration file for ABCcom program
#
Abc X, X = Abc address
#
:N P for Serial Port number N with Priority P (=0 or 1)
next line with unit addresses, ends with s
#
unit address -1 for SSC, must be alone on the port (rs232, not rs485).
#
unit address -2 for Teleset, must be alone on the port (rs232, not rs485).
#
Possible MCM Addresses: 0 2 3 5 10 14.
MCM3 and MCM5 require MCM2 previously written
Pre-requirement: mcmcomi driver loaded on serial port i
#
L.Pommier, 20/07/2005
##

Abc 2
:2 0
-2 s
:1 0
-1 s
:0 0
2 3 5 10 14 s

Illustration 3 : ConfigABC file

The next diagrams illustrate examples of ABCcom PC configuration.

(a) (b)

. SP i

. MSP i
Serial Port number i
Multi Serial Port card, port number i

Illustration 4 : (a) and (b) Examples of ABCcom PC configuration

GMRT-TIFR Technical Report
ABCcom software Page 8

SSC

RS-232
SP 1

MSP 1 MSP 2

RS-422

RS-485SP 2

ABCcom PC

MCM 5

MCM 10

MCM 14

MCM 2

MCM 3

Teleset

SP 1 RS-485

SSC

RS-232
SP 1

MSP 1 MSP 2

RS-422

RS-485SP 1

ABCcom PC

MCM 2

MCM 3

MCM 5

MCM 10

MCM 14

Teleset

5. ABCcom general organization

5.1. List of ABCcom functionalities
To resume ABCcom functionalities, one must first resume each Telemetry task in respect to antenna
systems, and then see how this task intelligence is divided between ABCcom and Teleset programs.

Teleset ABCcom
� Servo system telemetry:

� operational commands (position, hold, stop, stow elevation / azimuth...)
send packet and read answer by pass

� display commands (read angles, read motor currents...)
read answers send packets every second

� set mode commands (set time, set high / low limit for elevation / azimuth...)
send packet and read answer by pass

� load antenna parameters (angle offsets, latitude and longitude)
send parameters store parameters

� track command: every 30 sec, send updated positions to follow a source
read answer calculate angles and send command every 30 sec

� analyze events sent by SSC (motor speed high, stow released...)
read events by-pass in priority

� FPS system telemetry:
� load turret angles for the feed selection

send parameters store parameters
� move to the appropriate feed

send feed number send move command with the proper angle
� monitor the turret angle to check the position

read angle send monitor command at regular intervals
� set the FPS parameters (calibrate angle, maximum rotation speed...)

send packet and read answer by pass

� LO, IF and FE systems telemetry:
� load antenna parameters

send parameters store parameters
� set current parameters (frequencies, attenuations, bandwidth, feeds...)

send parameters store parameters
send all MCM commands to set parameters

� monitor the system state and signal errors
read error code send all MCM commands to monitor at regular intervals

decode and return a error code
� other specific operations (reboot, switch FE box off...)

send operation code send respective MCM commands

GMRT-TIFR Technical Report
ABCcom software Page 9

Beside this, ABCcom has several additional functionalities:

� Local Teleset: During maintenance operations inside an antenna shell, a small local Teleset program can
be launched from ABC PC to directly control this antenna systems without requesting the Control
Room. After a command from the main Teleset, ABCcom also communicates with the local Teleset
through a shared memory.

� MCM Expert: The Teleset operator chooses one MCM and communicates with it according to the MCM
protocol (cf. [5]). This is useful for very specific operations.

� AbcShell: This mode allows to access ABC PC from Teleset PC for files transfer or Linux shell terminal
commands. ABC is then no more communicating with antenna systems, the Telemetry is off. This is
useful to get some ABCcom log files or put some modified ABCcom files before recompiling and
restarting the Telemetry mode.

� LogFile: ABCcom writes in log files the history of its activity, organized by systems and periodically
refreshed (cf. Appendix B).

GMRT-TIFR Technical Report
ABCcom software Page 10

5.2.ABCcom
 global block diagram

The next block diagram
 show

s A
BCcom

 global organization, for the configuration exam
ple (b) in

Illustration 3.

. gray blocks
. dashed line blocks

Child threads to the parent program
 process, cf. 6.2

Non perm
anent blocks (exist on Teleset com

m
and)

Illustration 5 : ABCcom
 block diagram

G
M

RT-TIFR
Technical Report

A
BCcom

 softw
are

Page 11

RS 422

MCM PIUs
2 and 3

LO thread

MCM 14
buffers

MCM 10
buffers

MCM 5
buffers

MCM 2
buffers

MCM 3
buffers

Serial
Port1
handler
thread

EXP Thread

RS 485

RS 485

MCM PIUs
5, 10 and 14

Servo bin

Local
Comh

RS 232

Teleset
PC

AbcShell program

AbcCom Program

Servo
buffers

Comh
buffers

Comh
handler

MCM Expert
Com

LO System
Com

IF threadIF System
Com

FE threadFE System
Com

FPS threadFPS System
Com

Servo System
Com

Serial
Port2
handler
thread

TrackingSSC thread

Blocks in the diagram above correspond to C++ objects and are dedicated to specific functionalities. The
next table briefly resumed them:

Blocks Class Names Files Description
MCM buffers ListMcm common chained lists storing command and answer

packets for one MCM.
Servo buffers baseFILO,

DisplayFILO
common circular queue storing command and answer

packets for SSC.
Comh buffers BaseFILO common circular queue storing command packets

from Teleset.
Serial Port handler
thread

PortMulti mcmport switch between MCM buffers blocks, write
packets on the link and put back answers.

SSC thread Servo servo perform the SSC system operations (Teleset
direct commands, Display commands every
sec., Tracking commands every 30 sec...)

LO, IF, FE, FPS
threads

Losystm, Ifsystm,
Fesystm, Fpssystm

losystm, ifsystm,
fesystm, fpssystm

perform the system operations (reboot, set,
monitor, analyze data...)

EXP thread Expsystm sysbase created on Teleset command for direct
communication with one MCM.

MCM Expert Com,
LO Com, IF Com,
FE Com, FPS Com,
Servo Com

Comexp, Comlo,
Comif, Comfe,
Comfps, Comssc

comsys, combase transmit Teleset commands to system
threads and compose the corresponding
answer.

Comh handler Comh comh read Teleset commands from the link and
write back their answer.

Local Comh LocalComh comh created on Teleset command so ABCcom
communicates also through a shared
memory with a small Teleset running
locally on ABC PC.

AbcShell AbcShell mainshell for file exchanges and shell terminal
commands.
run alternatively with AbcCom

Illustration 6 : ABCcom blocks description

GMRT-TIFR Technical Report
ABCcom software Page 12

6. Programming techniques

6.1. POSIX multi threading
A thread is a like a light process, but easier and faster to manipulate. In ABCcom, the program runs as a
parent process, which creates many child threads. Those threads run virtually in parallel to perform
different tasks.
With Teleset, ABCcom aims at controlling and monitoring all the antenna systems: SSC, LO, FE, IF and
FPS. It means that within very short time periods, ABC has to handle several various tasks. Multi-threading
technique is used to achieve this with better performances. For instance, a thread sets the LO system
frequencies, while another thread monitors the Servo motor currents.
In Linux, POSIX threads libraries are the standard base for C / C++ multi threading applications.

6.2. Kernel module, C, C++
ABCcom is a Linux program, which needs to mcmcom driver module to be loaded in the Kernel for serial
ports used with MCM units (cf. [5]).
ABCcom is a program mainly coded in C++. Only the low level communication functions are coded in C
for a faster access to the serial ports hardware (open, close, write, read / poll). For the rest of the program, I
have used C++ language to take advantage of the object oriented features.
ABCcom is organized in distinct C++ objects, each of them implementing a specific ABC task. It is thus a
far better way to understand, code, debug and later modify the program.

6.3.Inheritance and templates in C++
Many objects in the block diagram have common features. These common variables and functions are
coded in some C++ base classes, which behave like library packages. For instance, Combase class provides
the resources to read and write messages exchanged between Teleset and ABCcom.
Concrete classes are then derived from base classes to inherit all their properties. The C++ inheritance
allows to write some reliable and reusable code, which can also be modified in derived class instead of
duplicating code and rewriting all classes from scratch.
Templates provide parameterized types, that is the capacity of passing a type name as an argument to a
recipe for building a class or a function. This C++ property is also very convenient to code parts of
ABCcom program. Examples are given while describing the code in next sections.

GMRT-TIFR Technical Report
ABCcom software Page 13

7. ABCcom main objects

During the communication between Teleset and ABCcom, two different modes can exist alternatively.
AbcPlus class is used for the ABC telemetry tasks and AbcShell is used for transferring files.
They are both parts of the ABCcom program, which shall not end otherwise the connection between the
antenna and the control would be closed. Therefore exiting AbcPlus goes to AbcShell and vice versa.
ABCcom execution program must also be written in /etc/rc.local file so that the program starts and the link
gets established automatically when ABC PC boots.

7.1. AbcShell class
AbcShell class object polls the serial port connected to Teleset, and decodes packets sent by the equivalent
object in Teleset program (TeleShell). Packets exchanged in this mode contain a header and a command in
ASCII according to a protocol described in ref. [7]. These commands can be:

� 'put', and a file name in argument. AbcShell creates then a file with the same name. Next packets
from TeleShell transfer the file data.

� 'get', and a file name in argument. AbcShell opens then the file in ABC PC with the same name and
transfer it to TeleShell.

� 'exit'. AbcShell returns and AbcCom starts.
� 'newabc'. TeleShell switches from an antenna to another.
� a linux shell command (ls, pwd...). AbcShell executes this command in a terminal and sends back the

terminal display answer to TeleShell. The implementation uses shellout file to temporarily store
shell display before transferring it to TeleShell, as it does after a 'get' command. 'cd' shell command
is not working here.

During the file transfer, if any error occurs on one end, this last one transmits an interruption to the other
end and the file transfer is canceled. AbcShell is coded in mainshell files.

7.2. AbcPlus class
AbcPlus class object is run in the parent ABCcom process in telemetry mode. It is implemented in abccom
files and its activity is recorded in a ABC history file.

� Overall configuration with Config class:
At the beginning of the program, AbcPlus calls a Config object which reads ConfigABC file (Illustration 3)
and creates accordingly all the telemetry blocks of the ABCcom diagram (Illustration 5). All those blocks
are object variables of Config object. When LocalComh and MCM Expert Com are selected through a
Teleset command, these two variables are also created in Config object.

GMRT-TIFR Technical Report
ABCcom software Page 14

� Main process loop:
In a start() function loop, Teleset commands are read from Comh object.
A command packet is divided in sub packets addressed to one system (cf. [7]). AbcPlus transmits sub
packets one by one to the corresponding System Com object. This one decodes the command, makes the
appropriated changes in its System Thread object, and composes the answer to Teleset. Once all sub packets
are processed, AbcPlus returns the global answer to Teleset through Comh (or LocalComh).
The same operations are performed with LocalComh if the local mode is set. Then the loop restarts.

� Commands to ABC system:
Some commands are addressed to ABC itself (set time, local mode, exit...). To execute them, AbcPlus
contains a Comabc object. It is treated like another System Com object, the difference is that it acts on
Config and AbcPlus objects themselves instead of a System Thread object. ABC system has no loading
parameters, and 2 setting parameters: local and expert flags.

7.3. ABCcom state diagram
The UML state diagram of ABCcom program is shown in the illustration below.

Illustration 7 : UML state diagram of ABCcom program

GMRT-TIFR Technical Report
ABCcom software Page 15

8. System Com classes

Each System Com object contains a System Thread object which runs in parallel to the main process (cf.
Illustration 5). System Com is meant to make the interface between Teleset messages and a System Thread.
It decodes commands from Teleset, makes the corresponding changes in the thread object, and composes
the answer to Teleset.
One regular Teleset command is 'State' command. It asks for the current state of the system, which means
that the answer composed by System Com will contain all parameters and current operations of the System
Thread. Commands and answers between Teleset and ABCcom are more detailed in reference [7].

Com System classes are coded in combase and comsys files. Their activity is recorded in ABC history file.
Their implementation is using C++ inheritance according to the following tree:

Illustration 8 : Inheritance tree of System Com classes

8.1.Abstract base Com classes
Abstract base Com classes are:

� Combase
This class provides the code to read and write packets exchanged between ABCcom and Teleset, according
to the communication link protocol (cf. [7]). It is then very convenient to pop and push different types of
data on the current message packet.

� Comsysbase<>
This class inherits Combase. It also provides functions to access loading and setting parameters of a system,
to transmit direct MCM commands, and to return MCM time outs. This class is a template class (<class S>),
so it can work with different System Threads.

� Comsys
This class inherits Comsysbase<SystM>. That means it contains a SystM System Thread object, described
in the next section. Comsys functions decode commands common to SystM objects. They raise flags in
SystM for operations like do settings, do monitoring, reboot... They also compose the 'State 'answer of the
system which contains its current operations, parameters, eventual time-outs and error codes (cf. [7]).

GMRT-TIFR Technical Report
ABCcom software Page 16

Combase

Comsysbase<>Comssc

Comexp Comfps ComsysM

Comlo Comif Comfe

8.2.Final System Com objects
System Com classes are:

� Comssc
Comssc contains a Servo Thread object, which itself contains a specific object for the tracking operations.
In Cmdpacket() function, it decodes the Teleset command. This can be entering new parameters in the
tracking object, transmitting a direct command to SSC, or returning 'State' packets of the Servo Thread
object. These 'State' answer packets contain SSC event messages in priority, SSC last display answers (axis
angles...), SSC answers to direct commands, eventual time outs and current tracking parameters.

� Comfps
Comfps contains a Fpssystm Thread object. It decodes commands to FPS system like loading feed count
positions, moving to one feed, and direct Teleset commands. It also composes FPS 'State' answer containing
its current Rpm and encoder position.

� Comexp
Comexp contains a Expsystm Thread object. It transmits direct Teleset commands to an MCM and returns
the MCM answer faithfully along with eventual time-outs in the 'State' answer.

� Comlo
Comlo inherits Comsys class, its SystM Thread object is a Losystm (cf next section). Its personal functions
are the ones decoding commands specific to LO system (modify synthesizer 2 frequency).

� Comfe
Comfe inherits Comsys class, its SystM Thread object is a Fesystm. Its personal functions are the ones
decoding commands specific to FE system (set noise generation on, set common box off...).

� Comif.
Comif inherits Comsys class, its SystM Thread object is a Ifsystm. Its personal functions are the ones
decoding commands specific to IF system (load or set pre-attenuation and post-gain parameters).

GMRT-TIFR Technical Report
ABCcom software Page 17

9. Servo System Thread class

System Thread classes are implementing the communication between ABCcom and antenna systems in a
thread. There is one class per system: Servo, Expsystm, Fpssystm, Losystm, Ifsystm and Fesystm. Each
class has variables to store the system parameters, and functions to generate operational commands and
decode system answers.
Servo object is very specific and therefore independent of other MCM System classes. Its activity is
recorded in a SSCdata history file for the Servo display answers, and in a SSC history files for other events
or tracking operations.

9.1.Servo class
A Servo class object is a thread in charge of the communication with the SSC unit of the antenna. There is a
full set of telemetry commands for SSC, basically divided into 3 categories: display commands, operational
commands, and setting commands. All the communication protocol and the list of commands are detailed in
ref. [1] and [2].

Packets exchanged with SSC are buffered in ABCcom program inside a PortSsc structure implemented in
common files, rest of this class is coded in servo files.
PortSsc structure is a class containing several BaseFILO blocks, which are circular queues to store link
packets:

� one BaseFILO for command packets to SSC
� one BaseFILO for answer packets from SSC, SSC Time-Outs and link errors.
� one BaseFILO for event packets from SSC (priority)
� one DisplayFILO, variation of BaseFILO adjusted to store last display answers from SSC

In the Start() function run by the thread, a Servo object performs the following tasks in a loop:
� Run a track operation if required (cf. 9.3)
� Send a display command (every 1 sec)
� Send a direct command from Teleset if required
� Receive responses from SSC
� Signal any time out of previous commands (AbcTimOut() function)

A Servo class contains 3 objects to help him perform this telemetry work: one of WriteCmd class, one of
ReadResp class, and a bigger one of Track class. Next paragraphs describe in details those sub classes.
The Servo object is also opening and closing the Serial Port dedicated to communication with SSC, using
ssclink file functions (cf. 12.2).

9.2.WriteCmd and ReadResp classes
WriteCmd is capable of writing whether packets from a BaseFILO block, or the next display command, to
SSC on the Serial Port. It will then record whether the message has been acknowledged according to the
SSC link protocol.

GMRT-TIFR Technical Report
ABCcom software Page 18

ReadResp is polling the Serial Port to read incoming messages from SSC. When it gets a message, it
decodes the header to know which command this packet is answering to (operational / event / display). This
allows to detect time outs and to store packets in different BaseFILO (or DisplayFILO) of PortSsc. This
distinction is needed to give priorities between different kind of packets (Comssc takes events first).

Both classes are using writing and reading functions from ssclink file (cf. 12.2).

9.3.Track class
Servo Thread is having a special mode in which it will send regularly a Track command to SSC. This mode
is coded in Track class.
When an antenna has to point at a specific source for some period, elevation and azimuth angles of the dish
have to be actualized to compensate the earth rotation, and sometimes the source motion. Every 30 seconds,
target angles are then recalculated and sent to SSC in a Track command.

9.3.1.Coordinate systems
A source in the sky can be located by different coordinate systems. The Horizon system is centered on the
observer, and it is based on the horizon plan and the zenith axis. A source is located by the Elevation (or
Altitude) and the Azimuth angles. The elevation is the vertical angle, and the azimuth is the angle in the
horizon plan, with reference to the north. Those values vary as the earth is rotating.
Another coordinate system is the Equatorial system. It is centered at the observer and based on the celestial
equator plan and the north celestial pole. A source is located by the Right Ascension and Declinaison
angles. The declinaison is the vertical angle, and the right ascension is the angle in the equator plan between
the star's meridian and the Vernal Equinox meridian. In this system, the celestial equator plan and the north
celestial pole are fixed, so the coordinates of a source are constant.

V : Vernal Equinox
RA : Right Ascension

DEC : Declinaison

AZ = Azimuth
EL = Elevation

Illustration 9 : Coordinates systems (left: equatorial, right: horizon)

GMRT-TIFR Technical Report
ABCcom software Page 19

V

O

S

North Celestial Pole

Celestial Equator
RA

DEC

Meridian

North

Zenith

Horizon

EL

AZ

O

9.3.2.Sidereal time
The current time system is called Universal Time, it gives 12:00 when the sun crosses the local meridian.
The Sidereal Time is more accurate, it gives 24 hours for a 360 degree earth rotation. The Local Sidereal
Time is the angle between the observer's meridian and the Vernal Equinox meridian.

Illustration 10 : Sidereal Time

Conversion:

24 hours = 360 deg
24hST = 24hUT – 360deg / 365

V : Vernal Equinox, LST = 00:00:00 when
the sun crosses the observer's meridian.

From there a method (or an equation) is giving the Local Sidereal Time (LST) of the observer from its
current UT and its longitude. It is coded in Lmst() and MjdCal() functions of Track class.

9.3.3.Angles conversion
To calculate the new elevation (EL) and azimuth (AZ) angles of the antenna, the Track object needs to
know the source declinaison (DEC) and right ascension (RA).
It first converts the UT time into Local Sidereal Time (LST) using the antenna longitude. The Hour Angle
(HA) is the angle between the antenna's meridian and the star's meridian (GetHA() function). Tehn a linear
formulas give EL and AZ from DEC, RA, HA and the antenna latitude (LAT). They are implemented in
TrkCmd() function.

���������
����	
��
 	��
 	���
���
 	���
�
��	���
�
��	���
�
��	��

����	
��
 	
	
��	���
���
 	��

	��
 	���
�
��	���
�
��	��
�
��	���
���
 	���

Illustration 11 : Angles conversion formulas

GMRT-TIFR Technical Report
ABCcom software Page 20

V

Sun1

2

9.3.4.Tracking routine
Some additional parameters must be taken into account when implementing the tracking routine.

Azimuth outer / inner angle:
The Azimuth axis can go continuously from -270 to + 270 deg. The formula returns an angle in [-180;
+180], when using an atan2() that takes into account the numerator and denominator signs. The conversion
between GMRT antenna azimuth and astronomical azimuth is given in Illustration 11. When the formula
gives an angle in [0;90] or in [270;360], one must then choose if the angle given to SSC will be in [-270;-
90] or in [+90;+270]. This is set by a OutTrack parameter sent from Teleset.

Illustration 12 : (left) GMRT antenna AZ, (right) astronomical AZ

The elevation antenna axis can go from +15 to +110 degrees. The formula answer gives an angle in [-90;
+90]. Below +15 deg, the source is too low or below the horizon to be pointed. And when going beyond
+90 deg, EL diminishes and AZ will be +/-180 deg by the formula. Some time is needed for this rotation
and this zone is of lesser pointing accuracy.

SSC buffer for Track commands:
A Track command takes 3 parameters: EL, AZ, and time. SSC processes the command so that the AZ and
EL are reached at the given time. But SSC also has a buffer for one tracking command. If a track command
is received while another is in process, the SSC keeps it in the buffer, completes its current tracking and
processes the buffered command just after.
So the tracking mode steps are:

� t0 : send Track, t0 + 30 secs, EL and AZ of target position at t0+30secs
� t0bis (just after t0) : send Track, t0+60 secs, EL and AZ of target position at t0+60 secs
� t1 = t0 + 30 secs : send Track, t1+60 secs, EL and AZ of target position at t1+60 secs
� ...
� tn = tn-1 + 30 secs : send Track, tn+60 secs, EL and AZ of target position tn+60 secs

This is implemented in Run() function of the Track class, with use of TrkCount variable and calls to
NewTrkCmd() and TrkCmd()) functions.

GMRT-TIFR Technical Report
ABCcom software Page 21

-270 +270

0

-90+90

+180

+270

0

+90

+180

The table below resumes parameters required for the Track object. They are sent by Teleset. Rate
parameters are different from 0 when the source motion cannot be neglected.

Parameter Description

Loading
parameters

AZ offset angle
 EL offset angle

 Antenna Latitude
 Antenna Longitude

Offset to adjust antenna AZ axis
Offset to adjust antenna EL axis

in degree
in degree

Setting
parameters

TrackFlag
 OutTrack

 Right Ascension
 DEClinaison

 RA rate
 DEC rate
 Time rate

Flag to start / stop tracking mode
Flag to choose [-270;-90] or [90;270]

source RA, in radian
source DEC, in radian

in deg/hour
in deg/hour

Time reference for the rates, in hour

Illustration 13 : Tracking parameters

GMRT-TIFR Technical Report
ABCcom software Page 22

10.MCM System Thread classes

A MCM System Thread class is implementing the communication in a thread between ABCcom and an
antenna system which has some MCM units. Those classes are Expsystm, Fpssystm, Losystm, Ifsystm and
Fesystm respectively for EXP, FPS, LO, IF, and FE Systems. Each class has variables to store the system
parameters, and functions to generate operational commands and decode system answers.
When MCM System Thread objects are created, pointers to corresponding unit buffers are passed to them
so they can put in packets to write on the port, and get unit answers. For instance, Losystm has pointers to
buffers of MCM 2 and MCM 3 to communicate with these units (cf. Illustration 5).
Each System Thread activity is recorded in a specific history file (SysEXP, sysFPS, sysLO, sysFE, and
sysIF).

MCM System Thread classes are coded according to the following inheritance tree diagram:

Illustration 14 : Inheritance tree of MCM System classes

10.1.LowMcm and LowFps file classes
Two protocols are used for MCM communication in GMRT systems. A standard one concerns MCM 2, 3,
5, and 10 and is detailed in ref. [5]. It is implemented in LowWrite and LowRead classes of lowmcm files.
A derived protocol is used for MCM 14 of the FPS system, and is detailed in ref. [3] and [4]. It is
implemented in LowfWrite and LowfRead classes of lowfps files.
A packet message to MCM is built in two successive tasks. First the command code and its arguments are
stored by Thread System functions in a CMD structure, named CurrentCMD. Then this structure is passed
to a function of LowWrite (or LowfWrite) class, to form the final MSG message which is sent on the Serial
Port.
A MSG structure is coded in C to be passed to write and read functions of link communication (cf. section
12). It is not possible to use a string library since data bytes can happen to be an ASCII delimiter. So the
packet size is stored along the data bytes in MSG.
In the other direction, a function of LowRead (or LowfRead) class is used to decode MCM packets headers.

Such a transition is not required for SSC packets since their structure (in ASCII) is simpler and therefore
packets can be formed and decoded in one step.

GMRT-TIFR Technical Report
ABCcom software Page 23

Sysbase<>

Expsystm Fpssystm SystM

Losystm Ifsystm Fesystm

10.2.Sysbase<> abstract base class
Sysbase<> is a base class coded in sysbase files. It gathers arguments and functions that can be used for all
derived classes. It has two template variables that are respectively either of LowWrite and LowRead
classes, or LowWrite and LowRead classes. Its other main variables are:

� Setparam[] and Loadparam[] store the system parameters. All parameters are floats, the setting ones
are for the current system values, and loading ones are constant for an antenna.

� Mcm1 and Mcm2 are pointers to system unit buffers.
� CurrentCmd is the structure for the current MCM command. Most of operations are a series of

several commands, placed in Mcm1 or Mcm2.
� DataPlus is the structure for storing data (error codes...). It is transmitted to Teleset during the next

'State' answer.
� CmdCode contain flag bits for basic system operations.
� CmdState[i] contains the ieme operation status:

Bit no 0 1 2 3 7

command In process failed done discarded Syst not set

� MonInterval: number of seconds between automatic operations.

Sysbase<> main functions are:
� Start() is the main loop of the thread, calling successively:

� AnalyseCom() generates commands to the system, implemented in derived objects.
� AnalyseAns() decodes the system answers with Read() and PostRead() sub functions.
� AutoOperation() starts AutoSys() every MonInterval seconds. AutoSys() is implemented in

derived objects.
� HardRecordOn(), HardRecordOff() write system parameters in a file. When the PC reboots

unexpectedly (power failure) and ABCcom restarts, Init() restores the parameters from this file and
reset them with Reconfigure() (implemented in derived classes).

� DirectCmd() and Copy() are functions to write commands in an unit buffer. DirectCmd() is for a
single command, Copy for a set of several commands. The buffer has flags to signal when
commands can be sent and when answers can be read (FileMcm class).

10.3.SysM abstract base class
SysM class is coded in systm files. It is a base class providing variables and functions common to LO, IF
and FE systems. Beside inheriting Sysbase<LowWrite, LowRead>, its main variables are:

� Monvolt[], to store system voltages decoded after a monitoring operation
� CmdSys is a byte to code system specific operations (when bit 4 of CmdCode is raised), and

StateSys contains its status. The code used is the same than for other operations, but only one
CmdSys can be in process at a time.

� thSys is a p_thread POSIX variable. Threads are normally implemented in C. Here a C helper
function is used for every thread. This HelperSYS C function calls Start() for the SysM object passed
in argument.

GMRT-TIFR Technical Report
ABCcom software Page 24

SysM main functions are:
� AnalyseCom() decodes CmdCode byte according to the next table.

Bit nb 0 1 2 3 4

command Monitor() Set() Reboot() Exit SysCmd()

� Write() then starts the appropriate function (Set(), Monitor(), Reboot() or SysCmd(), implemented in
derived objects) and update CmdState bytes.

� AutoSys() raises the monitoring operation bit of CmdCode ; Reconfigure() raises the setting
operation bit of CmdCode.

� PostRead() starts the analyze of monitoring answer, and update CmdState bytes.
� Other functions are routines to convert data types.

10.4.Final System Threads classes

10.4.1.Expsystm
Expsystm is coded in sysbase files. It is the Thread class for the MCM Expert System and it inherits
Sysbase<LowWrite, LowRead>.
Expsystm is meant only to transmit direct command (CmdCode = 0x01) to the MCM pointed by Mcm1
variable. Answers are placed faithfully in DataPlus variable and transmitted in the next 'State' answer, with
eventual time-outs.

10.4.2.Fpssystm
Fpssystm is coded in fpssystm files. It inherits Sysbase<LowfWrite, LowfRead> and has the following
specifications:

� Loading parameters: 4 encoder positions for the feed turret.
� Setting parameter: current feed selected.
� Operation functions and CmdCode :

CmdCode bit nb 0 1 2 3
function InitFps() MvFps() DirectCmd() Exit

� Decoding functions: DecodeList(), DecodeStatus().
� Decoding variables: EncCount, Rpm, AnsStatus, FpsStatus. DataPlus is filled with the second

logical sub packet of FPS answer (cf. [3] and [4]).
� Reconfigure() calls MvFps().
� AutoSys() sends a FPS Null command with DirectCmd().

GMRT-TIFR Technical Report
ABCcom software Page 25

10.4.3.Losystm, Ifsystm and Fesystm
Losystm is coded in losystm files, Ifsystm in ifsystm files, and Fesystm in fesystm files. They all inherit
SystM class which is described in a previous paragraph. Their files contain the implementation of functions
specific to the system:

� Operation functions: Set(), Monitor(), Reboot(), SysCmd().
� Decoding functions: ExtractData(), CheckSettings(), UpdateStateSys().

Additional sub functions are mostly routines called by the above functions.

Class variables are resumed in the next table:

Losystm Ifsystm Fesystm

loading
parameters

-- - Pre-Attenuations Ch1, Ch2
- Post-Gains Ch1, Ch2
(all ant values: 8x11)

--

setting parameters

- LO frequency 1
- LO frequency 2

- Bandwidth Ch1, Ch2
- ALC On/Off Ch1, Ch2
- Frequency band 1,
frequency band 2 (0 if not
dual)
- Pre-Attenuations Ch1, Ch2
- Post-Gains Ch1, Ch2

- Noise generation cycle
- Walsh enable, Walsh group
- Frequency band 1, frequency
band 2 (0 if not dual)
- Solar attenuation 1, solar
attenuation 2 (0 if not dual)
- Polarization swap
- Noise calibration level

SysCmd

- 1: set aage
- 2: set piche

- 1: set specific pre-
attenuation and post-gain for
Ch1 and 2

- 1: set MCM 5 on
- 2: set MCM 5 off
- 3: set NG on
- 4: set NG off
- 5: set NG 50% on
- 6: set NG 25% on

SysState

- 0x01: aage set
- 0x02: piche set

- 0x01: specific pre-
attenuation and post-gain set
for Ch1 and 2

- 1st bit (0x01): MCM 5 on/off
- 2nd bit: NG on/off
- 3rd bit: NG50 on/off
- 4th bit (0x08): NG25 on/off

decoding
variables

DataPlus

Monvolt

- monitoring error code
- 2 monitored values
relative to FE
- 2 LO lock voltages.

- IF array of raw monitored
data.

 --

- monitoring error code

- reference voltages for FE box
1 and FE box 2 (4 floats)

Illustration 15 : SystM derived class parameters

GMRT-TIFR Technical Report
ABCcom software Page 26

After reading monitoring answers from a system, the Threads checks if the monitored data matches with the
setting parameters. In case they do not, a monitoring error code is formed in DataPlus variable to be sent to
Teleset with the next 'State' answer.

� LO error code: composed of 12 bytes, 6 for MCM2 and 6 for MCM3. Depending on the selected LO
synthesizers, those bytes may not be relevant. A decoding stage writes values of error bytes, which are
then 'and-ed' with a relevance mask to form the final error code.
MCM 2 is for synthesizer 1, and MCM 3 for synthesizer 2. Their 6 error bytes follow the table below:

Bit nb 0 1 2 3 4 5 6 7

byte 0 N5 N6

byte 1 M1 M2 M3 M4 N1 N2 N3 N4

byte 2 YigDac1 YigDac2 YigDac3 YigDac4 YigDac5 YigDac6 YigAt1 YigAt2

byte 3 Fstep1 Fstep5

byte 4 D77cp1 D77cp2 D77cp3 D77cp4 D77cp5 D77cp6 D64cp1 D64cp2

byte 5 Vco1On Vco2On Vco3On YigOn

'Relevance' Masks:
mask 1: [0x03, 0xff, 0x00, 0x03, 0xff, 0x0f] ; mask 2: [0x00, 0x00, 0x00, 0x00, 0xc0, 0x00]
If synthesizer 1 is used (one LO < 600MHz), the error code is obtained by 'and-ing' mask1 to the first 6
bytes, else by 'and-ing' mask2. If synthesizer 2 is used (one LO > 600MHz), the error code is obtained
directly by the last 6 bytes, else by 'and-ing' mask2 to them.

� FE error code: composed of 3 bytes. Except in dual frequency observation, only one FE box is used and
the third byte is always null. The error bytes follow the table below:

Bit nb 0 1 2 3 4 5

byte 0: CB Ch2
frequency

Ch2 solar
attenuation

swap Ch1 frequency Ch2 solar
attenuation

byte 1: FE
box 1

Freq. calibration
noise level

Walsh on/off RF on/off noise
generation

on/off
byte 2: FE

box 2
Freq. calibration

noise level
Walsh on/off RF on/off noise

generation
on/off

� IF error code: checking operation is not implemented yet, the IF system being currently changed in
GMRT. Furthermore, the IF monitoring includes the LOR monitoring. All answers contain data that are
crucial and must be transmitted to Teleset. The total monitoring results in a 16x30 raw data array, stored
in DataPlus.

GMRT-TIFR Technical Report
ABCcom software Page 27

11.PortMulti and Comh classes

High level communication between ABCcom and antenna systems has been explained in previous sections.
From now on the description starts to go down to lower communication layers, with objects closer to the PC
Serial Ports.

11.1.PortMulti, FileMcm and ListMcm classes
With RS-485 link, many MCMs can be connected on one serial port, in opposition to SSC (RS-422) which
has one dedicated port. This MCM feature imposes a specific software design.
From ConfigABC file, ABCcom program creates one PortMulti object per MCM-serial port. This object
has a PortMcm variable, including one FileMcm variable per MCM unit connected, itself divided into two
ListMcm (cf. next diagram). Its activity is recorded in a MiPort history file, with i index of the port.
PortMcm and its sub classes are implemented in common files.

Illustration 16 : PortMcm structure

☞Note: A PortSsc structure for the SSC-serial port has already been described as a part of Servo Thread
(cf. 9.1).

A ListMcm object is composed of a chained list of two MSG structures, one for commands and one for
answer messages. A chained list corresponds to one series of commands (or answers), which corresponds to
one operation. ListPrio and CurrentSys are integers used to synchronize the list access between different
threads.

There is one FileMcm object for each MCM unit connected on the port. It is represented as a NCN unit
buffer in Illustration 5. It stores its MCM address, the number of time-outs occurred with this unit, and two
ListMcm objects. ListMcm 2 is treated by PortMulti in higher priority than ListMcm 1. Typically, System
Threads which have pointers on FileMcm objects, place long series of monitoring commands in ListMcm 1,
and other series of commands like reboot or set in ListMcm 2.

GMRT-TIFR Technical Report
ABCcom software Page 28

PortMulti thread

...ListMcm
1

ListMcm
2

FileMcm 1

ListMcm
1

ListMcm
2

FileMcm 2

PortMcm

The PortMulti class is implemented in mcmport files. A PortMulti object handles all communication going
on through one MCM-serial port. In a loop, its thread selects a FileMcm and one valid ListMcm, and sends
one command on the serial port. Then it gets the MCM answer, places it in the ListMcm chain, and updates
different variables (next list element, time-outs, synchronization variables). The loop restarts with the next
valid FileMcm. For communication on the serial port, PortMulti uses C functions implemented in
mcmdriver.c file (cf. 12.3).

11.2.Comh and LocalComh classes
Comh is the class of ABCcom program in charge of handling packets exchanged with Teleset. For the
communication on the serial port, Comh uses C functions implemented in comhlink files (cf. 12.1). Packets
from Teleset are stored in a PortComh FILO structure, and packets to Teleset are directly sent. Comh also
filters incoming packets according to the ABC address.

LocalComh is the class equivalent to Comh, but adapted to the local Teleset communication. Instead of
using a serial port, it communicates through a Shared Memory. On Teleset command, ABCcom can starts
and stop a local mode (cf. 7.2). This is equivalent to creating or deleting a LocalComh object. This one
creates and initializes a shared memory structure (ShareCom), which contains buffers for packets
exchanged with Local Teleset. Thus any Local Teleset would fail attaching to the Shared Memory when
ABCcom has its local mode off.

Comh and LocalComh are implemented in comh files. Their activities are recorded respectively in Comh
and LocalComh history files.

GMRT-TIFR Technical Report
ABCcom software Page 29

12.Serial Port communications

A serial communication is asynchronous and implemented in Linux by providing the open, close, read and
write functions for the PC serial ports. ABCcom has three different sorts of serial communication, each
implemented in ssclink, comhlink, shelllink and mcmcom C files.

12.1.Teleset link communication
The ABC is connected on one side with the CEB, via the optical link up to Online PC. A complex hardware
card (like CEBCOM PIU) has to be used to link ABC PC with GMRT optical link. For the implementation
and testing phases of the ABCcom, I have used a simple RS-232 serial port communication connected to
another serial port controlled by Teleset. Bytes are coded on 10 bits: 1 start bit, 8 data bits and 1 stop bits.
The baud rate is chosen at 9.6 kbps.
Two different approaches have been implemented. In shelllink files, the 'read' function is in non-blocking
mode with a signal interruption handler. When data arrive on the port, Linux signal SIGIO is raised and
data are read by one handler function, and stored in a circular queue. A higher read function polls this
queue. The comhlink files implement a simpler 'read' function without interruption handler, assuming that
the higher read function will poll the port frequently enough. In ABCcom, Comh block is using comhlink
functions. AbcShell is using shelllink functions.

12.2. Servo link communication
SSC unit is connected to ABC through a serial full-duplex RS-422 link. The RS-422 standard allows long
cable distances thanks to its twisted pairs for Rx and Tx lines. Bytes are coded on 11 bits: 1 start bit, 8 data
bits and 2 stop bits. The baud rate is fixed at 9.6 kbps.
A PC is originally equipped with one or two serial ports, on which the default communication follows the
RS-232 standard. A conversion to RS-422 standard only requires a very small hardware converter, and no
software change.
ABC sends messages to SSC which then answers, but SSC can also send an event message by itself. For
this communication (cf. [1] and [2]), a protocol is used to provide acknowledgment, error detection, and
retry mechanisms. It is character oriented using the ASCII standard format. The ssclink files implement the
low level functions of this protocol, the 'read' function is in non-blocking mode with a signal interruption
handler.

12.3.MCM link communication
RS-485 standard allows long distance multi-point communication, but restricts it to half duplex. Thus a
master (ABC) and many slave components (MCMs) can be connected on a single link.
RS-485 communication with a PC requires a small hardware converter, and a 485 driver implementing a 9-
bit protocol for the multi-point performance at 9.6 kbps. This program is mcmdriver, a Kernel module for
Linux written for MCM communications (cf. [5]). A better second version is used, it has to be previously
loaded on appropriated ports.

GMRT-TIFR Technical Report
ABCcom software Page 30

13.Conclusion

ABCcom is a Linux PC software for GMRT Telemetry System. It is to be placed in an antenna shell to
communicate on one side with antenna systems via serial port connections, and with Teleset control room
software on the other side via optical link.

This software is mainly coded in C++ and thus allows an object oriented design. This is very convenient for
general organization and future evolutions. Shall any modification be done in ABCcom code, the
programmer must first understand the general block diagram to locate which object he wants to write in and
how this can influence surrounding blocks.
ABCcom uses a multi-threading technique to optimize its efficiency. It also performs advanced telemetry
tasks compared to the previous ABC unit, reducing the communication between GMRT control room and
antennas.

ABCcom is setting and monitoring each antenna system (LO, FE, IF, FPS and Servo). It does not require
any modification on those systems. On the control room side, the protocol is fully changed and Teleset
program has to be installed to communicate with all antenna ABCcom PCs.

To conclude, ABCcom software was tested in GMRT laboratories all along its implementation phase.
Running locally a first version of Teleset program, ABCcom software has been thoroughly and successfully
tested in GMRT C9 antenna during the maintenance period of November 2005.

GMRT-TIFR Technical Report
ABCcom software Page 31

References and label index

References:
[1] BARC, Servo software BARC: SSC interface details, April 1991
[2] BARC, Newsmu pascal program code, 1997
[3] Mukund Gadgil, Feed Positioning System Software, April 1992, GMRT technical report.
[4] Mukund Gadgil, FPS DOS program code, 1992.
[5] Laurent Pommier, Mcmcom program, a Linux PC / MCM communication, September 2004, GMRT
technical report.
[6] Laurent Pommier, Teleset software of GMRT Telemetry System , March 2006, GMRT technical report.
[7] Laurent Pommier, Communication protocol between ABCcom and Teleset, March 2006, GMRT
technical report.

Index table:
Label Full Name
ABC Antenna Based Computer
ANTCOM Antenna Computer
AZ Azimuth

CEB Central Electronic Building
COMH Communication Handler
DEC Declinaison
EL Elevation
EXP Expert system
FE Front End system

FILO First In Last Out list
FPS Feed Positioning System
GMRT Giant Metrewave Radio Telescope
IF Intermediary Frequency system
LO Local Oscillator system
MCM Monitor and Control Module

PIU Plug In Unit
POSIX Portable Operating System Interface
RA Right Ascension
RS Research Standard
SSC Station Servo Computer
UART Universal Asynchronous Receiver Transmitter

GMRT-TIFR Technical Report
ABCcom software Page 32

Appendix A: Tables of ABCcom file contents

� C++ files for general and System Com classes:

Filename Included headers Classes Description

mainshell
(.cpp, .h)

common.h AbcShell Mode for Remote Linux shell
and files transfer
ABCcom main function

abccom
(.cpp, .h)

common.h, mcmport.h,
comh.h, comsys.h,
comhigh.h

Config, Comabc, AbcPlus Initial ABCcom configuration,
Transfer of packets between
Comh object and system objects

combase
(.cpp, .h)

common.h, systm.h,
servo.h

Combase, Comssc Basic com. utilities and SSC
specific com

comsys
(.cpp, .h)

common.h, systm.h,
fpssystm.h, comhigh.h

Comsysbase<>, Comsys,
Comlo, Comif,
Comfe, Comexp, Comfps

Com. utilities for MCM systems,
Com. classes for LO, IF, FE,
EXP and FPS

common
(.cpp, .h)

none MSG (C struct), CMD,
LogFile, ListMcm, FileMcm.
PortMcm, BaseFILO,
DisplayFILO, PortSsc

Objects common to several files,
Buffer structures,
Log file class for the ABCcom
history.

� C++ files for System Thread classes:

Filename Included headers Classes Description

sysbase (.cpp, .h) common.h, lowmcm.h SysBase<>, Expsystm Base object for MCM system
thread
thread for operations with EXP

systm (.cpp, .h) common.h, lowmcm.h
sysbase.h

SystM Base object for LO / IF / FE
systems

fesystm (.cpp, .h) common.h, systm.h Fesystm Thread for operations with FE

fpssystm (.cpp, .h) common.h, lowfps.h
sysbase.h

Fpssystm Thread for operations with FPS

ifsystm (.cpp, .h) common.h, systm.h Ifsystm Thread for operations with IF

losystm (.cpp, .h) common.h, systm.h Losystm Thread for operations with LO

servo (.cpp, .h) common.h WriteCmd, ReadResp,
Track, Servo

Thread for operations with Servo

GMRT-TIFR Technical Report
ABCcom software Page 33

� C++ files for lower level classes:

Filename Included
headers

Classes Description

lowfps
(.cpp, .h)

common.h LowfWrite,
LowfRead

Make final FPS com. packets
Decode FPS com. header

lowmcm
(.cpp, .h)

common.h LowWrite,
LowRead

Make final MCM com. packets
Decode MCM com. header

mcmport (.cpp, .
h)

common.h PortMulti Handler thread for MCM com. on a serial port

comh (.cpp, .h) common.h Comh, ShareCom,
LocalComh

Com. on serial port with Teleset
Com. through shared memory with local
Teleset

� C files for serial port communication:

Filename Included
headers

Description

comhlink
(.c, .h)

none Serial port communication with Teleset for ABC mode
C open/write/read/close functions (RS-232, poll and master/slave)

shelllink
(.c, .h)

none Serial port communication with Teleset for shell mode
C open/write/read/close functions (RS-232, interrupt based and full
duplex))

ssclink
(.c, .h)

none Serial port communication with Servo Bin
C open/write/read/close functions (RS-232, interrupt based and full
duplex)
Servo link layer protocol (acknowledgment and retry mechanisms)

mcmdriver
(.c)

none Kernel module driver for RS-485 communication between MCM units
and Linux PC (9th bit protocol for multi-point link).
Must be loaded separately from ABCcom program.

GMRT-TIFR Technical Report
ABCcom software Page 34

Appendix B: ABCcom history file

� 29Dec14h_ABC_rec
�

GMRT-TIFR Technical Report
ABCcom software Page 35

Appendix C: ABCcom UML class diagrams

TIFR – NCRA – GMRT Technical Report
ABCcom software 36 / 37

Appendix D: ABCcom source code

� Makefile for mcmdriver
� mcmdriver.c (last version)

� Makefile for ABCcom
� ABCcom code files:

abccom.cpp common.cpp ifsystm.cpp mainshell.cpp ssclink.c
abccom.h common.h ifsystm.h mainshell.h ssclink.h

combase.cpp comsys.cpp losystm.cpp mcmport.cpp sysbase.cpp
combase.h comsys.h losystm.h mcmport.h sysbase.h

comh.cpp fesystm.cpp lowfps.cpp servo.cpp systm.cpp
comh.h fesystm.h lowfps.h servo.h systm.h

comhlink.c fpssystm.cpp lowmcm.cpp shelllink.c
comhlink.h fpssystm.h lowmcm.h shelllink.h

GMRT-TIFR Technical Report
ABCcom software Page 37

