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Chapter One 

Introduction 

 

 
 Microwave filters are vital components in a huge variety of electronic systems, 

including mobile radio, Satellite Communication Receivers and Radar. Due to the 

advancement in the field of mobile and wireless communications, fully integrated 

analogue filters for high-frequency applications are now receiving great interest 

worldwide. 

 

 The use of microstrip in the design of microwave components and integrated 

circuits has gained tremendous popularity since the last decade because microstrips can 

operate in a wide range of frequencies. Furthermore, microstrip is lightweight, easy to 

fabricate and integrate in a cost effective way. Many researchers have presented 

numerous equations for the analysis and synthesis of microstrips. But with advent of 

various Full Wave EM Simulators the designing of Microwave structures have become 

easier.  

  

 This project deals with the designing and fabrication of different types of 

microstrip bandpass filters. The designing is done using AWR Microwave Office 

simulation program developed by Applied Wave Research USA. In the design of a 

Microwave filter using microstrips two types of design approaches are taken. First, 

transforming the lumped element design to equivalent planar structure. Second, using 

microstrip resonators and the concepts of immitance inverter. For the bandpass design the 

second approach is used. 

 

 Two types of filter design are dealt in this project. Hairpin Bandpass filter and 

Open Loop, Cross Coupled Bandpass filters. Hairpin filter has a Chebyshev response 

where as the Open Loop, Cross Coupled filter gives a elliptical response. With the help of 

the elliptical response Open Loop, Cross Coupled filter achieves a sharper cut off.  
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Chapter Two 

Network Theory 
 

 

Most of the RF and Microwave systems and devices can be modeled as a two port 

network. The two port representation basically helps in isolating either a complete circuit 

or a part of it and finding its characteristic parameters. Once this is done, the isolated part 

of the circuit, with a set of distinctive properties, enables us to abstract away its specific 

physical buildup, thus simplifying analysis. Any circuit can be transformed into a two-

port network provided that it does not contain an independent source. 

 

   

  

 
         
 

a1 

Es 

Zo2 

V2 V1 
b2 b1

 
Two-Port  
Network 

 ~ 
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Figure 2.1: Two port network with its wave variables 

 

Where V1, V2 and I1, I2 are the voltages and currents at respective ports and Zo1 

and Zo2 are the terminal impedances. At RF and Microwave frequencies it is difficult to 

measure the voltages, thus new wave variables a1, b1 and a2, b2 are introduced with a 

signifying the incident wave and b implying the reflected wave. 

The wave variables in terms of voltage and current are defined as follows  
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Which gives power at each port  Pn 
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Now we will see few types of parameters used to define a two port network 

 

2.1 Scattering Parameters 

 

These are a set of parameters describing the scattering and reflection of traveling 

waves when a network is inserted into a transmission line. S- parameters are normally 

used to characterize high frequency networks, where simple models valid at lower 

frequencies cannot be applied. S-parameters are normally measured as a function of 

frequency, so when looking at the formulae for S-parameters it is important to note that 

frequency is implied, and that the complex gain (i.e. gain and phase) is also assumed. For 

this reason, S-parameters are often called complex scattering parameters. 
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11S  is the reflection coefficient of the input 

22S  is the reflection coefficient of the output 

21S  is the forward transmission gain 

12S  is the reverse transmission gain 

 

These definitions can also be written in a matrix form as  

    ⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

2

1

2221

1211

2

1

a
a

SS
SS

b
b

 

 3



2.2 Open Circuit Impedance Parameters 

 

Impedance parameters are very useful in designing impedance matching and 

power distribution systems. Two port networks can either be voltage or current driven. 

For the current driven networks the input and output terminal voltage can be presented in 

matrix form as follows: 

     ⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

2

1

2221

2111

2

1

I
I

ZZ
ZZ

V
V

Where the matrix which contain the z parameter is also called z matrix and is denoted by 

[z] 

 

The z parameters for a two port network can be mathematically defined as  
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For reciprocal network . For a symmetrical network  and 

. And for lossless network, the z parameters are imaginary. 

2112 ZZ = 2112 ZZ =

2211 ZZ =

 

2.3 Short-Circuit Admittance Parameters 

 

Admittance parameters are very useful for describing the network when impedance 

parameters may not be existing. This is solved by finding the second set of parameters by 

expressing the terminal current in terms of the voltage.  The input and output terminal 

current can be presented in matrix form as follows: 
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Where the matrix which contain the y parameter is also called y matrix and is denoted by 

[y] 

 

 4



The Y parameters for a two port network can be mathematically defined as  
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For reciprocal network 2112 YY = . For a symmetrical network  and 

. And for lossless network, the y parameters are imaginary. 

2112 YY =

2211 YY =

 

2.4  ABCD parameters 

 

In ABCD parameter the input port voltage and current are considered variable and 

equation is formed in terms of the output voltage and current.  The equation can be 

represented in matrix form as follows:  
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The ABCD parameters for a two port network can be mathematically defined as  

02

1

2 =

=
IV

V
A    

02

1

2 =−
=

VI
V

B   

02

1

2 =

=
IV

I
C    

02

1

2 =−
=

VI
I

D  

AD-BC=1 for reciprocal network 

And A=D for symmetrical network 

ABCD parameters are useful in analysis when the network can be broken into cascaded 

sub networks. 
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2.5  Important Definition 

 

2.5.1  Insertion Loss 

 

The loss resulting from the insertion of a network in a transmission line, 

expressed as the reciprocal of the ratio of the signal power delivered to that part of the 

line following the network to the signal power delivered to that same part before 

insertion. It is usually expressed in dB. 

mnA SL log20−= dB  m, n = 1, 2 ( )nm ≠  

where LA denotes the insertion loss between the ports n and m. 

 

2.5.2  Return Loss 

 

The Return Loss of a line is the ratio of the power reflected back from the line to 

the power transmitted into the line. It is usually expressed in dB. 

nnR SL log20= dB  n = 1, 2 

  

2.5.3  Voltage Standing Wave Ratio 

 

A standing wave may be formed when a wave is transmitted into one end of a 

transmission line and is reflected from the other end by an impedance mismatch. VSWR 

is the ratio of the maximum to minimum voltage in a standing wave pattern. 

  
nn

nn

S
S

VSWR
−

+
=

1
1

  n = 1,2. 

 

2.5.4  Phase Delay 

 

Whenever we insert a sinusoid into a filter, a sinusoid must come out. The only 

thing that can change between input and output are the amplitude and the phase. 

Comparing a zero crossing of the input to a zero crossing of the output measures the so-
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called phase delay. To quantify this we define an input, ( )tωsin and an output ( )φω −tsin . 

Then the phase delay pτ  is found by solving    

( )ptt τωφω −=− sin)sin(  

        ptt ωτωφω −=−  

  
ω
φτ =p seconds 

Where φ  is in radians and ω  is in radians per second. The phase delay is actually the 

time delay for a steady sinusoidal signal and is not necessarily the true signal delay 

because a steady sinusoidal signal doesn’t carry information. 

 

2.5.5  Group Delay 

 

Often the group delay is nothing more than the phase delay. This happens when 

the phase delay is independent of frequency. But when the phase delay depends on 

frequency, then a completely new velocity, the “group velocity" appears. Curiously, the 

group velocity is not an average of phase velocities.  

The simplest analysis of group delay begins by defining a filter input xt as the sum 

of two frequencies:   

ttxt 21 coscos ωω +=  

By using a trigonometric identity,    
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⎠
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⎝
⎛ −

= ttxt 2
cos

2
cos2 2121 ωωωω  

We see that the sum of two cosines looks like a cosine of the average frequency 

multiplied by a cosine of half the difference frequency.  

Each of the two frequencies could be delayed a different amount by a filter, so 

take the output of the filter yt to be 
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( ) ( )2211 coscos φωφω −+−= ttyt     

In doing this, we have assumed that neither frequency was attenuated. (The group 

velocity concept loses its simplicity and much of its utility in dissipative media.) Using 

the same trigonometric identity, we find that    
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Rewriting the beat factor in terms of a time delay tg, we now have  
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For a continuum of frequencies, the group delay is   

     
ω
φ

d
dtg =  

This represents the true signal (baseband signal) delay, and is also referred to as the 

envelope delay. 

 

 

2.6 Immittance Inverter 

 

 Immittance Inverters are of two types, Impedance Inverter and Admittance 

inverter. The following Block diagram shows a Immittance Inverter. 
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Figure 2.2: Immittance Inverter 

 

 An ideal Impedance Inverter is a two-port network that has a unique property at 

all frequencies, i.e. if it is terminated in impedance Z1 on one port, the impedance Z2 seen 

looking in the other port is  

  
1

2

2 Z
KZ =  

 

 where K is real and defined as characteristic impedance of the inverter. An 

impedance inverter converts a capacitance to inductance and vice versa. The ABCD 

matrix of the impedance inverter is  
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 Similarly an ideal Admittance Inverter is a two-port network that if terminated in 

admittance Y1 on one port, the impedance Y2 seen looking in the other port is  

  
1

2

2 Y
JY =  

 

 where J is real and defined as characteristic admittance of the inverter. Likewise 

an admittance inverter converts a capacitance to inductance and vice versa. The ABCD 

matrix of the admittance inverter is  
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Properties of Immitance Inverter  

 If a series inductance is present between two Impedance Inverters, it looks like a 

shunt capacitance from its exterior terminals.  

 

 

 

 

 

K K 
L 

C 

 

Figure 2.3: Immitance inverter used to convert a shunt capacitance into a equivalent  
       circuit with series inductance. 
 

 Similarly if a shunt capacitance is present between two Admittance Inverters, it 

looks like a series inductance from its exterior terminals. 

J J 

C 

L  

 

 

 

Figure 2.4: Immitance inverter used to convert a series inductance into a equivalent  
        circuit with shunt capacitance. 
 

 Making use of the properties of Immittance Inverters, bandpass filters may be 

realized by series LC. resonant circuits separated by Impedance Inverters (K) or shunt 

LC. parallel resonant circuits separated by Admittance Inverters (J). 
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Chapter Three 

Microstrip Basics 
 

 

A general microstrip structure is shown in the figure 3.1, a microstip transmission 

line consists of a thin conductor strip over a dielectric substrate along with a ground plate 

at the bottom of the dielectric. 

W 

Ground plate

Dielectric substrate 

Conducting strip 

h 

t

εr

 

 

 

 

 

 

 

 

 

 

Figure 3.1: A basic Microstrip structure 

 

3.1  Waves In Microstrip Line 

 

Wave traveling in microstip line not only travel in the dielectric medium they also 

travel in the air media above the microstrip line. Thus they don’t support pure TEM 

waves. In pure TEM transmission, the waves have only transverse component and the 

propagation velocity only depends on the permittivity and the permeability of the 

substrate. But in the case of microstrip line the magnetic and electric field also contain a 

longitudinal component, and their propagation velocity is dependent on the physical 

dimensions of the Microstrip as well. 

If this longitudinal component is much smaller than the transverse component 

then the microstrip line can be approximated to TEM model. And this is called quasi 

TEM approximation. 
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3.2  Effective Dielectric Constant 

 

 Due to presence of two dielectric medium, air and the substrate, the effective 

dielectric constant replaces the relative dielectric constant of the substrate in the quasi 

TEM approximation. This effective dielectric constant is given in terms of Cd, 

capacitance per unit length with the dielectric substrate present and Ca, capacitance per 

unit length with dielectric constant replaced by air and is given by  
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d
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The effective dielectric constant in terms of W (width of the Microstrip), h (height 

of the substrate) and rε  (relative dielectric constant) given by Hammerstad and Jensen[5] 

is: 
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Accuracy of this model is 0.2% for 128≤rε  and 10001.0 ≤≤ u  

 

3.3  Characteristic impedance  

 

Characteristic impedance of the microstrip line is given by 

da
c CCc

Z 1
=  

where c is the velocity of electromagnetic waves in free space . smc /1099.2 8×=
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Expression for characteristic impedance by hammerstad and Jensen[5] is  
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The accuracy of recZ ε is better than 0.01% for 1≤u  and 0.03% for  1000≤u

 

3.4  Some Other Formulae 

 

3.4.1  W/h 

 

For W/h≤ 2 
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for W/h≥ 2 
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3.4.2  Guided Wavelength  

 

re
g ε

λ
λ 0=   

where 0λ  is the free space wavelength at frequency f. 

 

3.4.3  Propagation Constant  

 

gλ
πβ 2

=  

 

3.4.4  Phase Velocity 
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3.4.5  Electrical Length  

 

lβθ =  

θ  is called the electrical length whereas l is the physical length of the microstrip. 

Thus, 
2
πθ =  when 

4
gl

λ
=  and πθ =  when 

2
gl

λ
= . These are called quarter wavelength 

and half wavelength microstrip line and are important in the filter design. 

 

3.5  Effect of metal strip thickness 

  

When the strip thickness t becomes comparable to the width of the substrate then 

its effect needs to be considered while designing. The following formulae show its effect 

on the characteristic impedance and effective dielectric constant. 
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For W/h≤ 1 
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where reε  is the effective dielectric constant with t=0. It can be seen from the 

formulae that the effect of  t  is insignificant for small values of t/h ratio.  

 

3.6  Surface Waves And Higher-Order Modes 

 

Despite the absence of the top conductor there exists wave on ground plate guided 

by the air dielectric medium. These are called surface waves. The frequency at which 

these become significantly large is 

  
12

tan 1

−
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−

r

r
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επ
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where the phase velocity of the two modes become equal. 

 To avoid excitation of higher-order modes in Microstrip the frequency of 

operation is kept below the cut off frequency 
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3.7  Coupled Lines 

 

The following figure shows the cross section of a coupled line. Widely used in the 

construction of filters, they support two modes of excitation, even and odd mode.  

W Ws

rε  t

 

 

 

 

 

Figure 3.2: A Coupled Line Structure. 

 

 

3.7.1  Even Mode 

 

In even mode excitation both the microstrip coupled lines have the same voltage 

potential resulting in a magnetic wall at the symmetry plane 

. 

 + + + +  + + + + 

 C’f Cf  Cf Cp Cp C’f 

Magnetic wall 
 

 

 

 

 

 

Figure 3.3: Quasi-TEM, Even Mode of a Pair of Coupled Microstrip Lines 

 

Even mode capacitance is given by  

   '
ffpe CCCC ++=

where  is the parallel plate capacitance between the microstrip line and the ground 

plate. Hence  

pC

  
h

WC rp εε 0=  
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fC  is the fringe capacitance and is given by 

  p
c

re
f C

cZ
C −=

ε
2  

And  is the modified fringe capacitance, with the effect of the adjacent 

microstrip included. 

'
fC

  
)/8tanh()/(1

'

hsshA
C

C f
f +
=  

where  

  ( )[ ]h
WA 53.233.2exp1.0exp −−=  

The even mode characteristic impedance can also be obtained from the 

capacitance 

  1)( −= a
eece CCcZ  

where  is the even mode capacitance with air as a dielectric a
eC

And the effective dielectric constant for even mode is given as : 

  a
e

ee
re C

C
=ε  

 

3.7.2 Odd Mode 

 

In odd mode the coupled microstrip line possess opposite potential. This results 

into a electric wall at the symmetry. The following cross section diagram shows the same. 

 

 + + + +  − − − − 

 Cf  Cf Cp Cp 

Electric wall 

  Cga   Cga 

  Cgd   Cgd 

 

 

 

 

 

 

Figure 3.4: Quasi-TEM, Odd Mode of a Pair of Coupled Microstrip Lines 
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The resulting odd mode capacitance is given as  

  gagdfpo CCCCC +++=  

gaC  and  represent fringe capacitance between the two microstrip line over 

the air and over the dielectric. 

gdC

  ( )
( )kK
kKC oga

'

ε=  

where  

  
h

W
h

s
h

s
k

2+
=  

  2' 1 kk −=  

And the ratio of the elliptic function ( )
( )kK
kK '

 is given by 
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1
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π

π
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The odd mode characteristic impedance and effective dielectric constant is given as: 

  1)( −= a
ooco CCcZ  

where  is the even mode capacitance with air as a dielectric. a
eC

  a
o

oo
re C

C
=ε  

 

3.8  Lumped Elements to Microstrip Transform 

  

 The following figure shows a simple LC low pass filter circuit. At microwave 

frequencies the Microstrip lines act as inductor and capacitor. The Microstrip line has 
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both capacitance and inductance. If the Microstrip lines are made wide they have more 

capacitance and lower inductance and vice versa. 

 

 

 

 

 

 

 

L1 L2 L3 

C1 C2 
Z0 Z0 

Figure 3.5: Lumped Element LC Lowpass Filter.  

 

The following figure shows the equivalent microstrip realization of the lumped 

element filter. 

 

 

 

 

 

Figure 3.6: Microstrip Realization of a Lowpass Filter.  

Ll
oZ oZ

1L≈ 2L≈ 3L≈

1C≈ 2C≈

Cl

 

The important consideration while transforming is LC ZZZ 000 << , where Z0C  

and Z0L denote the characteristic impedances of the low and high impedance lines, 

respectively, and Z0 is the source impedance, which is usually 50 ohms for microstrip 

filters. 

A lower Z0C, results in a better approximation of a lumped-element capacitor, but 

the resulting line width W, must not allow any transverse resonance to occur at operating 

frequencies. 

A higher Z0L, leads to a better approximation of a lumped-element inductor, but 

Z0L must not be so high that its fabrication becomes inordinately difficult as a narrow 

line, or its current-carrying capability becomes a limitation. 
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The length of the capacitive and inductive microstrip lines can be calculated from 

the following equations 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

L

cgL
L Z

L
l

0

1sin
2

ω
π

λ
 

( )Cc
gC

C CZl 0
1sin

2
ω

π
λ −=  

where gLλ  and gCλ  are the guided wavelength of the inductive and capacitive 

microstrip line respectively and cω  is the frequency of operation in radians. which is 

usually 50 ohms for microstrip filters. Although the above formulae takes into account 

the capacitive effect of the low-impedance line and the inductive effect of the high 

impedance line but it does not take into account  the series reactance of the low-

impedance line and the shunt susceptance of the high-impedance lines. To include these 

effects, the lengths of the high and low impedance lines should be adjusted to satisfy the 

following equations. 

  ⎟
⎟
⎠

⎞
⎜
⎜
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⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
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L
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l
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λ
π

ω tan
2

sin 00  

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

gL

L

LgC

C

C
c

l
Z

l
Z

C
λ
π

λ
π

ω tan12
2

sin1

00

 

 

 20



Chapter four 

Hairpin Filter 
 

 

Out of various bandpass microstrip filters, Hairpin filter is one of the most 

preferred one. The concept of hairpin filter is same as parallel coupled half wavelength 

resonator filters. 

The advantage of hairpin filter over end coupled and parallel coupled microstrip 

realizations, is the optimal space utilization. This space utilization is achieved by folding 

of the half wavelength long resonators. Also the absence of any via to ground plane or 

any lumped element makes the design simpler. The following figure shows a typical 

hairpin structure. 

 

 

 

 

 

(a) (b) 

Figure 4.1: (a) tapped line input 5-pole Hairpin Filter (b) coupled line input 5-pole 

Hairpin Filter 

 

4.1  Hairpin Resonator  

4
λ

Figure 4.2 shows a single Hairpin Resonator. α  is called the 

slide angle. If the slide angle is small it might lead to coupling between 

the arms of individual resonator. The voltage at the end of hairpin arms 

is antiphase, and thus causes the arm to arm capacitance to have 

seemingly disproportionate effect. The added capacitance lowers the 

resonant frequency requiring a shortening of the hairpin to compensate. 

 

α  

Figure 4.2: Hairpin Resonator
To avoid this, slide angle is kept as large as possible. But 

by increasing the slide angle the coupling length between two 

resonators reduces, so as to attain the required coupling, the coupling spacing needs to be 
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reduced which posses a practical limitation. For practical design purpose slide angle is 

kept twice the strip width to avoid inter-element coupling. 

 

4.2  Tapped line input 

 

 Conventional filters employ coupled line input. Tapped line input has a space 

saving advantage over coupled line input. Further while designing sometime the coupling 

dimensions required for the input and output coupled line is very small and practically 

not achievable which hinders the realizability of the design. Thus tapped line input is 

preferred over coupled line input. 

2
π=L  

1θ=ltap  

Zo

2
π  

1θ  

πθ =  

Y 

 

 

 

 

 

 

 

 
(a) (b) 

 

Figure 4.3: (a) Tapped Hairpin Resonator Schematic. (b) Equialent Circuit of a Tapped  
        Hairpin Resonator 
 

Assuming negligible coupling between the arms of the hairpin resonator, the input 

admittance at the tap point can be given as  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+=+=

0

0

1
2
0 21

sin2 f
ffj

Q
YjBGY

eθ
π    

 

provided that 

1
0

0 <<
−
f

ff
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And  

( )
1cot 1

0

0 <<⎥
⎦

⎤
⎢
⎣

⎡ −
θ

θ
f

ff
   

 

where is the resonant frequency, is the instantaneous frequency , Q0f f e is singly 

loaded Q and Z =1/Y

M12

C C C 

L/2  L/2 L/2 L/2 L/2 i/p 

Qe1 QenM23 M(n-1)n

0 0 is the characteristic impedance of the hairpin resonator. 

Comparing the real part singly loaded Q can be obtained as 

1
2

0 sin2 θ
π

Z
RQe =    

where R=1/G. 

 

4.3  Design Parameter For Hairpin Filter  

 

For Designing a Hairpin filter, Full Wave EM simulation is used. For the design 

purpose the low pass prototype (Butterworth, Chebyshev, Bessel)[Appendix A] is 

selected according to the design requirement.  

 

 

 

 

Figure 4.4: Equivalent circuit of the n-pole Hairpin Bandpass Filter 

 

 

As seen from the equivalent circuit of n pole Hairpin filter, each resonator can be 

modeled as a combination of inductor and capacitor. The mutual coupling coefficient 

between two resonators is Mi+1,i. Q  and Qe1 en are the Quality Factor at the input and 

output.  
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Coupling coefficient and Quality Factor can be calculated as 

FBW
gg

Qe
10

1 =    

FBW
gg

Q nn
en

1+=   

1
1,

+
+ =

ii
ii gg

FBWM    for 1=i  to n-1   

where FBW is the fractional bandwidth and  are the normalized lowpass element 

of the desired low pass filter approximation. 

1......1,0 +ng

The quality factor can be substituted and the ltap length can be calculated as 

⎟
⎟
⎟

⎠

⎞
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0
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2
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f
CL
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Chapter Five 

Open Loop, Cross coupled Planar Filter 
 

 

When the frequency selectivity and low band pass loss are considered to be the 

prime importance then elliptical filters are employed. Elliptical filters exhibit equi-ripple 

response in both passband and stopband.  

 Simple concept of multipath propagation is used to cancel out signals and to 

obtain transmission zero at finite frequency or group delay flattening or both 

simultaneously. Although such multipath filters are realized using waveguide cavities or 

dielectric resonator loaded cavities, because of their low insertion loss can also be 

developed as planar structure. This is achieved by employing cross coupling between two 

nonadjacent resonator.  

 
Figure 5.1: (a) Four Pole (b) Six Pole (c) Eight Pole cross coupled planar microwave 

        bandpass filters. 

 

(a) (b) 

(c) 
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5.1  Four pole Open Loop, Cross Coupled Bandpass Filter  

 

The low pass prototype of the filter can be seen in the figure below. The cross 

coupling can be seen with the admittance inverter J . The value of J1 1 decides the location 

of transmission zero.  

 

 
J=1 

 
 

J=1 

1J 2J

2g

1g

0g

0g

1g

2g

Figure 5.2: Lowpass Prototype of Four pole Open Loop, Cross Coupled Filter. 

 

The value of low pass prototype component can be calculated from the following 

formulae as described in []. 

γ

π
ng 2

sin2
1 =   

4
sin

8
1sin

8
3sin4

22
12 πγ

π

+
=gg    

⎟
⎠
⎞

⎜
⎝
⎛= −

ε
γ 1sinh

4
1sinh 1    

( )221 εε ++=S    (the passband VSWR) 

 

For Chebyshev response the cross coupling can be eliminated and thus the 

admittance inverters become: 

  01 =J
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S
J 1

2 =  

  

For elliptical filter in order to introduce a transmission zero at aωω ±= , the required 

value of J1 is given by 

( ) 2'
2

2
2

'
2

1
Jg

JJ
a −

−
=

ω
  

and the modified  2J

12

2'
2 1 JJ

JJ
+

=  

 

 

5.2  Design Parameter for Four pole Open Loop, Cross Coupled Bandpass Filter  

  

The low pass filter prototype can be converted to the required bandpass filter 

design. The equivalent circuit diagram for the planar filter is given below. M12, M23 and 

M34 are the mutual coupling coefficient between the adjacent resonators. The M14 is the 

mutual coupling coefficient between the nonadjacent resonator 1 and 4. 

M12

C C C C 

L/2 L/2 L/2 L/2 L/2 L/2 L/2 L/2 i/p 

Qe QeM23 M34

M14
 

 

 

 

 

 

Figure: Equivalent circuit of the Four pole Open Loop, Cross Coupled Bandpass Filter. 
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2

2
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=  

1
1

14 g
JFBWM ⋅

=  

where FBW is the fractional bandwidth.  
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Chapter Six 

Coupling of Microstrip Resonators 
 

 

 Coupling of two resonators is the primary component of a bandpass filter design. 

Coupling between two resonators is basically due to the fringe fields. The nature and the 

extent of these fringes determine the strength and thtype of coupling. There are three 

types of basic coupling, electric coupling, magnetic coupling and mixed coupling 

involving both electric and magnetic coupling. In the subsequent sections we will analyze 

square open loop resonators for various coupling properties.  

 

6.1  Coupling Coefficient  

  

 Coupling coefficient is a dimensionless quantity. It is defined as the ratio of 

coupled energy to stored energy in the resonator. It can be mathematically given as  

C
C

k m
e =  electric coupling coefficient    

 where Cm is the mutual capacitance between the two resonator and C is the self 

capacitance of the resonator 

L
L

k m
m =  magnetic coupling coefficient    

 where Lm is the mutual inductance between the two resonator and L is the self 

inductance of the resonator 

 

 

6.2  Electric Coupling  

 

At resonance, the open loop resonator has the maximum electric field density at 

the side with an open gap. This is because the fringe field at the open end is the strongest. 

Thus an electric coupling can be achieved by having the sides with open gap proximately 

placed. Thus the planar structure shown in the figure exhibit electric coupling.  
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          Figure 6.1: Electric Coupling Structure 

 

The equivalent circuit of the planar structure can be drawn as 

 

  

L

Cm 

1 CV1 V2

 T’
1   T’

2 

  T1   T2

 I1     I2 
 

 

 

 

 

 

 

 

 

Figure 6.2: Equivalent circuit diagram of the coupled open-loop resonator exhibiting  

 electric coupling 

 

 The C and L are the self capacitance and self inductance of the uncoupled 

resonator and Cm represents the mutual capacitance. The angular resonant frequency of 

the uncoupled resonator is given by
LC
1 . 

 If the network from reference plane T1-T‘
1 to T -T‘

2 2 is considered, then we can see 

a two port network. The following equations describe the network 

211 VCjCVjI mωω −=   

122 VCjCVjI mωω −=    

 The second term in the equations corresponds to the current induced by the 

adjacent resonator. Thus the Y parameters of the network can be given as  
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⎤
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 Alternative form of the network can be drawn with an admittance inverter 

mCJ ω=  in between the two resonant networks. The resulting equivalent network is 

shown in the figure. 

 

 

 

 

L L

 2Cm 

C CV1 V2 

 T’
1   T’

2 

  T1   T2 

 I1     I2 

 -Cm  -Cm 

 2Cm 

mCJ ω=  
 T’

 T

mCJ ω=Figure 6.3: Equivalent circuit with admittance inverter  to represent the coupling 

 

 If this equivalent circuit is short circuit at the plane of symmetry T-T’, i.e. an 

electric wall is introduced at the plane T-T’, then due to the effect of the adjacent 

resonator the capability of storing charge of the single resonator is enhanced. This results 

in a resonant frequency lower than that of the uncoupled resonator. 

)(2
1

m
e CCL

f
+

=
π

   

 Similarly when a magnetic wall, i.e. a open circuit, inserted at the plane of 

symmetry T-T’, the coupling effect reduces the capability of storing charge. This results 

in the increased resonant frequency. 

)(2
1

m
m CCL

f
−

=
π
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 The electric coupling coefficient for the resonant network in terms of the 

magnetic and electric resonant frequency can be given as  

ek

C
C

ff
ff

k m

em

em
e =

+
−

= 22

22

   

 

6.3  Magnetic Coupling 

 

 As stated earlier that at resonance the fringe field at the open end is the strongest 

which results in maximum electric field density at the side with an open gap. The fringe 

field exhibits an exponentially decaying character outside the region, thus the opposite 

side to the open end has the maximum fringe field resulting into maximum magnetic field 

distribution. Thus to achieve magnetic coupling the sides with maximum magnetic field 

are proximately placed. 

 

 

 

 

                Figure 6.4: Magnetic Coupling Structure  

The equivalent circuit of the planar structure can be drawn as 

 

  

 

 

 

 

 

 

 

 

Figure 6.5: Equivalent circuit diagram of the coupled open-loop resonator exhibiting   

        magnetic coupling. 

L L

Lm 

C C

V1 V2

 T’
1   T’

2 

  T1   T2

 I1     I2 

 32



 The C and L are the self capacitance and self inductance of the uncoupled 

resonator and Lm represents the mutual capacitance. The angular resonant frequency of 

the uncoupled resonator is given by
LC
1 . 

 Similarly for this network we can see a two port network. The following 

equations describe the network 

211 ILjLIjV mωω +=   

122 ILjLIjV mωω +=    

 The second term in the equations corresponds to the voltage induced by the 

adjacent resonator. Thus the Z parameters of the network can be given as  

   ⎥
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⎢
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⎡
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⎤
⎢
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LjLj
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ZZ
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m

m

ωω
ωω
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1211

 Alternative form of the network can be drawn with an impedance inverter 

mLK ω=  in between the two resonant networks. The resulting equivalent network is 

shown in the figure. 

 

 

 

 

 

 

L L

C

C

V1 V2 

 T’
1 

  T’
2 

  T1   T2 

 I1     I2 

mCK ω=

 T’

 T

C L

 -Lm - Lm 

 2Lm  2Lm 

mLK ω=Figure 6.6: Equivalent circuit with impedance inverter  to represent the coupling 
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 If an electric wall is introduced at the plane T-T’, then due to the effect of the 

adjacent resonator the flux in single resonator is reduced. This results in a resonant 

frequency higher than that of the uncoupled resonator. 

CLL
f

m
e )(2

1
−

=
π

   

 Similarly when a magnetic wall is inserted at the plane of symmetry T-T’, the 

coupling effect increases the stored flux. This results in the resonant frequency lower than 

that of uncoupled resonator. 

CLL
f

m
m )(2

1
+

=
π

   

 The magnetic coupling coefficient  for the resonant network in terms of the 

magnetic and electric resonant frequency can be given as  

mk

  
L

L
ff
ff

k m

me
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m =

+
−

= 22
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6.4  Mixed Coupling 

  

 Cases when the electric and magnetic field distribution of the coupled resonator 

arms are comparable then neither the magnetic coupling nor the electric coupling can be 

ignored. This type of coupling is called as Mixed Coupling. The following planar 

structure exhibit Mixed Coupling. 

  

 

 

 

                      Figure 6.7: Mixed Coupling Structure 
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This planar structure can be redrawn with impedance and admittance network parameter.  

 

 

 

 

 

 

 

 

 

 

 

 

 
  T’
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Y11+Y12 Y12+Y22 2Z12 2Z12 

  T2 

-2Y12 

  T 
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Figure 6.8: Network representation of the open loop resonators exhibiting mixed coupling 

 

The Y network Parameter can be given as  
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And the Z parameter can be given as  
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 Where L and C are the self inductance and self capacitance of the individual 

resonators. And L’
m and C’

m are the mutual inductance and mutual capacitance. 

The network can also be drawn using the impedance inverter  and admittance 

inverter , which represent magnetic coupling and the electric coupling. Figure6.9 

is the equivalent circuit.  

'
mLK ω=

'
mCJ ω=

  

 35



'
mLK ω=

 T’

 -L’
m - L’

m 

 2L’
m  2L’

m 

 -2C’
m

 C’
m   C’

m 

  -2C’
m

 T

'
mCJ ω=

   T’
1 

  T1 
  T2 

   T’
2 

C C 

L L 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9:  Equivalent circuit of mixed coupling with an impedance inverter    
  and an admittance inverter  representing the magnetic and electric             
  coupling respectively. 

'
mLk ω=

'
mCJ ω=

 

 Again by introducing an electric wall and a magnetic wall at the plane of 

symmetry T-T’ one can obtain the electric and magnetic resonant frequency. 
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So the resulting mixed coupling coefficient can be given by  
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6.5  Coupling Coefficient Graph  

 

 For a designer while designing a filter the required dimensions for a particular 

coupling coefficient is needed. Thus a curve of coupling coefficient versus the coupling 

spacing with other dimensions of the resonator fixed is used. An EM simulator can be 

used to obtain the design curve.The following figure shows an EM simulation of the pair 

of hairpin resonator shown in the figure  

 

 

 

 

 

 

 

 

 

 

 

 

 

 37
Figure 6.10: Resonant mode splitting phenomenon of the Hairpin Resonator 



 In the simulated plot one can see two peaks. These correspond to the electric and 

the magnetic resonance for the resonator and the corresponding coupling coefficient can 

be calculated. By varying the coupling space with the tuner, various values of resonant 

frequency can be taken and the respective coupling coefficient can be calculated. These 

are then plotted on a graph to obtain the coupling coefficient curve.  

 

 

 
 

Figure 6.11: (a) Pair of Hairpin Resonator (b) Coupling Coefficient Curve.

(a) (b) 
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Chapter Seven 

Filter Design Using Software 

 

 

Today’s Microwave Engineer rely on advanced simulation software’s and 

electromagnetic analysis tools to develop and analyze microwave circuits. Using these 

emulators benefit the designer by saving the time for repeated design and testing phase 

and give the good approximation of the expected results.   

For the design of the bandpass filter, the design procedure using the AWR 

Microwave Office simulation program developed by Applied Wave Research USA will 

be described in this section. 

 

7.1  Schematic of Filter 

 

The individual hairpin resonators can be modeled using the numerical models 

deveoped by AWR. 

Figure 7.1: Section of Schematic in AWR Microwave Office 
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The mopen(Open Circuit With End Effect (Closed Form)) model takes into 

account the fringing effect of the conductor. The mline element models a length of 

Microstrip Transmission Line. The model assumes a Quasi-TEM mode of propagation 

and incorporates the effects of dielectric and conductive losses. M2clin is advanced 

numerical model representing two edge coupled line. The distance between the bends of 

an individual resonator is kept more than twice the width of the microstrip conductor. 

 

To calculate the approx length of each hairpin resonator the TXline calculator of 

MWO is used. 

The dielectric used for this design is FR4. Its specifications are: 

 Substrate thickness:  1.6mm 

 Relative dielectric constant: 4.4 

 Conductor:    copper 

 Conductor thickness:  35µm 

 Loss tangent:   0.022 

 
 

Figure 7.2: TXLINE Calculator of AWR Microwave Office  
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7.2  800-900 MHz Bandpass Filter Design 

 

I: Hairpin Filter Specification 

 Passband 800-900MHz 

  7 Pole Filter 

 25dB rejection at 920MHz 

 25dB rejection at 780MHz 

 Return Loss>12dB 

 Substrate Material FR4 

II: Open Loop, Cross coupled Filter 

 Passband 800-900MHz 

  4 Pole Filter 

 25dB rejection at 920MHz 

 25dB rejection at 780MHz 

 Return Loss>12dB 

 Substrate Material FR4 

 

7.3  Design Procedure 

 

 First the length of the resonators for the center frequency 850 MHz is calculated 

using the TXline calculator of “Microwave Office by AWR”. Then the schematic of the 

design is created. In the schematic the length of each resonator is summed up to the 

length calculated by the TXline calculator. MSUB substrate is added to the schematic and 

the values are set to the specification of FR4 substrate. A graph is added to the schematic 

with measurement S21 and S11. Next various dimensions of the schematic are made 

variable and they are tuned to obtain an approximate pass band at 850 MHz. 

 Then various optimization goals are set according to the requirement of the 

design. After the optimization if the requirements are met then the design is finalized or 

else it is tuned and optimized again till the desired results are obtained.   
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7.4  Schematics  

7.4.1  Hairpin Filter 
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7.4.2  Open Loop, Cross Coupled Filter 

Figure 7.4: Schematic of Open Loop, Cross coupled Filter Using AWR Microwave Office  
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 7.5  Simulated Response  

7.5.1  Hairpin Filter 
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7.5.2  Open Loop, Cross Coupled Filter  
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Chapter Eight 
Results 

 
 
 
Hairpin Band Pass filter 

 
Figure 8.1: Photograph of the Designed Hairpin Filter. 
 
Open Loop, Cross Coupled Filter 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.2: Photograph of the Designed Open Loop, Cross coupled Filter. 
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8.1  Layout 
 8.1.1  Hairpin Filter 

all dimensions in mils 
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Figure 8.3: Dimensional Layout of Hairpin Filter. 



8.1.2  Open Loop, Cross Coupled Filter  

all dimensions in mils 

Figure 8.4: Dimensional Layout of Open Loop, Cross coupled Filter. 
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8.2  Measured Response 
 8.2.1  Hairpin Filter 
 
 
 
 
 

 
Figure 8.5: Network Analyzer Plot for Hairpin Filter. 
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8.2.2  Open Loop, Cross Coupled Filter  
 

 

 

 

Figure 8.6: Network Analyzer Plot for Open Loop, Cross coupled Filter. 
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8.3  Comparison Table  

 

 

 

 

Open Loop, Cross Coupled Filter Parameters Hairpin Filter 

823 MHz Start Frequency 819 MHz 

Stop Frequency 898 MHz 899 MHz 

Bandwidth 75 MHz 80 MHz 

Insertion Loss(850MHz) 8.7 dB 4.8 dB 

Return Loss(850MHz) 14.8 dB 14.5 dB 

Insertion Loss(700MHz) 70 dB 38 dB 

Insertion Loss(1GHz) 64 dB 28 dB 

 

Table 8.1: Comparison Between Hairpin And Open Loop, Cross Coupled Filters
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Appendix A 

Filter Basics 

 

 
Filters play an important role in the RF/Microwave application. They are used to 

separate various frequencies. Filters are typically two port networks. They rely on 

impedance mismatching to reject RF energy. Filters are primarily used to confine or 

select RF/Microwave signals within a specified spectral limit.  

 

The response of a filter can be mathematically expressed in terms of its S21 

parameter.  It is called as the transfer function of the filter. Many a times it is expressed in 

amplitude squared transfer function of a filter given as: 

( )
)(1

1
22

2
21 ωε

ω
nF

jS
+

=    

( )ωnFwhere ε  is a ripple constant and  represents the filtering characteristics 

function and ω  is the frequency variable in radians. 

By conventional definition, the insertion loss can be computed as 

( ) 2
21 )(

1log10
ω

ω
jS

LA = dB   

12
21

2
11 =+ SSFor a lossless passive two-port network  from which return loss 

can be calculated as  

( ) [ ]2
21 )(1log10 ωω jSLR −=  dB   

Phase response and group delay of the filter can be found as  

  ( )ωφ jSArg 2121 =  

  ( ) ( )
ω
ωφ

ωτ
d

d
d −

= 21  seconds 
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A.1  Pole zero concept 

 

For linear time invariant networks, transfer function can be given as 

( )
)(
)(

21 pD
pNjS =ω     

where p is the complex frequency variable. 
ωσ jp +=  

σ  is neper frequency and ω  is complex frequency variable. The values of p for 

which the function becomes zero are called zeros of the filter and values for which the 

function becomes infinite are called poles of the function. These zeros and singularities 

are important in determining the stability and the response of the filter. These complex 

frequencies can be represented as symbols on (σ ,ω ) plane called complex plan. Where 

the abscissa is the real component of the root and the ordinate is the imaginary part. 

For the filter to be stable, these natural frequencies should lie on the left of the plan. 

 

 

A.2  Some Filter Response 

 

A.2.1  Butterworth Response 

 

Butterworth filter response is also known as maximally flat filter response. The 

amplitude square function of Butterworth filter is given by  

njS 2

2
21 1

1)(
ω

ω
+

=  

Where n is the order of the filter and signifies number of independent energy 

storage elements required in the filter as well as to the power of ω with which the 

response magnitude rolls off. The attenuation increases steadily with frequency, giving a 

maximally flat approximation to a low pass filter. The attenuation at the cut off frequency 

 is 3.01db.  1=cω

As the order of the filter increases the roll of becomes sharper. The Butterworth is 

the only filter that maintains this same shape for higher orders (but with a steeper decline 
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in the stopband) whereas other varieties of filters (Bessel, Chebyshev, Elliptic) have 

different shapes at higher orders. 

Figure A.1: Butterworth Lowpass Response.  

 

The Butterworth approximation leads to a filter which has moderate attenuation 

steepness and acceptable characteristics. It provides a better group delay than chebyshev 

response. 

 

 

A.2.2  Chebyshev Response 

 

The Chebyshev response is a mathematical strategy for achieving a faster roll off 

by allowing ripple in the frequency response. Analog and digital filters that use this 

approach are called Chebyshev filters. Figure A.2 shows the frequency response of low-

pass Chebyshev filters with passband ripples of 0dB, 1db, 2db and 4db. As the ripple 
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increases, the roll-off becomes sharper. The 0dB ripple curve is equivalent to Butterworth 

response. The Chebyshev response is an optimal trade off between these two parameters. 

th order Chebyshev Lowpass Response. Figure A.2: 13

 

The amplitude squared transfer function of the response that describes this type of 

response is  

( )
)(1

1
22

2
21 ωε

ω
nT

jS
+

=    

where the ripple constant is relate to a given pass band ripple  in db by ARL

110 10 −=
ArL

ε   

( )ωnT  is a chebyshev function of the first kind of order n, which is defined as  

   ( ) ( )
( )⎪⎩

⎪
⎨
⎧

=
−

−

ω

ω
ω

1

1

coshcosh
coscos
n

n
Tn 1

1

≥

≤

ω

ω
 

 57



Similar to the Butterworth filter chebyshev response also have all the zeros at 

infinity and hence it is also a all pole filter response. On the other hand the arrangement 

of the poles is different from a Butterworth response. Here the poles lie on an ellipse with 

major axis on the 21 η+ωj  axis and its size is . The minor axis is on σ axis and is of 

size η . 

⎟
⎠
⎞

⎜
⎝
⎛= −

ε
η 1sinh1sinh 1

n
  

The slope in the phase response is steepest in the neighborhood of the 3db cut off 

frequency leading to a group delay peak at cut off frequency. 

 

 

A.2.3  Elliptical Function Response 

 

 As seen earlier in the case of Chebyshev response that allowing ripple in passband 

or stopband confers desirable transition band. Thus it is not surprising that there will be a 

further improvement by allowing equi-ripple response in both passband and stopband.  

 Elliptical filters exploit the nulls provided by finite zeros to create a dramatic 

transition from passband to stopband at the expense of stopband response that later 

bounce back some amount beyond the null frequency. 

 The transfer function of this type of response is given by  
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 represent the critical frequencies and iω sω is the frequency at which the equi-ripple stop 

band starts. M and N are the variables which help specify the minimum in the stopband 

ripple. 

 
th order Elliptical Function Lowpass Response. Figure A.3: 20

 

 

A.2.4  Bessel Filters (Maximally Flat Delay Filters) 

 

 The filter responses seen till now have concentrated on the magnitude response. 

Due to this, these filters exhibit significant delay variation over the pass band. Thus all 

the fourier components of the input signal are not delayed by the same amount, which 

may lead to distortion of the output waveform. So for certain cases the requirement is to 

 59



have a constant time delay, i.e. phase shift that is linearly proportional to frequency, 

rather than a flat pass band.  

 Bessel filters are the types of responses which yield a maximally flat group delay. 

For a given number of poles, its magnitude response is not as flat, nor is its initial rate of 

attenuation beyond the -3dB cutoff frequency as steep as the Butterworth. So Bessel 

filters are used when the group delay flatness is more important than the magnitude 

response. The following graph shows the comparative group delay of Butterworth, 

Chebyshev and Bessel responses. 

 

Figure A.4: Group Delay Comparison of Bessel, Butterworth and Chebyshev responses. 
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Appendix B 

Result Plots 

 

 
B.1  Hairpin Filter 

 B.1.1  Insertion Loss (S21 in dB)  
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 B.1.2  Return Loss (S11 in dB)  
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 B.1.3  SWR
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 B.1.4  Group Delay  
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B.1.5  Wide Band Response  
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B.2  Open Loop, Cross Coupled Filter  

 B.2.2  Insertion Loss (S21 in dB)  
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 B.2.2  Return Loss (S11 in dB)  
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 B.2.3  SWR

 68



 B.2.4  Group Delay
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 B.2.5  Wide Band Response 
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