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Abstract

For understanding the servo system and planning future developmental activities it is neces-
sary to have computer simulations of the system. The simulation of Gaint Meterwave Radio
Telescope (GMRT) servo-mechanical system with generic position controllers were carried in
1992 by B.C.Joshi [1]. These simulations were done before the actual antenna was build and
hence model verification was not possible. In the view of new developmental activities being
planned, it is necessary to modify these simulations to reflect the of servo-mechanical system
now present at GMRT. Also since the antenna is now available for experiments it is necessary
to verify this new model by comparing it with response of actual system.

Optimal controllers were designed for GMRT servo in [1] for future implementation. Opti-
mal controllers have potential to give better antenna pointing accuracy even in presence of
wind disturbance. The simulations for optimal controllers need to be modified in accordance
with new plant matrices. In view of the new servo computer being developed for GMRT servo
system there is now a realistic chance of implementing optimal controllers for GMRT servo
system. The feasibility of the implementation needs to be verified with the help of simulations
and lab experiments.

The points mentioned above have been discussed in this report.
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Chapter 1

Introduction

1.1 Motivation for simulation

This report presents the details and results of Giant Meterwave Radio Telescope (GMRT) servo
system simulation. Simulation is a computer program which imitates the behaviour and re-
sponse of a real system. In this case the system is the servo system of GMRT. The simulation
programs attempt to generate outputs to various inputs as the actual servo system would do.
These programs form a tool which can be used for a better understanding of the servo system
and also for planning of new developmental strategies for the servo system. There are three
major steps followed in making an accurate simulation of the real system. First the mathemat-
ical equations describing the system behaviour are derived. They are then used to create the
simulation programs. Lastly, the simulation programs are validated by comparing its response
with the response of the real system.

In the case of GMRT servo system, the main aim of the system is to safely point the an-
tenna to a given location in the sky. For good quality astronomical images it is also necessary
to achieve high pointing and tracking accuracy. These two objectives depend on the design of
servo system as well as the values of various tunable parameters of the servo controller. Simu-
lations can play a major role in both design of the servo system as well as coming with right
tunable parameters to achieve the two objectives mentioned above. The direct uses of these
programs are as listed below.

1. Finding the best tuning parameters for the present system.
Various servo controller tuning parameters can be changed in the simulation, so as to find
the parameters that give the minimum steady state tracking error and specified transient
response. Generally, the tuning parameters are obtained by trail and error method on
field, which can be very time consuming. The simulations gives us a set of tuning values
to start with during the actual tuning of antenna. This saves a lot of time spent on tuning
the antenna on field.

2. Robustness study of the servo system.
GMRT consists of 30 radio telescopes. The physical parameters like, mechanical system
parameters, motor parameters, electronic component values can change from antenna to
antenna and also for the same antenna over a period of time. Though all 30 antennas
have the same servo-mechanical design specification and manufacturing, their response
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to sine sweep signal vary from each other. The effect on relative stability and tracking
accuracy of servo system with respect to change in these parameters can be evaluated
with the help of simulations.

3. Study of tracking accuracy of the antenna under wind conditions and other
disturbances.
The antenna is operated under effect of wind for about 80 percent of its operation time.
Wind is a stochastic process and its influence on tracking accuracy can change from time
to time. The simulations help us to study the performance of antenna servo even under
the influence of varying wind conditions. The simulations help us to predict the decrease
of tracking accuracy under various wind speeds.

4. Design of better controllers.
Specifically, in the case of GMRT servo system an attempt is being made to design
linear quadratic optimal controllers. These controllers can give the best possible tracking
accuracy even under the influence of various disturbances.

5. Implementation of optimal controllers.
The simulation programs for optimal controllers are being written in a software called
Simulink. Simulink gives the facility to convert these simulation programs into appropriate
C programs. These programs can then be loaded in the servo computer, where these
controllers can be implemented in software form. There is no need to write separate code
for implementation on hardware. The use of softwares like Matlab/Simulink can hence
greatly expedite the implementation of optimal controllers.

6. Design of Hardware in the Loop Simulator.
The antenna is not always available to engineers for performing various tests. This puts
a heavy time constraint on the engineer to perform the tests on the antenna. If the
simulations of antenna servo is present, then a setup can be designed where the actual
antenna is replaced by the simulation program. The simulation program thus forms a
virtual plant. The rest of the controller hardware can be interfaced with this program,
and hence the controller and other associated hardware/software can be tested without
the need to go to the actual antenna.

This work of simulation is largely based on earlier simulation work in [1]. This simulation work
differs from earlier work in four major aspects. Firstly, the velocity and position loop controller
simulation imitate the actual controllers in the present antenna. This is unlike, the generic con-
troller design that was used in [1]. Thus the present simulations are a closer match to the actual
system. Secondly, unlike in previous case this time antenna was actually available for model
validation. Thus a clearer picture of the deficiencies in the simulations can be formed, which
will aid the further improvement of the model. Thirdly, this time the basic plant modeling of
the servo system has been carried out in Simulink rather than m-code. This will greatly facili-
tate the use of these simulations for further developmental activities. Lastly, the strategy that
can followed to implement optimal controllers and testing their performance has been discussed.

2
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1.2 Structure of the report

The report presents the equations (and derivation of the equations wherever necessary) that
have been used for simulations. These equations are followed by the results of the simulation
and their comparison with actual results obtained from the tests on antenna. Chapter 2 deals
with simulation of present GMRT servo system which has brushed DC motor as its servo
system. Chapter 3 deals with design of optimal controllers for GMRT servo system. Chapter
4 discusses the overall implications of various simulation results. It also discusses the ongoing
work in simulation and feasible strategies for implementing optimal controller for GMRT servo
system. Appendix A gives details of the Matlab/Simulink programs that have been used for
simulations.

3



Chapter 2

Brushed DC motor and its servo
system

2.1 Introduction

The present servo system at GMRT has brushed DC motors and associated control system to
move each axis. From the control system perspective, the positioning of the antenna is done
with the help of three nested loops. The final output of these loops is given to the servo am-
plifier which drives the motors and the antenna. These loops are current loop, velocity loop
and position loop. The current loop is implemented in motor control card. The velocity loop is
implemented in counter torque card while the position loop is implemented in servo computer
in software form.

Each axis has two motors. The two motors are so driven that the backlash between the gears
is eliminated. This is called as counter-torquing arrangement. The counter torquing is imple-
mented in the counter torque card. Figure 2.1 shows the complete design of the servo loop.
For simulation we consider that the counter torquing complete eliminates the backlash in the
system. hence the two current loops can be replaced by a single loop as shown in figure 2.1

4
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Figure 2.1: FBD of single axis servo-mechanical system with counter-torquing arrangement [2]

Figure 2.2: Equivalent FBD of single axis servo system assuming complete backlash compen-
sation.

For understanding the system and guaranteeing the accuracy of simulation, the simulations
are carried in two stages. In section 2.2 the simulation of only the motor and its control loops is
described. The results of these are compared with that of test results. These simulation reflect
only the motor and servo controller dynamics and exclude the antenna mechanical system
dynamics. Once these simulations have been validated we move to simulate the servo system
with the antenna mechanical system model. Section 2.3 describes the simulation of the servo
system with antenna model. The simulations are then compared with test results.

2.2 Servo controller with a brushed DC motor

2.2.1 Derivation of Equations

We consider a detailed derivation of equations describing the DC motor, the current loop, the
velocity loop and lastly the position loop.

5
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Equation of Brushed DC motor

Figure 2.3: Diagram of Brushed DC motor

Figure 2.3 shows the equivalent electromechanical circuit for a brushed DC motor. The
equations 2.1 - 2.3 can be derived from equivalent circuit [3]

İa =
Ea

La

− Kbωm

La

− RmIa
La

(2.1)

ω̇m =
KtIa
Jm

− Bmω

Jm

(2.2)

θ̇m = ωm (2.3)

where,
Ia = Motor current
Ea = Motor input voltage
La = Motor winding inductance
Kb = Motor back EMF constant
Rm = Motor winding resistance
Kt = Motor torque constant
θm = Motor angular position
ωm = Motor angular speed
Jm = Motor shaft inertia
Bm = Motor viscous friction

Equations for current loop

6
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Figure 2.4: Current PI controller in MCC card

The current compensator for brushed DC motor is present in Motor control card. The
current compensator is a PI compensator as shown in Figure 2.4. The maximum input from
the counter torque card which is 10 volts is scaled to 4 volts using POT 24 in motor control
card giving a current reference scaling factor of 0.4. The feed back is measured across the
shunt of 0.005 ohm giving a feedback voltage of 0.4 Volts at maximum current of 80 amps.
The PI compensator is also a summing amplifier. The input resistance to the PI compensator
for reference voltage (R23) is 11 times higher than feedback voltage resistance (R24), thus
approximately balancing the two inputs. According to Figure 2.4 the transfer function for
current PI is given as follows,

Gf (s) =
(R22C6s+ 1)

s[(C5 + C6) +R22C6C5s]
(2.4)

Vf = RshuntIf (2.5)

= 0.005If

Where,
Gf (s) = Amplifier feedback impedance
Vf ,If = Current loop feedback Voltage and current
Current loop PI is a summing amplifier thus,

Vout(s) =
Gf (s)Vref

R23

+
Gf (s)Vf (s)

R24

(2.6)

Where, Vref = Reference input voltage (Cmd A or Cmd B)
The output of the current loop goes to the three phase SCR amplifier. The SCR amplifier

is very fast as compared to the rest of the system. Hence, it can be considered as a simple gain
factor. The 0-12 volts of current loop output is amplified to 0-150V by SCR amplifier which is
then given to the motor. Hence, the gain factor Kamp is 150/12 = 12.5.

7
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Figure 2.5: Circuit Diagram for Velocity compensator (brushed DC)

Equation for Velocity loop

The velocity compensator for brushed DC motor is implemented in counter torque card. Figure
2.5 shows the lead lag part of the counter torque card. This part forms the velocity compensator.
The counter torque card takes three inputs:

1. Reference voltage, Vref . This is the voltage corresponding to demand velocity generated
from position loop output. Its range is -10 to 10 Volts. Here the input of 10 Volts
corresponds to 2000 rpm of motor.

2. The other 2 inputs are tacho voltages for two motors (TachoA and TachoB). The tacho
gives 34 volts per 2000rpm. The circuit network at the input of tacho voltage acts like
lead compensator and also as a voltage divider which scales the tacho voltage from 34
volts to 10 volts for 2000rpm (motor full speed).

The tacho voltages along with reference voltage are the input to a summing amplifier which
also acts as a lag network. At full speed the input from each tacho is scaled to 10 (by lead
network voltage divider). Thus combined voltage of both the tachos is 20 volts for an input
voltage of 10 volts (Vref ). To balance the voltages the input resistances (R25 and R27) to
summing amplifier (lag compensator) for the tacho voltages is twice the input resistance (R26)
for reference voltage. The transfer functions for counter torque card are as follows,

8
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Gs1(s) =
[R4 +R4(R1 +R2)C4s]TachoA

(R1 +R3 +R4) + [R1R2 + (R1 +R2)(R3 +R4)]C4s
(2.7)

Gs2(s) =
[R44 +R44(R41 +R42)C8s]TachoB

(R41 +R43 +R44) + [R41R42 + (R41 +R42)(R43 +R44)]C8s
(2.8)

Gf (s) =
R28R56C5s+R56

(R56 +R28)C5s+ 1
(2.9)

The compensator is a summing amplifier Hence:

Vout(s) =
VrefGf (s)

R26

+
Gs1(s)Gf (s)

R25

+
Gs2(s)Gf (s)

R27

(2.10)

Once the backlash has been overcome, both the motor will be at the same speed. Thus
ideally both tacho input voltage are equal. The lead networks for input of both tachos are
ideally the same.Thus,

TachoA = TachoB = Tacho, Gs1 = Gs2 = Gs,R25 = R27 = R

Vout(s) =
Vref (s)Gf (s)

R26

+
2Gf (s)Gs(s)

R
(2.11)

Where, Gf (s) = Amplifier feedback impedance
As the feedback input Tacho is subjected to extra transfer function Gs, the overall transfer
function is represented as two terms for simplicity of implementation.

Equations for position loop

The position loop has been implemented in servo computer. The transfer function for position
compensator is,

G2(s) =
G21(T21s+ 1)(T22s+ 1)

s(T23s+ 1)
(2.12)

To implement the controller in digital form it is converted to discrete transfer function using
bilinear transform and sampling time of 100 msec. The position error input to the compensator
is pre-scaled by multiplying it by 1024. The output of the compensator is given to a 12 bit
D/A converter with output voltage range of ±10 Volt. The input error to the compensator is
in form of degrees. Hence the feedback has a scaling factor corresponding to radians to degree
conversion. The encoder is a 17 bit absolute encoder. This adds a quantization of 360/217 to
the feedback loop. The present values of the compensator are as shown in table 2.2.1.

Hence the compensator equation is as follows:

G2(s) =
0.12(1 + 4.2s)

s(1 + 0.4s)
(2.13)

9
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Parameter Value
G21 0.12
T21 4.2
T22 0
T23 0.4

Table 2.1: Position compensator values

2.2.2 Simulation results and comparison with test results

The Brushed DC motor along with the compensator equations were simulated using simulink.
The DC motor was implemented in state space form while the compensator in Laplace transfer
function form. The details of simulation can be found in appendix A.2 figure A.1. To compare
the simulation output with the actual response two tests were performed as follows,

DC motor parameter measurement

The various parameter in the equations describing the DC motor (Eqn: 2.1 - 2.3)vary from
their values as given in specification sheet. By measuring the motor current and velocity for a
given DC voltage input measurements these parameters can be estimated as follows [4],
At steady state (constant velocity) the term İa becomes 0, so Eqn: 2.1 can be modified as,

Ea

Ia
= Kb

ωm

Ia
+Ra

This is an equation of a straight line. If we plot a graph of ωm/Ia Vs Ea/Ia, we will get a
straight line with a slope equal to back emf constant Kb and y intercept as Ra as shown in
figure 2.6.
Similarly, Eqn 2.2 can be written as,

ω̇m =
KtIa
Jm

− Bmω

Jm

− Tsf

Jm

Where the extra term Tsf is motor coulomb friction. At steady state (constant velocity), the
term ω̇m becomes 0. Hence the equation can be modified as,

Ia =
Bm

Kt

ω +
Tsf

Kt

This is again an equation of straight line. Also we assume the value of Kt. But Kt can be
independently estimated using torque transducer. Thus, by plotting ω/Kt Vs Ia we can measure
motor viscous friction Bm and motor coulomb friction Tsf , as given in figure 2.7. Table 2.2 give
the values of parameters estimated by experiment.
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Figure 2.6: DC motor parameter estimation graph 1

Figure 2.7: DC motor parameter estimation graph 2
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Parameter Value Unit
Viscous Friction .00453 Nm/rads/sec
Stiction 1.165 Nm
Resistance 1.828 Ω
Back EMF constant 0.07811 V/rads/sec

Table 2.2: Brushed DC motor Parameters as estimated by experiments

The above parameters are used for simulating the brushed DC motor. The simulation is
modified to take into account the non-linear parameter of coulomb friction.

Step response of brushed DC motor along with servo system

The velocity step response of motor along with the servo system is measured and the data is
recorded. This data is then read in Matlab and compared with with simulation response. A
step voltage input using function generator is given at test input to counter torque card (ve-
locity compensator). The parameters recorded are test ip voltage, TachoA, Tacho B (velocity),
current cmd to A, current cmd to B (o/p of counter torque card). The motor current is mea-
sured in MCC card at current pin.

The servo velocity loop is designed considering the fact that 2 motors drive the load. But
for testing the motor only one motor is excited. The other motor is not switched off, hence
Tacho B and current in MCC card corresponding to motor 2 are 0. As a result the velocity to
voltage scaling becomes twice. Or in other words now the 10 volts of input will not correspond
to 2000 rpm but approximately to 4000 rpm. This additional scaling factor needs to be taken
into account while comparing the actual and simulated response. Also during the test the veloc-
ity scaling pot P1 was adjusted so that 10 volts corresponded to 500 rpm instead of 2000 rpm.
The Azimuth axis counter torque card was used for the experiment. Figure 2.8 and 2.9, show
the comparison between the simulated and actual velocity and current cmd. Figure 2.10 shows
the motor current. It is not compared with simulated as we have not simulated the dynamics
of 3 phase SCR amplifier circuit which gives rise to pulsed current. Appendix B, figure A.1
gives the simulink model of motor plus servo system. Table 2.3 gives the compensator values
for servo loop.
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Parameter Value
R1 24 KΩ
R2 24 KΩ
R3 24 KΩ
R4 20 KΩ
C4 0.22 µF
R25 27.4 KΩ
R26 13.7 KΩ
R27 27.4 KΩ
R28 180 KΩ
R66 100 KΩ
C5 0.33 µF
R22 100 KΩ
R23 110 KΩ
R24 10 KΩ
C5 0.01 µF
C6 0.22 µF

Table 2.3: Servo loop parameters

Figure 2.10: Brushed DC motor only velocity step response motor current
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2.3 Brushed DC motor servo and GMRT mechanical

model

In this section we discuss the simulation of brushed DC servo system with complete antenna
mechanical model. In the simulation, in addition to time domain response, we also plot the bode
plots of the system to understand the relative stability of the system. Similarly to measure the
stability of the actual system frequency tests are carried on the antenna along with the velocity
step response. The frequency tests give us the measure of system bandwidth and resonance
frequency of the system. A more detailed frequency test is then proposed which can help us plot
the bode plot of the system. This in effect will give us the stability margins of the system. The
frequency tests of the actual system can also give us additional information about differences
between the simulated and actual system. This information can further be used to refine the
simulation programs.

2.3.1 Note on equations

System Matrices

To simulate the GMRT model it is necessary to find the equations governing the motion of
the antenna mechanical structure. The complete description and derivation of these equations
and resulting state matrices A,B,C,D can be found in [1]. Figure 2.11 shows the various parts
of GMRT mechanical structure. For deriving these equations a lumped model of mechanical
system is considered as shown in Figure 2.12. The state equations are derived using Lagrange
energy equations.. Eqn 2.17, 2.18, 2.19, 2.20 give the state matrices A,B,C,B respectively for
the mechanical system. Table 2.4 gives the explanation of various parameters used in state
space matrices. This mechanical model is coupled with the equations for the servo controller
as derived in section 2.2
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Figure 2.11: GMRT mechanical structure
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Figure 2.12: Lumped Model of GMRT mechanical system [1]
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The state space equations for a system is given by [3]

Ẋ = AX +Bu (2.14)

Y = CX +Du (2.15)

For present mechanical model, the state vector X is given as;

X =



θm

θ̇m

θg

θ̇g

θc

θ̇c

θuc

θ̇uc

İa


(2.16)

Where, θm = Motor angular position
θ̇m = Motor angular speed
θg = Gearbox output shaft position
θ̇g = Gearbox output shaft speed
θc = Controlled inertia position
θ̇c = Controlled inertia speed
θuc = Uncontrolled inertia position
θ̇uc = Uncontrolled inertia speed
Ia = Motor current The A, B, C, D matrices for present case is given by,
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Mechanical Parameters

The values for mechanical parameters have been taken from [1] and Tata Consulting Engineer’s
(TCE) design report. For complete details of mechanical system interested reader can refer to
TCE’s detailed design engineering notes. The four mechanical elements : Motor plus gearbox
inertia Jm, Pinion inertia Jg, controlled inertia Jc, uncontrolled inertia Juc and the associated
viscous friction and spring constants are formed by clubbing together various mechanical el-
ements of the dish. Table 2.4 give the details of the values and meaning of each parameter.
The results of only azimuth axis simulation are presented. Similar scheme was be used for
simulation of elevation axis.

Parameters Mechanical elements Value Unit
Motor Inertia Jm motor and gearbox inertia 0.066768 Kgm2

Pinion Inertia Jg Pinion 3.5 Kgm2

Controlled Inertia Jc Slew ring, yoke, cradle, 2× 0.995× 106 Kgm2

and counter weight (CW),
bullgear, reflector

Uncontrolled Inertia Juc Quadripod and feed system 10.9× 106 Kgm2

Motor Viscous Friction Bm - .005424 Nm/rad/sec
Pinion Viscous friction Bg - 4379.2 Nm/rad/sec
Controlled Inertia - 7.8336× 106 Nm/rad/sec
viscous friction Bc

Uncontrolled Inertia - 1.34368× 107 Nm/rad/sec
viscous friction Buc

Motor to pinion - 107 Nm/rad
spring constant Kmg

Pinion to controlled stiffness of slew ring 5.0864× 109 Nm/rad
inertia spring constant Kgp

Controlled inertia to Quadripod stiffness 1.428× 109 Nm/rad
uncontrolled inertia
spring constant Kad

Slew ring gear Ratio Ns - 12.6 -
Gear box gear ratio N - 1488 -

Table 2.4: Azimuth axis mechanical parameters

2.3.2 Comparison of simulation results with test results

Bode plots

To understand the system bandwidth and system response bode plot of each loop was plotted.
The 3 loops in GMRT servo system are cascade loops. In cascaded loops, tuning is started with
the innermost loop and then the subsequent outer loops are tuned. If the inner loop bandwidth
is much higher than outer loop bandwidth then the inner loop acts like a DC gain for the outer
loop. Hence the tuning of outer loop does not affect the tuning of inner loop.
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For faster error correction it is necessary that the innermost loop i.e current loop must have
the highest bandwidth. Its bandwidth should be 5 to 10 times higher than the velocity loop
bandwidth. Similarly the velocity loop bandwidth should be 5-10 times higher than position
loop bandwidth.

The bandwidth for the loops is decided by constraint on position loop bandwidth. The first
resonance frequency of the mechanical structure is between 1Hz-2Hz. To avoid the excitation
of system at resonance frequency it is necessary to attenuate the system gain at resonance
frequency. Hence the bandwidth of the position loop should below 1 Hz. On the other hand,
to quickly correct the positioning errors induced by wind disturbance torques the system must
have as fast response as possible hence a high position loop bandwidth is required. Because of
these two conflicting factors the position loop bandwidth is designed around 0.5 Hz. Therefore
the velocity loop bandwidth should be around 5 Hz. Current loop bandwidth is much higher
that velocity loop bandwidth and is decided by the industrial amplifier circuit which also has
current loop PI.

Figure 2.13, 2.14 and 2.15 show the bode plots for uncompensated and compensated current
loop. Figure 2.16, and 2.17 show the bode plots for uncompensated and compensated velocity
loop. In the following bode plots the steady state closed loop gain may vary from 0dB depend-
ing on input/output scaling factors. Bandwidth is measured as frequency at a gain -3dB below
zero frequency gain of closed loop bode plot.
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Frequency Tests on antenna

To measure the frequency response of the system, the velocity loop is excited with a sine sweep
signal. Sine sweep signal is given to test input and the output is measured at Tacho A and
Tacho B in counter torque card. The sweep is a logarithmic sweep with formula,

f(t) = f0β
t (2.21)

β =

(
fT

f0

) 1
T

(2.22)

where, f0 = initial frequency
fT = final frequency
T = Time of final frequency
Figure 2.18 and 2.20 shows the sine sweep response of the antenna for azimuth and elevation
axis respectively. It can be seen that the system has an anti-resonance frequency at about 1Hz
and resonance frequency at about 1.2 Hz. The system bandwidth is about 3.24 Hz for azimuth
axis. Figure 2.19 gives the simulated sine weep response. The comparison of figure 2.18 and
2.19 gives the differences in simulated and actual response of the system at each frequency.
Figure 2.21 shows the bode plot of current loop as given in Industrial amplifier manual. Table
2.5 gives the bandwidth for measured and simulated, current and velocity loop.

Loop Simulated Bandwidth Measured Bandwidth
Current loop 333Hz 10 Hz
Velocity loop 2.68 Hz 3.24 Hz

Table 2.5: Simulated and measured loop bandwidths for brushed DC motor and its servo system

28



Giant Meterwave
Radio Telescope

Simulations of GMRT
Servo-mechanical System

F
ig

u
re

2.
18

:
R

es
p

on
se

of
C

00
an

te
n
n
a

az
im

u
th

ax
is

to
si

n
e

sw
ee

p
ve

lo
ci

ty
in

p
u
t

29



Giant Meterwave
Radio Telescope

Simulations of GMRT
Servo-mechanical System

F
ig

u
re

2.
19

:
S
im

u
la

te
d

si
n
e

sw
ee

p
re

sp
on

se
fo

r
az

im
u
th

ax
is

30



Giant Meterwave
Radio Telescope

Simulations of GMRT
Servo-mechanical System

F
ig

u
re

2.
20

:
R

es
p

on
se

of
C

0
an

te
n
n
a

el
ev

at
io

n
ax

is
to

si
n
e

sw
ee

p
ve

lo
ci

ty
in

p
u
t

31



Giant Meterwave
Radio Telescope

Simulations of GMRT
Servo-mechanical System

Figure 2.21: Measured current loop bode plot
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The the measurement of the sine sweep response of the system gives us information about only
the magnitude response of the system. It is difficult to extract phase response information of
the system from sine sweep response. Phase response is necessary to calculate the the relative
stability of the system in terms of its gain margin and phase margin. To overcome this problem
we can excite the antenna with a range of singlr frequency sine signals. Here the antenna is
excited with a sine signal of single frequency at a time and its response (which will be the sine
wave of same frequency but with different magnitude and shifted in phase) is recorded. By
computing the Fast Fourier Transform (FFT) of the input signal and the output signal we can
get the information of system’s magnitude gain and phase shift for that particular frequency. By
plotting the magnitude gain and phase response of the system at all the frequency which were
used to excite the system, the system’s bode plot can be plotted. Figure 2.22 and 2.23 show
the sine sweep response and measured bode plot for C02 azimuth axis velocity loop. It can be
seen that the magnitude response of bode plot matches with the sine sweep response. Similarly,
figure 2.24 and 2.25 show the sine sweep response and measured bode plot for elevation axis.
A good match in magnitude response can be found in this case too. The matlab m-code for
computing FFT of input and output signal, and generating bode plot can be found in Appendix
A.
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Comparison of step responses

The velocity step response of the antenna is carried out in similar fashion as described in section
2.2. The graph of the velocity step is shown in Figure 2.26. Figure 2.27 and 2.28 show the cmd
A response and motor current response respectively. Figure A.3 shows the simulink model of
brushed DC motor servo system with GMRT mechanical model. Simulated step response of
position loop is shown in figure 2.29. Figure 2.30 shows position ramp response. The present
servo system does not have facility to measure system position step, ramp or frequency response.
Hence no comparison between simulated and measured data has been presented. The ramp
response shows a steady state tracking error of ≈ 5′′. This error is below the 10′′resolution
of encoder and hence acceptable. The step response shows a 44%. This is slightly above the
specified overshoot of 40%. The step response for the system shows 64 sec settling time. This is
well beyond the specified settling time of 10 secs for the system. The simulated response needs
to be verified with actual step response of the system. According to the measured response
corrective steps must be taken to improve servo loop tuning.
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Figure 2.28: Simulated versus measured response of motor current for velocity step response of
antenna

Figure 2.29: Position loop step response
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Figure 2.30: Position loop ramp response

2.4 Conclusions

A few immediate observations can be made from the simulated versus measured output. Though
the steady state state response of the measured and simulated output match, there are differ-
ences in transient response. In frequency domain this is seen as difference in sine sweep response
after the anti resonance frequency. For current loop the bandwidth given in industrial amplifier
manual is about 10 Hz as against ≈ 300Hz in simulated response. On the other hand the
measured bandwidth for C2 antenna azimuth axis velocity loop is about 3.24 hz as against 2.68
Hz of simulated response. Once these discrepancies in higher frequency response have been
removed, we can expect the transient response of the system to match.

The estimated resistance of brushed DC motor are very different from those mentioned in
motor specification sheet. It was also seen that resistance varies largely from motor to motor.
The bandwidth of current loop is very sensitive to resistance value of motor. For velocity loop
the response of of system after anti-resonance is found sensitive to resistance value. The pa-
rameters of motors actually connected to the antenna cannot be measured. So in simulation
we take estimated parameters of motors in lab. If the same motors were to be used in antenna
while measuring its step response better simulation response can be obtained. The motors used
in antenna are very old. Due to regular servicing of motor its torque constant may change over
a period of time. Hence it is necessary to verify the torque constant of the motor Kt using a
torque transducer.

The sine sweep response (in terms of resonance, anti-resonance frequency and system band-
width) and the velocity step response vary from antenna to antenna. The main reason for this
can be ascertained to the differences in parameters of mechanical elements. It is a Known fact
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that mass of counter weight varies from antenna to antenaa. The anti resonance frequency
is found sensitive to uncontrolled inertia and axis complaince spring constant parameter. A
method to estimate these parameters needs to be established so that they can be estimated for
each antenna separately and the simulation values can be changed accordingly.

An attempt was made to generate a complete bode plot for C02 antenna azimuth and ele-
vation axis. The bode plots so generated are plotted in figure 2.23 and 2.25. It can be seen that
there is some erratic change in phase response of the system (both in az and el axis) which is
not be possible in actual antenna. The m-code program was cross-checked with simulated data.
In case of simulated data the program gave accurate output. This proves that the m-code is
correct. Hence the reason for this sudden change in phases of the system response maybe due
to some noise corrupting the acquired data. The accurate reason must be determined and the
test should be performed again to get an accurate bode plot. It is also seen that the phase
plot does not cross the 180 degree line upto 5hz. Hence gain margin of the system cannot be
determined. In next test we should check response even beyond 5 Hz till the phase crosses 180
degree line or till we establish that the system reaches 180 degree asymptotically.
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Chapter 3

Design of optimal controllers

3.1 Introduction

As discussed in the introduction of this report, one of the aims of simulation is to design
optimal controller for the GMRT servo system. As discussed in [5] optimal controllers of linear
Quadratic Gaussian (LQG) type improve the pointing accuracy of telescope in presence of wind
disturbances. As shown in [5] there are 3 configurations for implementing optimal controller
for a servo system. We opt for the first configuration. Here the position loop is replaced
by an optimal controller. Out of the 3 choices this may not be the best choice in terms of
improving pointing accuracy, but this is the easiest to implement.The optimal control problem
is discussed for brushed DC motor servo system. The simulation is on the lines of optimal
control simulations for GMRT servo system as discussed in [1]. For in detail discussion of
optimal control problem for GMRT system interested reader can refer to [1]. For theory of
optimal controllers reader can refer to [6] and [7]. Here too we first simulate a linear quadratic
regulator (LQR) for GMRT servo system. Since in case of GMRT it is important to track a
source in sky, we progress to simulation of linear quadratic tracking regulator (LQTR). Finally,
considering the fact that all states of system are not available for measurement on the antenna
we design linear Gaussian estimator to estimate the system states and then combine it with
linear quadratic servo regulator.

3.2 Derivation of state space equations for present servo

system

Optimal controllers are designed as state feedback controllers. To design state feedback con-
trollers it is necessary that the complete system model is expressed as a state space model.
For optimal controller the system consists of plant along with current and velocity loop. In
the design it is decided to replace the position controller with optimal controller. Hence it is
necessary to convert the transfer functions as described in eqn 2.6, 2.11 into their state matrices
and augment them with plant matrices as described by eqn 2.17, 2.18, 2.19 and 2.20. It is seen
that current loop dymanics are much faster than rest of the system. Hence for the simplicity of
implementation current loop is considered as a constant gain. The current loop is replaced by
an equivalent DC gain of 16amp/Volt of velocity loop output. Figure 3.1 shows the state space
representation of the complete system. Matrices A2 , B2, C2, P , and Cr correspond to the
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plant. Matrices A1 , B1, C1, D1 velocity lag compensator and A3 , B3, C3, D3 correspond to
velocity lead compensator. The matrices for lead lag compensator are derived by representing
velocity transfer function in observer canonical form. The derivation for observer canonical
form is as follows,
Consider eqn 2.7

Gs1(s) =
[R4 +R4(R1 +R2)C4s]TachoA(s)

(R1 +R3 +R4) + [R1R2 + (R1 +R2)(R3 +R4)]C4s

Let,

Zw0 =
R4(R1 +R2)

[R1R2 + (R1 +R2)(R3 +R4)]

Zw1 =
R4

[R1R2 + (R1 +R2)(R3 +R4)]C4

Pw1 =
(R1 +R3 +R4)

[R1R2 + (R1 +R2)(R3 +R4)]C4

Therefore,

Gs1(s) =
Zw0s+ Zw1

s+ Pw1

(3.1)

A3 = [−Pw1] (3.2)

B3 = [Zw1 − Zw0Pw1] (3.3)

C3 = [1] (3.4)

D3 = [Zw0] (3.5)

Similarly considering eqn 2.9 we define,

Pz1 =
1

(R66 +R28)C5 + 1

Zz0 =
R28R66

(R66 +R28)C5 + 1

Zz1 =
R66

(R66 +R28)C5 + 1

Hence,

Gf (s) =
Zz0s+ Zz1

s+ Pz1

(3.6)
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A1 = [−Pz1] (3.7)

B1 = [Zz1 − Zz0Pz1] (3.8)

C1 = [1] (3.9)

D1 = [Zz0] (3.10)

The current loop along with electrical part of motor are considered as a gain Kf hence the
matrices A2, B2 and C2 represent the mechanical part of the plant and are given as follows,

A2 =



0 1 0 0 0 0 0 0
−Kmg

JmN2

−Bm

Jm

kmg

JmN
0 0 0 0 0

0 0 0 1 0 0 0 0
Kmg

JgN
0

−Kmg −Kgp/N
2
s

Jg

−Bg

Jg

Kgp

JgNs

0 0 0

0 0 0 0 0 1 0 0

0 0
Kgp

JcNs

0
−(Kgp +Kad)

Jc

−(Bc +Buc)

Jc

Kad

Jc

Buc

Jc

0 0 0 0 0 0 0 1

0 0 0 0
Kad

Juc

Buc

Juc

−Kad

Juc

−Buc

Juc



(3.11)

B2 =



0
Kt

Jm

0
0
0
0
0
0


(3.12)

C2 =
[

0 1 0 0 0 0 0 0
]

(3.13)

K =
2Ktacho

R25

(3.14)

N =
1

R26

(3.15)

The matrices can be augmented to give complete system matrices as follows (refer figure 3.1),

Ẋ = A2X +B2U2

Y = C2X

U2 = C1Z +D1U1
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Ż = A1Z +B1U1

U1 = R N − F
F = C3W +D3KU3

U3 = C2X

Ẇ = A3W +B3KC2X

F = C3W +D3KC2X

U1 = R N − C3W −D3KC2X

Ż = A1Z +B1[R N − C3W −D3KC2X]

Ż = −B1D3KC2X + A1Z −B1C3W +R NB1

U2 = C1Z +D1[R N − C3W −D3KC2X]

U2 = −D1D3C2KX + C1Z −D1C3W +D1R N

Ẋ = A2X +B2[−D1D3C2KX + C1Z −D1C3W +D1R N ]

Ẋ = A2X −B2D1D3C2X +B2C1Z −B2D1C3W +B2D1R N

Ẋ = [A2 −B2D1D3C2K]X +B2C1Z −B2D1C3W +B2D1R N

 Ẋ

Ż

Ẇ

 =

 A2 −B2D1D3KC2 B2C1 −B2D1C3

−B1D3KC2 A1 −B1C3

B3KC2 0 A3


 X
Z
W

+

 B2D1N
B1N
0

R (3.16)

Y = C2X (3.17)

The current in motor is given by,

Ia =
U2

Kf

Ia =
1

Kf

[
−D1D3C2K C1 −D1C3

]
[X W Z]′ +

1

Kf

[D1N ]R (3.18)
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3.3 Linear Quadratic Regulator (LQR)

The Linear Quadratic optimal control has two major type of control aims: The regulator
problem and the tracking problem. The qualitative statements of these 2 types of problems can
be stated verbatim as given in [7]

Qualitative statement of the regulator problem
Suppose that initially the plant output or any of its derivatives,is nonzero. Provide
a plant input to bring the output and its derivatives to zero. In other words, the
problem is to apply a control to take the plant from nonzero state to zero state.
This may typically occur where the plant is subjected to unwanted disturbances
that perturb its output.

Qualitative statement for tracking problem
Suppose that the plant output or its derivative, is required to track some prescribed
function. Provide a plant input that will cause this tracking.

We first tackle the problem of regulator in this section and that of tracking in next section.
Though we do not use a regulator in our final design, a simulation of regulator gives us insight
in the easy of controllability of each state of the system.

3.3.1 Note on equations for LQR

To design a LQR we have to deal with two issues. First we have to define a performance index
which has to be optimized (minimized) and then find an input u∗ which will regulate the system
giving optimum (minimum value) of performance index. Consider a system given by,

ẋ = Ax+Bu (3.19)

y = C ′x+Du (3.20)

We consider the problem of infinite time regulator. For this performance index for the system
is given as,

PI =
∫ ∞
0

(u′Ru+ x′Qx)dt (3.21)

where Q and R are weight matices.
The PI can be represented as,

PI = x′(t)Px(t) (3.22)

Where P is a positive definite symmetric matrix. The value of u∗ minimizing eqn 3.21 is found
by deducing Hamiltonian-Jacobi equation for the PI as given in [6] and [7]. The control input
u∗ which will minimize the PI is given by,

u∗ = −R−1BPx(t) (3.23)

where P is a positive definite symmetric matrix satisfying equation 3.24,

− Ṗ (t) = P (t)A(t) + A′(t)P (t)− P (t)B(t)R−1(t)B′(t)P (t) (3.24)
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Eqn 3.24 is the matrix riccati equation. Solving it gives the value for P. Then, u∗ is given as,

u∗ = −Kx(t) (3.25)

K = −R−1BP

3.3.2 Simulation results for LQR

The LQR for GMRT servo is simulated by writing m-code in matlab. Appendix A gives the
m-code used for simulation. Equations 3.26, 3.27 and 3.28 give the values for weight matrices
Q an R used for simulation and feedback gain matrix K calculated by the simulation. The
weight matrices are decided such that the response minimizes PI while the constraints on the
motor speed and current are not by violated. The maximum possible motor speed is 2000 rpm
i.e 209.33 rads/sec Where as the maximum allowable current in motor is 80 Amps. Another
constraint for GMRT servo is the maximum torque that can be applied to gearbox by motor.
Its value is 20 Nm which corresponds to 40 Amps of motor current. Hence the final limit on
motor current works out to be 40 Amps. In case of high load condition, the load is equally
shared by both the motors. So in high load situations, the maximum torque that can be applied
to the both the gearboxes is 20+20 = 40 N-m. In simulation we use only one motor instead of 2
motors. Hence maximum allowable torque for single motor in simulation is 40 N-m which puts
a maximum current constraint of 80 Amps on the motor. Figures 3.2 and 3.3 give simulated
results for motor current and dish position. It is seen that the maximum motor current is
around 79 Amps. Equations 3.26 and 3.27 give the weight matrices Q and R used in simulation
and equation 3.28 give the calculated feedback gain vector K.

Q =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 20000 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



(3.26)

R = [1] (3.27)

K = [0.0076 0.0002 0.0073 0.0000 0.5197 0.2630 − 2.6507

1.4928 0.0040 − 18.9278] (3.28)
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Figure 3.2: Response of LQR: Motor current

Figure 3.3: Response of LQR: Dish Position
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3.4 Linear Quadratic Tracking Regulator

For GMRT system we need to track a source in sky. Hence, the antenna must constantly
follow a given input trajectory. We can convert a tracking problem into a regulator problem
by defining an input reference model whose output is the trajectory that the system needs to
follow. The reference model is such that it has zero input and some initial state. The response
of the reference model to this non zero initial state creates the trajectory that the system has
to follow. By augmenting the reference model to the system model we create a new system
which has zero input and some non zero initial state (in reference model). Our aim now is to
find an input u∗ which bring system from nonzero state to zero state as well as minimize the
PI. Now this is a standard regulator problem. Figure 3.4 shows the block diagram of a system
with reference model. The next subsection defines the mathematical equations to convert a
tracking problem into a regulator problem.

Figure 3.4: System with input reference model
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3.4.1 Note on equations for LQTR

The PI for a tracking problem should minimize the difference between commanded trajectory
and actual trajectory followed by the system. The PI should also include term to penalize the
input to the plant. Hence the PI for the tracking problem can be defined as,

PI =
∫ ∞
0

(u′Ru+ (y − ỹ)′Q(y − ỹ)dt (3.29)

Where ỹ is desired trajectory and y is output trajectory.
Now we convert tracking problem into regulator problem by defining input reference model and
auxiliary matrices. For GMRT the trajectory that the system needs to follow is a ramp signal.
Its reference model is given by,

V̇r = Arvr

Ỹ = CrVr

And the initial state is given by Vr0,

Ar =

[
0 1
0 0

]
(3.30)

Cr =
[

1 0
]

(3.31)

Vr0 =

[
0
1

]
(3.32)

The auxiliary matrices to convert a tracking problem to a regulator problem are defined as,

L = C ′(C.C ′)−1 (3.33)

C = I − L.C (3.34)

Where C is plant output matrix. If C has rank p then we now define a fictitious output vector
which is a linear combination of remaining n-p states. Where n is system order.

y(t) = Cx(t) (3.35)

And a fictitious desired state trajectory given by,

x̃(t) = Lỹ (3.36)

The modified PI is given as

PI =
∫ ∞
0

(u′Ru+ y′Q′1y + (y − ỹ)′Q2(y − ỹ))dt (3.37)

Defining,

Q = C
′
.Q1.C + C ′Q2.C (3.38)
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The PI becomes,

PI =
∫ ∞
0

(u′Ru+ (x− x̃)′Q(x− x̃))dt (3.39)

Also ỹ = Crvr The augmented plant an reference model matrices are given as,

x̂ =

[
x(t)
vr(t)

]
(3.40)

ATR =

[
A 0
0 Ar

]
(3.41)

BTR =

[
B
0

]
(3.42)

PI =
∫ ∞
0

u′Ru+ x̂′QTRx̂dt (3.43)

Then the weight matrix Q becomes,

QTR =

[
Q −QLCr

−C ′rL′Q C ′rL
′QLCr

]
(3.44)

Subject to augmented system,

˙̂x = ATRx̂+BTRu (3.45)

The resulting Matrix Riccati equation is solved by partitioning of state vector. This results in
three steady state Riccati equations as follows

PA+ A′P − PBR−1B′P +Q = 0 (3.46)

P12Ar + A′P12 − PBR−1B′P12 −Q.L.Cr = 0 (3.47)

P22Ar + A′rP22 − P ′12BR
−1B′P12 + C ′rL

′QLCr = 0 (3.48)

The input for optimizing the PI is given as,

u∗ = K1x(t) +K2vr(t) (3.49)

where, K1 is feedback gain matrix and K2 is feed forward gain matrix given as,

K1 = −R−1B′P (3.50)

K2 = −R−1B′P12 (3.51)
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3.4.2 Simulation results for LQTR

Appendix A gives the m-code for simulation of linear quadratic tracker. Equations 3.52, 3.53
and 3.54 give the weight matrices Q1, Q2 and R usd for simulations. These weight matrices
give the least value of PI without violating system constraints. Equations 3.55 and 3.56 give
gain matrices K1 and K2 calculated by simulation for given weight matrices. Figures 3.5 and
3.6 give the simulated motor current and dish position for the optimal tracker. Figure 3.8 gives
the bode plot for the optimal tracker.

Q1 =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.01 0
0 0 0 0 0 0 0 0 0 0



(3.52)

Q2 = [10000000] (3.53)

R = [.001] (3.54)

K1 =
[
−3.5547 − 0.0799 − 24.2686 − 0.0199 2.9418× 104 − 1.1340× 103

−6.1705× 104 − 3.6515× 103 − 0.3729 4.7306× 103
]

(3.55)

K2 =
[

1.0000× 105 7.7503× 103
]

(3.56)
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Figure 3.5: Response of LQTR: Motor current

Figure 3.6: Response of LQTR: Dish Position
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Figure 3.7: Response of LQTR: Dish velocity

Figure 3.8: Response of LQTR: Bode plot
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3.5 Linear Quadratic Tracker with Estimator

For the design of LQR and LQTR is was assumed that the complete state vector is available
for feedback. But in reality only 3 variables of state vector are available. The motor current,
motor velocity x(2) and controlled inertia position x(5) are available for measurement. The rest
of the system states can be estimated by measuring the system input and output. For this it
is necessary that the system is observable. By calculating the system observability matrix it is
seen that the system is indeed observable hence all the system states can be estimated. This
section discuss the design of the estimator. The estimated system states can then be used for
feedback in LQTR controller.

3.5.1 Note on equations for tracker with estimator

The observer for the system defined in equations 3.19 and 3.20 is given as [7]

ẋe = (A+KeC)xe(t) +Bu(t)−Key(t) (3.57)

The derivative of error between the actual states and the estimated states is given as,

d

dt
(x− xe) = (A+KeC)(x− xe) (3.58)

Thus by proper pole placement the error can be made to quickly approach zero.
The measurement of actual system input and output will be corrupted by noise. This noise can
be considered as Gaussian in nature. The system can thus be represented as,

ẋ = Ax(t) +Bu(t) + ν(t) (3.59)

y(t) = Cx(t) + η(t) (3.60)

Where ν and η are input and output measurement noise. The noise variables are random vari-
able with Gaussian distribution and zero mean. They can be described as statistical processes
given by,

E[ν(t)ν ′(t)] = Qδ(t− τ) (3.61)

E[ν(t)] = 0 (3.62)

E[η(t)η′(t)] = Rδ(t− τ) (3.63)

E[η(t)] = 0 (3.64)

Where Q is positive semidefinite matrix and R is positive definite matrix.
The performance index will require minimizing variance of error between actual and estimated
states. The PI will thus become,

PI = E([x(t1)− xe(t1)]
′[x(t1)− xe(t1)]) (3.65)

Solving the Hamiltonian Jacobi of the PI gives a steady state matrix riccati equation,

PA′ + AP − PC ′R−1CP +Q = 0 (3.66)

The feedback gain Ke for optimal pole placement of observer poles is given by,

Ke = −PC ′R−1 (3.67)

The block diagram of complete design consisting of optimal tracker with estimator is shown
in figure 3.9
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3.5.2 Simulations results of Tracker with estimator

The m-code for tracker with estimator is given in Appendix A. For the optimal tracker designed
in section 3.4 the estimator feedback gain Ke calculated by simulation is given by equation
3.68. The weight matrices Q and R used for calculating Ke is given in equations 3.69 and 3.70
respectively. Table 3.5.2 gives the steady state error between plant state variable values and
estimated state variable values.

Ke =



1.07106288 −9797895.87647351 0.00094548
0.00663667 0.00006471 0.00046285
0.00003749 0.00055409 −178.73408017
40.94071224 −31588.23520335 0.06470993
−26.20085944 −23.52758256 −2.20879454
−2.44347976 −2.57993737 −3.92371986
0.90455371 24.79576052 147.65373854
−1787.34080173 0.10998122 0.43789868
0.00904554 0.02619027 0.01008977
0.03965760 −27726.46239188 3133.51609506



(3.68)

Q =



105 0 0 0 0 0 0 0 0 0
0 96× 1012 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 20 0
0 0 0 0 0 0 0 0 0 105



(3.69)

R =

 1 0 0
0 0.001 0
0 0 0.1

 (3.70)

State Variable Errror
θm .079 rads
θg 4.7414× 10−5 rads
θc 3.7711× 10−6 rads
θuc 3.7935× 10−6 rads
x(9) 1.6719× 10−6 Volts
x(10) 3.8639× 10−5 Volts

Table 3.1: Error between plant state variables and estimator state variables at steady state

60



Giant Meterwave
Radio Telescope

Simulations of GMRT
Servo-mechanical System

Figure 3.10: Response of Tracker with Estimator: Flexible inertia position

Figure 3.11: Response of Tracker with Estimator: error between commanded position, actual
position and estimated position
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Figure 3.12: Response of Tracker with Estimator: step response

3.6 Conclusions

This chapter discussed the simulation of optimal controllers for GMRT servo. Optimal controller
achieves the allowable system bandwidth of 1 Hz. This assures fastest transient response
with acceptable overshoot and zero steady state error. Also none of the system limits were
violated. As compared classical design this system performance was achieved by fewer iterations
of controller parameters Q and R. This makes optimal controllers more attractive for tuning
purpose. The LQTR controller discussed in this chapter is a memory less controller of type 0.
Though we get a zero steady state error in absence of disturbance, there will be a steady state
error in presence of disturbances like wind. Hence as discussed in [1] and [8] response of tracker
with a feedforward integral gain needs to be simulated. The integral gain will lead to near zero
steady state error even in case of wind disturbances.
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Chapter 4

Conclusions and notes on further work
plan

4.1 What more remains in Simulation?

The simulation response of brushed DC motor was found to be a close match with that of the
measured system response. Differences in transient response can be speculated to be because of
inaccuracy of mechanical model. Hence more work needs to be done on modeling of mechanical
system. This issue is discussed in detail later in this section. For a large radio telescope like
GMRT the azimuth dynamics are expected to change with elevation angle. A detailed LRF test
of azimuth axis for various elevation angles was carried. No significant change was found in first
resonance frequency as a function of elevation. This is because for a GMRT servo-mechanical
system the motor inertia is much higher than reflected inertia of the antenna. Thus the chang-
ing antenna dynamics with change in elevation has little effect on overall system dynamics. In
the simulation of GMRT servo system, so far we have considered only the simulation of azimuth
axis. The simulation of elevation axis was carried out in similar fashion as for azimuth axis with
appropriate change in parameter values. As the motor inertia dominates over the antenna dish
inertia the response of elevation axis is similar to that of azimuth axis. All results discussed for
azimuth axis hence apply even for elevation axis.

The simulation of optimal controller shows the best possible response that the servo system can
give without violating current or speed limits. But these results are obtained in absence of any
disturbance. The results will be more meaningful if simulations show that optimal controllers
give better accuracy even in presence of external disturbances. Simulations in this regard are
already in progress. The biggest external disturbance to the system is wind load. Simulation
of wind effects on tracking accuracy of antenna are needed to be carried out for the present
servo system. This can be done either by the approach as given used in [1] or as given in [9].
Simultaneously it is necessary to experimentally measure wind power spectrum and verify the
simulated and measured wind loads. The wind meters used at GMRT are cup type anemome-
ters. These wind anemometers are have mechanical moving parts and hence slower response
time. This makes them inefficient to measure fast varying wind gusts. A more precise wind
meter should be used to measure wind gusts at GMRT and consequently its effect on antenna
tracking accuracy. A project in this direction has already been initiated.
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For effectiveness of optimal controller depends on accuracy of the estimator used in the con-
troller. The equations of the estimator are same as plant equations. Hence it is necessary to
have an accurate plant model. For this a detailed system identification of the plant model
needs to be carried out. So far simple least square estimation techniques and frequency domain
techniques like sine sweeps have been tried. But these methods are are not effective for a com-
plex system like GMRT. By using input which is rich in its frequency content so that it excites
all the modes of the system, a better estimation of higher order resonance frequencies of the
system can be achieved. One such input is Pseudo Random Binary signals(PRBS) [10]. These
signals can be generated using programmable arbitrary waveform generator or using Simulink
[11] and National instruments Data acquisition card. Similarly, antenna can be excited using
white noise which can also be generated either by MATLAB or arbitrary waveform generator.

It is found that the transition matrix A of plant model of the system is ill conditioned. Hence
state matrix conditioning method like Hankel singular value decomposition and model reduc-
tion methods like balanced truncation method can be tried [12]. This step of conditioning of
state matrices and model reduction will play an important role in implementation of optimal
controllers in servo computer. If the system matrix is badly conditioned it will lead to accu-
mulation of computational errors. This will result in undesirable response or even unstable
response of the system. Model reduction will lead to a model of much lesser model order.
Simulation results show that there is scope to reduce present model order of 12 to as low as 5th

order or 6th order. This will make the task of on line parameter estimation much easier. Also
the computational load on servo computer to implement optimal controller will decrease by a
large factor.

The problem of system identification and model reduction of the system are coupled to each
other. Both these problems can be tackled simultaneously if the coordinate system is changed
from θ and θ̇ to the modes of the system. This approach has been used in implementing optimal
controllers for NASA’s DSN network telescopes and Large Millimeter Telescope [13]. Once the
coordinates of the system are changes to the modes, model reduction can be obtained by dis-
carding non-dominant modes of the system. By carrying modal testing of the system the modal
model of the system can be identified using Eigensystem Realization Algorithm as explained
in [14]. To have a modal model of the system it is necessary to carry out FEM analysis of
the system. FEM model along with system identification will help in removing inaccuracies of
mechanical model. For GMRT a detailed FEM analysis is being presently carried out by Tata
Consulting Engineers. Once the FEM model of the system is ready both problems of model
reduction and system identification can be tackled simultaneously.

4.2 Hardware in the loop simulator

The successful implementation of optimal controller can be done only after an accurate plant
model has been obtained. This will be possible only after successful system identification of the
system. The other aspect in implementation of optimal controllers is its integration with present
servo system. This task will typically include writing an appropriate code of optimal controller
to run on servo computer. The issues that will be faced are maintaining computational load of
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Figure 4.1: HILS schematic

servo computer and getting required computational accuracy. The more detailed is the model
of estimator better will be the accuracy of estimated states but this will increase the load on
servo computer. A trade-off between accuracy and computational load need to be achieved
such that the final design meets the pointing challenges even in presence of wind. The present
simulation gives the initial guess of the state feedback gains and and plant model that will
be needed for optimal control implementation. Using Simulink’s Real Time workshop toolbox
one can quickly generate the code needed to implement optimal controller. The plant model
can also be run in real time so that it acts as a virtual antenna. The virtual antenna can
then be used to test the optimal controller code. Such a setup which is a standard practice
in aerospace and automobile industry is called Hardware in the loop simulator (HILS). Below
is the outline of steps that can be followed for forming HILS setup using simulink. Figure 4.1
shows a schematic representation for HILS setup.

1. Setup up a real-time model of antenna to be run on a PC called Target PC. Matlab
provides toolboxes to create executable to run in real time on real-time windows kernel,
xPC kernel or real time linux kernel among other. Chose the a suitable kernel depending
on available input/output interface options and ease of implementation. The real time
model will act as a virtual antenna generating antenna position, velocity, current and will
communicate with the controller.
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2. Setup a communication between the RT antenna model and the hardware controller. The
is done by accessing the position output of the RT model in a suitable form as a real
world signal (Voltage). This signal can be the 17 bit serial output mimicking the actual
encoder. The signal can then straight away be given to hardware controller which has
the facility to read the encoder. But the actual encoder works on 100 Khz clock. Matlab
does not have a facility to simulate such high frequency clock in RT. The highest possible
sampling rate in real time approaches 50 KHz only as given in key features of xPC target
toolbox [15]. The solution for this is to generate a quantized (mimicking the quantization
of encoder output) analog signal corresponding to the position output of RT model. The
hardware controller can be easily configured to read this signal for position feedback
instead of encoder signal and convert it to appropriate units. According to the position
loop requirements this signal will require a sampling frequency of only 20Hz which is
easily achievable in matlab generated RT model.

3. Use real time workshop to generate optimal controller code which will work on servo com-
puter having RT Linux OS. Test the controller code for various performance parameters.

By following the above steps a laboratory setup to test optimal controller design can be es-
tablished. In this case the plant to be controlled (RT model of antenna) is exactly same as
the estimator plant model in controller. Hence, the inaccuracies and instability of optimal con-
troller due to inaccurate plant model can be avoided for initial testing phase. This will help
in understanding the computational load of the controller hardware for optimal control design.
Some part of safety interlock logic can also be implemented in RT model of plant in matlab.
Thus the behaviour of optimal controller can be tested when it hits various limits. If the an-
tenna shows limit cycling on hitting the limits a command pre-processor can be developed as
discussed in [16]. An optimal controller can be tried on antenna only after through testing,
which is possible only after stetting up a laboratory setup. The work of estimating the actual
parameters of the plant can be carried in parallel to setting up of a laboratory setup for testing
of optimal control design. As and how the plant model is improved by successful parameter
estimation experiments it can be accordingly modified in controller hardware and the RT model
of plant. This parallel approach to solve the problem will greatly expedite the implementation
and optimal controllers on actual antenna.
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Appendix A

Simulation Programs

All simulations for are carried in Matlab and Simulink software. For more information about
programing in matlab and simulink the reader can refer to [17] and [18] respectively. The
simulation of brushed DC motor and brushless DC motor servo system are done in Simulink.
But response of these simulation is plotted in matlab workspace. These simulink files will play
an important role for converting these simulations in real-time. Models generated in simulink
alone can be converted in real time executable. This facility is not available for programs written
in m-file. The experimental data is imported in matlab workspace and is then compared with
simulated response. The programs for optimal control and frequency test analysis are written
in m-files which are executed in matlab workspace. To run the programs properly the programs
must be preferably in matlab’s current directory.
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1 %*************************************************************************
2 %Program for generating bode plot from detailed frequency tests on antenna.
3 %The program assumes that data is collected using NI DAQ card using signal
4 %express software. Store all files of one axis in one folder in tab
5 %delimited format with .txt extension.
6 %*************************************************************************
7 clf
8 clear
9 clc

10 Pathname = input('Pathname of data folder: ','s');
11 extension = '\*.txt';
12 path = strcat(Pathname,extension);
13 lrf data = dir(path);
14 dt = input('Sampling period for data Aquisition: ');
15 input col = input('Column number of input signal: ');
16 output col = input('Column number of output signal: ');
17 Hline = input('Specify the line number of last header text: ');
18 [a,b]=size(lrf data);
19 for i=1:1:a
20 lrf data(i).name;
21 filename = strcat(Pathname,'\',lrf data(i).name);
22 A = importdata(filename,'\t',Hline);
23 x = A.data;
24 [n,m]=size(x);
25 sa1=fft(x(:,input col));
26 sa2=fft(−x(:,output col));
27 [mag1, mag1 index] = max(abs(sa1));
28 freq(i) = (mag1 index − 1)/(n−1)/dt;
29 phase1 = angle(sa1(mag1 index));
30 [mag2, mag2 index] = max(abs(sa2));
31 phase2 = angle(sa2(mag2 index));
32 phase(i)= (phase2−phase1)*180/pi;
33 mag(i) = 10*log(mag2/mag1);
34 end
35 subplot(2,1,1)
36 plot(freq , mag,'.')
37 title('Magnitude plot')
38 xlabel('Frequency in Hz')
39 ylabel('Magnitude in dB')
40 grid on
41 grid minor
42

43 subplot(2,1,2)
44 plot(freq,phase,'.')
45 title('Phase plot')
46 xlabel('Frequency in Hz')
47 ylabel('Phase in degrees')
48 grid on
49 grid minor
50 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
51 % End of program
52 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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1 %**************************************************************************
2 %Program to simulate linear quadratic regulator for GMRT servo system.
3 %The plant model and velocity controller are as per present system.
4 %**************************************************************************
5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 %Parameters for Mechanical model of GMRT
7 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 jm=.066768;
9 jg=3.5;

10 jc=2*0.995e6;
11 juc=10.9e6;
12 bm=.005424;
13 bg=4379.2;
14 bc=7.8336e6;
15 buc=1.34368e7;
16 kmg=1e7;
17 kgp=5.0864e9;
18 kad=1.428e9;
19 n=1505;
20 ns=12.6;
21 kf=.0625;
22 R1=24e3;
23 R2=24e3;
24 R3=24e3;
25 R4=20e3;
26 R28=180e3;
27 R66=100e3;
28 R25=27.4e3;
29 R26=13.7e3;
30 C4=0.22e−6;
31 C5=0.68e−6;
32 kt=0.56;
33 K=2*.1614/R25;
34 N=1/R26;
35 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36 %Velocity controller trasfer function coefficients.
37 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
38 Zw0=R4*(R1+R2)/[R1*R2+(R1+R2)*(R3+R4)];
39 Zw1=R4/((R1*R2+(R1+R2)*(R3+R4))*C4);
40 Pw1=(R1+R3+R4)/((R1*R2+(R1+R2)*(R3+R4))*C4);
41 Pz1=1/((R28+R66)*C5);
42 Zz1=R66/((R66+R28)*C5);
43 Zz0=R28*R66/(R28+R66);
44 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
45 %State Space representation of GMRT mechanical + motor model + velocity
46 %controller
47 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
48 A=[0 1 0 0 0 0 0 0 0 0;
49 −kmg/(jm*nˆ2) (−bm/jm−Zz0*Zw0*K*kt/(kf*jm)) kmg/(jm*n) 0 0 0 0 0
50 kt*1/(jm*kf) −kt*1*Zz0/(jm*kf);
51 0 0 0 1 0 0 0 0 0 0 ;
52 kmg/(jg*n) 0 −(kmg+kgp/nsˆ2)/jg −bg/jg kgp/(jg*ns) 0 0 0 0 0 ;
53 0 0 0 0 0 1 0 0 0 0;
54 0 0 kgp/(jc*ns) 0 −(kgp+kad)/jc −(bc+buc)/jc kad/jc buc/jc 0 0;
55 0 0 0 0 0 0 0 1 0 0;
56 0 0 0 0 kad/juc buc/juc −kad/juc −buc/juc 0 0;
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57 0 −Zw0*K*(Zz1 −Zz0*Pz1) 0 0 0 0 0 0 −Pz1 −(Zz1−Zz0*Pz1);
58 0 K*(Zw1−Zw0*Pw1) 0 0 0 0 0 0 0 −Pw1
59 ];
60 B=[0; kt*Zz0*N/(jm*kf);0;0;0;0;0;0;N*(Zz1 − Zz0*Pz1);0];
61 C=[0 1 0 0 0 0 0 0 0 0 ; −Zz0*Zw0*[0 1 0 0 0 0 0 0]*K 1 −Zz0*1];
62 D=[0;Zz0*N];
63 sys=ss(A,B,C,D);
64 step(sys)
65 pause
66 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67 % Defining weight matrices Q and R for linear quadratic regulator and
68 % finding state feedback gain matrix k.
69 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
70 q=[0 0 0 0 0 0 0 0 0 0;
71 0 0 0 0 0 0 0 0 0 0;
72 0 0 0 0 0 0 0 0 0 0;
73 0 0 0 0 0 0 0 0 0 0;
74 0 0 0 0 20e3 0 0 0 0 0;
75 0 0 0 0 0 0 0 0 0 0;
76 0 0 0 0 0 0 0 0 0 0;
77 0 0 0 0 0 0 0 0 0 0;
78 0 0 0 0 0 0 0 0 0 0;
79 0 0 0 0 0 0 0 0 0 0
80 ];
81 r=1;
82 [k,s]=lqr(A,B,q,r);
83 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
84 %Closing loop with lqr controller and finding system response to 'zero
85 %input (reference position), non−zero initial states'.
86 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
87 a=A−B*k;
88 b=B;
89 c=C;
90 d=D;
91 ang=0.4167;
92 x0=[1505*12.5*ang*2*pi/360;
93 0;
94 12.5*ang*2*pi/360;
95 0;
96 ang*2*pi/360;
97 0;
98 ang*2*pi/360;
99 0;

100 0;
101 0
102 ];
103 t=0:0.01:50;
104 u=zeros(length(t),1);
105 sys1=ss(a,b,c,d);
106 [y,t,x]=lsim(sys1,u,t,x0);
107 for I=1:10;
108 var num = num2str(I);
109 var = strcat('x',var num);
110 plot(t,x(:,I));
111 title(var);
112 grid on;
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113 pause
114 end
115 clear u
116 u=−k*x';
117 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
118 %Plotting system states, velocity loop input voltage and motor current
119 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
120 plot(t,u);
121 title('input');
122 grid;
123 pause;
124 veler=u;
125 curr=(y(:,2) + Zz0*N*u')/kf;
126 plot(t,curr);
127 title('motor current')
128 grid;
129 pause;
130 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
131 %end of program
132 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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1 %**************************************************************************
2 %Program to simulate linear quadratic tracking regulator for GMRT servo
3 %system. The plant model and velocity controller are as per present system.
4 %**************************************************************************
5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 %Parameters for Mechanical model of GMRT
7 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 jm=.066768;
9 jg=3.5;

10 jc=2*0.995e6;
11 juc=8.9e6;
12 bm=.005424;
13 bg=4379.2;
14 bc=7.8336e6;
15 buc=1.34368e7;
16 kmg=1e7;
17 kgp=5.0864e9;
18 kad=1.428e9;
19 n=1505;
20 ns=12.6;
21 kf=.0625;
22 R1=24e3;
23 R2=24e3;
24 R3=24e3;
25 R4=20e3;
26 R28=180e3;
27 R66=100e3;
28 R25=27.4e3;
29 R26=13.7e3;
30 C4=0.22e−6;
31 C5=0.68e−6;
32 kt=0.56;
33 K=2*.1614/R25;
34 N=1/R26;
35 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36 %Velocity controller trasfer function coefficients.
37 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
38 Zw0=R4*(R1+R2)/[R1*R2+(R1+R2)*(R3+R4)];
39 Zw1=R4/((R1*R2+(R1+R2)*(R3+R4))*C4);
40 Pw1=(R1+R3+R4)/((R1*R2+(R1+R2)*(R3+R4))*C4);
41 Pz1=1/((R28+R66)*C5);
42 Zz1=R66/((R66+R28)*C5);
43 Zz0=R28*R66/(R28+R66);
44 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
45 %State Space representation of GMRT mechanical + motor model + velocity
46 %controller
47 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
48 a=[0 1 0 0 0 0 0 0 0 0;
49 −kmg/(jm*nˆ2) (−bm/jm−Zz0*Zw0*K*kt/(kf*jm)) kmg/(jm*n) 0 0 0 0 0
50 kt*1/(jm*kf) −kt*1*Zz0/(jm*kf);
51 0 0 0 1 0 0 0 0 0 0 ;
52 kmg/(jg*n) 0 −(kmg+kgp/nsˆ2)/jg −bg/jg kgp/(jg*ns) 0 0 0 0 0 ;
53 0 0 0 0 0 1 0 0 0 0;
54 0 0 kgp/(jc*ns) 0 −(kgp+kad)/jc −(bc+buc)/jc kad/jc buc/jc 0 0;
55 0 0 0 0 0 0 0 1 0 0;
56 0 0 0 0 kad/juc buc/juc −kad/juc −buc/juc 0 0;
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57 0 −Zw0*K*(Zz1 −Zz0*Pz1) 0 0 0 0 0 0 −Pz1 −(Zz1−Zz0*Pz1);
58 0 K*(Zw1−Zw0*Pw1) 0 0 0 0 0 0 0 −Pw1
59 ];
60 b=[0; kt*Zz0*N/(jm*kf);0;0;0;0;0;0;N*(Zz1 − Zz0*Pz1);0];
61 c=[zeros(1,4) 1 zeros(1,5)];
62 d=[0];
63 sys=ss(a,b,c,d);
64 step(sys)
65 pause
66 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67 %State space model for refrence input. In this case it is a ramp input with
68 %a slope of 7.2e−5 rad/sec
69 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
70 ar=[0 1; 0 0 ];
71 cr=[1 0];
72 zr0=[0; ((2*pi)/(360*60*60)*15)];
73 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
74 %define auxilary matrices to convert linear quadratic tracking regulator
75 %problem to linear quadratic regulator problem.
76 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
77 l=c'*inv(c*c');
78 [m,n]=size(a);
79 cuo=eye(m,n)−l*c;
80 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
81 %Define weight matrices q1, q2 and r and find state feedback gains k1 and
82 %k2
83 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
84 q1=[zeros(8,10);
85 zeros(1,8) 0.01 zeros(1,1);
86 zeros(1,10)];
87 q2=[1e7];
88 r=[0.001];
89 q=cuo'*q1*cuo+c'*q2*c;
90 qcap=[q −q*l*cr;
91 −cr'*l'*q cr'*l'*q*l*cr];
92

93 Aaug=[a zeros(m,2);
94 zeros(2,n) ar];
95 baug=[b;0;0];
96

97 [k,P]=lqr(a,b,q,r);
98 P12=lyap((a'−P*b*inv(r)*b'),ar,(−q*l*cr));
99 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

100 %Form closed loop matrices with Linear quadratic tracking regulator state
101 %feedback gains. Also calculate system reponse to ramp input of 7.2e−5
102 %rad/sec. Here the actual input 'u' to plant is zero. But as input model is
103 %agumented with system matrices, the response of system is to non zero
104 %initial state of ramp input model which generates the necessary reference
105 %position.
106 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
107 ac=a−b*inv(r)*b'*P;
108 a=[ac −b*inv(r)*b'*P12;
109 zeros(2,n) ar];
110 k1=−inv(r)*b'*P;
111 k2=−inv(r)*b'*P12;
112 bt=b;
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113 b=baug;
114 c=[c 0 0];
115 d=[0];
116 x0=[zeros(10,1);
117 zr0];
118 u=zeros(10001,1);
119 t=0:0.01:100;
120 [y,x]=lsim(a,b,c,d,u,t,x0);
121 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
122 %Plotting system states, velocity loop input voltage and motor current
123 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
124 for I=1:12;
125 var num = num2str(I);
126 var = strcat('x',var num);
127 plot(t,x(:,I));
128 title(var);
129 grid on;
130 pause
131 end
132 u=[−inv(r)*bt'*P −inv(r)*bt'*P12]*x';
133 plot(t,u);
134 title('input');
135 grid
136 pause;
137 cur=([−Zz0*Zw0*[0 1 0 0 0 0 0 0]*K 1 −Zz0*1 0 0]*x'+ Zz0*N*u)/kf;
138 plot(t,cur);
139 pause
140 c=[0 0 0 0 1 0 0 0 0 0 0 0];
141 d=[1];
142 sys=ss(a,b,c,d);
143 bode(sys)
144 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
145 % end of program
146 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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1 %**************************************************************************
2 %Program to simulate linear quadratic tracking regulator with estimator
3 %for GMRT servo system. The plant model and velocity controller are as per
4 %present system.
5 %**************************************************************************
6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 %Parameters for Mechanical model of GMRT
8 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 jm=.066768;

10 jg=3.5;
11 jc=2*0.995e6;
12 juc=8.9e6;
13 bm=.005424;
14 bg=4379.2;
15 bc=7.8336e6;
16 buc=1.34368e7;
17 kmg=1e7;
18 kgp=5.0864e9;
19 kad=1.428e9;
20 n=1505;
21 ns=12.6;
22 kf=.0625;
23 R1=24e3;
24 R2=24e3;
25 R3=24e3;
26 R4=20e3;
27 R28=180e3;
28 R66=100e3;
29 R25=27.4e3;
30 R26=13.7e3;
31 C4=0.22e−6;
32 C5=0.68e−6;
33 kt=0.56;
34 K=2*.1614/R25;
35 N=1/R26;
36 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37 %Velocity controller trasfer function coefficients.
38 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
39 Zw0=R4*(R1+R2)/[R1*R2+(R1+R2)*(R3+R4)];
40 Zw1=R4/((R1*R2+(R1+R2)*(R3+R4))*C4);
41 Pw1=(R1+R3+R4)/((R1*R2+(R1+R2)*(R3+R4))*C4);
42 Pz1=1/((R28+R66)*C5);
43 Zz1=R66/((R66+R28)*C5);
44 Zz0=R28*R66/(R28+R66);
45 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
46 %State Space representation of GMRT mechanical + motor model + velocity
47 %controller
48 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
49 a=[0 1 0 0 0 0 0 0 0 0;
50 −kmg/(jm*nˆ2) (−bm/jm−Zz0*Zw0*K*kt/(kf*jm)) kmg/(jm*n) 0 0 0 0 0
51 kt*1/(jm*kf) −kt*1*Zz0/(jm*kf);
52 0 0 0 1 0 0 0 0 0 0 ;
53 kmg/(jg*n) 0 −(kmg+kgp/nsˆ2)/jg −bg/jg kgp/(jg*ns) 0 0 0 0 0 ;
54 0 0 0 0 0 1 0 0 0 0;
55 0 0 kgp/(jc*ns) 0 −(kgp+kad)/jc −(bc+buc)/jc kad/jc buc/jc 0 0;
56 0 0 0 0 0 0 0 1 0 0;
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57 0 0 0 0 kad/juc buc/juc −kad/juc −buc/juc 0 0;
58 0 −Zw0*K*(Zz1 −Zz0*Pz1) 0 0 0 0 0 0 −Pz1 −(Zz1−Zz0*Pz1);
59 0 K*(Zw1−Zw0*Pw1) 0 0 0 0 0 0 0 −Pw1
60 ];
61 b=[0; kt*Zz0*N/(jm*kf);0;0;0;0;0;0;N*(Zz1 − Zz0*Pz1);0];
62 c=[zeros(1,4) 1 zeros(1,5)];
63 d=[0];
64 sys=ss(a,b,c,d);
65 step(sys)
66 pause
67 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
68 %Linear quadratic tracking regulator
69 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
70 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
71 %State space model for refrence input. In this case it is a ramp input with
72 %a slope of 7.2e−5 rad/sec
73 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
74 ar=[0 1; 0 0 ];
75 cr=[1 0];
76 zr0=[0; ((2*pi)/(360*60*60)*15)];
77 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
78 %define auxilary matrices to convert linear quadratic tracking regulator
79 %problem to linear quadratic regulator problem.
80 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
81 l=c'*inv(c*c');
82 [m,n]=size(a);
83 cuo=eye(m,n)−l*c;
84 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
85 %Define weight matrices q1, q2 and r and find state feedback gains k1 and
86 %k2
87 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
88 q1=[zeros(8,10);
89 zeros(1,8) 0.01 zeros(1,1);
90 zeros(1,10)];
91 q2=[1e7];
92 r=[0.001];
93 q=cuo'*q1*cuo+c'*q2*c;
94 clear cuo q1 q2 m n
95 qr=q;rr=r;
96

97 [k,P]=lqr(a,b,q,r);
98 P12=lyap((a'−P*b*inv(r)*b'),ar,(−q*l*cr));
99 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

100 %Form closed loop matrices with Linear quadratic tracking regulator state
101 %feedback gains. Also calculate system reponse to ramp input of 7.2e−5
102 %rad/sec. Here the actual input 'u' to plant is zero. But as input model is
103 %agumented with system matrices, the response of system is to non zero
104 %initial state of ramp input model which generates the necessary reference
105 %position.
106 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
107 ac=a−b*inv(r)*b'*P;
108 atr=[ac −b*inv(r)*b'*P12;
109 zeros(2,10) ar];
110 k1=−inv(r)*b'*P;
111 k2=−inv(r)*b'*P12;
112 btr=[b;0; 0];
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113 ctr=[c 0 0];
114 dtr=[1];
115 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
116 %Linear Quadratic Estimtor
117 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
118 clear l k P P12 r q
119 c=[0 1 zeros(1,8);
120 zeros(1,4) 1 zeros(1,5);
121 zeros(1,8) 1 0];
122 d=zeros(3,1);
123 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
124 %Defining weight matices
125 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
126 r=[1 0 0;
127 0 0.001 0;
128 0 0 0.1];
129 q=[10e5 zeros(1,9);
130 0 96e12 zeros(1,8);
131 0 0 0 zeros(1,7);
132 zeros(1,3) 0 zeros(1,6);
133 zeros(1,4) 0 zeros(1,5);
134 zeros(1,5) 0 zeros(1,4);
135 zeros(1,6) 0 zeros(1,3);
136 zeros(1,7) 0 0 0;
137 zeros(1,8) 20 0;
138 zeros(1,9) 10e5];
139 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
140 %Calculating Estimator gains
141 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
142 [k,P]=lqr((a+b*k1)',c',q,r);
143 ke=−P*c'*inv(r);
144 clear k P
145 qe=q;re=r;
146 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
147 %Forming system matices for agumented system of tracker plus estimator
148 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
149 ae = a+ke*c+b*k1;
150 bt=−ke;
151 be=[b*k2 bt];
152 ce=eye(10,10);
153 de=zeros(10,5);
154 clear bt;
155 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
156 %Defining matices to checking system response
157 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
158 x0=[zeros(10,1);
159 zr0];
160 ctr=[c zeros(3,2)];
161 dtr=[0;0;0];
162 u=zeros(1001,1);
163 t=0:.1:100;
164 [y,x]=lsim(atr,btr,ctr,dtr,u,t,x0); %Actual system response
165 ye=lsim(ae,be,ce,de,[x(:,11:12) y],t); %Estimated System Response
166 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
167 %Plotting system response
168 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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169 for i=1:10
170 var num = num2str(i);
171 t1 = strcat('error ','x',var num);
172 t2 = strcat('x',var num);
173 plot(t,(x(:,i)−ye(:,i)));
174 title(t1);
175 grid on
176 pause
177 plot(t,x(:,i))
178 hold on
179 plot(t,ye(:,i),'r')
180 title(t2);
181 pause
182 clf
183 end
184 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
185 %End of program
186 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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