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1 INTRODUCTION

The basic function of radio telescope is to collect radio waves coming from cos-
mic source. These waves create fluctuating voltage at the antenna terminal.
This voltage varies at the same frequency as the cosmic electromagnetic wave.
This voltage is then subsequently processed to get output which is used to infer
properties of source. Any mechanical structure suffers from mechanical imper-
fections e.g. misalignment of two axis or non orthogonality of two axis. Such
errors would cause a systematic variations in apparent azimuth and elevation
angle from true azimuth and elevation angle. e.g. If we command an antenna
to point at Az = x and E = y, due to pointing error it will point in direction
Az = x + ∆x and E = y + ∆y. In addition to mechanical imperfection, gravi-
tational bending of support structure introduces elevation dependent offset. So
why is it important to correct for pointing errors? If some source is discovered
using radio telescope and one wants to observe the same source at some other
wavelength say X-ray. Due to large pointing errors uncertainty in location of
source will be high. In fact there is chance that more than one sources are
present in that wavelength range. Moreover the flux received by antenna de-
pends on pointing direction. Therefore it is important to point antenna in true
direction where source is actually located. Pointing model helps to correct these
errors and point antenna in source direction with reasonable accuracy.
A pointing model based on the model given by Greve et.al.(1996) and Ulich
(1981), both of which use the derivation of Stumpf(1971), is determined from
the observed GMRT data and applied to the data. GMRT observation was
done at 1280 MHz to determine pointing offsets. The frequency, 1280 MHz, was
chosen because beam is narrow at this frequency so pointing errors would be
higher. Pointing offsets are found to vary by 4 − 6 ′ with azimuth and 2 − 3 ′

with elevation.

2 OBSERVATIONS3

Half Power Beam Width (HPBW) of an antenna is defined as the angle across
the main lobe of an antenna pattern between the two direction at which the
antenna’s sensitivity is half its maximum value at the center of the lobe and
is given as HPBW ≈ λ

d . GMRT operates at frequencies around 153, 233,
325, 610 and 1200 MHz. Corresponding HPBW at all such frequencies is
2.88◦, 1.85◦, 1.35◦, 42.8′, 19.43′ respectively. So the 1200 MHz frequency
will be most affected by pointing accuracy since its HPBW is lowest. In the
range of 1000-1580 MHz there are 4 sub-bands each of bandwidth 140 MHz
centered on 1060, 1170, 1280 and 1390 MHz. For our observation we choose
1280 MHz frequency.
To measure pointing offset, the method of grid pointing was used. In this
method projected sky is divided into Elevation and Azimuth grids (see figure
1). The dimensions of grid depends on frequency of observation. This method
uses uncalibrated cross-correlation data. Since one antenna (also called as refer-
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Table 2.1: Source list for Oct 2006 and May 2007 observation
Source Flux (Jy) Declination Source Flux (Jy) Declination

3C48 16.5 33.19◦ 0022+002 2.7 0.29◦

3C286 15 30.47◦ 0059+001 2.5 0.15◦

1445+099 2.6 9.94◦ 0025-260 8.3 25.99◦

2214-385 1.89 −38.56◦ 0024-420 2.8 −41.99◦

0217+738 2.27 73.86◦ 0204+152 4 15.27◦

0110+565 1.9 56.58◦ 0116-208 3.6 −20.83◦

0432+416 8.6 41.66◦ 0440-435 5 −43.54◦

3C147 22.5 49.86◦ 0409-179 2.2 −17.93◦

ence antenna) is constantly tracking source, pointing behavior of maximum 29
antennas can be modeled. In this method, a one dimensional grid of points is
observed along the elevation to determine the pointing offsets along the eleva-
tion axis and a similar grid is observed along the azimuth axis for determining
the azimuth offsets. While observing grid along the elevation, the source is con-
stantly tracked in azimuth. Whereas while observing grid along azimuth axis,
the source is constantly tracked in elevation direction. Pointing observation
at each grid point will correspond to an amplitude of flux received. This will
produce a point for each observation at each grid point in amplitude vs offset
plot (see figure 2). Then Gaussian can be fitted to all data points. The peak
of Gaussian curve will correspond to actual source position. The difference be-
tween reference position and peak of Gaussian curve is the offset.
To plot Gaussian at least 5 points are needed. For better fitting we chose 9
points in one dimensional grid. At 1280 MHz, HPBW ≈ 19′ So we decided
to observe the grid up to 20′ on either side of the reference position with grid
spacing of 5′. The grid of points along the elevation axis were first observed
followed by the grid of points along the azimuth axis. After observing each grid
point, the source position was loaded into the antenna control system and then
the offset broadcast to the antennas with respect to the source position. Thus
in practice the antennas were moved along both the elevation and azimuth axis
between two grid points.

2.1 Selection of Sources

In order to estimate a good pointing model one needs to observe well distributed
sources in the entire sky. There are two methods to select sources for estimating
a pointing model:
1) Observe several sources with different co-ordinates (right ascension and dec-
lination) so as to obtain good sky coverage.
2) Observe a few selected strong sources from rise to set. The sources are se-
lected such that they have different declinations so as to result in extensive sky
coverage in Az-El space. This method is easier and less prone to mistakes.
The sources were selected from VLA (Very Large Array) calibrator list. A total
of 85 calibrators which had PPPP or one S flag for all the VLA arrays and
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Figure 1: Grid pointing

Figure 2: Offset Measurement
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strength was greater than 1 Jy at 20 cm were selected. Sources observed on Oc-
tober 2006 and May 2007 are listed in Table 2.1. First 4 sources were observed
in Oct-2006 using method 1. Whereas rest sources are observed in May-2007.
These sources are observed from rise to set in order to cover sky as much as pos-
sible see Figure 3. Based on these measurements we estimated pointing models
for two data sets one for Oct-2006 and other for May-2007.

Figure 3: Sky coverage

3 POINTING MODEL2,7

Greve et al. (1996) 2 and Ulich (1981) 7 proposed a pointing model which was
based on derivation by Stumpf (1971). The model is based on corrections due to
mechanical imperfections of antenna. It depends on 9 parameters P1 to P9. For
GMRT the relevant parameters are 8 (we are neglecting error in the declination
of source). All GMRT antennas are Alt-Az mounted. So Azimuth (A) and
Elevation (E) are required to locate a source in the sky. Because of pointing
errors generally there exists a difference δA and δE between the commanded
and the actual Azimuth (A) and Elevation (E). The aim of pointing model
is to minimize errors δA and δE for a considerable time of operation. These
mis pointing terms can be decomposed into horizontal δh = δA cos(E) and
vertical components δv = δE. The errors are small and hence we can apply
linear pointing model in which case the parameters are related to corresponding
errors by,

δhi = PiHi(A,E) δvi = PiVi(A,E)

Where Hi(A,E) and Vi(A,E) are functions of A and E as given in Table 3.1 .
Significance of various parameters are as follows,
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Table 3.1: Pointing2 parameters Pi
Type of error Hi(A,E) Vi(A,E)

Collimation error a) P1 1 0
Zero-offset Az-encoder P2 cosE 0
Inclination El-axis b) P3 sinE 0
Inclination Az-axis c) N - S P4 cosA sinE − sinA
Inclination Az-axis c) E - W P5 sinA sinE cosA
Zero-offset El-encoder P6 0 1
Gravitational bending d) P7 0 cosE
Gravitational bending d) P8 0 sinE

Collimation error P1: This error is due to non-orthogonality of the radio beam
axis and the elevation axis.
Zero-offset Az-Encoder P2: Azimuth encoder value (i.e. commanded value) of
antenna zero but due to mis pointing Actual value of azimuth will be nonzero.
Inclination El-axis P3: This error is due to non-orthogonality of the azimuth
axis and the elevation axis.
Inclination Az-axis N-S P4: This error arises due to inclination of azimuth axis
towards N-S plane. For ideal case inclination should be zero.
Inclination Az-axis E-W P5: This error arises due to inclination of azimuth axis
towards E-W plane. For ideal case inclination should be zero.
Zero-offset El-Encoder P6: Elevation encoder value of antenna zero but due to
mis pointing Actual value of elevation will be nonzero.
Parameters P7 and P8 are necessary to take gravitational deformation (of the
telescope) into account.

δh = P1 + P2 cosE + P3 sinE + P4 sinE cosA+ P5 sinE sinA (3.1)

δv = −P4 sinA+ P5 cosA+ P6 + P7 cosE + P8 sinE (3.2)

Thus δh and δv are corrections in horizontal and vertical directions to account
for the pointing errors. The above two equations are coupled together due to
parameters P4 and P5 which makes it difficult to solve linearly. First we tried
to minimize (3.1) and (3.2) separately. The values of parameters P4 and P5

obtained from two equations do not match. So one needs to minimize δh and
δv simultaneously.

4 MODEL FITTING4

To fit a model to data one needs to choose or design a merit function which
measures agreement between the data and the model with particular choice of
parameters. Given a set of observations, the aim of model fitting is to find out
the values of adjustable parameters which will minimize a merit function. A
fitting procedure should provide
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1. Best fit parameter values

2. Errors estimates on the parameters and

3. Statistical measure of goodness-of-fit.

As evident from equation (3.1) and (3.2) δh and δv are coupled together due
to common parameters P4 and P5. Therefore we need to find parameters P1 to
P8 so that both equations are minimized simultaneously. One obvious choice of
merit function is,

χ2 =
∑[√

δhm
2 + δvm2 −

√
δhc

2 + δvc2
]2

We can imagine δh and δv as points in projected sky. Consider transformation
from Cartesian to polar co-ordinate (x, y) → (r, θ), so χ2 in above equation is
equivalent to r2 in polar co-ordinate. When one tries to minimize χ2 function

with
√
δhm

2 + δvm2 without using θ, δhm may converge to δhc or −δhc and
similarly δvm may converge to δvc or −δvc. So there is degeneracy in using
above equation as merit function.
Instead if we try to minimize function

χ2 =
∑
{δhm − δhc}2 + {δvm − δvc}2

we will be sure that for minimum value of χ2, δhm will converge to δhc and sim-
ilarly δvm will converge to δvc. Having decided which χ2 function to use we can
now think of different numerical methods. The above equation is nonlinear in
parameters P1 to P8. So this problem can be solved using iterative optimization
method. Before trying to minimize we may want to know qualitative behavior
of function χ2.

In general nonlinear functions can be thought of as a multidimensional hyper-
surface in parameter space and the space must be searched for the appropriate
minimum value of χ2. One of the difficulties of such a search is that for any
arbitrary function there may be more than one local minimum for χ2 within a
reasonable range of values for the parameters. It may be advantageous to con-
duct a coarse grid mapping of the parameter space to locate the main minimum
and identify the desired range of parameters over which to refine the search.
In simplest brute force method,1 permissible range for each parameter Pi is
divided into n equal increments ∆Pi so that the parameter space is divided
into hypercubes. The value of χ2 is then calculated at each of the vertices of
these hypercubes. This procedure yields a coarse map of the behavior of χ2 as
a function of all of the parameters Pi. Here we are dealing with 8 dimensional
space. So for the equal increment of say 10, one needs to evaluate χ2 108 times.
This is computationally more time consuming if one wants more finer grids on
hypersurface. (Finer grids corresponds to more number of increments of param-
eters). However there is alternative method which traverses only in the general
direction of minimizing χ2.
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4.1 Ravine search: Qualitative method5

A more sophisticated method of locating various minima of the χ2 hypersurface
involves traversing the surface from minimum to minimum by the path of lowest
value in χ2, as a river follows a ravine in traversing from lake to lake. e.g.
consider a hypersurface in 2 dimensions.

Figure 4: Diagrammatic illustration of the stepping procedure for a function
of two variables. The starting point is Mi; the new minima at M ′, M ′′, · · ·
are represented by dots on the ”railroad track” along the bottom of the ravine.
The value of the function is calculated not only at the minima, but also at the
”oversteps” O, O′ · · · and the ”sidesteps” S, S′. Derivatives are calculated at
the overstep points only. See text for notation and stepping logic

Figure 4 shows ”contour lines” for the function [i.e., all (x, y) on a line have
the same value for the function] See reference.5 The hunting procedure involves
in sequence two different sorts of steps, an ”overstep” to a point O and a ”side
step” to S, followed by calculation of a new minimum along the line OS; then
the cycle repeats with a new overstep to point O’ from the last minimum and
through the new minimum. In more detail, the search starts at point M, where
the starting direction is taken as being along the gradient. A step of fixed size
is taken along this direction to a ”reconnaissance” point O, where the function
and its gradient are determined. A step is taken transverse to the line MO
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from the point O to point S. At point S the function is evaluated. From the
information available at points O and S, a minimum is predicted at point M’
along line OS by assuming the function varies quadratically along the line OS.
See equation (4.2) for reference. The function is calculated at point M’ to verify
the minimum at that point. (In case M’ is not minimum relative to O or S, a
smaller sidestep is taken) To complete the cycle, a step is now taken to a point
O’ along the line M M’, and the operation repeats as described at point O. As
described, this procedure does not stop at the minimum but continues right on
along the ”ravine” in the function. This is a useful mode of operation, for it
allows a mapping of those sets of parameters which give rise to values of function
near the minimum. This procedure tracks a ravine until about the spot where
the minimum radius of the ”contour lines” exceeds the step size, after which the
search usually doubles back on itself. The actual position of the minimum is
determined by altering the above procedure to the extent of reducing the step
size and reversing direction each time steps lead to increased values of function.
Quadratic approximation of function: Assuming the variation of χ2 near
the minimum can be described in terms of a parabolic function of the parameter
aj , we can use the values of χ2 for the last three values of aj to determine the
minimum of the parabola in figure (5)

Figure 5: Parabolic approximation

aj(3) = aj(2) + ∆aj = aj(1) + 2∆aj

χ2(3) > χ2(2) ≤ χ2(1)
(4.1)
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The minimum of parabola1 is given by

aj(min) = aj(3)−∆aj

[
χ2(3)− χ2(2)

χ2(3)− 2χ2(2) + χ2(1)
+

1

2

]
(4.2)

4.2 Non-linear Numerical Methods4

The basic approach in model fitting is to define χ2 merit function and determine
best fit parameters by its minimization. With nonlinear dependences, however
the minimization must proceed iteratively. Given trial values for parameters,
we develop a procedure that improves a trial solution. The procedure is then
repeated until χ2 effectively stops decreasing.
Let χ2(a) be a function to be minimized. Choosing some particular point P as
the origin of co-ordinate system with co-ordinate a. Expanding function χ2(a)
using Taylor’s series4

χ2(a) = χ2(P) +
∑
i

∂χ2

∂ai
ai +

1

2

∑
i,j

∂2χ2

∂ai∂aj
aiaj + · · · (4.3)

which can be approximated to,

χ2(a) ≈ γ − d · a +
1

2
a ·D · a (4.4)

where,

γ ≡ χ2(P) d ≡ −∇χ2|P [D]ij ≡
∂2χ2

∂ai∂aj
(4.5)

The matrix D whose components are the second partial derivative matrix
of the function is called the Hessian matrix of the function at P. With such
approximation one can adopt either Steepest Descent method or Quasi-Newton
method for minimization.
Steepest Descent method: Start at a point a0. As many times as needed,
move from point ai to the point ai+1 by minimizing along the line from ai in
the direction of the local downhill gradient −∇χ2(ai). So in above case, Next
trial value of parameters can be obtained from current parameter value as

anext = acur − constant×∇χ2(acur) (4.6)

Where constant is small enough not to exhaust the downhill direction.
Quasi-Newton Method: Consider finding minimum by using Newton’s method
to search for a zero of the gradient of the function. Near the current point acur
we have to expand

χ2(anext) ≈ χ2(acur)+(anext−acur)·∇χ2(acur)+
1

2
(anext−acur)·D·(anext−acur)

∇χ2(anext) = ∇χ2(acur) + D · (anext − acur) (4.7)
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So in this method we set ∇χ2(anext) = 0 to determine next iteration point.

anext − acur = −D−1 · ∇χ2(acur) (4.8)

The left hand side in (4.8) is the finite step we need to take to get to the exact
minimum, the right hand side is known once we have accumulated an accurate
H ≈ D−1

To use (4.6) or (4.8) we must be able to compute the gradient of the χ2

function at any set of parameters a. In addition for equation (4.8) we also need
the matrix D which is the second derivative matrix (Hessian Matrix) of the χ2

merit function at any a. We know the form of χ2 from model therefore we can
calculate gradient of the χ2 and hessian matrix D. The χ2 merit function is,

χ2 =

N−1∑
i=0

1

σi2
{[

∆hi − S(i)
1

]2
+
[
∆vi − S(i)

2

]2}
(4.9)

Where,

S
(i)
1 ≡ S1(Ei, Ai) = P1 + P2 cosEi + P3 sinEi + P4 sinEi cosAi + P5 sinEi sinAi

S
(i)
2 ≡ S2(Ei, Ai) = −P4 sinAi + P5 cosAi + P6 + P7 cosEi + P8 sinEi

σi is the measurement error (standard deviation) of the ith data point.
From observation for each azimuth Ai and elevation Ei angle, we obtained
horizontal offset ∆hi and vertical offset ∆vi. We would like to find values of
parameters P1 to P8 for which function χ2 given by (4.9) is minimum.
The gradient of χ2 with respect to the parameter Pk (k = 1, 2, · · · , 8), which
will be zero at the minimum χ2, has components.

∂χ2

∂Pk
=

N−1∑
i=0

2

σi2

[
(∆hi − S(i)

1 )
∂S

(i)
1

∂Pk
+ (∆vi − S(i)

2 )
∂S

(i)
2

∂Pk

]
(4.10)

Taking an additional partial derivative gives

∂2χ2

∂Pk∂Pl
=

N−1∑
i=0

2

σi2

[
− ∂S

(i)
1

∂Pk

∂S
(i)
1

∂Pl
− ∂S

(i)
2

∂Pk

∂S
(i)
2

∂Pl

+ (∆hi − S(i)
1 )

∂2S
(i)
1

∂Pk∂Pl
+ (∆vi − S(i)

2 )
∂2S

(i)
2

∂Pk∂Pl

]
The second derivative term can be dismissed when it is zero (e.g. in linear
case) or small enough to be negligible when compared to term involving the
first derivative. It also has an additional possibility of being small in practice:

The terms multiplying second derivatives in above equation are (∆hi − S(i)
1 )

and (∆vi − S(i)
2 ). For a successful model, these terms should just be random
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measurement error of each point. This error can have either sign and should in
general be uncorrelated with the model. Therefore, the second derivative terms
tend to cancel out when summed over i. So now and onwards we will use,

∂2χ2

∂Pk∂Pl
=

N−1∑
i=0

2

σi2

[
− ∂S1

∂Pk

∂S1

∂Pl
− ∂S2

∂Pk

∂S2

∂Pl

]
(4.11)

It is conventional to remove factors of 2 by defining

βk ≡ −
1

2

∂χ2

∂Pk
αkl ≡

1

2

∂2χ2

∂Pk∂Pl

Putting [α] = 1
2D in equation (4.8), in terms of which that equation can be

rewritten as the set of linear equations.

M−1∑
l=0

αkl δPl = βk (4.12)

This set of equations is solved for the increments δPl and added to the cur-
rent approximation, give the next approximation. Equation (4.6), the steepest
descent formula, translates to

δPl = constant× βl (4.13)

Levenberg-Marquardt Method: This is elegant method for varying smoothly
between the extremes of the quasi-Newton method (also know as inverse Hessian
method) (equation (4.12)) and the steepest descent method (equation (4.6)).
The steepest descent method is used far from the minimum, switching continu-
ously to the inverse Hessian method as the minimum is approached. This can
be achieved by defining a new matrix α′ by the following prescription

α′jj ≡ αjj(1 + λ)

α′jk ≡ αjk (j 6= k)
(4.14)

and then replace both equation (4.8) and (4.6) by

M−1∑
l=0

α′kl δPl = βk (4.15)

λ is called fudge factor. Its order of magnitude4 is decided by the reciprocal of
diagonal component of Hessian matrix 1/αkk. Putting in equation (4.13)

δPl =
1

λαll
βl or λ αll δPl = βl (4.16)

When λ is very large, the matrix α′ is forced into being diagonally dominant, so
equation (4.15) goes over to be identical to equation(4.16). On the other hand
as λ approaches zero equation(4.15) goes over to equation(4.12)

Given an initial guess for the set of fitted parameters P, the Levenberg-
Marquardt algorithm is as follows
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1. Compute χ2(P)

2. Pick a modest value for λ e.g. λ = 0.001

3. Solve the linear equation (4.15) for δP and evaluate χ2(P + δP).

4. If χ2(P + δP) ≥ χ2(P), increase λ by a factor of 10 (or any other sub-
stantial factor) and go back to step 3.

5. If χ2(P + δP) < χ2(P), decrease λ by a factor of 10, update the trial
solution P←− P + δP and go back to step 3.

Also necessary is condition for stopping. In practice one might stop iterating
on the first or second occasion when χ2 decreases by a negligible amount say
less than 0.01 absolutely. Don’t stop after a step where χ2 increases: That only
shows that λ has not adjusted itself optimally. Another criteria for stopping is
evident from equation (4.15). Suppose all βk are negligibly small so that RHS
in that equation is zero. This will yield a trivial solution that all δPi = 0.
Thus algorithm needs to stop iterating if vector distance moved in parameter
hyperspace is negligibly small. Once the acceptable minimum has been found,
one wants to set λ = 0 and compute the matrix

[C] ≡ [α]−1

which is the estimated covariance matrix of the standard errors in the fitted
parameters P.
The inverse matrix [C] is closely related to standard uncertainties of the es-
timated parameters P. In other words, the diagonal elements of [C] are the
variances of the fitted parameters P. The off diagonal elements Cjk are the
covariances between Pj and Pk.

4.3 Linear Numerical Method4

In prevoius section we minimized equation (4.9) using non-linear Levenberg-
Marquardt method. In this secion we will show for this particular case, we can

minimize χ2 using linear method. For simplicity consider function S
(i)
1 and S

(i)
2

of the form
S
(i)
1 = P1 f1 + P2 f2 + P3 f3 + P4 f4 + P5 f5

S
(i)
2 = P4 g4 + P5 g5 + P6 g6 + P7 g7 + P8 g8

(4.17)

Where, fi ≡ fi(E,A) and gi ≡ gi(E,A) Condition for linear least square fit is

∂χ2

∂Pk
= 0 (4.18)

So setting LHS in equation 4.10 to 0,

N−1∑
i=0

1

σ2
i

[
S
(i)
1

∂S
(i)
1

∂Pk
+ S

(i)
2

∂S
(i)
2

∂Pk

]
=

N−1∑
i=0

1

σ2
i

[
∆hi

∂S
(i)
1

∂Pk
+ ∆vi

∂S
(i)
2

∂Pk

]
(4.19)
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Where,

∂S
(i)
1

∂Pl
= fl l = 1, 2, · · · , 5

∂S
(i)
2

∂Pm
= gm m = 4, 5, · · · , 8

(4.20)

We can write equation (4.19) in the matrix form as follows,

A P = C (4.21)

A =



f21 f1f2 f1f3 f1f4 f1f5 0 0 0
f2f1 f22 f2f3 f2f4 f2f5 0 0 0
f3f1 f3f2 f23 f3f4 f3f5 0 0 0
f4f1 f4f2 f4f3 (f24 + g24) (f4f5 + g4g5) g4g6 g4g7 g4g8
f5f1 f5f2 f5f3 (f5f4 + g5g4) (f25 + g25) g5g6 g5g7 g5g8

0 0 0 g6g4 g6g5 g26 g6g7 g6g8
0 0 0 g7g4 g7g5 g7g6 g27 g7g8
0 0 0 g8g4 g8g5 g8g6 g8g7 g28



P =



P1

P2

P3

P4

P5

P6

P7

P8


C =



∆hf1
∆hf2
∆hf3

∆hf4 + ∆vg4
∆hf5 + ∆vg5

∆vg6
∆vg7
∆vg8


Where summation is implicit in matrix equation. e.g Explicitly writing third

equation

N−1∑
i=0

1

σ2
i

[
f
(i)
3 f

(i)
1 P1+f

(i)
3 f

(i)
2 P2+f

(i)
3 f

(i)
3 P3+f

(i)
3 f

(i)
4 P4+f

(i)
3 f

(i)
5 P5

]
=

N−1∑
i=0

1

σ2
i

[
∆hf

(i)
3

]
To find P one needs to solve equation (4.21) by finding A−1.

P = A−1 C (4.22)

Note that A−1 is the estimated covariance matrix of the standard errors in
the fitted parameters P. Thus diagonal elements of covariance matrix gives
variances of the fitted parameters.
Goodness of Fit: The typical rms error on pointing of most antennas without
the pointing model is σ =

√
σ2
E + σ2

A ≥ 2′. Whereas accuracy of servo system of
the GMRT is up to 1′. After subtracting pointing model from measured data the
data left is called Residuals. A fitting will be treated as good fitting if for rms
error of residuals is less than 1′ for elevation as well as azimuth offset. In the case
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where an variable takes random values from a finite data set {x1, x2, · · · , xN}
with each value having the same probability, the standard deviation is given by,

σ =

√
1

N
[(x1 − µ)2 + (x2 − µ)2 + · · ·+ (xN − µ)2] (4.23)

With, µ = 1
N (x1 + x2 + · · ·+ xN )

5 Results and Discussion

In this section we will describe model fitting results using three methods de-
scribed in previous section. All codes are written in C++. To handle files shell
script is used. Shell script internally calls all codes. Further instruction on how
to use codes and packages can be found in readme.txt file in CD.
We discussed two χ2 expressions for Pointing model in previous section.

χ2 =

N−1∑
i=0

1

σ2
i

{√
∆h2i + ∆v2i −

√
S
(i) 2
1 + S

(i) 2
2

}2
(5.1)

χ2 =

N−1∑
i=0

1

σ2
i

{[
∆hi − S(i)

1

]2
+
[
∆vi − S(i)

2

]2}
(5.2)

χ2
h =

1

(N − 8)

N−1∑
i=0

1

σ2
i

{[
∆hi − S(i)

1

]2}
χ2
v =

1

(N − 8)

N−1∑
i=0

1

σ2
i

{[
∆vi − S(i)

2

]2} (5.3)

We will show in section 5.2 why it is not good idea to use equation (5.1) as merit
function for pointing model. We shall use equation (5.2) as merit function unless
specified.

5.1 Ravine Search Method

This method is used for qualitative understanding of χ2 function. The method
involves traversing along gradient direction from one minimum to another. The
lowest value of χ2 will correspond to global minimum. From Figure (4) one
iteration is completed when one starts from point M and reaches point M ′.
So one iteration involves overstepping, sidestepping and finding minimum along
side step. Figure (6) shows plot of χ2 Vs iteration for data S02-175 (Oct-2006).
As can be seen from plot method traverses from one minimum to another as
iterations proceeds. The parameter values corresponding to lowest value of χ2

are listed in Table (6.1). Factor λ = 0.01 is used as fixed step size.
Correlation among different parameter is evident from Figure (7) and Figure

(8). Clearly from Figure (7) Parameters P1 seems to be anticorrelated to P2 and

17



P3. And from Figure (8) Parameters P6 seems to be anticorrelated to P7 and
P8. Whereas parameter P4 and P5 are weakly correlated to both parameters P1

and P6.

Figure 6: Variation of χ2 with each Ravine search iteration for S02-175

5.2 Non-linear Numerical Method

We used Levenberg-Marquardt method to minimize equation(5.1) and (5.2).
Figure (9) and (10) shows plots of Horizontal offset (∆h) and Vertical offset
(∆v) as function of Elevation (E) and Azimuth (Az) for χ2 given by equation
(5.1) and (5.2) respectively. Red points indicate measured offsets while green
points represents fitted values.
Clearly fitting in Figure (10) is better than fitting in (9). To understand why
χ2 merit function in equation (5.2) is better than that (5.1), assume model is
ideal (i.e. χ2 = 0).
First consider equation (5.1), for ideal case each term must be zero.

∆h2i + ∆v2i = S
(i) 2
1 + S

(i) 2
2 (5.4)

There is inherent degeneracy in above equation. From above equation there is

no garuntee that ∆hi, ∆vi will converge to S
(i)
1 , S

(i)
2 respectively. Since ∆hi,

∆vi may converge to −S(i)
1 , −S(i)

2 respectively and above equation will still hold
good.
Now consider ideal model fitting for χ2 given by equation (5.2). Since χ2 = 0,
each term in equation (5.2) must be zero.

∆hi − S(i)
1 = 0 and ∆vi − S(i)

2 = 0 (5.5)
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So for ideal case ∆hi, ∆vi will converge to S
(i)
1 and S

(i)
2 respectively.

Figure 7: Correlation of parameters P2, P3, P4, P5 with P1 for S02-175

Figure 8: Correlation of parameters P4, P5, P7, P8 with P6 for S02-175
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Figure 9: Model fitting for S02-175, χ2 is given by Equation (5.1)

Figure (11) shows residual after subtracting model given in Figure (10). Note
that Root Mean Square After (RMSA) is less than Root Mean Square Before
(RMSB) and is less than 1′. Furthermore systematics has been removed and
resulting scatter seems to be random. Hence this can be treated as good fit.
Figure (12) to (17) shows more examples of good fit.
Covariance matrix for S02-175 is,



0.7889 −0.5414 −0.6324 0.0028 0.0015 0.0032 −0.0017 −0.0033
−0.5414 0.3812 0.4268 −0.0014 −0.0008 −0.0018 0.001 0.0019
−0.6324 0.4268 0.5154 −0.003 −0.0012 −0.0025 0.0014 0.0026
0.0028 −0.0014 −0.003 0.0021 0 −0.0004 0.0002 0.0003
0.0015 −0.0008 −0.0012 0 0.0025 0.0061 −0.0032 −0.0062
0.0032 −0.0018 −0.0025 −0.0004 0.0061 0.8401 −0.5708 −0.6781
−0.0017 0.001 0.0014 0.0002 −0.0032 −0.5708 0.3978 0.4531
−0.0033 0.0019 0.0026 0.0003 −0.0062 −0.6781 0.4531 0.5561


We can clearly see anticorrelation between parameter P1 and P2, P3 and anti-
correlation between P6 and P7, P8
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5.3 Linear Numerical Method

We used linear method described in previous section to minimize χ2. Param-
eters obtained from the Non linear and linear method are very similar. These
are tabulated in Table (6.1). There is striking similarity between Levenberg-
Marquardt (L-M) and linear least square because L-M is nonlinear and so linear
least square method is just a special case of L-M. But linear least square is easy
to implement. Covariance matrix obtained using this method is,



0.7889 −0.5414 −0.6324 0.0028 0.0015 0.0032 −0.0017 −0.0033
−0.5414 0.3812 0.4268 −0.0014 −0.0008 −0.0018 0.001 0.0019
−0.6324 0.4268 0.5154 −0.003 −0.0012 −0.0025 0.0014 0.0026
0.0028 −0.0014 −0.003 0.0021 0 −0.0004 0.0001 0.0003
0.0015 −0.0008 −0.0012 0 0.0025 0.0061 −0.0032 −0.0062
0.0032 −0.0018 −0.0025 −0.0004 0.0061 0.8398 −0.5705 −0.6778
−0.0017 0.001 0.0014 0.0001 −0.0032 −0.5705 0.3977 0.4529
−0.0033 0.0019 0.0026 0.0003 −0.0062 −0.6778 0.4529 0.5559


5.4 Comparison of Numerical methods

In this section we are going to compare results of model fitting from 3 Numerical
methods. The parameters obtained from all methods are given in Table (6.1).
Parameters match within error bars from 3 method. Error bars are not provided
in Ravine search method since it was only used for qualitative behavior of χ2.
From covariance matrix one can obtain correlation matrix. Correlation matrix is
composed of element say rij , which is correlation coefficient between parameter
Pi and Pj . In simple term if |rij | ∼ 1, then Pi and Pj are strongly correlated.
On the other hand if |rij | ∼ 0, then Pi and Pj are weakly correlated. Let σxy
denotes covariance between quantities x,y.

σxy = cov(x, y) = 〈(x− µx)(y − µy)〉 = 〈xy〉 − 〈µxµy〉 (5.6)

σxx, σyy is then variance (σ2
xx, σ2

yy) of quantities x,y respectively. Correlation
coefficient can be calculated as,

rxy =
σxy
σxσy

with σx =
√
σxx and σy =

√
σyy (5.7)

Correlation matrix for S02-175 is,

R =



1 −0.987 −0.992 0.069 0.034 0.004 −0.003 −0.005
−0.987 1 0.963 −0.05 −0.027 −0.003 0.002 0.004
−0.992 0.963 1 −0.093 −0.034 −0.004 0.003 0.005
0.069 −0.05 −0.093 1 −0.006 −0.009 0.005 0.009
0.034 −0.027 −0.034 −0.006 1 0.133 −0.1 −0.166
0.004 −0.003 −0.004 −0.009 0.133 1 −0.987 −0.992
−0.003 0.002 0.003 0.005 −0.1 −0.987 1 0.963
−0.005 0.004 0.005 0.009 −0.166 −0.992 0.963 1


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Table 5.1: Slopes of Regression line
Slope Ravine Search Linear least square

P2 Vs P1 -0.6972 -0.6862
P3 Vs P1 -0.792 -0.8016
P4 Vs P1 0.0033 0.0035
P5 Vs P1 0.009 0.0019
P4 Vs P6 0.0018 -0.0005
P5 Vs P6 0.0085 0.0073
P7 Vs P6 -0.6912 -0.6794
P8 Vs P6 -0.7949 -0.8071

Clearly P2 and P3 are strongly anti-correlated with P1, whereas P7 and P8 are
strongly anti-correlated with P6.

If one plots a quantity y vs x and fit a straight line, slope of this regression
line can be obtained from correlation coefficients as,

βyx = rxy
σy
σx

(5.8)

In ravine search method we found correlation between various parameters
see figure(7) and (8). We can fit straight lines for various correlation and can
obtain slopes. From correlation matrix (which is obtained from linear least
square method) we can find slope. Table (5.1) shows slopes obtained from two
methods. They are in well agreement.

6 Pointing model: Estimation and Implementa-
tion

Pointing model estimation and implementation is never ending process because
parameters may vary over some period. So it is better to check after some period
if model is degraded. In general,the pointing model procedure is as follows,

1. Make observation: Use grid pointing method for observation. Measure
pointing offsets ∆h and ∆v for corresponding E and A of source.

2. Estimate pointing model parameters from above data set.

3. Apply this model to each subsequent observation.

4. Do pointing observation after some period (e.g 3 months).
Check if model degrades (RMSA > 1′)

5. If No go to step (3).

6. If Yes go back to step (1).
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Table (8.1) shows parameters and χ2 values obtained for various antennas using
linear least square fits for Oct-2006 data. Residuals are shown in figure (18)
to (21). This model is applied to Dec-2006 data to check. It was found that
for many antennas model was not degraded figure (22) to (25). The model is
applied to May-2007 data. It was found that for many antennas model was
degraded figure (26) to (29). This is also evident from table (8.3), since in May-
2007 for many antennas RMSA > 1′. So we found out the new set of parameter
from May-2007 data. The values of parameters for various antennas are given
in table (8).

7 Future Work

• The model seems to be applicable for a period of about 3 months. We
would like to extend this window. So one needs to analyze temporal
variation of parameters.

• Some of the parameters may not be dominant for GMRT. We would like to
find out such parameters. These parameters may be different for different
antennas. Correlation matrix information may be helpful to find out such
parameters.

• The model was based on mechanical imperfections in antenna. We would
like to take other effects such as ionospheric effects into account.6

8 Summary

• To measure pointing offsets method of grid pointing can be used. Using
this method pointing offsets were measured on Oct-2006, Dec-2006 and
May-2007.

• We discussed several pointing parameters,leading to pointing error, that
arises due to mechanical imperfections in antenna.

• Numerical methods: 3 different numerical methods were tried on data sets.
Out of this Ravine search method was used for understanding qualitative
behavior of χ2 function. Non-linear and linear methods gives identical
results because χ2 function chosen in such a way that it will be linear in
parameters.

• Linear model is applied to Oct-2006. Parameters were found from this
data set. The pointing model is applied to each subsequent observation.
Model was applied to Dec-2006 data and it was not degraded. But model
when applied to May-2007, found to be degraded.

• So in future we would like to study temporal variation of parameters.
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Table 6.1: Comparison of Numerical methods: Pointing Model Parameters

S02-130

Parameters Ravine Search Levenberg- Marquardt Linear Least square

P1 0.27 -0.38 ± 0.89 -0.38 ± 0.89
P2 3.51 3.97 ± 0.62 3.97 ± 0.62
P3 -1.93 -1.41 ± 0.72 -1.41 ± 0.72
P4 0.05 0.06 ± 0.05 0.06 ± 0.05
P5 -0.34 -0.32 ± 0.05 -0.32 ± 0.05
P6 4.59 4.77 ± 0.92 4.77 ± 0.92
P7 0.57 0.48 ± 0.63 0.48 ± 0.63
P8 -5.26 -5.41 ± 0.75 -5.41 ± 0.75

S02-175

Parameters Ravine Search Levenberg- Marquardt Linear Least square

P1 0.88 0.41 ± 0.89 0.41 ± 0.89
P2 3.41 3.75 ± 0.62 3.75 ± 0.62
P3 -2.2 -1.83 ± 0.72 -1.83 ± 0.72
P4 0.07 0.08 ± 0.05 0.08 ± 0.05
P5 -0.32 -0.31 ± 0.05 -0.31 ± 0.05
P6 7.3 7.38 ± 0.92 7.38 ± 0.92
P7 -1.43 -1.45 ± 0.63 -1.45 ± 0.63
P8 -7.38 -7.46 ± 0.75 -7.46 ± 0.75

C11-130

Parameters Ravine Search Levenberg- Marquardt Linear Least square

P1 -5.36 -6.24 ± 1.8 -6.24 ± 1.8
P2 6.78 7.4 ± 1.24 7.4 ± 1.24
P3 1.75 2.45 ± 1.46 2.45 ± 1.46
P4 -0.41 -0.4 ± 0.09 -0.4 ± 0.09
P5 -0.23 -0.2 ± 0.1 -0.2 ± 0.1
P6 2.2 2.97 ± 1.89 2.97 ± 1.89
P7 2.87 2.37 ± 1.29 2.37 ± 1.29
P8 -5.27 -5.91 ± 1.54 -5.91 ± 1.54

C11-175

Parameters Ravine Search Levenberg- Marquardt Linear Least square

P1 -5.95 -5.66 ± 1.81 -5.66 ± 1.81
P2 7.09 6.9 ± 1.25 6.9 ± 1.25
P3 1.98 1.74 ± 1.46 1.74 ± 1.46
P4 -0.4 -0.38 ± 0.09 -0.38 ± 0.09
P5 -0.08 -0.06 ± 0.1 -0.06 ± 0.1
P6 5.13 5.22 ± 1.85 5.22 ± 1.85
P7 1.12 1.08 ± 1.27 1.08 ± 1.27
P8 -7.54 -7.62 ± 1.51 -7.62 ± 1.51
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Figure 10: Model fitting for S02-175, χ2 is given by Equation (5.2)

Figure 11: Residual after subtracting model for S02-175
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Figure 12: Model fitting for S02-130

Figure 13: Residual after subtracting model for S02-130
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Figure 14: Model fitting for C11-130

Figure 15: Residual after subtracting model for C11-130
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Figure 16: Model fitting for C11-175

Figure 17: Residual after subtracting model for C11-175
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Figure 18: Residual plots for Oct-2006 Data: ∆h offset
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Figure 19: Residual plots for Oct-2006 Data: ∆h offset
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Figure 20: Residual plots for Oct-2006 Data: ∆v offset
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Figure 21: Residual plots for Oct-2006 Data: ∆v offset
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Figure 22: Residual plots for Dec-2006 Data: ∆h offset
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Figure 23: Residual plots for Dec-2006 Data: ∆h offset
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Figure 24: Residual plots for Dec-2006 Data: ∆v offset
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Figure 25: Residual plots for Dec-2006 Data: ∆v offset

40



Figure 26: Residual plots for May-2007 Data: ∆h offset
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Figure 27: Residual plots for May-2007 Data: ∆h offset
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Figure 28: Residual plots for May-2007 Data: ∆v offset
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Figure 29: Residual plots for May-2007 Data: ∆v offset
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