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The GMRT array as viewed from space. In the large scale picture the individual

antennas are too small to be seen, instead their locations are indicated by sym-

bols. In the blow up of the central square however, the individual antennas can

be seen. Figure generated by Philip Lah and Premkumar.



Preface to the third edition

Pune
10/May/2007

Bringing out a new edition of these notes has been a mixed
experience. While it was startling (in a pleasant kind of way) to
find out that our previous print run was exhausted, gearing
up to the chore of making yet another attack on typos took
some effort. Readers will doubtless be pleased to note that
various Tom Sawyerish maneuvers ensured that none of the
real work was done by me. So first of all, I need to thank
all those people, too numerous to be named, who so gener-
ously put in time and effort to proof read. All remaining typos
can now be attributed to my typing skills, or, more accurately,
lack thereof. Readers may also be pleased to know that the
last two chapters (on the GMRT correlator and data acquisi-
tion system respectively) have been substantially revised. Up-
grades in these two systems had made the earlier chapters
badly obsolete, a fault that is now hopefully remedied.
Finally, I also need to acknowledge two very large debts.

Firstly, to Annabhat Joshi for having so diligently saved the
LATEX files from the second edition, and for doing the final for-
matting of the current edition; and secondly, to Premkumar
for designing the cover1 and handling all the DTP issues.

Jayaram N Chengalur

1While it may be true that you can’t judge a book by its cover, it certainly would seem

silly not to try.
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Preface to the first edition

Pune

26/May/2003

These notes are derived from a school on low frequency ra-
dio astronomy that was held at NCRA, Pune from June 21 to
July 17 1999. The school itself was funded by SERC, DST.
Speakers at the school had been asked to provide a set of lec-
ture notes prior to their lectures, and, somewhat to our own
surprise, many of them actually did. Our plan had been to
compile these notes and, at the end of the school, to issue
them in book form.

For various reasons, this didn’t happen. The main prob-
lem was that while about half of the notes were nicely LATEXed
up with embedded figures, the other half varied enormously
in quality. There was everything from half written plain text
notes with cut-paste graphics to stapled bundles of photo-
copies of the slides used during the lecture. Our editorial
burden was hence considerable, and so we are especially glad
to find that it is finally over, and that we need no longer
feign temporary deafness when the topic of SERC school notes
comes up.

But to place the blame where it should rightly be placed, it
must be admitted that this all started with our insistence on
each speaker preparing a set of notes. There are several excel-
lent books on radio astronomy and interferometry, and the US

v



vi PREFACE TO THE FIRST EDITION

based NRAO regularly puts out a definitive set of “Synthesis
Imaging” notes. Why then bother with producing something
else? Well, we had two major reasons. The first was that ex-
cellent though these books and notes may be, many Indian
students do not have access to them. On the other hand there
was a very clear need for us to have available some pedagogi-
cal material that we could freely distribute. The other was that
we felt it would be nice to have lecture notes that were specif-
ically focused on what we at the GMRT felt was important to
us.

This second fixation of ours has influenced these notes in
two ways. The first, more subtle effect, is that we have tried,
(where possible), to stress issues that are of concern in low
frequency radio astronomy, but which may be less important,
or even irrelevant at higher frequencies. The other is that
there is an entire section of these notes that is devoted exclu-
sively to describing the GMRT. This section has been written
for the more general reader, i.e. one who does not want to
wade through arcane technical notes and reports (assuming
that s/he is fortunate enough to need information on a topic
for which some documentation exists!) to get an overview of
the GMRT.

We hope that these notes go someway towards meeting these
two aims, and that students of radio astronomy as well as
GMRT users and new technical staff will find them useful.

All that remains now is to thank all those who have con-
tributed to this enterprise — the speakers from the school for
writing the notes to start with, the legions of NCRA friends
and colleagues who cheerfully proof read various versions, B.
Premkumar who made some of the figures and arranged for
them to be printed, Annabhat Joshi who designed the cover
and helped with getting the final master copy ready for the
printer, SERC for funding the school, NCRA for providing fi-
nancial and other support, and finally, all the project students
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from the last few years who bugged us for copies of the notes.
We have done our best to eliminate typographical and other

errors, but none the less we are sure that several remain, for
which we do, of course, admit complete culpability. We would
be grateful if readers who notice such errors could bring them
to our notice.

Jayaram N Chengalur
Yashwant Gupta
K. S. Dwarakanath
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Chapter 1

Signals in Radio Astronomy

Rajaram Nityananda

1.1 Introduction

The record of the electric field E(t), received at a point on earth
from a source of radio waves can be called a “signal”, so long
as we do not take this to imply intelligence at the transmit-
ting end. Emanating as it does from a large object with many
independently radiating parts, at different distances from our
point, and containing many frequencies, this signal is natu-
rally random in character. In fact, this randomness is of an
extreme form. All measured statistical properties are consis-
tent with a model in which different frequencies have com-
pletely unrelated phases, and each of these phases can vary
randomly from 0 to 2π. A sketch of such a signal is given in
Fig. 1.1. The strength (squared amplitude or power) of the
different frequencies ω has a systematic variation which we
call the “power spectrum” S(ω). This chapter covers the ba-
sic properties of such signals, which go by the name of “time-
stationary Gaussian noise”. Both the signal from the source of
interest, as well as the noise added to this cosmic signal by the
radio telescope receivers can be described as time-stationary

3
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Gaussian noise. The word noise of course refers to the ran-
dom character. “Noise” also evokes unwanted disturbance,
but this of course does not apply to the signal from the source
(but does apply to what our receivers unavoidably add to it).
The whole goal of radio astronomy is to receive, process, and
interpret these cosmic signals, (which were, ironically enough,
first discovered as a “noise” which affected trans-atlantic radio
communication). “Time–Stationary” means that the signal in
one time interval is statistically indistinguishable from that in
another equal duration but time shifted interval. Like all prob-
abilistic statements, this can never be precisely checked but
its validity can be made more probable (circularity intended!)
by repeated experiments. For example, we could look at the
probability distribution of the signal amplitude. An experi-
menter could take a stretch of the signal say, from times 0 to
T , select N equally spaced values E(ti), i going from 1 to N ,
and make a histogram of them. The property of time station-
arity says that this histogram will turn out to be (statistically)
the same — with calculable errors decreasing as N increases!
— if one had chosen instead the stretch from t to t + T , for
any t. The second important characteristic property of our
random phase superposition of many frequencies is that this
histogram will tend to a Gaussian, with zero mean as N tends
to infinity.

1.2 Properties of the Gaussian

The general statement of Gaussianity is that we look at the
joint distribution of N amplitudes x1 = E(t1), x2 = E(t2), . . . etc.
This is of the form

P (x1 . . . xk) = const× exp (−Q(x1, x2, . . . xk))

Q is a quadratic expression which clearly has to increase to
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Figure 1.1: A signal made by superposition of many frequencies with ran-

dom phases

+∞ in any direction in the k dimensional space of the x’s. For
just one amplitude,

P (x1) =
1

σ
√

2π
e−x

2
1/2σ

2

does the job and has one parameter, the “variance”σ, the
mean being zero. This variance is a measure of the power in
the signal. For two variables, x1 and x2, the general mathe-
matical form is the “bivariate Gaussian”

P (x1, x2) = const× exp

(
−1

2
(a11x

2
1 + 2a12x1x2 + a22x

2
2)

)

.
Such a distribution can be visualised as a cloud of points in

x1−x2 space, whose density is constant along ellipses Q =constant
(see Fig. 1.2).
The following basic properties are worth noting (and even

checking!).
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Figure 1.2: Contour lines of a bivariate Gaussian distribution

1. We need a11, a22, and a11a22 − a2
12 all > 0 to have ellipses

for the contours of constant P ( hyperbolas or parabolas
would be a disaster, since P would not fall off at infinity).

2. The constant in front is

(1/2π) ×

√√√√det

∣∣∣∣∣
a11 a12

a12 a22

∣∣∣∣∣

3. The average values of x2
1, x

2
2 and x1x2, when arranged as a

matrix (the so called covariance matrix) are the inverse of
the matrix of a’s. For example,

〈x2
1〉 = a22/detA

〈x1x2〉 = a12/detA

etc.
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4. By time stationarity we mean,

< x2
1 >=< x2

2 >= σ2

The extra information about the correlation between x1

and x2 is contained in < x1x2 >, i.e. in a12 which (again by
stationarity) can only be a function of the time separation
τ = t1− t2. We can hence write < E(t)E(t+ τ) >= C(τ) inde-
pendent of t. C(τ) is called the autocorrelation function.
From (1) above, C2(τ) ≤ σ2. This suggests that the quan-
tity r(τ) = C(τ)/σ2 is worth defining, as a dimensionless
correlation coefficient, normalised so that r(0) = 1. The
generalisation of all these results for a k variable Gaus-
sian is given in the Section 1.8

1.3 The Wiener-Khinchin Theorem

So far, we have only asserted that the sum of waves with ran-
dom phases generates a time-stationary Gaussian signal. We
now have to check this. It is convenient to start with a signal
going from 0 to T , and only later take the limit T → ∞. The
usual theory of Fourier series tells us that we can write

E(t) ≡
∑

an cosωnt+ bn sinωnt

≡
∑

rn cos(ωnt+ ϕn)

where,

ωn =
2π

T
, rn =

√
a2
n + b2n, and tanϕn = −bn/an

Notice that the frequencies come in multiples of the “funda-
mental” 2π/T which is very small since T is large, and hence
they form a closely spaced set. We can now compute the au-
tocorrelation
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C(τ) = 〈E(t)E(t+ τ)〉 = 〈
∑

n

rn cos(ωnt+ϕn)
∑

m

rm cos(ωm(t+τ)+ϕm)〉

The averaging on the right hand side has to be carried out
by letting each of the phases ϕk vary independently from 0 to
2π. When we do this, only terms with m = n can survive, and
we get

C(τ) =
∑ 1

2
r2
n cosωnτ

.
Putting τ equal to zero, we get the variance

C(0) = 〈E(t)2〉 =
∑ 1

2
r2
n

We note that the autocorrelation is independent of t and
hence we have checked time stationarity, at least for this sta-
tistical property. We now have to face the limit T → ∞. The
number of frequencies in a given range ∆ω blows up as

∆ω

(2π/T )
=
T∆ω

2π

Clearly, the r2
n have to scale inversely with T if statistical

qualities like C(τ) are to have a well defined T → ∞ behaviour.
Further, since the number of rn’s even in a small interval ∆ω
blows up, what is important is their combined effect rather
than the behaviour of any individual one. All this motivates
the definition,

∑

ω<ωn<ω+∆ω

r2
n

2
= 2S(ω)∆ω

as T → ∞. Physically, 2S(ω)∆ω is the contribution to the
variance 〈E2(t)〉 from the interval ω to ω + ∆ω. Hence the term
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“power spectrum” for S(ω). Our basic result for the autocorre-
lation now reads

C(τ) =

∫ ∞

0

2S(ω) cosωτdω =

∫ +∞

−∞
S(ω)e−iωτdω

if we define S(−ω) = S(ω).
This is the “Wiener–Khinchin theorem” stating that the au-

tocorrelation function is the Fourier transform of the power
spectrum. It can also be written with the frequency measured
in cycles (rather than radians) per second and denoted by ν.

C(τ) =

∫ ∞

0

2P (ν) cos(2πντ)dν =

∫ +∞

−∞
P (ν)e−2πiντdν

and as before, P (−ν) = P (ν).
In this particular case of the autocorrelation, we did not

use independence of the ϕ ’s. Thus the theorem is valid even
for a non-Gaussian random process. (for which different ϕ ’s
are not independent). Notice also that we could have averaged
over t instead of over all the ϕ’s and we would have obtained
the same result, viz. that contributions are nonzero only when
we multiply a given frequency with itself. One could even ar-
gue that the operation of integrating over the ϕ’s is summing
over a fictitious collection (i.e “ensemble”) of signals, while in-
tegrating over t and dividing by T is closer to what we do
in practice. The idea that the ensemble average can be re-
alised by the more practical time average is called “ergodicity”
and like everything else here, needs better proof than we have
given it. A rigorous treatment would in fact start by worrying
about existence of a well-defined T → ∞ limit for all statistical
quantities, not just the autocorrelation. This is called “proving
the existence of the random process”.
The autocorrelation C(τ) and the power spectrum S(ω) could

in principle be measured in two different kinds of experiments.
In the time domain, one could record samples of the voltage
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and calculate averages of lagged products to get C. In the
frequency domain one would pass the signal through a filter
admitting a narrow band of frequencies around ω, and mea-
sure the average power that gets through.
A simple but instructive application of the Wiener Khinchin

theorem is to a power spectrum which is constant (“flat band”)
between ν0−B/2 and ν0+B/2. A simple calculation shows that

C(τ) = 2KB (cos(2πν0τ))

(
sin(πBτ)

πBτ

)

The first factor 2KB is the value at τ = 0, hence the to-
tal power/variance to radio astronomers/statisticians. The
second factor is an oscillation at the centre frequency. This
is easily understood. If the bandwidth B is very small com-
pared to ν0, the third factor would be close to unity for val-
ues of τ extending over say 1/4B, which is still many cycles
of the centre frequency. This approaches the limiting case of
a single sinusoidal wave, whose autocorrelation is sinusoidal.
The third sinc function factor describes “bandwidth decorrela-
tion1”, which occurs when τ becomes comparable to or larger
than 1/B.
Another important case, in some ways opposite to the pre-

ceding one, occurs when ν0 = B/2, so that the band extends
from 0 to B. This is a so-called “baseband”. In this case,
the autocorrelation is proportional to a sinc function of 2πBτ .
Now, the correlation between a pair of voltages measured at an
interval of 1/2B or any multiple (except zero!) thereof is zero,
a special property of our flat band. In this case, we see very
clearly that a set of samples measured at this interval of 1/2B,
the so-called “Nyquist sampling interval”, would actually be
statistically independent since correlations between any pair
vanish (this would be clearer after going through Section 1.8).
Clearly, this is the minimum number of measurements which

1also called “fringe washing” in Chapter 4
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would have to be made to reproduce the signal, since if we
missed one of them the others would give us no clue about it.
As we will now see, it is also the maximum number for this
bandwidth!

1.4 The Sampling Theorem

This more general property of a band-limited signal (one with
zero power outside a bandwidth B) goes by the name of the
“Shannon Sampling Theorem”. It states that a set of sam-
ples separated by 1/2B is sufficient to reconstruct the signal.
One can obtain a preliminary feel for the theorem by counting
Fourier coefficients. The number of parameters defining our
signal is twice the number of frequencies, (since we have an a
and a b, or an r and a ϕ, for each ωn). Hence the number of
real values needed to specify our signal for a time T is

2 × ∆ωT

2π
= 2

(
∆ω

2π

)
T = 2BT

This rate at which new real numbers need to be measured
to keep pace with the signal is 2B. The so called “Nyquist
sampling interval” is therefore (2B)−1. A real proof (sketched
in Section 1.8) would give a reconstruction of the signal from
these samples!
In words, the Shannon criterion is two samples per cycle

of the maximum frequency difference present. The usual in-
tuition is that the centre frequency ν0 does not play a role in
these considerations. It just acts a kind of rapid modulation
which is completely known and one does not have to sample
variations at this frequency. This intuition is consistent with
radio engineers/astronomers fundamental right to move the
centre frequency around by heterodyning2 with local (or even

2see Chapter 3
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imported3) oscillators, but a more careful examination shows
that the centre frequency should satisfy ν0 = (n + 1

2
)B for the

sampling at a rate 2B to work.

1.5 The Central Limit and Pairing Theorems

We now come to the statistics of E(t). For example, we already
know that 〈E2(t)〉 =

∑
r2
n/2. How about 〈E3(t)〉? Quite easy to

check that it is zero because

〈rlrmrn cos(ωmt+ ϕm) cos(ωnt+ ϕn) cos(ωlt+ ϕl)〉 = 0

when we let the ϕ’s each vary independently over the full
circle 0 to 2π. This is true whether l, m, n are distinct or not.
But coming to even powers like 〈E4(t)〉, something interesting
happens. When we integrate a product like rlrmrnrp cos(ωmt +
ϕm) cos(ωnt+ϕn) cos(ωℓt+ϕl) cos(ωpt+ϕp) over all the four ϕ’s we
can get non-zero answers, provided the ϕ’s occur in pairs, i.e.,
if l = m and n = p, then we encounter cos2 ϕl×cos2 ϕn which has
a non-zero average. (We saw a particular case of this when we
calculated 〈E(t)E(t+ τ)〉 and only r2

m type terms survived).
Because of the random and independent phases of the large

number of different frequencies, we can now state the “pairing
theorem”.

〈E(t1)E(T2) . . . E(t2k)〉 =
∑

pairs

〈E(t1)E(t2)〉 . . . 〈E(t2k−1)E(t2k)〉

As discussed in Section 1.8, this pairing theorem proves
that the statistics is Gaussian. (A careful treatment shows
that only the r2

mr
2
n terms are equal on the two sides- we have

not quite got the r4
m terms right, but there are many more

(of the order of N times more) of the former type and they
dominate as T → ∞ and the numbers of sines and cosines
3aaaaagggh! beware of weak puns. (eds.)
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we are adding is very large). This result — that the sum of a
large number of small, finite variance, independent terms has
a Gaussian distribution — is a particular case of the “central
limit theorem”. We only need the particular case where these
terms are cosines with random phases.

1.6 Quasi-monochromatic and Complex Signals

For a strictly monochromatic signal, electrical engineers have
known for a long time that it is very convenient to use a com-
plex voltage V (t) = E0 exp(i(ωt + ϕ)) whose real part gives
the actual signal Er(t) = E0 cos(ωt + ϕ). One need not think
of the imaginary part as a pure fiction since it can be ob-
tained from the given signal by a phase shift of π/2, viz. as
Ei(t) = E0 cos(ωt + φ − π/2). In practice, since one invariably
deals with signals at an intermediate frequency derived by
beating with a local oscillator, both the real and imaginary
parts are available by using two such oscillators π/2 out of
phase. Squaring and adding the real and imaginary parts
give E2

r (t) + E2
i (t) = V (t)∗V (t) = E2

0 which is the power aver-
aged over a cycle. This is actually closer to what is practically
measured than the instantaneous power, which fluctuates at
a frequency 2ω.

These ideas go through even when we have a range of fre-
quencies present, by simply imagining the complex voltages
corresponding to each of the monochromatic components to
be added. In mathematical terms, this operation of deriving
Ei(t) from Er(t) goes by the name of the “Hilbert Transform”,
and the time domain equivalent is described in Section 1.8

But the physical interpretation is easiest when the different
components occupy a range ∆ω - the so called “bandwidth” -
which is small compared to the “centre frequency” ω0. Such
a signal is called “quasi-monochromatic”, and can be repre-
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sented as below

Eq(t) = Re exp(iω0t)
∑

−∆ω/2<ω1<∆ω/2

E(ω1) exp(iω1t+ iϕ(ω1))

In this expression, ω1 is a frequency offset from the chosen
centre ω0, so that E(ω1) actually represents the amplitude at a
frequency ω0 + ω1, and ϕ(ω1) the phase. We can now think of
our quasi-monochromatic signal as a rapidly varying phasor
at the centre frequency ω0, modulated by a complex voltage

Vm(t) =
∑

−∆ω/2<ω1<∆ω/2

E(ω1) exp(iω1t+ iϕω1)

This latter phasor varies much more slowly than exp(−iω0t).
In fact, it takes a time ∆ω−1 for Vm(t) to vary significantly
since the highest frequencies present are of order ∆ω. This
time scale is much longer than the timescale ω−1 associated
with the centre frequency. Writing Vm(t) in the polar form as
R(t) exp(iα(t)), our original real signal reads

Eq(t) = R(t) cos(ω0t+ α(t))

.
We can think of R and α as time dependent, slowly vary-

ing, amplitude and phase modulation of an otherwise (hence
“quasi”) monochromatic signal.
While the mathematics did not assume smallness of ∆ω, the

physical interpretation does. If R(t) changes significantly dur-
ing a cycle, some of its values may not be attained as maxima
and hence its square cannot be regarded as measuring aver-
age power. This is as it should be. No amount of algebra can
uniquely extract two real functions R(t) and α(t) from a sin-
gle real signal without further conditions (and the condition
imposed is explained in section 1.8).
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But returning to the quasi-monochromatic case, we can
now think of Vm(t)∗Vm(t) as the (slowly) time varying power in
the signal. Likewise we can think of 〈V ∗

m(t)Vm(t + τ)〉 as the
autocorrelation. (A little algebra checks that this is the same
as the autocorrelation of the original real signal). One ad-
vantage in working with the complex signal is that the centre
frequency cancels in any such product containing one voltage
and one complex conjugate voltage. We can therefore think of
such products as referring to properties of the fluctuations of
the signal amplitude and phase, and measure them even after
heterodyning has changed the centre frequency.

1.7 Cross Correlations

We have so far thought of the signal as a function of time, af-
ter it enters the antenna. Let us now liberate ourselves from
one dimension (time) and think of the electric field as exist-
ing in space and time, before it is collected by the antenna.
In this view, one can obtain a delayed version of the signal
by moving along the longitudinal direction (direction of the
source). Thus, the frequency content is obtained by Fourier
transforming a longitudinal spatial correlation. As explained
in Chapter 2, the spatial correlations transverse to the direc-
tion of propagation carry information on the angular power
spectrum of the signal, i.e. the energy as a function of di-
rection in the sky. With hindsight, this can be viewed as a
generalisation of the Wiener- Khinchin theorem to spatial cor-
relations of a complex electric field which is the sum of waves
propagating in many different directions. Historically, it arose
quite independently (and about at the same time!) in the con-
text of optical interference. This is the van Cittert-Zernike
theorem of Chapter 2. Since one is now multiplying and aver-
aging signals coming from different antennas, this is called a
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“cross correlation function”. To get a non-vanishing average,
one needs to multiply E1(x, t) by E

∗
2(y, t). The complex conju-

gate sign in one of the terms ensures that this kind of product
looks at the phase difference. Writing out each signal as a
sum with random phases, the terms which leave a non-zero
average are the ones in which an eiϕn in an E cancels a e−iϕn in
an E∗. An (ill-starred?) product of two complex E’s with zero
(or two!) complex conjugate signs would average to zero.

1.8 Mathematical details

This section gives some more mathematical details of topics
mentioned in the main text of the chapter.
We first give the generalisation of the two variable Gaussian

to the joint distribution of k variables. Defining the covariance
matrix Cij = 〈xixj〉, and A = C−1, then we have

P (x1 . . . xk) = (2π)−k/2(det A)1/2 exp

(
−1

2
xTAx

)

The quadratic function Q in the exponent has been writ-
ten in matrix notation with T for transpose. In full, it is
Q =

∑
ij xiaijxj. Notice that the only information we need for

the statistics of the amplitudes at k different times is the au-
tocorrelation function C(τ), evaluated at all time differences
ti − tj. Formally this is stated as “the Gaussian process is
defined by its second order statistics”.

What would be practically useful is an explicit formula for
the average value of an arbitrary product xixjxl . . . in terms of
the second order statistics 〈x1x2〉〈x3x7〉 . . . etc. The first step is
to see that a product of an odd number of x’s averages to zero.
(The contributions from x1 . . . xk & −x1 . . .− xk cancel).

For the case of an even number of Gaussian variables to be
multiplied and averaged, there is a standard trick to evaluate



1.8. MATHEMATICAL DETAILS 17

an integral like
∫
P (x1 . . . xk)x3x7 . . . dx1 . . .. Define the Fourier

transform of P ,

G(k1 . . . kk) =

∫ ∫
P (x1 . . . xk)e

−ik1x1...ikkxkdx1 . . . dxk

It is a standard result, derived by the usual device of com-
pleting the square, that this Fourier transform is itself a Gaus-
sian function of the k’s, given by

G(k1, . . . , kk) = exp

(
−1

2

∑

ij

Cijkikj

)
≡ exp

(
−1

2
kTCk

)

Differentiating with respect to k1 and then k2, and putting
all k’s equal to zero, pulls down a factor −x1x2 into the integral
and gives the desired average of x1x2. This trick now gives
the average of the product of a string of x’s in the form of the
“pairing theorem”. This is easier to state by an example.

〈x1x2x3x4〉 = 〈x1x2〉〈x3x4〉 + 〈x1x3〉〈x2x4〉 + 〈x1x4〉〈x2x3〉

≡ C12C34 + C13C24 + C14C23

A sincere attempt to differentiate G with respect to k1k2k3

and k4 and then put all k’s to zero will show that the C ’s get
pulled down in precisely this combination. Deeper thought
shows that the pairing rule works even when the x’s are not
all identical, i.e.,

〈x4〉 = 〈x2〉〈x2〉 + 〈x2〉〈x2〉 + 〈x2〉〈x2〉 = 3〈x2〉2 = 3σ4

or even 〈x2n〉 = 1, 3, 5 . . . (2n− 1)σ2n.
The last property is easily checked from the single variable

Gaussian

(2πσ2)−1/2 exp(−x2/2σ2)
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Since the pairing theorem allows one to calculate all aver-
ages, it could even be taken to define a Gaussian signal, and
that is what we do in the main text.
We now sketch a proof of the sampling theorem. Start with

a band limited (i.e containing only frequencies less than B)
signal sampled at the Nyquist rate, Er(n/2B). The following
expression gives a way of constructing a continuous signal
Ec(t) from our samples.

Ec(t) =
∑

n

Er(n/2B) sinc(2πB(t− n

2B
))

It is also known as Whitaker’s interpolation formula. Each
sinc function is diabolically chosen to give unity at one sam-
ple point and zero at all the others, so Ec(t) is guaranteed to
agree with our samples of Er(t). It is also band limited (Fourier
transform of a flat function extending from −B to +B). All that
is left to check is that it has the same Fourier coefficients as
Er(t) (it does). And hence, we have reconstructed a band lim-
ited function from its Nyquist samples, as promised.
We add a few comments on the notion of Hilbert transform

mentioned in the context of associating a complex signal with
a real one. It looks rather innocent in the frequency domain,
just subtract π/2 from the phase of each cosine in the Fourier
series of Er(t) and reassemble to get Ei(t). In terms of com-
plex Fourier coefficients, it is a multiplication of the positive
frequency component by −i and of the corresponding negative
frequency component by +i, Apart from the i, this is just mul-
tiplication by a step function of the symmetric type, jumping
from −1 to +1 at zero frequency. Hence, in the time domain,
it is a convolution of Er(t) by a kernel which is the Fourier
transform of this step function, viz. 1/t (the value t=0 being
excluded by the usual principal value rule). Explicitly, we have

Ei(t) =
1

π

∫
Er(s)P [1/(t− s)] ds
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There is a similar formula relating Er to Ei which only dif-
fers by a minus sign. This is sufficient to show that one needs
values from the infinite past, and, more disturbingly, future,
of t to compute Ei(t). This is beyond the reach of ordinary
mortals, even those equipped with the best filters and phase
shifters. Practical schemes to derive the complex signal in
real time thus have to make approximations as a concession
to causality.
As remarked in the main text, there are many complex sig-

nals whose real parts would give our measured Er(t). The
choice made above seemed natural because it was motivated
by the quasi-monochromatic case. It also has the mathemati-
cal property of creating a function which is very well behaved
in the upper half plane of t regarded as a complex variable
(should one ever want to go there). The reason is that V (t) is
constructed to have terms like eiωt with only positive values
of ω. Hence the pedantic name of “analytic signal” for this
descendant of the humble phasor. It was the more general
problem of continuing something given on the real axis to be
well behaved in the upper half of the complex plane which
attracted someone of Hilbert’s IQ to this transform.

1.9 Further Reading

1. Born M. and Wolf E., ’Principles of Optics’, Cambridge.

2. Papoulis A., ’Probability, Random Variables and Stochas-
tic Processes’, McGraw-Hill.

3. Box E. P., Jenkins G. M. and Reinsel G. C., ’Time Series
Analysis’ Pearson Education.
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Chapter 2

Interferometry and Aperture

Synthesis

A. P. Rao

2.1 Introduction

Radio astronomy is the study of the sky at radio wavelengths.
While optical astronomy has been a field of study from time
immemorial, the “new” astronomies viz. radioastronomy, X-
ray, IR and UV astronomy are only about 50 years old. At
many of these wavelengths it is essential to put the telescopes
outside the confines of the Earth’s atmosphere and so most of
these “new” astronomies have become possible only with the
advent of space technology. However, since the atmosphere is
transparent in the radio band (which covers a frequency range
of 10 MHz to 300 GHz or a wavelength range of approximately
1mm to 30m) radio astronomy can be done by ground based
telescopes (see also Chapter 3).

The field of radioastronomy was started in 1923 when Karl
Jansky (working at the Bell Labs on trying to reduce the noise
in radio receivers), discovered that his antenna was receiving
radiation from outside the Earth’s atmosphere. He noticed

21
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that this radiation appeared at the same sidereal (as opposed
to solar ) time on different days and that its source must hence
lie far outside the solar system. Further observations enabled
him to identify this radio source as the centre of the Galaxy.
To honour this discovery, the unit of flux density in radioas-
tronomy is named after Jansky where

1 Jansky = 10−26Wm−2Hz−1 (2.1.1)

Radio astronomy matured during the second world war when
many scientists worked on projects related to radar technol-
ogy. One of the major discoveries of that period (made while
trying to identify the locations of jamming radar signals), was
that the sun is a strong emitter of radio waves and its emis-
sion is time variable. After the war, the scientists involved in
these projects returned to academic pursuits and used sur-
plus equipment from the war to rapidly develop this new field
of radioastronomy. In the early phases, radioastronomy was
dominated by radio and electronic engineers and the astron-
omy community (dominated by optical astronomers), needed
considerable persuasion to be convinced that these new ra-
dio astronomical discoveries were of relevance to astronomy in
general. While the situation has changed considerably since
then much of the jargon of radio astronomy (which is largely
borrowed from electrical engineering) remains unfamiliar to a
person with a pure physics background. The coherent detec-
tion techniques pioneered by radio astronomers also remains
by and large not well understood by astronomers working at
other wavelength bands. This set of lecture notes aims to
familiarize students of physics (or students of astronomy at
other wavelengths) with the techniques of radio astronomy.
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2.2 The Radio Sky

The sky looks dramatically different at different wave bands
and this is the primary reason multi-wavelength astronomy
is interesting. In the optical band, the dominant emitters are
stars, luminous clouds of gas, and galaxies all of which are
thermal sources with temperatures in the range 103 − 104 K.
At these temperatures the emitted spectrum peaks in the op-
tical band. Sources with temperatures outside this range and
emitters of non thermal radiation are relatively weak emitters
in the optical band but can be strong emitters in other bands.
For example, cold (∼ 100 K) objects emit strongly in the infra
red and very hot objects ( > 105 K) emit strongly in X-rays.
Since the universe contains all of these objects one needs to
make multiband studies in order to fully understand it.
For a thermal source with temperature greater than 100 K,

the flux density in the radio band can be well approximated
by the Rayleigh-Jeans Law1, viz.

S = (2kT/λ2)dΩ (2.2.2)

The predicted flux densities at radio wavelengths are mi-
nuscule and one might hence imagine that the radio sky should
be dark and empty. However, radio observations reveal a va-
riety of radio sources all of which have flux densities much
greater than given by the Rayleigh-Jeans Law, i.e. the radio
emission that they emit is not thermal in nature. Today it is
known that the bulk of radio emission is produced via the syn-
chrotron mechanism. Energetic electrons spiraling in mag-
netic fields emit synchrotron radiation. Unlike thermal emis-
sion where the flux density increases with frequency, for syn-
chrotron emitters, the flux density increases with wavelength

1The Rayleigh-Jeans Law, as can be easily verified, is the limit of the Plank law when

hν << kT . This inequality is easily satisfied in the radio regime for generally encountered

astrophysical temperatures.
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(see Figure 2.1). Synchrotron emitting sources are hence best
studied at low radio frequencies.

Figure 2.1: Intensity as a function of frequency (“power spectra”) for syn-

chrotron (dashed) and thermal (solid) radio sources.

The dominant sources seen in the radio sky are the Sun,
supernova remnants, radio galaxies, pulsars etc. The Sun has
a typical flux density of 105 Jy while the next strongest sources
are the radio galaxy Cygnus A and the supernova remnant
Cassiopeia A, both of which have flux densities of ∼ 104 Jy.
Current technology permits the detection of sources as weak
as a few µJy. It turns out also that not all thermal sources
are too weak to detect, the thermal emission from large and
relatively nearby HII regions can also be detected easily in the
radio band.
Radio emission from synchrotron and thermal emitters is

“broad band”, i.e. the emission varies smoothly (often by a
power law) over the whole radio band. Since the spectrum is
relatively smooth, one can determine it by measurements of
flux density at a finite number of frequencies. This is a major
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advantage since radio telescopes tend to be narrow band de-
vices with small frequency spreads (∆ν/ν ∼ 0.1). This is partly
because it is not practical to build a single radio telescope that
can cover the whole radio-band (see eg. Chapter 3) but mainly
because radio astronomers share the radio band with a vari-
ety of other users ( eg. radar, cellular phones, pagers, TV etc.)
all of who radiate at power levels high enough to completely
swamp the typical radio telescope. By international agree-
ment, the radio spectrum is allocated to different users. Ra-
dio astronomy has a limited number of protected bands where
no one else is permitted to radiate and most radio telescopes
work only at these protected frequencies.

Several atoms and molecules have spectral lines in the ra-
dio band. For example, the hyperfine transition of the Hydro-
gen atom corresponds to a line with a wavelength of ∼ 21cm.
Since atomic hydrogen (HI) is an extremely abundant species
in the universe this line is one of the brightest naturally occur-
ring radio lines. The HI 21cm line has been extensively used to
study the kinematics of nearby galaxies. High quantum num-
ber recombination lines emitted by hydrogen and carbon also
fall in the radio band and can be used to study the physical
conditions in the ionized interstellar medium. Further the ra-
dio line emission from molecules like OH, SiO, H2O etc. tend
to be maser amplified in the interstellar medium and can often
be detected to very large distances. Of course, these lines can
be studied only if they fall within the protected radio bands. In
fact, the presence of radio lines is one of the justifications for
asking for protection in a specific part of the radio spectrum.
While many of the important radio lines have been protected
there are many outside the protected bands that cannot be
studied, which is a source of concern. Further, with radio
telescopes becoming more and more sensitive, it is possible
to study lines like the 21cm line to greater and greater dis-
tances. Since in the expanding universe, distance translates
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to a redshift, this often means that these lines emitted by dis-
tant objects move out of the protected radio band and can
become unobservable because of interference.

2.3 Signals in Radio Astronomy

A fundamental property of the radio waves emitted by cosmic
sources is that they are stochastic in nature, i.e. the electric
field at Earth due to a distant cosmic source can be treated
as a random process2. Random processes can be simply un-
derstood as a generalization of random variables. Recall that
a random variable x can be defined as follows. For every out-
come o of some given experiment (say the tossing of a die) one
assigns a given number to x. Given the probabilities of the dif-
ferent outcomes of the experiment one can then compute the
mean value of x, the variance of x etc. If for every outcome of
the experiment instead of a number one assigns a given func-
tion to x, then the associated process x(t) is called a random
process. For a fixed value of t, x(t) is simply a random variable
and one can compute its mean, variance etc. as before.

A commonly used statistic for random processes is the auto-
correlation function. The auto-correlation function is defined
as

rxx(t, τ) = 〈x(t)x(t+ τ)〉

where the angular brackets indicate taking the mean value.
For a particularly important class of random processes, called
wide sense stationary (WSS) processes the auto-correlation
function is independent of changes of the origin of t and is
a function of τ alone, i.e.

rxx(τ) = 〈x(t)x(t+ τ)〉
2see Chapter 1 for a more detailed discussion of topics discussed in this section.
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For τ = 0, r(τ) is simply the variance σ2 of x(t) (which for a
WSS process is independent of t).
The Fourier transform S(ν) of the auto-correlation function

is called the power spectrum, i.e.

S(ν) =

∫ ∞

−∞
rxx(τ)e

−i2πτνdτ

Equivalently, S(ν) is the inverse Fourier transform of r(τ) or

rxx(τ) =

∫ ∞

−∞
S(ν)ei2πτνdν

Hence

rxx(0) = σ2 =

∫ ∞

−∞
S(ν)dν

i.e. since σ2 is the “power” in the signal, S(ν) is a function
describing how that power is distributed in frequency space,
i.e. the “power spectrum”.
A process whose auto-correlation function is a delta func-

tion has a power spectrum that is flat – such a process is
called “white noise”. As mentioned in Section 2.2, many ra-
dio astronomical signals have spectra that are relatively flat;
these signals can hence be approximated as white noise. Ra-
dio astronomical receivers however have limited bandwidths,
that means that even if the signal input to the receiver is white
noise, the signal after passing through the receiver has power
only in a finite frequency range. Its auto-correlation function
is hence no longer a delta function, but is a sinc function (see
Section 2.5) with a width ∼ 1/∆ν, where ∆ν is the bandwidth
of the receiver. The width of the auto-correlation function is
also called the “coherence time” of the signal. The bandwidth
∆ν is typically much smaller than the central frequency ν at
which the radio receiver operates. Such signals are hence
also often called “quasi-monochromatic” signals. Much as a
monochromatic signal can be represented by a constant com-
plex phasor, quasi-monochromatic signals can be represented
by complex random processes.
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Given two random processes x(t) and y(t), one can define a
cross-correlation function

rxy(τ) = 〈x(t)y(t− τ)〉

where one has assumed that the signals are WSS so that
the cross-correlation function is a function of τ alone. The
cross-correlation function and its Fourier transform, the cross
power spectrum, are also widely used in radio astronomy.
We have so far been dealing with random processes that are

a function of time alone. The signal received from a distant
cosmic source is in general a function both of the receivers lo-
cation as well as of time. Much as we defined temporal corre-
lation functions above, one can also define spatial correlation
functions. If the signal at the observer’s plane at any instant
is E(r), then spatial correlation function is defined as:

V (x) = 〈E(r)E∗(r + x)〉

Note that strictly speaking the angular brackets imply ensem-
ble averaging. In practice one averages over time3 and as-
sumes that the two averaging procedures are equivalent. The
function V is referred to as the “visibility function” (or just
the “visibility”) and as we shall see below, it is of fundamental
interest in interferometry.

2.4 Interferometry

2.4.1 The Need for Interferometry

The idea that the resolution of optical instruments is limited
due to the wave nature of light is familiar to students of optics

3For typical radio receiver bandwidths of a few MHz, the coherence time is of the order

of micro seconds, so in a few seconds time one gets several million independent samples

to average over.
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and is embodied in the Rayleigh’s criterion which states that
the angular resolution of a telescope/microscope is ultimately
diffraction limited and is given by

θ ∼ λ/D (2.4.3)

where D is some measure of the aperture size. The need
for higher angular resolution has led to the development of in-
struments with larger size and which operate at smaller wave-
lengths. In radio astronomy, the wavelengths are so large that
even though the sizes of radio telescopes are large, the angular
resolution is still poor compared to optical instruments. Thus
while the human eye has a diffraction limit of ∼ 20

′′

and even
modest optical telescopes have diffraction limits4 of 0.1

′′

, even
the largest radio telescopes (300m in diameter) have angular
resolutions of only ∼ 10

′

at 1 metre wavelength. To achieve
higher resolutions one has to either increase the diameter of
the telescope further (which is not practical) or decrease the
observing wavelength. The second option has led to a ten-
dency for radio telescopes to operate at centimetre and mil-
limetre wavelengths, which leads to high angular resolutions.
These telescopes are however restricted to studying sources
that are bright at cm and mm wavelengths. To achieve high
angular resolutions at metre wavelengths one need telescopes
with apertures that are hundreds of kilometers in size. Single
telescopes of this size are clearly impossible to build. Instead
radio astronomers achieve such angular resolutions using a
technique called aperture synthesis. Aperture synthesis is
based on interferometry, the principles of which are familiar
to most physics students. There is in fact a deep analogy be-
tween the double slit experiment with quasi-monochromatic
light and the radio two element interferometer. Instead of set-
ting up this analogy we choose the more common route to

4The actual resolution achieved by these telescopes is however usually limited by at-

mospheric seeing.
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radio interferometry via the van Cittert-Zernike theorem.

2.4.2 The Van Cittert-Zernike Theorem

The van Cittert-Zernike theorem relates the spatial coherence
function V (r1, r2) = 〈E(r1)E

∗(r2)〉 to the distribution of intensity
of the incoming radiation, I(s). It shows that the spatial cor-
relation function V (r1, r2) depends only on r1−r2 and that if all
the measurements are in a plane, then

V (r1, r2) = F{I(s)} (2.4.4)

where F implies taking the Fourier transform. Proof of the
van Cittert-Zernike theorem can be found in a number of text-
books, eg. “Optics” by Born and Wolf, “Statistical Optics” by
Goodman, “Interferometry and Synthesis in Radio Astronomy”
by Thompson et al. We give here only a rough outline of the
proof to illustrate the basic ideas.

Let us assume that the source is distant and can be approx-
imated as a brightness distribution on the celestial sphere of
radius R (see Figure 2.2). Let the electric field5 at a point
P ′

1(x
′
1, y

′
1, z

′
1) at the source be given by E(P ′

1). The field E(P1) at
the observation point P1(x1, y1, z1) is given by6

E(P1) =

∫
E(P ′

1)
e−ikD(P ′

1,P1)

D(P ′
1, P1)

dΩ1 (2.4.5)

where D(P ′
1, P1) is the distance between P ′

1 and P1. Similarly
if E(P2) is the field at some other observing point P2(x2, y2, z2)

5We assume here for the moment that the electric field is a scalar quantity. See Chap-

ter 15 for the extension to vector fields.
6Where we have invoked Huygens principle. A more rigorous proof would use scalar

diffraction theory.
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x1 1 y1 z1P (    ,    ,     )

x y z1 1 1 1P (    ,    ,     )’

Figure 2.2: Geometry for the van Cittert-Zernike theorem

then the cross-correlation between these two fields is given by

〈E(P1)E
∗(P2)〉 =

∫
〈E(P ′

1)E∗(P ′
2)〉
e−ik[D(P ′

1,P1)−D(P ′
2,P2)]

D(P ′
1, P1)D(P ′

2, P2)
dΩ1dΩ2

(2.4.6)
If we further assume that the emission from the source is

spatially incoherent, i.e. that 〈E(P ′
1)E∗(P ′

2)〉 = 0 except when
P ′

1 = P ′
2, then we have

〈E(P1)E
∗(P2)〉 =

∫
I(P ′

1)
e−ik[D(P ′

1,P1)−D(P ′
1,P2)]

D(P ′
1, P1)D(P ′

1, P2)
dΩ1 (2.4.7)

where I(P ′
1) is the intensity at the point P

′
1. Since we have

assumed that the source can be approximated as lying on
a celestial sphere of radius R we have x′1 = R cos(θx) = Rl,
y′1 = R cos(θy) = Rm, and z′1 = R cos(θz) = Rn; (l, m, n) are called
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“direction cosines”. It can be easily shown7 that l2 +m2 +n2 = 1
and that dΩ = dl dm√

1−l2−m2
. We then have:

D(P ′
1, P1) = [(x′1 − x1)

2 + (y′1 − y1)
2 + (z′1 − z1)

2]1/2

= [(Rl − x1)
2 + (Rm− y1)

2 + (Rn− z1)
2]1/2

= R[(l − x1/R)2 + (m− y1/R)2 + (n− z1/R)2]1/2

≃ R[(l2 +m2 + n2) − 2/R(lx1 +my1 + nz1)]
1/2

≃ R− (lx1 +my1 + nz1)

(2.4.8)

Putting this back into equation 2.4.7 we get

〈E(P1)E
∗(P2)〉 =

1

R2

∫
I(l, m)e−ik[l(x2−x1)+m(y2−y1)+n(z2−z1)] dl dm√

1 − l2 −m2

(2.4.9)
Note that since l2 + m2 + n2 = 1, the two directions cosines

(l, m) are sufficient to uniquely specify any given point on the
celestial sphere, which is why the intensity I has been writ-
ten out as a function of (l, m) only. It is customary to mea-
sure distances in the observing plane in units of the wave-
length λ, and to define “baseline co-ordinates” u, v, w such
that u = (x2 − x1)/λ, v = (y2 − y1)/λ, and w = (z2 − z1)/λ. The
spatial correlation function 〈E(P1)E

∗(P2)〉 is also referred to as
the “visibility” V(u, v, w). Apart from the constant factor 1/R2

(which we will ignore hence forth) equation 2.4.9 can then be
written as

V(u, v, w) =

∫
I(l, m)e−i2π[lu+mv+nw] dl dm√

1 − l2 −m2
(2.4.10)

This fundamental relationship between the visibility and
the source intensity distribution is the basis of radio inter-
ferometry. In the optical literature this relationship is also
referred to as the van Cittert-Zernike theorem.
7see for example, Christiansen & Hogbom, “Radio telescopes”, Cambridge University

Press
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Equation 2.4.10 resembles a Fourier transform. There are
two situations in which it does reduce to a Fourier transform.
The first is when the observations are confined to a the U − V

plane, i.e. when w = 0. In this case we have

V(u, v) =

∫ I(l, m)√
1 − l2 −m2

e−i2π[lu+mv]dl dm (2.4.11)

i.e. the visibility V(u, v) is the Fourier transform of the mod-

ified brightness distribution I(l,m)√
1−l2−m2

. The second situation is

when the source brightness distribution is limited to a small
region of the sky. This is a good approximation for arrays
of parabolic antennas because each antenna responds only
to sources which lie within its primary beam (see Chapter 3).
The primary beam is typically < 1o, which is a very small area
of sky. In this case n =

√
1 − l2 −m2 ≃ 1. Equation 2.4.10 then

becomes

V(u, v, w) = e−i2πw
∫

I(l, m)e−i2π[lu+mv]dl dm (2.4.12)

or if we define a modified visibility Ṽ(u, v) = V(u, v, w)ei2πw we
have

Ṽ(u, v) =

∫
I(l, m)e−i2π[lu+mv]dl dm (2.4.13)

2.4.3 Aperture Synthesis

As we saw in the previous section, the spatial correlation of the
electric field in the U-V plane is related to the source bright-
ness distribution. Further, for the typical radio array the
relationship between the measured visibility and the source
brightness distribution is a simple Fourier transform. Corre-
lation of the voltages from any two radio antennas then allows
the measurement of a single Fourier component of the source
brightness distribution. Given sufficient number of measure-
ments the source brightness distribution can then be obtained
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by Fourier inversion. The derived image of the sky is usually
called a “map” in radio astronomy, and the process of produc-
ing the image from the visibilities is called “mapping”.

The radio sky (apart from a few rare sources) does not vary8.
This means that it is not necessary to measure all the Fourier
components simultaneously. Thus for example one can imag-
ine measuring all required Fourier components with just two
antennas, (one of which is mobile), by laboriously moving the
second antenna from place to place. This method of gradually
building up all the required Fourier components and using
them to image the source is called “aperture synthesis”. If for
example one has measured all Fourier components up to a
baseline length of say 25 km, then one could obtain an image
of the sky with the same resolution as that of a telescope of
aperture size 25 km, i.e. one has synthesized a 25 km aper-
ture. In practice one can use the fact that the Earth rotates
to sample the U-V plane quite rapidly. As seen from a dis-
tant cosmic source, the baseline vector between two antennas
on the Earth is continuously changing because of the Earth’s
rotation (see Figure 2.3). Or equivalently, as the source rises
and sets the Fourier components measured by a given pair
of antennas is continuously changing. If one has an array of
N antennas spread on the Earth’s surface, then at any given
instant one measures NC2 Fourier components (or in radio as-
tronomy jargon one has NC2 samples in the U-V plane). As the
Earth rotates one samples more and more of the U-V plane.
For arrays like the GMRT with 30 antennas, if one tracks
a source from rise to set, the sampling of the U-V plane is
sufficiently dense to allow extremely high-fidelity reconstruc-
tions of even complex sources. This technique of using the
Earth’s rotation to improve “U-V coverage” was traditionally

8Or, in the terminology of random processes cosmic radio signals are stationary, i.e.

their statistical properties like the mean, auto and cross-correlation functions etc. are

independent of the absolute time.
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called “earth rotation aperture synthesis”, but in modern us-
age is usually simply referred to as “aperture synthesis”.

A 

B 

C

U−V

N

A 

B 
C

Figure 2.3: The track in the U-V plane traced out by an east-west baseline

due to the Earth’s rotation.

From the inverse relationship of Fourier conjugate variables
it follows that short baselines are sensitive to large angular
structures in the source and that long baselines are sensitive
to fine-scale structure. To image large, smooth sources one
would hence like an array with the antennas closely packed
together, while for a source with considerable fine-scale struc-
ture one needs antennas spread out to large distances. The
array configuration hence has a major influence on the kind
of sources that can be imaged. The GMRT array configura-
tion consists of a combination of a central 1x1 km cluster of
densely packed antennas and three 14 km long arms along
which the remaining antennas are spread out. This gives a
combination of both short and long spacings, and gives con-
siderable flexibility in the kind of sources that can be imaged.
Arrays like the VLA on the other hand have all their antennas
mounted on rails, allowing even more flexibility in determining
how the U-V plane is sampled.
Other chapters in these notes discuss the practical details

of aperture synthesis. Chapter 3 discusses how one can use
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radio antennas and receivers to measure the electric field from
cosmic sources. For an N antenna array one needs to measure
NC2 correlations simultaneously, this is done by a (usually dig-
ital) machine called the “correlator”. The spatial correlation
that one needs to measure (see equation 2.4.6) is the correla-
tion between the instantaneous fields at points P1 and P2. In
an interferometer the signals from antennas at points P1 and
P2 are transported by cable to some central location where
the correlator is – this means that the correlator has also to
continuously adjust the delays of the signals from different
antennas before correlating them. This and other corrections
that need to be made are discussed in Chapter 4, and ex-
actly how these corrections are implemented in the correlator
are discussed in Chapters 8 and 9. The astronomical cali-
bration of the measured visibilities is discussed in Chapter 5,
while Chapter 16 deals with the various ways in which pas-
sage through the Earth’s ionosphere corrupts the astronomi-
cal signal. Chapters 10, 12 and 14 discuss the nitty-gritty of
going from the calibrated visibilities to the image of the sky.
Chapters 13 and 15 discuss two refinements, viz. measuring
the spectra and polarization properties of the sources respec-
tively.

2.5 The Fourier Transform

The Fourier transform U(ν) of a function u(t) is defined as

U(ν) =

∫ ∞

−∞
u(t)e−i2πνtdt

and can be shown to exist for any function u(t) for which

∫ ∞

−∞
|u(t)|dt <∞
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The Fourier transform is invertible, i.e. given U(ν), u(t) can be
obtained using the inverse Fourier transform, viz.

u(t) =

∫ ∞

−∞
U(ν)ei2πνtdν

Some important properties of the Fourier transform are listed
below (where by convention capitalized functions refer to the
Fourier transform)

1. Linearity
F{au(t) + bv(t)} = aU(ν) + bV (ν)

where a, b are arbitrary complex constants.

2. Similarity

F{u(at)} =
1

a
U(
ν

a
)

where a is an arbitrary real constant.

3. Shift
F{u(t− a)} = e−i2πaU(ν)

where a is an arbitrary real constant.

4. Parseval’s Theorem
∫ ∞

−∞
|u(t)|2dt =

∫ ∞

−∞
|U(ν)|2dν

5. Convolution Theorem

F
∫ ∞

−∞
u(t)v(t− τ)dt = U(ν)V (ν)

6. Autocorrelation Theorem

F
∫ ∞

−∞
u(t)u(t+ τ)dt = |U(ν)|2

Some commonly used Fourier transform pairs are given in
Table 2.1.
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Table 2.1: Fourier transform pairs

Function Transform

eπt
2

eπν
2

1 δ(ν)

cos(πt) 1
2δ(ν − 1

2) + 1
2δ(ν + 1

2)

sin(πt) i
2δ(ν − 1

2) − i
2δ(ν + 1

2)

rect(t) sinc(ν)
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Chapter 3

Single Dish Radio Telescopes

Jayaram N. Chengalur

3.1 Introduction

As a preliminary to describing radio telescopes, it is useful to
have a look at the transparency of the atmosphere to electro-
magnetic waves of different frequencies. Figure 3.1 is a plot
of the height in the atmosphere at which the radiation is at-
tenuated by a factor of 2 as a function of frequency. There
are only two bands at which radiation from outerspace can
reach the surface of the Earth, one from 3000 Å to 10000 Å –
the optical/near-infrared window, and one from a few mm to
tens of meters – the radio window. Radio waves longer than a
few tens of meters get absorbed in the ionosphere, and those
shorter than a few mm are strongly absorbed by water vapor.
Since mm wave absorption is such a strong function of the
amount of water vapour in the air, mm wave telescopes are
usually located on high mountains in desert regions.

The optical window extends about a factor of ∼ 3 in wave-
length, whereas the radio window extends almost a factor of
∼ 104 in wavelength. Hence while all optical telescopes ‘look
similar’, radio telescopes at long wavelengths have little re-

39
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Figure 3.1: The height above the Earth’s surface where cosmic electro-

magnetic radiation is attenuated by a factor of two. There are two clear

windows the optical (V) (∼ 4000 − 10000 Å) and the radio ∼ 1mm − 10m. In

addition there are a few narrow windows in the infra-red (IR) wavelength

range. At all other wavelengths astronomy is possible only through satel-

lites.

semblance to radio telescopes at short wavelengths. At long
wavelengths, radio telescopes usually consist of arrays of res-
onant structures, like dipole or helical antennas (Figure 3.2).
At short wavelengths reflecting telescopes (usually parabolic
antennas, which focus incoming energy on to the focus, where
it is absorbed by a small feed antenna) are used (Figure 3.3).

Apart from this difference in morphology of antennas, the
principal difference between radio and optical telescopes is
the use of coherent (i.e. with the preservation of phase infor-
mation) amplifiers in radio astronomy. The block diagram for
a typical single dish radio telescope is shown in Figure 3.4.
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Figure 3.2: The Mauritius Radio Telescope. This is a low frequency

(150 MHz) array of which the individual elements are helical antennas.

Radio waves from the distant cosmic source impinge on the
antenna and create a fluctuating voltage at the antenna ter-
minals. This voltage varies at the same frequency as the
cosmic electro-magnetic wave, referred to as the Radio Fre-
quency (RF). The voltage is first amplified by the front-end (or
Radio Frequency) amplifier. The signal is weakest here, and
hence it is very important that the amplifier introduce as little
noise as possible. Front end amplifiers hence usually use low
noise solid state devices, High Electron Mobility Transistors
(HEMTs), often cooled to liquid helium temperatures.

After amplification, the signal is passed into a mixer. A
mixer is a device that changes the frequency of the input sig-
nal. Mixers have two inputs, one for the signal whose fre-
quency is to be changed (the RF signal in this case), the other
input is usually a pure sine wave generated by a tunable
signal generator, the Local Oscillator (LO). The output of the
mixer is at the beat frequency of the radio frequency and the
local oscillator frequency. So after mixing, the signal is now at
a different (and usually lower) frequency than the RF, this fre-
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Figure 3.3: The Caltech Sub-millimeter Observatory (CSO) at Mauna Kea

in Hawaii. The telescope operates in the the sub-mm wavelength range.

quency is called the Intermediate Frequency (IF). The main rea-
son for mixing (also called heterodyning) is that though most
radio telescopes operate at a wide range of radio frequencies,
the processing required at each of these frequencies is iden-
tical. The economical solution is to convert each of these in-
coming radio frequencies to a standard IF and then to use the
same back-end equipment for all possible RF frequencies that
the telescope accepts. In telescopes that use co-axial cables
to transport the signal across long distances, the IF frequency
is also usually chosen so as to minimize transmission loss in
the cable. Sometimes there is more than one mixer along the
signal path, creating a series of IF frequencies, one of which is
optimum for signal transport, another which is optimum for
amplification etc. This is called a ‘super-heterodyne’ system.
For example, the GMRT (see Chapter 21) accepts radio waves
in six bands from 50 MHz to 1.4 GHz and has IFs at 130 MHz,
175 MHz and 70 MHz1.

1There are IFs at 130 MHz and 175 MHz to allow the signals from the two different
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Figure 3.4: Block diagram of a single dish radio telescope.

Figure 3.5: One of the 30 GMRT antennas
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After conversion to IF, the signal is once again amplified (by
the IF amplifier), and then mixed to a frequency range near
0 Hz (the Base Band (BB)) and then fed into the backend for
further specialized processing. What backend is used depends
on the nature of the observations. If what you want to mea-
sure is simply the total power that the telescope receives then
the backend could be a simple square law detector followed
by an integrator. (Remember the signal is a voltage that is
proportional to amplitude of the electric field of the incoming
wave, and since the power in the wave goes like the square
of its amplitude, the square of the voltage is a measure of the
strength of the cosmic source). The integrator merely averages
the signal to improve the signal to noise ratio. For spectral line
observations the signal is passed into a spectrometer instead
of a broad band detector. For pulsar observations the signal is
passed into special purpose ‘pulsar machines’. Spectrometers
(usually implemented as “correlators”) and pulsar machines
are fairly complex and will not be discussed further here (see
instead Chapters 8 and 17 more details). The rest of this chap-
ter discusses only the first part of this block diagram, viz. the
antenna itself.

3.2 EM Wave Basics

A cosmic source typically emits radio waves over a wide range
of frequencies, but the radio telescope is sensitive to only a
narrow band of emission centered on the RF. We can hence,
to zeroth order, approximate this narrow band emission as a
monochromatic wave. (More realistic approximations are dis-
cussed in Chapter 15). The waves leaving the cosmic source
have spherical wavefronts which propagate away from the source

polarizations received by the antenna to be frequency division multiplexed onto the same

optical fiber for transport to the central electronics building.
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Figure 3.6: Electric field of a plane wave

at the speed of light. Since most sources of interest are very
far away from the Earth, the radio telescope only sees a very
small part of this spherical wave front, which can be well ap-
proximated by a plane wave front. Electro-magnetic waves are
vector waves, i.e. the electric field has a direction as well as
an amplitude. In free space, the electric field of a plane wave
is constrained to be perpendicular to its direction of propaga-
tion and the power carried by the wave is proportional to the
square of the amplitude of the electric field.

Consider a plane EM wave of frequency ν propagating along
the Z axis (Figure 3.6). The electric field then can have only
two components, one along the X axis, and one along the Y
axis. Since the wave is varying with a frequency ν, each of
these components also varies with a frequency ν, and at any
one point in space the electric field vector will also vary with
a frequency ν. The polarization of the wave characterizes how
the direction of the electric field vector varies at a given point
in space as a function of time.

The most general expression for each of the components of
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the electric field of a plane monochromatic wave2 is:

EX = AX cos(2πνt+ δX)

EY = AY cos(2πνt+ δY )

where AX , AY , δX , δY are constants. If AY = 0, then the field
only has one component along the X axis, which increases in
amplitude from −AX to +AX and back to −AX over one period.
Such a wave is said to be linearly polarized along the X axis.
Similarly if AX is zero then the wave is linearly polarized along
the Y axis. Waves which are generated by dipole antennas are
linearly polarized along the length of the dipole. Now consider
a wave for which AX = AY , δX = 0, and δY = −π/2. If we start
at a time at which the X component is a maximum, then the
Y component is zero and the total field points along the +X
axis. A quarter period later, the X component will be zero and
the Y component will be at maximum, the total field points
along the +Y direction. Another quarter of a period later, the
Y component is again zero, and the X component is at mini-
mum, the total field points along the -X direction. Thus over
one period, the tip of the electric field vector describes a circle
in the XY plane. Such a wave is called circularly polarized. If
δY were = π/2 then the electric field vector would still describe
a circle in the XY plane, but it would rotate in the opposite di-
rection. The former is called Right Circular Polarization (RCP)
and the latter Left Circular Polarization (LCP).3 Waves gen-
erated by Helical antennas are circularly polarized. In the
general case when all the constants have arbitrary values, the
tip of the electric wave describes an ellipse in the XY plane,
and the wave is said to be elliptically polarized.

2Monochromatic waves are necessarily 100% polarized. As discussed in Chapter 15

quasi-monochromatic waves can be partially polarized.
3This RCP-LCP convention is unfortunately not fixed, and the reverse convention is

also occasionally used, leading to endless confusion. It turns out however, that most

cosmic sources have very little circular polarization.
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Any monochromatic wave can be decomposed into the sum
of two orthogonal polarizations. What we did above was to
decompose a circularly polarized wave into the sum of two
linearly polarized components. One could also decompose a
linearly polarized wave into the sum of LCP and RCP waves,
with the same amplitude and π radians out of phase. Any
antenna is sensitive to only one polarization (for example a
dipole antenna only absorbs waves with electric field along
the axis of the dipole, while a helical antenna will accept only
one sense of circular polarization). Note that the reflecting
surface of a telescope could well 4 work for both polarizations,
but the feed antenna will respond to only one polarization.
To detect both polarizations one need to put two feeds (which
could possibly be combined into one mechanical structure) at
the focus. Each feed will require its own set of electronics like
amplifiers and mixers etc.
EM waves are usually described by writing explicitly how

the electric field strength varies in space and time. For ex-
ample, a plane wave of frequency ν and wave number k (k =

2π/λ, λ = c/ν) propagating along the Z axis and linearly polar-
ized along the X axis could be described as

E(z, t) = A cos(2πνt− kz)

This could also be written as

E(z, t) = Real(Aej(2πνt−kz))

where Real() implies taking the real part of () and j is the
imaginary square root of −1. Since all the time variation is
at the same frequency ν, one could suppress writing it out
explicitly and introduce it only when one needs to deal with

4Not all reflecting radio telescopes have surfaces that reflect both polarizations. For

example, the Ooty radio telescope’s (Figure 3.16) reflecting surface consists of a parallel

set of thin stainless steel wires, which only reflect the polarization with the electric field

parallel to the wires.
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physical quantities. So, one could equally well describe the
wave by the complex quantity A, where A = A e−jkz, and un-
derstand that the physical field is obtained by multiplying A
by ej2πνt and taking the real part of the product. The field A
is called the phasor field5. So for example the phasor field of
the wave

E = A cos(2πνt− kz + δ)

is simply Aejδ.

3.3 Signals and Noise in Radio Astronomy

3.3.1 Signals

At radio frequencies, cosmic source strengths are usually mea-
sured in Janskys6 (Jy). Consider a plane wave from a distant
point source falling on the Earth. If the energy per unit fre-
quency passing through an area of 1 square meter held per-
pendicular to the line of sight to the source is 10−26 watts then
the source is said to have a brightness of 1 Jy, i.e.

1 Jy = 10−26 W/m2/Hz,

For an extended source, there is no longer a unique direc-
tion to hold the square meter, such sources are hence charac-
terized by a sky brightness B, the energy flow at Earth per unit
area, per unit time, per unit solid angle, per unit Frequency,
i.e. the units of brightness are W/m2/Hz/sr.
Very often the sky brightness is also measured in tempera-

ture units. To motivate these units, consider a black body at

5For quasi monochromatic waves, (see Chapter 1), one has the related concept of the

complex analytical signal
6As befitting its relative youth, this is a linear, MKS based scale. At most other wave-

lengths, the brightness is traditionally measured in units far too idiosyncratic to be de-

scribed in this footnote.
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temperature T . The radiation from the black body is described
by the Planck spectrum

B(ν) =
2hν3

c2
1

ehν/kT − 1
W/m2/Hz/sr

i.e. the same units as the brightness. For a typical radio
frequency of 1000 MHz, hν/k = 0.048, hence

ehν/kT ∼ 1 + hν/kT

and

B(ν) ≃ 2ν2

c2
kT = 2kT/λ2

This approximation to the Planck spectrum is called the
Rayleigh-Jeans approximation, and is valid through most of
the radio regime. From the R-J approximation,

T =
λ2

2k
B(ν)

In analogy, the brightness temperature TB of an extended source
is defined as

TB =
λ2

2k
B(ν).

where B(ν) is the sky brightness of the source. Note that in
general the brightness temperature TB has no relation to the
physical temperature of the source.
For certain sources, like the quiet sun and HII regions, the

emission mechanism is thermal bremstrahlung, and for these
sources, provided the optical depth is large enough, the ob-
served spectrum will be the Rayleigh-Jeans tail of the black
body spectrum. In this case, the brightness temperature is
a directly related to the physical temperature of the electrons
in the source. Sources for which the synchrotron emission
mechanism dominates, the spectrum is not black-body, but is
usually what is called steep spectrum7, i.e. the flux increases
7provided that the source is optically thin
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sharply with increasing wavelength. At low frequencies, the
most prominent such source is the Galactic non-thermal con-
tinuum, for which the flux S ∝ ν−α, α ∼ 1. At low frequen-
cies hence, the sky brightness temperature dominates the sys-
tem temperature8. Pulsars and extended extra-galactic radio
sources too in general have steep spectra and are brightest at
low frequencies. At the extreme end of the brightness tem-
perature are masers where a lot of energy is pumped out in
a narrow collimated molecular line, the brightness tempera-
tures could reach ∼ 1012 K. This could certainly not be the
physical temperature of the source since molecules dissociate
at temperatures well below 1012 K.

3.3.2 Noise

An antenna absorbs power from the radio waves that fall on it.
This power is also usually specified in temperature units, i.e.
degrees Kelvin. To motivate these units, consider a resistor
placed in a thermal bath at a temperature T . The electrons
in the resistor undergo random thermal motion, and this ran-
dom motion causes a current to flow in the resistor. On the
average there are as many electrons moving in one direction
as in the opposite direction, and the average current is zero.
The power in the resistor however depends on the square of
the current and is not zero. From the equipartition principle
one could compute this power as a function of the tempera-
ture, and in the radio regime the power per unit frequency is
well approximated by the Nyquist formula:

P = kT,

where k is the same Boltzmann constant as in the Planck law.
In analogy with this, if a power P (per unit frequency) is avail-
able at an antenna’s terminals the antenna is defined to have
8See the discussion on system temperature later in this section
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an antenna temperature of

TA =
P

k

Note again that the antenna temperature does not correspond
to the physical temperature of the antenna. Similarly the total
power available at a radio telescope terminals, referred to the
receiver (i.e. the RF amplifier) inputs9 is defined as the system
temperature Tsys, i.e.

Tsys =
Total Power referred to receiver inputs

k

The system temperature when looking at blank sky is a
measure of the total random noise in the system and hence
it is desirable to make the system temperature as low as pos-
sible. Noise from the various sub systems that make up the
radio telescope are uncorrelated and hence add up linearly.
The system temperature can be very generally written as

Tsys = Tsky + Tspill + Tloss + Trec

Tsky is the contribution of the background sky brightness.
For example the galaxy is a strong emitter of non-thermal10

continuum radiation, which at low frequencies usually domi-
nates the system temperature. At all frequencies the sky con-
tributes at least 3K from the cosmic background radiation.11

9By ‘referred to the receiver inputs’ we mean the following. Suppose you have a noise

power P at the output of the radio telescope. If there is only one stage of amplification

with gain G, then the power referred to the inputs is P/G. If there is more than one stage

of amplification, one has to rescale each noise source along the signal path by the gain of

all the preceding amplifiers.
10By non-thermal radiation one means simply that the source function is not the Planck

spectrum.
11Historically, this fact was discovered by Penzias and Wilson when they set out to per-

form the relatively mundane task of calibrating the system temperature of their radio

telescope. This excess 3K discovered to come from the sky was identified with the ra-

diation from the Big Bang, and was one of the powerful pieces of evidence in favour of
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Figure 3.7: The Arecibo telescope consists of a large (300 m) spherical re-

flector fitted into a naturally occurring valley. The telescope has feeds

which are suspended from cables which originate from towers on the sur-

rounding hills. Photo courtesy of NAIC, Arecibo observatory.

The feed antenna is supposed to collect the radiation fo-
cused by the reflector. Often the feed antenna also picks
up stray radiation from the ground ( which radiates approxi-
mately like a black body at 300 K ) around the edge of the re-
flector. This added noise is called spillover noise, and is a very
important contribution to the system temperature at a tele-
scope like Arecibo. In Figure 3.8 is shown (schematically) the
system temperature for the (pre-upgrade) Arecibo telescope at
12cm as a function of the zenith angle at which the telescope
is pointed. At high zenith angles the feed radiation spills over
the edge of the dish and picks up a lot of radiation from the

the Big Bang model. The field of Radio Astronomy itself was started by Karl Jansky, who

too was engaged in the task of calibrating the system temperature of his antenna (he had

been set the task of characterizing the various kinds of noise which radio receivers picked

up, this noise was harmful to trans-atlantic communication, and was hence essential to

understand). Jansky discovered that one component of the ‘radio noise’ was associated

with the Galactic center, the first detection of extra-terrestrial radio waves.
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surrounding hills and the system temperature changes from
under 40 K to over 80 K. If a reflecting screen were to be placed
around the telescope edges, then, the spill over radiation will
be sky radiation reflected by the screen, and not thermal radi-
ation from the ground. At cm wavelengths, Tsky << Tground, so
such a ground screen would significantly reduce the system
temperature at high zenith angles12.
Any lossy element in the feed path will also contribute noise

(Tloss ) to the system. This follows from Kirchhoff’s law which
states that good absorbers are also good emitters, and that
the ratio of emission to absorption in thermodynamic equilib-
rium is given by the Planck spectrum at the absorber’s phys-
ical temperature. This is the reason why there are rarely any
uncooled elements between the feed and the first amplifier.
Finally, the receiver also adds noise to the system, which is
characterized by Trec. The noise added after the first few stages
of amplification is usually an insignificant fraction of the sig-
nal strength and can often be ignored.
The final, increasingly important contributor to the system

temperature is terrestrial interference. If the bandwidth of the
interference is large compared to the spectral resolution, the
interference is called broad band. Steady, broad band inter-
ference increases the system temperature, and provided this
increase is small its effects are relatively benign. However, typ-
ically interference varies on a very rapid time scale, causing a
rapid fluctuation in the system temperature. This is consid-
erably more harmful, since such fluctuations could have har-
monics which are mistaken for pulsars etc. In aperture syn-
thesis telescopes such time varying effects will also produce
artifacts in the resulting image13. Interference whose band-

12As can be seen from Figure 3.7, such a screen has indeed been built, and it has

dramatically reduced the system temperature at high zenith angles. The wire mesh for

this screen was produced, with the co-ordination of NCRA by the same contractor who

fabricated the mesh for the GMRT antennas, and was exported to the USA.
13It is often claimed that interferometers are immune from interference because dif-
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Figure 3.8: Schematic of the variation of Tsys with zenith angle for the

pre-upgrade Arecibo.

width is small compared to the spectral resolution is called
narrow band interference. Such interference, provided it is
weak enough will corrupt only one spectral channel in the re-
ceiver. Provided this spectral channel is not important (i.e.
does not coincide with for eg. a spectral line from the source)
it can be flagged with little loss of information. However, if the
interference is strong enough, the receiver saturates, which
has several deleterious effects. Firstly since the receiver is no
longer in its linear range, the increase in antenna tempera-
ture on looking at a cosmic source is no longer simply related
to the source brightness, making it difficult, and usually im-
possible to derive the actual source brightness. This is called
compression. Further if some other spectral feature is present,

ferent antennas “see” different interfering sources and these do not correlate with one

another. However since the interference is typically varying on timescales faster than the

system temperature is calibrated, the resulting variations in the system temperatures of

the different antennas cause variations in the observed correlation coefficient (for tele-

scopes which do a continuous normalization by the auto-correlation of each antenna’s

signal) and hence artifacts in the image plane.
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perhaps even a spectral line from the source, spurious signals
are produced at the beat frequencies of the true spectral line
and the interference. These are called intermodulation prod-
ucts. Given the increasingly hostile interference environment
at low frequencies, it is important to have receivers with large
dynamic range, i.e. whose region of linear response is as large
as possible. It could often be the case, that it is worth in-
creasing the receiver temperature provided that one gains in
dynamic range. For particularly strong and steady sources
of interference (such as carriers for nearby TV stations), it is
usually the practice to block such signals out using narrow
band filters before the first amplifier14.

3.3.3 Signal to Noise Ratio

Since the signals15 in a radio telescope are random in nature,
the output of a total power detector attached to a radio tele-
scope too will show random fluctuations. Supposing a tele-
scope with system temperature Tsys, gain G, and bandwidth
∆ν is used to try and detect some astrophysical source. The
strategy one could follow is to first look at a ‘blank’ part of the
sky, and then switch to a region containing the source. Clearly
if the received power increases, then one has detected radio
waves from this source16. But given that the output even on
a blank region of sky is fluctuating, how can one be sure that
the increase in antenna temperature is not a random fluctu-
ation but is indeed due to the astrophysical source? In order
to make this decision, one needs to know what the rms is in
the fluctuations. It will be shown later17, that for a total power

14Recall from the discussion above on the effect of introducing lossy elements in the

signal path that the price one pays is precisely an increase in receiver temperature
15Apart from interference etc.
16Assuming of course that you have enough spatial resolution to make this identifica-

tion
17Chapter 5
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detector with instantaneous rms Tsys, the rms after integrating
a signal of bandwidth ∆ν Hz for τ seconds is18 Tsys/

√
∆ντ . The

increase in system temperature is just GS, where S is the flux
density of the source. The signal to noise (SNR) ratio is hence

SNR =
GS

√
∆ντ

Tsys

This is the fundamental equation for the sensitivity of a single
dish telescope. Provided the SNR is sufficiently large, one can
be confident of having detected the source.
The SNR here considers only the ‘thermal noise’, i.e. the

noise from the receivers, spillover, sky temperature etc. In
addition there will be random fluctuations from position to
position as discussed below because of confusion. For most
single dish radio telescopes, especially at low frequencies, the
thermal noise reaches the confusion limit (see Section 3.4) in
fairly short integration times. To detect even fainter sources,
it becomes necessary then to go for higher resolution, usually
attainable only through interferometry.

3.4 Antenna Patterns

The most important characteristic of an antenna is its abil-
ity to absorb radio waves incident upon it. This is usually
described in terms of its effective aperture. The effective aper-
ture of an antenna is defined as

Ae =
Power density available at the antenna terminals

Flux density of the wave incident on the antenna

The units are
W/Hz

W/m2/Hz
= m2

18This can be heuristically understood as follows. For a stochastic processes of band-

width ∆ν, the coherence time is ∼ 1/∆ν, which means that in a time of τ seconds, one

has ∆ν τ independent samples. The rms decreases as the square root of the number of

independent samples.
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The effective area19 is a function of the direction of the in-
cident wave, because the antenna works better in some direc-
tions than in others. Hence

Ae = Ae(θ, φ)

This directional property of the antenna is often described in
the form of a power pattern. The power pattern is simply the
effective area normalized to be unity at the maximum, i.e.

P (θ, φ) =
Ae(θ, φ)

Amax
e

The other common way to specify the directive property of an
antenna is the field pattern. Consider an antenna receiving
radio waves from a distant point source. The voltage at the
terminals of the antenna as a function of the direction to the
point source, normalized to unity at maximum, is called the
field pattern f(θ, φ) of the antenna. The pattern of an antenna
is the same regardless of whether it is used as a transmitting
antenna or as a receiving antenna, i.e. if it transmits effi-
ciently in some direction, it will also receive efficiently in that
direction. This is called Reciprocity, (or occasionally Lorentz
Reciprocity) and follows from Maxwell’s equations. From reci-
procity it follows that the electric field far from a transmitting
antenna, normalized to unity at maximum, is simply the Field
pattern f(θ, φ). Since the power flow is proportional to the
square of the electric field, the power pattern is the square of
the field pattern. The power pattern is hence real and positive
semi-definite.
A typical power pattern is shown in Figure 3.9. The power

pattern has a primary maximum, called the main lobe and
several subsidiary maxima, called side lobes. The points at
which the main lobe falls to half its central value are called
the Half Power points and the angular distance between these

19also called the “effective aperture”
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Figure 3.9: Schematic power pattern of an antenna

points is called the Half Power Beamwidth (HPBW). The min-
ima of the power pattern are called nulls. For radio astronom-
ical applications one generally wants the HPBW to be small (so
that the nearby sources are not confused with one another),
and the sidelobes to be low (to minimize the pickup of stray ra-
diation). From simple diffraction theory it can be shown that
the HPBW of a reflecting telescope is given by

ΘHPBW ∼ λ/D

where D is the physical dimension of the telescope. λ and D
must be measured in the same units and Θ is in radians. So
the larger the telescope, the better the resolution. For exam-
ple, the HPBW of a 700 foot telescope at 2380 MHz is about
2 arcmin. This is very poor resolution – an optical telescope
(λ ∼ 5000Å), a few inches in diameter has a resolution of a
few arc seconds. However, the resolution of single dish radio
telescopes, unlike optical telescopes, is not limited by atmo-
spheric turbulence. Figure 3.10 shows the power pattern of
the (pre-upgrade) Arecibo telescope at 2380 MHz. Although
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Figure 3.10: The (pre-upgrade) Arecibo power pattern at 2380 MHz. The

HPBW is ∼ 2
′

.

the telescope is 1000 ft in diameter, only a 700 ft diameter
aperture is used at any given time, and the HPBW is about
2 arc min. There are two sidelobe rings, which are not quite
azimuthally symmetric.
There are two other patterns which are sometimes used to

describe antennas. The first is the directivity D(θ, φ). The
directivity is defined as:

D(θ, φ) =
Power emitted into (θ, φ)

(Total power emitted)/4π
(3.4.1)

=
4πP (θ, φ)∫
P (θ, φ) dΩ

(3.4.2)

(3.4.3)

This is the ‘transmitting’ pattern of the antenna, and from
reciprocity should be the same as the receiving power pattern
to within a constant factor. We will shortly work out the value
of this constant. The other pattern is the gain G(θ, φ). The
gain is defined as:
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Figure 3.11: The antenna temperature is the convolution of the sky bright-

ness and the telescope beam.

G(θ, φ) =
Power emitted into (θ, φ)

(Total power input)/4π
(3.4.4)

The gain is the same as the directivity, except for an effi-
ciency factor. Finally a figure of merit for reflector antennas
is the aperture efficiency, η. The aperture efficiency is defined
as:

η =
Amax
e

Ag
(3.4.5)

where Ag is the geometric cross-sectional area of the main
reflector. As we shall prove below, the aperture efficiency is at
most 1.0.

Consider observing a sky brightness distribution B(θ) with
a telescope with a power pattern like that shown in Figure 3.9.
The power available at the antenna terminals is the integral of
the brightness in a given direction times the effective area in
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that direction (Figure 3.11).

W (θ
′

) =
1

2

∫
B(θ)Ae(θ − θ

′

)dθ (3.4.6)

where the available power W is a function of θ
′

, the direc-
tion in which the telescope is pointed. The factor of 1

2
is to

account for the fact that only one polarization is absorbed by
the antenna. In two dimensions, the expression for W is:

W (θ
′

, φ
′

) =
1

2

∫
B(θ, φ)Ae(θ − θ

′

, φ− φ
′

) sin(θ)dθdφ (3.4.7)

in temperature units, this becomes:

TA(θ
′

, φ
′

) =
1

2

∫
TB(θ, φ)

λ2
Ae(θ − θ

′

, φ− φ
′

) sin(θ)dθdφ (3.4.8)

or

TA(θ
′

, φ
′

) =
Amax
e

λ2

∫
TB(θ, φ)P (θ − θ

′

, φ− φ
′

) sin(θ)dθdφ (3.4.9)

So the antenna temperature is a weighted average of the
sky temperature, the weighting function being the power pat-
tern of the antenna. Only if the power pattern is a single
infinitely sharp spike is the antenna temperature the same
as the sky temperature. For all real telescopes, however, the
antenna temperature is a smoothed version of the sky tem-
perature. Supposing that you are making a sky survey for
sources. Then a large increase in the antenna temperature
could mean either that there is a source in the main beam, or
that a collection of faint sources have combined to give a large
total power. From the statistics of the distribution of sources
in the sky (presuming you know it) and the power pattern, one
could compute the probability of the latter event. This gives
a lower limit to the weakest detectable source. Below this
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limit,(called the confusion limit), one can no longer be confi-
dent that increases in the antenna temperature correspond to
a single source in the main beam. The confusion limit is an
important parameter of any given telescope; it is a function of
the frequency and the assumed distribution of sources.
Now consider an antenna terminated in a resistor, with the

entire system being placed in a black box at temperature T .
After thermal equilibrium has been reached, the power flowing
from the resistor to the antenna is:

PR→A = kT

The power flow from the antenna to the resistor is (from equa-
tion (3.4.9) and using the fact that the inside the black box
the “sky” temperature is the same everywhere)

PA→R = (
Amax
e kT

λ2
)

∫
P (θ, φ)dΩ

In thermal equilibrium the net power flow has to be zero,
hence

Amax
e =

λ2

∫
P (θ, φ)dΩ

, (3.4.10)

i.e. the maximum effective aperture is determined by the
shape of the power pattern alone. The narrower the power
pattern the higher the aperture efficiency. For a reflecting
telescope, ∫

P (θ, φ)dΩ ∼ Θ2
HPBW ∼ (

λ

D
)2.

so
Amax
e ∼ D2.

The max. effective aperture scales like the geometric area of
the reflector, as expected. Also from equation 3.4.10

Ae = Amax
e P (θ, φ) =

λ2P (θ, φ)∫
P (θ, φ)dΩ

. (3.4.11)
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Comparing this with equation (3.4.1) gives the constant that
relates the effective area to the directivity

D(θ, φ) =
4π

λ2
Ae(θ, φ). (3.4.12)

As an application for all these formulae, consider the stan-
dard communications problem of sending information from
antenna 1 (gain G1(θ, φ), input power P1) to antenna 2 (directiv-
ity D2(θ

′

, φ
′

)), at distance R away. What is the power available
at the terminals of antenna 2?
The flux density at antenna 2 is given by:

S =
P1

4πR2
G1(θ, φ)

. i.e., the power falls off like R2, but is not isotropically dis-
tributed. (The gain G1 tells you how collimated the emission
from antenna 1 is). The power available at the terminals of
antenna 2 is:

W = A2eS =
P1

4πR2
G1(θ, φ)A2e

substituting for the effective aperture from equation (3.4.12)

W =
[ λ

4πR

]2
P1G1(θ, φ)D2(θ

′

, φ
′

)

This is called the Friis transmission equation. In Radar as-
tronomy, there is a very similar expression for the power avail-
able at an antenna after bouncing off an unresolved target (the
radar range equation). The major difference is that the signal
has to make a round trip (and the target reradiates power
falling on it isotropically) so the received power falls like the
fourth power of the distance to the target.

3.5 Computing Antenna Patterns

The next step is to understand how to compute the power pat-
tern of a given telescope. Consider a parabolic reflecting tele-
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Aperture Plane

Reflector

Feed

Figure 3.12: Aperture illumination for a parabolic dish.

scope being fed by a feed at the focus. The radiation from the
feed reflects off the telescope and is beamed off into space (Fig-
ure 3.12). If one knew the radiation pattern of the feed, then
from geometric optics (i.e. simple ray tracing, see Chapter 19)
one could then calculate the electric field on the plane across
the mouth of the telescope (the ‘aperture plane’). How does
the field very far away from the telescope look like? If the tele-
scope surface were infinitely large, then the electric field in the
aperture plane is simply a plane wave, and since a plane wave
remains a plane wave on propagation through free space, the
far field is simply a plane wave traveling along the axis of the
reflector. The power pattern is an infinitely narrow spike, zero
everywhere except along the axis. Real telescopes are how-
ever finite in size, and this results in diffraction. The rigorous
solution to the diffraction problem is to find the appropriate
Green’s function for the geometry, this is often impossible in
practice and various approximations are necessary. The most
commonly used one is Kirchhoff’s scalar diffraction theory.
However, for our purpose, it is more than sufficient to simply
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use Huygens’ principle.
Huygens’ principle states that each point in a wave front

can be regarded as an imaginary source. The wave at any
other point can then be computed by adding together the con-
tributions from each of these point sources. For example con-
sider a one dimensional aperture, of length l with the electric
field distribution (‘aperture illumination’) e(x). The field at a
point P(R, θ) (Figure 3.13) due to a point source at a distance
x from the center of the aperture is (if R is much greater than
l) is:

dE =
e(x)

R2
e−j

2πxsinθ
λ

sin(θ)x

O x

P

R

θ

d

Figure 3.13: The far-field pattern as a function of the aperture illumina-

tion.

Where x sin θ is simply the difference in path length between
the path from the center of the aperture to the point P and the
path from point x to point P. Since the wave from point x has
a shorter path length, it arrives at point P at an earlier phase.
The total electric field at P is:

E(R, θ) =

∫ l/2

−l/2

e(x)

R2
e−jkµxdx
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where k = 2π
λ and µ = sinθ and x is now measured in units of

wavelength. The shape of the distribution is clearly indepen-
dent of R, and hence the unnormalized power pattern FU is
just:

FU(µ) =

∫ ∞

−∞
e1(x)e

−jkµxdx (3.5.13)

where

e1(x) = e(x) if |x| ≤ l/2 ; 0 otherwise

The region in which the field pattern is no longer depen-
dent on the distance from the antenna is called the far field
region. The integral operation in equation (3.5.13) is called
the Fourier transform. FU(µ) is the Fourier transform of e1(x),
which is often denoted as FU(µ) = F[e1(x)]. The Fourier trans-
form has many interesting properties, some of which are listed
below (see also Section 2.5).

1. Linearity

If G1(µ) = F[g1(x)] and G2(µ) = F[g2(x)] then G1(µ) +G2(µ) =

F[g1(x) + g2(x)].

2. Inverse

The Fourier transform is an invertible operation; if

G(µ) =

∫ ∞

−∞
g(x)e−j2πµxdx

then

g(x) =

∫ ∞

−∞
G(µ)ej2πµxdµ

3. Phase shift

If G(µ) = F[g(x)] then G(µ−µ0) = F[g(x)e−j2πµ0x]. This means
that an antenna beam can be steered across the sky sim-
ply by introducing the appropriate linear phase gradient
in the aperture illumination.



3.5. COMPUTING ANTENNA PATTERNS 67

4. Parseval’s theorem

If G(µ) = F[g(x)], then
∫ ∞

−∞
|G(µ)|2dµ =

∫ ∞

−∞
|g(x)|2dx

This is merely a restatement of power conservation. The
LHS is the power outflow from the antenna as measured
in the far field region, the RHS is the power outflow from
the antenna as measured at the aperture plane.

5. Area

If G(µ) = F[g(x)], then

G(0) =

∫ ∞

−∞
g(x)dx

With this background we are now in a position to determine
the maximum effective aperture of a reflecting telescope. For
a 2D aperture with aperture illumination g(x, y), from equa-
tion (3.4.10)

Amax
e =

λ2

∫
P (θ, φ)dΩ

=
λ2

∫
|F (θ, φ)|2dΩ (3.5.14)

But the field pattern is just the normalized far field electric
field strength, i.e.

F (θ, φ) =
E(θ, φ)

E(0, 0)

where E(θ, φ) = F[g(x, y)]. From property (5)

E(0, 0) =

∫
g(x, y)dxdy′ (3.5.15)

and from Parseval’s theorem,
∫

|E(θ, φ)|2dΩ =

∫
|g(x, y)|2dxdy (3.5.16)
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substituting in equation (3.5.14) using equations (3.5.15),
3.5.16 gives,

Amax
e =

λ2|
∫
g(x, y)dxdy|2∫

|g(x, y)|2dxdy
For uniform illumination

Amax
e

λ2
=
A2
g

Ag
= Ag

Note that since x and y are in units of wavelength, so is Ag.
Amax
e however is in physical units. Uniform illumination gives
the maximum possible aperture efficiency (i.e. 1), because if
the illumination is tapered then the entire available aperture
is not being used.
As a concrete example, consider a 1D uniformly illuminated

aperture of length l. The far field is then

E(µ) =

∫ l/2

−l/2
e−

j2πxµ
λ dx

=
λ sin(πlµ/λ)

πµ

and the normalized field pattern is

F (µ) =
sin(πlµ/λ)

(πlµ/λ)

This is called a 1D sinc function. The 1st null is at µ = λ/l,
the 1st sidelobe is at µ = 3/2(λ/l) and is of strength 2/(3π).
The strength of the power pattern 1st sidelobe is (2/3π)2 =
4.5%. This illustrates two very general properties of Fourier
transforms:

1. the width of a function is inversely proportional to width
of its transform ( so large antennas will have small beams
and small antennas will have large beams), and
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Figure 3.14: Power and field patterns for a 1D uniformly illuminated aper-

ture.

2. any sharp discontinuities in the function will give rise to
sidelobes (‘ringing’) in the Fourier transform.

Figure 3.14 shows a plot of the the power and field patterns
for a 700 ft, uniformly illuminated aperture at 2380 MHz.
Aperture illumination design hence involves the following

following tradeoffs (see also Chapter 19):

1. A more tapered illumination will have a broader main
beam (or equivalently smaller effective aperture) but also
lower side lobes than uniform illumination.

2. If the illumination is high towards the edges, then unless
there is a very rapid cutoff (which is very difficult to de-
sign, and which entails high sidelobes) there will be a lot
of spillover.



70 CHAPTER 3. SINGLE DISH RADIO TELESCOPES

Another important issue in aperture illumination is the amount
of aperture blockage. The feed antenna is usually suspended
over the reflecting surface (see Figure 3.3) and blocks out part
of the aperture. If the illumination is tapered, then the central
part of the aperture has the highest illumination and blocking
out this region could have a drastic effect on the power pat-
tern. Consider again a 1D uniformly illuminated aperture of
length l with the central portion of length d blocked out. The
far field of this aperture is (from the linearity of Fourier trans-
forms) just the difference between the far field of an aperture
of length l and an aperture of length d, i.e.

E(µ) ∝ sin(πlµ/λ)

πµ
− sin(πdµ/λ)

πµ

or the normalized field pattern is:

F (µ) =
λ

(l − d)
[
sin(πlµ/λ)

πµ
− sin(πdµ/λ)

πµ
]

The field pattern of the “missing” part of the aperture has
a broad main beam (since d < l). Subtracting this from the
pattern due to the entire aperture will give a resultant pat-
tern with very high sidelobes. In Figure 3.15 the solid curve
is the pattern due to the entire aperture, the dotted line is the
pattern of the blocked part and the dark curve is the resul-
tant pattern. (This is for a 100ft blockage of a 700 ft aperture
at 2380 MHz). Aperture blockage has to be minimized for a
‘clean’ beam, many telescopes have feeds offset from the re-
flecting surface altogether to eliminate all blockage.
As an example of what we have been discussing, consider

the Ooty Radio Telescope (ORT) shown in Figure 3.16. The
reflecting surface is a cylindrical paraboloid (530m× 30m) with
axis parallel to the Earth’s axis. Tracking in RA is accom-
plished by rotating the telescope about this axis. Rays falling
on the telescope get focused onto the line focus, where they
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Figure 3.15: Effect of aperture blockage on the power pattern.

are absorbed by an array of dipoles. By introducing a linear
phase shift across this dipole array, the antenna beam can
be steered in declination (the “phase shift” property of Fourier
transforms). The reflecting surface is only part of a paraboloid
and does not include the axis of symmetry, the feed is hence
completely offset, there is no blockage. The beam however is
fan shaped, narrow in the RA direction (i.e. that conjugate to
the 530m dimension) and broad in the DEC (i.e. that conjugate
to the 30m dimension).

Aperture blockage is one of the reasons why an antenna’s
power pattern would deviate from what one would ideally ex-
pect. Another common problem that affects the power pattern
is the location of the feed antenna. Ideally the feed should
be placed at the focus, but for a variety of reasons, it may
actually be displaced from the focus. For example, as the
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Figure 3.16: The Ooty radio telescope.

antenna tracks, the reflecting surface gets distorted and/or
the feeds legs bend slightly, and for these reasons, the feed
is displaced from the actual focal point of the reflector. In an
antenna like the GMRT, there are several feeds mounted on a
cubic turret at the prime focus, and the desired feed is rotated
into position by a servo system (see Chapter 19). Small er-
rors in the servo system could result in the feed pointing not
exactly at the vertex of the reflector but along some slightly
offset direction. This is illustrated in Figure 3.17. For ease
of analysis we have assumed that the feed is held fixed and
the reflector as a whole rotates. The solid line shows the de-
sired location of the reflector (i.e. with the feed pointing at its
vertex) while the dashed line shows the actual position of the
reflector. This displacement between the desired and actual
positions of the reflector results in a phase error (produced
by the excess path length between the desired and actual re-
flector positions) in the aperture plane. From the geometry
of Figure 3.17 this phase error can be computed, and from it
the corresponding distortion in the field and power patterns
can be worked out. Figure 3.18[A] shows the result of such
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Figure 3.17: Turret positioning error. Ideally the feed should point at the

vertex of the reflecting surface, but if the feed turret rotation angle is in

error then the feed points along some offset direction.

a calculation. The principal effect is that the beam is offset
slightly, but one can also see that its azimuthal symmetry is
lost. Figure 3.18[B] shows the actual measured power pattern
for a GMRT antenna with a turret positioning error. As can be
seen, the calculated error pattern is a fairly good match to the
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observed one. Note that in plotting Figure 3.18[B] the offset in
the power pattern has been removed (i.e. the power pattern
has been measured with respect to its peak position).

A B

Figure 3.18: [A] Simulated beam pattern for a GMRT antenna with a tur-

ret positioning error. The beam is offset from the expected position (0,0),

and also shows a characteristic ’coma’ like distortion. [B] Measured beam

pattern for a GMRT antenna with a turret positioning error. Note that the

offset in the beam center seen in Panel [A] was corrected for before the data

was taken. Distortions similar to that seen in Panel[A] however remain.

3.6 Further Reading

1. Balanis C. A., ’Antenna Theory Analysis and Design ’,
Harper & Row.

2. Christiansen W. N. and Hogbom J. A., Radio telescopes,
Cambridge.

3. Silver S., ’Microwave Antenna Theory and Design’,IEE.
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Chapter 4

Two Element Interferometers

Jayaram N. Chengalur

4.1 Introduction

From the van Cittert-Zernike theorem (see Chapter 2) it fol-
lows that if one knows the mutual coherence function of the
electric field, then the source brightness distribution can be
measured1. The electric field from the cosmic source is mea-
sured using an antenna, which is basically a device for con-
verting the electric field into a voltage that can then be further
processed electronically (see Chapter 3). In this chapter we
will examine exactly how the mutual coherence function is
measured.

We start by looking at the relationship between the output
of a two element interferometer and the wanted mutual coher-
ence function. Large interferometric arrays can be regarded as
collections of two element interferometers, and for this reason
it is instructive to understand in detail the working of a two
element interferometer.

1Or in plain english, one make make an image of the source
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v (t)2 v (t)1

b

θ

)θ

b 
sin

(

Figure 4.1: A basic two element interferometer

4.2 A Two Element Interferometer

Consider a two element interferometer shown in Figure 4.1.
Two antennas 1, 2 whose (vector) separation is b, are directed
towards a point source of flux density S. The angle between
the direction to the point source and the normal to the an-
tenna separation vector is θ. The voltages that are produced
at the two antennas due to the electric field from this point
source are v1(t) and v2(t) respectively. These two voltages are
multiplied together, and then averaged. Let us start by as-
suming that the radiation emitted by the source is monochro-
matic and has frequency ν. Let the voltage at antenna 1 be
v1(t) = cos(2πνt). Since the radio waves from the source have
to travel an extra distance b sin θ to reach antenna 2, the volt-
age there is delayed by the amount b sin θ/c. This is called
the geometric delay, τg. The voltage at antenna 2 is hence
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v2(t) = cos(2πν(t − τg)), where we have assumed that the an-
tennas have identical gain. r(τg), the averaged output of the
multiplier is hence:

r(τg) =
1

T

∫ t+T/2

t−T/2
cos(2πνt) cos(2πν(t− τg))dt (4.2.1)

=
1

T

∫ t+T/2

t−T/2
(cos(4πνt− 2πτg) + cos(2πντg))dt

= cos(2πντg)

where we have assumed that the averaging time T is long
compared to 1/ν. The cos(4πνt) factor hence averages out to 0.
As the source rises and sets, the angle θ changes. If we as-
sume that the antenna separation vector, (usually called the
baseline vector or just the baseline) is exactly east-west, and
that the source’s declination δ0 = 0, then θ = ΩEt, ( where ΩE

is the angular frequency of the earth’s rotation) we have:

r(τg) = cos(2πν × b/c × sin(ΩE(t− tz))) (4.2.2)

where tz is the time at which the source is at the zenith. The
output r(τg), (also called the fringe), hence varies in a quasi-
sinusoidal form, with its instantaneous frequency being max-
imum when the source is at zenith and minimum when the
source is either rising or setting (Figure 4.2).
Now if the source’s right ascension was known, then one

could compute the time at which the source would be at zenith,
and hence the time at which the instantaneous fringe fre-
quency would be maximum. If the fringe frequency peaks at
some slightly different time, then one knows that assumed
right ascension of the source was slightly in error. Thus, in
principle at least, from the difference between the actual ob-
served peak time and the expected peak time one could de-
termine the true right ascension of the source. Similarly, if
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r(

)
τg

time

Figure 4.2: The output of a two element interferometer as a function of

time. The solid line is the observed quasi-sinusoidal output (the fringe),

the dotted line is a pure sinusoid whose frequency is equal to the peak

instantaneous frequency of the fringe. The instantaneous fringe frequency

is maximum when the source is at the zenith (the center of the plot) and is

minimum when the source is rising (left extreme) or setting (right extreme).

the source were slightly extended, then when the waves from
a given point on the source arrive in phase at the two ends
of the interferometer, waves arising from adjacent points on
the source will arrive slightly out of phase. The observed am-
plitude of the fringe will hence be less than what would be
obtained for a point source of the same total flux. The more
extended the source, the lower the fringe amplitude2. For a
sufficiently large source with smooth brightness distribution,
the fringe amplitude will be essentially zero3. In such circum-
stances, the interferometer is said to have resolved out the
source.

Further, since two element interferometers cannot distin-

2assuming that the source has a uniform brightness distribution
3This is related to the fact that in the double slit experiment, the interference pattern

becomes less distinct and then eventually disappears as the source size is increased (see

e.g. Born & Wolf, ‘Principles of Optics’, Sixth Edition, Section 7.3.4). In fact the double

slit setup is mathematically equivalent to the two element interferometer, and much of

the terminology in radio interferometry is borrowed from earlier optical terminology.
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guish between sources whose sizes are small compared to the
fringe spacing, all such sources will appear as point sources.
Equivalently when the source size is such that waves from
different parts of the source give rise to the same phase lags
(within a factor that is small compared to π), then the source
will appear as a point source. This condition can be trans-
lated into a limit on ∆θ, the minimum source size that can be
resolved by the interferometer, viz.,

πν∆θb/c . π =⇒ ∆θ . λ/b

i.e., the resolution of a two element interferometer is ∼ λ/b.
The longer the baseline, the higher the resolution.
Observations with a two element interferometer hence give

one information on both the source position and the source
size. Interferometers with different baseline lengths and ori-
entations will place different constraints on the source bright-
ness, and the Fourier transform in the van Cittert-Zernike
theorem can be viewed as a way to put all this information
together to obtain the correct source brightness distribution.

4.3 Response to Quasi-Monochromatic Radia-

tion

Till now we had assumed that the radiation from the source
was monochromatic. Let us now consider the more realis-
tic case of quasi-monochromatic radiation, i.e. the radiation
spectrum4 contains all frequencies in a band ∆ν around ν,
with ∆ν small compared to ν. If the radiation at some fre-
quency ν arrives in phase at the two antennas in the inter-
ferometer, the radiation at some adjacent frequencies will ar-

4Radiation from astrophysical sources is inherently broadband. Radio telescopes how-

ever have narrow band filters which accept only a small part of the spectrum of the

infalling radiation.
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rive out of phase, and if ∆ν is large enough, there will be fre-
quencies at which the radiation is actually 180 degrees out
of phase. Intuitively hence one would expect that averaging
over all these frequencies would decrease the amplitude of the
fringe. More rigorously, we have

r(τg) =
1

∆ν

∫ ν+∆ν
2

ν−∆ν
2

cos(2πντg)dν (4.3.3)

=
1

∆ν
Re

[∫ ν+∆ν
2

ν−∆ν
2

ei2πντgdν

]

= cos(2πντg)

[
sin(π∆ντg)

π∆ντg

]

The quantity in square brackets, the sinc function, decreases
rapidly with increasing bandwidth. Hence as one increases
the bandwidth that is accepted by the telescope, the fringe am-
plitude decreases sharply. This is called fringe washing. How-
ever, since in order to achieve reasonable signal to noise ratio
one would require to accept as wide a bandwidth as possible5,
it is necessary to find a way to average over bandwidth with-
out losing fringe amplitude. To understand how this could be
done, it is instructive to first look at what the fringe would be
for a spatially extended source.

Let the direction vector to some reference point on the source
be s0, and further assume that the source is small that it lies
entirely on the tangent plane to the sky at s0, i.e. that the di-
rection to any point on the source can be written as s = s0+ σ,
s0.σ= 0, τg = s0.b. Then, from the van Cittert-Zernike theo-
rem we have6:

5See Chapter 5
6apart from some constant factor related to the gain of the antennas which we have

been ignoring throughout.
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r(τg) = Re

[∫
I(s)e

−i2πs.b
λ ds

]

= Re

[
e

−i2πs0.b

λ

∫
I(s)e

−i2πσ.b
λ ds

]

= |V| cos(2πντg + ΦV) (4.3.4)

where V, the complex visibility is defined as:

V = |V|e−iΦV =

∫
I(s)e

2πσ.b
λ (4.3.5)

The information on the source size and structure is con-
tained entirely in V, the factor cos(2πντg) in Eq. (4.3.4) only
contains the information that the source rises and sets as
the earth rotates. Since this is trivial and uninteresting, it
can safely be suppressed. Conceptually, the way one could
suppress this information is to introduce along the electri-
cal signal path of antenna 1 an instrumental delay τi which
is equal to τg. Then we will have r(τg) = |V| cos(ΦV), i.e. the
fast fringe oscillation has been suppressed. One can then
average over frequency and not suffer from fringe washing.
Since τg changes with time as the source rises and sets, τi
will also have to be continuously adjusted. This adjustment
of τi is called delay tracking. In most existing interferom-
eters however, the process of preventing fringe washing is
slightly more complicated than the conceptual scheme de-
scribed above. The complication arises because delay tracking
is usually done digitally in the baseband, i.e. after the whole
chain of frequency translation operations described in Chap-
ter 3. The geometric delay is however suffered by the incoming
radiation, which is at the RF frequency.
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Figure 4.3: A two element interferometer with fringe stopping and delay

tracking (see text).

4.4 Two Element Interferometers in Practice

To see this more clearly, let us consider the interferometer
shown in Figure 4.3. The signals from antennas 1, 2 are first
converted to a frequency νBB using a mixer which is fed using
a local oscillator of frequency7 νLO, i.e. νLO = νRF − νBB. Along
the signal path for antenna 1 an additional instrumental delay
τi = τg + ∆τ is introduced, as is also a time varying phase shift

7Note that it is important that the phase of the local oscillator signal be identical at

the two antennas, i.e. the local oscillator signal has to be distributed in a phase coherent

way to both antennas in the interferometer. Chapter 23 explains how this is acheived at

the GMRT.
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Φf . The reasons for introducing this phase shift will be clear
shortly. Then (see also equations 4.2.1 and 4.3.4) we have:

r(τg) = |V| 〈cos(ΦV + 2πνBBt− 2πνRF τg) cos(2πνBB(t− τi) + Φf)〉(4.4.6)

= |V|cos(ΦV + 2π(νRF − νBB)τg − νBB∆τ − Φf)

= |V| cos(ΦV + 2πνLOτg − νBB∆τ − Φf) (4.4.7)

So, in order to compensate for all time varying phase fac-
tors, it is not sufficient to have τi = τg, one also needs to in-
troduce a time varying phase Φf = 2πνLOτg. This additional
correction arises because the delay tracking is done at a fre-
quency different from νRF . The introduction of the time vary-
ing phase is called fringe stopping. Fringe stopping can be
achieved in a variety of ways. One common practice is to vary
the instantaneous phase of the local oscillator signal in arm
1 of the interferometer by the amount Φf . Another possibil-
ity (which is the approach taken at the GMRT), is to digitally
multiply the signal from antenna 1 by a sinusoid with the ap-
propriate instantaneous frequency.

Another consequence of doing delay tracking digitally is
that the geometric delay can be quantized only up to a step
size which is related to the sampling interval with which the
signal was digitized. In general therefore ∆τ is not zero, and
is called the fractional sampling time error. Correction for this
error will be discussed in the Chapter 9.

The delay tracking and fringe stopping corrections apply for
a specific point in the sky, viz. the position s0. This point is
called the phase tracking center8. Signals, such as terrestrial
interference, which enter from the far sidelobes of the anten-
nas do not suffer the same geometric delay τg as that suffered

8For maximum sensitivity, one would also point the antennas such that their primary

beam maxima are also at s0.



86 CHAPTER 4. TWO ELEMENT INTERFEROMETERS

by the source. Consequently, delay tracking and fringe stop-
ping introduces a rapidly varying change in the phase of these
signals. On long baselines, where the fringe rate is rapid,
the terrestrial interference could hence get completely decor-
related. While this may appear to be a terrific added bonus, in
principle, terrestrial interference is usually so much stronger
than the emission from cosmic sources, that even the residual
correlation is sufficient to completely swamp out the desired
signal.

We end this chapter by re-establishing the connection be-
tween what we have just done and the van Cittert-Zernike
theorem. The first issue that we have to appreciate is that the
van Cittert-Zernike theorem deals with the complex visibility,
V = |V|e−iΦV . However, the quantity that has been measured
is r(τg) = |V| cos(−ΦV). If one could also measure |V| sin(−ΦV),
then of course one could reconstruct the full complex visibil-
ity. This is indeed what is done at interferometers. Conceptu-
ally, one has two multipliers instead of the one in Figure 4.3.
The second multiplier is fed the same input as that in Fig-
ure 4.3, except that an additional phase difference of π/2 is
introduced in each signal path. As can be easily verified, the
output of this multiplier is |V| sin(−ΦV). Such an arrangement
of two multipliers is called a complex correlator. The two out-
puts are called the sine and cosine outputs respectively. For
quasi-sinusoidal processes, one has to introduce a π/2 phase
difference at each frequency present in the signal. The corre-
sponding transformation is called a Hilbert transform9. How
the complex correlator is achieved at the GMRT is described
in Chapter 9. The output of the complex correlator is hence
a single component of the Fourier transform of the source
brightness distribution10. The component measured depends

9see Chapter 1
10This is true only if the antenna dimensions are neglected. Strictly speaking, the

measured visibility is an average over the visibilities in the range b + a to b− a where a
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on the antenna separation as viewed from the source, i.e.
(b.s0)/λ, which is also called the projected baseline length. For
a large smooth source, the Fourier transform will be sharply
peaked about the origin, and hence the visibility measured on
long baselines will be small.

4.5 Further Reading

1. Thompson R. A., Moran J. M. and Swenson G. W. Jr.,
‘Interferometry & Synthesis in Radio Astronomy’, Wiley
Interscience.

2. Taylor G. B., Carilli C. L. and Perley R. A., ’Synthesis
Imaging in Radio Astronomy II’, ASP Conf. Ser. vol. 180.

3. Burke B. F. and Graham-Smith F., ’An Introduction to
Radio Astronomy’, Cambridge.

is the diameter of the antennas and b is the separation between their midpoints. As will

be seen in Chapter 14 the fact that one has information on visibilities on scales smaller

than b is useful when attempting to image large regions of the sky.
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Chapter 5

Sensitivity and Calibration for

Interferometers

Jayaram N. Chengalur

5.1 Sensitivity

As we discussed earlier, an aperture synthesis telescope can
be regarded as a collection of two element interferometers.
Hence, for understanding the sensitivity of such a telescope,
it is easier to first start with the case of a two element inter-
ferometer. Consider such an interferometer composed of two
antennas i, j, (of identical gains, but possibly different sys-
tem temperatures), looking at a point source of flux density S.
We assume that the point source is at the phase center1 and
hence that in the absence of noise the visibility phase is zero.
Let the individual antenna gains2 be G and system tempera-
tures be Tsi

and Tsj
. If ni(t) and nj(t) are the noise voltages

of antennas i and j respectively,then σ2
i =

〈
n2
i (t)
〉

= Tsi, and
σ2
j =

〈
n2
j(t)
〉

= Tsj. Similarly if vi(t) and vj(t) are the volt-
ages induced by the incoming radiation from the point source,
1See Chapter 4.
2Here the gain is taken to be in units of Kelvin per Jansky of flux in the matched

polarization

89
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〈
v2
i (t)
〉

=
〈
v2
j (t)
〉

= GS. The instantaneous correlator3 output is
given by:

rij(t) = (vi(t) + ni(t)) (vj(t) + nj(t))

The mean4 of the correlator output is hence:

〈rij(t)〉 = 〈(vi(t) + ni(t)) (vj(t) + nj(t))〉
= 〈vi(t)vj(t)〉
= GS (5.1.1)

where we have assumed that the noise voltages of the two
antennas are not correlated, and also of course that the signal
voltages are not correlated with the noise voltages. rij(t) is
hence an unbiased estimator of the true visibility.
To determine the noise in the correlator output, we would

need to compute the rms of rij(t) for which we need to be able
to work out:

〈rij(t)rij(t)〉 = 〈(vi + ni)(vj + nj)(vi + ni)(vj + nj)〉

where for ease of notation we have stopped explicitly spec-
ifying that all voltages are functions of time. This quantity is
not trivial to work out in general. However, if we assume that
all the random processes involved are Gaussian processes5

the complexity is considerably reduced because for Gaussian
random variables the fourth moment can then be expressed
in terms of products of the second moment. In particular6, if

3Here we are dealing with an ordinary correlator, not the complex correlator introduced

in the chapter on two element interferometers.
4Note that the average being taken over here is ensemble average, and not an average

over time.
5Recall from the discussion of sensitivity of a single dish telescope that the central

limit theorem ensures that the signal and noise statistics will be well approximated by a

Gaussian. This of course does not include ‘systematics’, like eg. interference, or correlator

offsets because of a bit getting stuck in the on or off mode etc.
6The derivation of this expression is particularly straightforward if one works with the

moment generating function; see also the derivation sketched in Chapter 1.
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x1, x2, x3, & x4 have a joint Gaussian distribution then:

〈x1x2x3x4〉 = 〈x1x2〉 〈x3x4〉 + 〈x1x3〉 〈x2x4〉 +

〈x1x4〉 〈x2x3〉 (5.1.2)

Rather than directly computing 〈rij(t)rij(t)〉, it is instructive
first to consider the more general quantity

〈rij(t)rkl(t)〉 = 〈(vi + ni)(vj + nj)(vk + nk)(vl + nl)〉

viz. the cross-correlation between the outputs of interfer-
ometers (ij) and (kl). We have:

〈rij(t)rkl(t)〉 = 〈(vi + ni)(vj + nj)〉 〈(vk + nk)(vl + nl)〉 +

〈(vi + ni)(vk + nk)〉 〈(vj + nj)(vl + nl)〉 +

〈(vi + ni)(vl + nl)〉 〈(vk + nk)(vj + nj)〉

= (〈vivj〉 +
〈
n2
i

〉
δij)(〈vkvl〉 +

〈
n2
k

〉
δkl) +

(〈vivk〉 +
〈
n2
i

〉
δik)(〈vjvl〉 +

〈
n2
j

〉
δjl) +

(〈vivl〉 +
〈
n2
i

〉
δil)(〈vkvj〉 +

〈
n2
k

〉
δkj)

= (GS)2 + GS(σ2
i δij + σ2

kδkl) + σ2
i δijσ

2
kδkl +

(GS)2 + GS(σ2
i δik + σ2

jδjl) + σ2
i δikσ

2
j δjl +

(GS)2 + GS(σ2
i δil + σ2

kδkj) + σ2
i δilσ

2
kδkj (5.1.3)

The case we are currently interested in is 〈rij(t)rij(t)〉, which
from eqn(5.1.3) is:

〈rij(t)rij(t)〉 = 3(GS)2 + (σ2
i + σ2

j )GS + σ2
i σ

2
j

= 2(GS)2 + (GS + Tsi
)(GS + Tsj

) (5.1.4)

To get the variance of rij(t) we need to subtract the square of
the mean of rij(t) from the expression in eqn(5.1.4). Substitut-
ing for 〈rij(t)〉2 from eqn(5.1.1) we have:

σ2
ij = (GS)2 + (GS + Tsi

)(GS + Tsj
) (5.1.5)
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Note that the angular brackets denote ensemble averaging. In
real life of course one cannot do an ensemble average. Instead
one does an average over time, i.e. we work in terms of a time
averaged correlator output r̄ij(t), defined as

r̄ij(t) =
1

T

∫ t+T/2

t−T/2

rij(t
′

)dt
′

As can easily be verified, 〈r̄ij〉 = 〈rij〉. However, computing the
second moment, viz., σ̄2

ij = 〈r̄ij r̄ij〉−〈r̄ij〉2 is slightly more tricky.
It can be shown7 that if x(t) is a zero mean stationary process
and that x̄(t) is the time average of x(t) over the interval (t −
T/2, t+ T/2), then

σ̄2
x =

1

T

∫ T/2

−T/2

(
1 − |τ |

T

)
Rxx(τ) dτ (5.1.6)

where Rxx(τ) is the auto-correlation function of x(t), and σ̄ is
the variance of x(t). Now, if x(t) is a quasi-sinusoidal process
with bandwidth ∆ν, then the integral of Rxx(τ) will be negligi-
ble outside the coherence time 1/∆ν. Further, if T >> 1/∆ν,
then the factor in parenthesis in eqn(5.1.6) can be taken to be
∼ 1 for τ < 1/∆ν. Hence we have:

σ̄2
x ≃ 1

T

∫ T/2

−T/2

Rxx(τ) dτ ≃ 1

T

∫ ∞

−∞
Rxx(τ) dτ

=
1

T
Sxx(0) =

1

T

σ2
x

2∆ν
(5.1.7)

where Sxx(ν) = σ2
x/2∆ν is the power spectrum8 of x(t). From

eqn(5.1.7) and eqn(5.1.5) we hence have

σ̄2
ij =

1

2T∆ν

(
(GS)2 + (GS + Tsi

)(GS + Tsj
)
)

(5.1.8)

7Papoulis, ‘Probability, Random Variables & Stochastic Processes’, Third Edition,

Chapter 10
8Where we have made the additional assumption that x(t) is a white noise process, i.e.

that its spectrum is flat. The power spectrum for such processes is easily derived from

noting that
∫∞

−∞
Sxx(ν)dν = σ2

x, and that for a quasi-sinusoidal processes of bandwidth ∆ν,

the integrand is non zero only over an interval 2∆ν (including the negative frequencies).
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Putting all this together we get that the signal to noise (SNR)
ratio of a two element interferometer is given by:

SNR =
(
√

2T∆νGS)√
(GS)2 + (GS + Tsi

)(GS + Tsj
)

(5.1.9)

There are two special cases which often arise in practice. The
first is when the source is weak, i.e. GS ≪ Ts. In this case the
SNR becomes

SNR =
(
√

2T∆νGS)√
Tsi

Tsj

(5.1.10)

For a single dish with the collecting area equal to the sum of
the collecting areas of antennas i and j (i.e. with gain 2G),
and with system temperature Ts =

√
TsiTsj the SNR would

have been a factor of
√

2 better9. The loss of SNR in the
two element interferometer is because one does not measure
the auto-correlations of antennas i and j. Only their cross-
correlation has been measured. In a single dish one would
have effectively measured the cross-correlation as well as the
auto-correlations.
The other special case of interest is when the source is ex-

tremely bright, i.e. GS ≫ Ts. In this case, the SNR is:

SNR =
(
√

2T∆νGS)√
2(GS)2

=
√

T∆ν (5.1.11)

This is as expected, because for very bright sources, one is
limited by the Poisson fluctuations of the source brightness,
and hence one would expect the SNR to go as the square root
of the number of independent measurements. Since one gets
an independent measurement every 1/∆ν seconds, the total
number of independent measurements in a time T is just T∆ν.

9As you can easily derive from eqns 5.1.1 and 5.1.3 by putting i = j = k = l. Note that

in this case eqn 5.1.1 becomes 〈rii(t)〉 = (vi(t) + ni(t)) (vi(t) + ni(t)) = 2GS + Ts
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Having derived the SNR ratio for a two element interferom-
eter, let us now consider the case of an N element interferom-
eter. This can be considered as NC2 two element interferom-
eters. Let us take the case where the source is weak. Then
from eqn(5.1.3) the correlation between r12(t) and r13(t) is given
by

〈r12(t)r13(t)〉 = σ2
1δ12σ

2
1δ13 + σ2

1δ13σ
2
1δ21 + σ2

1δ11σ
2
2δ23

= 0 (5.1.12)

The outputs are uncorrelated, even though these two interfer-
ometers have one antenna in common10. Similarly, one can
show that (as expected) the outputs of two two-element in-
terferometers with no antenna in common are uncorrelated.
Since the rij ’s are all uncorrelated with one another, the rms
noise can simply be added in quadrature. In particular, for
an N element array, where all the antennas are identical and
have the same system temperature, the SNR while looking at
a weak source is:

SNR =

√
T∆ν GS√

N(N − 1)Ts

(5.1.13)

This is the fundamental equation11 that is used to estimate
the integration time required for a given observation. The SNR
for an N element interferometer is less than what would have
been expected for a single dish telescope with area N times
that of a single element of the interferometer, but only by the
factor N/

√
N(N − 1). The lower sensitivity is again because

the N auto-correlations have not been measured. For large N
however, this loss of information is negligible. For the GMRT,
10This may seem counter intuitive, but note that the outputs are only uncorrelated,

they are not independent.
11In some references, an efficiency factor η is introduced to account for degradation of

SNR because of the noise introduced by finite precision digital correlation etc. This factor

has been ignored here, or equivalently one can assume that it has been absorbed into the

system temperature.
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N = 30 and N/
√

N(N − 1) = 1.02, hence the SNR is essentially
the same as that of a single dish with 30 times the collecting
area of a single GMRT dish.

For a complex correlator12, the analysis that we have just
done holds separately for the cosine and sine channels of the
correlator. If we call the outputs of such a correlator rcij and
rsij then it can be shown that the noise in r

c
ij and r

s
ij is uncor-

related. Further since the time averaging can be regarded as
the adding together of a large number of independent sam-
ples (∼

√
T∆ν), from the central limit theorem, the statistics of

the noise in r̄cij and r̄
s
ij are well approximated as Gaussian. It

is then possible to derive the statistics of functions of r̄cij and
r̄sij, such as the visibility amplitude (

√
r̄cij + r̄sij) and the visibil-

ity phase (tan−1 r̄sij/r̄
c
ij). For example, it can be shown that the

visibility amplitude has a Rice distribution13

For an extended source, the entire analysis that we have
done continues to hold, with the exception that S should be
treated as the correlated part of the source flux density. For
example, at low frequencies, the Galactic background is of-
ten much larger than the receiver noise and one would imag-
ine that the limiting case of large source flux density (i.e.
eqn(5.1.11)) is applicable. However, since this background is
largely resolved out at even modest spacings, its only effect is
an increase in the system temperature.

Finally we look at the noise in the image plane, i.e. after
Fourier transformation of the visibilities. Since most of the
astronomical analysis and interpretation will be based on the
image, it is the statistics in the image plane that is usually of
interest. The intensity at some point (l, m) in the image plane

12See the chapter on two element interferometers
13Papoulis, ‘Probability, Random Variables & Stochastic Processes’, Third Edition,

Chapter 6.
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is given by:

I(l, m) =
1

M

∑

p

wpVpe−i2π(lup+mvp)

where wp is the weight14 given to the pth visibility measure-
ment Vp, and there are a total of M independent measure-
ments. The cross-correlation function in the image plane,〈
I(l, m)I(l

′

, m
′

)
〉
is hence:

〈
I(l, m)I(l

′

, m
′

)
〉

=
1

M2

∑

p

∑

q

wpwq
〈
VpV∗

q

〉
e−i2π(lup+mvp)ei2π(l

′
uq+m

′
vq)

In the absence of any sources, the visibilities are uncorrelated
with one another, and hence, we have

〈
I(l, m)I(l

′

, m
′

)
〉

=
1

M2

∑

m

w2
pσ

2
pe

−i2π((l−l′)up+(m−m′
)vp)

Hence in the case that all the noise on each measurement is
the same, and that the weights given to each visibility point is
also the same, (i.e. uniform tapering), the correlation in the
map plane has exactly the same shape as the dirty beam. Fur-
ther the variance in image plane would then be σ2

V/M, where
σ2
V is the noise on a single visibility measurement. This is
equivalent to eqn(5.1.13), as indeed it should be.

Because the noise in the image plane has a correlation
function shaped like the dirty beam, one can roughly take
that the noise in each resolution element is uncorrelated. The
expected statistics after simple image plane operations (like
smoothing) can hence be worked out. However, after more
complicated operations, like the various possible deconvolu-
tion operations, the statistics in the image plane are not easy
to derive.

14As discussed in Chapter 11, this weight is in general a combination of weights chosen

from SNR considerations and from synthesized beam shaping considerations.
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5.2 Calibration

We have assumed till now that we have been working with cali-
brated visibilities, i.e. free from all instrumental effects (apart
from some additive noise component). In reality, the corre-
lator output is different from the true astronomical visibility
for a variety of reasons, to do with both instrumental effects
as well as propagation effects in the earth’s atmosphere and
ionosphere.

At low frequencies, it is the effect of the ionosphere that is
most dominant. As is discussed in more detail in Chapter 16,
density irregularities cause phase irregularities in the wave-
front of the incoming radio waves. One would expect therefore
that the image of the source would be distorted in the same
way that atmospheric turbulence (‘seeing’) distorts stellar im-
ages at optical wavelengths. To first order this is true, but for
the ionosphere the ‘seeing disk’ is generally smaller than the
diffraction limit of typical interferometers. There are two other
effects however which are more troublesome. The first is ‘scin-
tillation’, where because of diffractive effects the flux density
of the source changes rapidly – the flux density modulation
could approach 100%. The other is that slowly varying, large
scale refractive index gradients cause the apparent source po-
sition to wander. At low frequencies, the source position could
often wander by several arc minutes, i.e. considerably more
than the synthesized beam. As we shall see below, provided
the time scale of this wander is slow enough, it can be cor-
rected for.

Let us take the case where the effect of the ionosphere is
simply to produce an excess path length, i.e. for an antenna i
let the excess phase15 for a point source at sky position (l, m)
be φi(l, m, t), where we have explicitly put in a time depen-

15by which we mean the phase difference over what would have been obtained in the

absence of the ionosphere



98CHAPTER 5. SENSITIVITY AND CALIBRATION FOR INTERFEROMETERS

dence. Then the observed visibility on a baseline (i, j) would
be

Ṽij(t) = Gij(t)

∫
e−i(φi(l,m,t)−φj(l,m,t))I(l, m)e−i2π(luij+mvij) (5.2.14)

where I(l, m) is the sky brightness distribution and we have
ignored the primary beam.16 Gij(t) is ‘instrumental phase’, i.e.
the phase produced by the amplifiers, transmission lines, or
other instrumentation along the signal path. If φi(l, m, t) were
some general, unknown function of (l, m, t) it would not be
possible to reconstruct the true visibility from the measured
one. However, since the size scale of ionospheric disturbances
is a few hundred kilometers, it is often the case that φi(l, m, t)
is constant over the entire primary beam, i.e. there is no (l, m)
dependence. The source is then said to lie within a single iso-
planatic patch. In such situations, the ionospheric phase can
be taken out of the integral, and eqn(5.2.14) reduces to:

Ṽij(t) = Gij(t)e
−i(φi(t)−φj(t))

∫
I(l, m)e−i2π(luij+mvij) (5.2.15)

If it is also the case that the ionospheric and instrumental
gains are changing slowly, then they can be calibrated in the
following manner. Suppose that close to the source of interest,
there is a calibration source whose true visibility Vc

ij is known.
Then one could intersperse observations of the target source
with observations of the calibrator. For the calibrator, divid-
ing the observed visibility Ṽc

ij(t) by the (known) true visibility,

Vc
ij(t) one can measure the factor Gij(t)e

−i(φi(t)−φj(t)). This can
then be applied as a correction to the visibilities of the target
source. For slightly better corrections, one could interpolate
in time between calibrator observations. This is the basis of
what is sometimes called ‘ordinary’ calibration. The calibra-
tor source is usually an isolated point source, although this

16i.e. we have set the factor B(l,m)/
√

1 − l2 −m2 to 1.
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is not, strictly speaking, necessary. It is sufficient to know
the true visibilities Vc

ij(t). Note that if the calibrator’s absolute
flux is also known, then this calibration procedure will also
calibrate the amplitude scale of the target source17.
In the approach outlined above, in order to calibrate the

data one needs to solve for an unknown complex number per
baseline, (i.e. N(N-1)/2 complex numbers for an N element
interferometer). If we assume that the correlator itself does
not produce any errors,18 i.e. that all the instrumental errors
occur in the antennas or the transmission lines, then the in-
strumental gain can be written out as antenna based terms,
i.e.

Gij(t) = gi(t)g
∗
j (t) (5.2.16)

where gi(t) and gj(t) are the complex gains along the signal
paths from antennas 1 and 2. But the ionospheric phase
can also be decomposed into antenna based quantities (see
eqn 5.2.15), and can hence be lumped together with the in-
strumental phase. Consequently the total unknown complex
gains that have to be solved for reduces from N(N-1)/2 to N,
which can be a dramatic reduction for large N. For the GMRT
it is a reduction from 435 unknowns to 30 unknowns.
However to appreciate the real power of this decomposition

into antenna based gains, consider the following quantities.
First let us look at the sum of the phases of the raw visibilities
Ṽ12, Ṽ23 and Ṽ31. If we call the true visibility phase ψVij

, the
raw visibility phase ψṼij

and the sum of the instrumental and

ionospheric phases χi, then we have

ψṼ12
+ ψṼ23

+ ψṼ31
= χ1 − χ2 + ψV12

+ χ2 − χ3 + ψV12
+ χ3 − χ1 + ψV31

= ψV12
+ ψV23

+ ψV31
(5.2.17)

i.e. over any triangle of baselines the sum of the phases of the

17provided, as we will discuss in more detail later, that the system temperature does

not differ for the target source and the calibrator
18which is often a good assumption for digital correlators
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raw visibilities is the true source visibility. This is called phase
closure. Similarly it is easy to show that for any baselines
1,2,3,4, the ratio of the raw visibilities will be the same as the
true visibilities, i.e.

|Ṽ12||Ṽ34|
|Ṽ23||Ṽ41|

=
|V12||V34|
|V23|V41|

(5.2.18)

This is called amplitude closure. For an N element interferom-
eter, we have N(N − 1)/2 − (N − 1) constraints on the phase
and N(N − 1)/2 − N constraints on the amplitude. For large
N, this is considerably more than the N unknown gains that
one is solving for. The large number of available constraints
means that the following iterative scheme would work.

1. Choose a suitable starting model for the brightness distri-
bution. Compute the model visibilities.

2. For this model, solve for the antenna gains, subject to the
closure constraints.

3. Apply these gain corrections to the visibility data, use the
corrected data to make a fresh model of the brightness
distribution.

For arrays with sufficient number of antennas, convergence
is usually rapid. Note however, for this to work, the SNR per
visibility point19 has to be reasonable, i.e. 2-3. This is often
the case at low frequencies, and this technique of determin-
ing antenna gains (which is called self calibration) is usually
highly successful.
Note that if one adds a phase χi = 2π(l0ui + m0vi) to each

antenna (where l0, m0 are arbitrary and (ui, vi) are the (u,v) co-
ordinates of the ith antenna), the phase closure constraints
(eqn 5.2.17) continue to be satisfied. That means that in self

19Actually, strictly speaking one means the SNR over an interval for which the iono-

spheric phase can be assumed to be constant
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calibration the phases can be solved only up to a constant
phase gradient across the uv plane, i.e. the absolute source
position is lost. Similarly, it is easy to see that the amplitude
closure constraints will be satisfied even if one multiplies all
the gains by a constant number, i.e. in self calibration one
loses information on the absolute source flux density . The
only way to determine the absolute source flux density is to
look at a calibrator of known flux. Since antenna gains and
system temperatures are usually stable over several hours20,
it is usually sufficient to do this calibration only once during
an observing run. A more serious problem at low frequencies
is that the Galactic background (whose strength varies with
location on the sky) makes a significant contribution to the
system temperature. Hence, when attempting to measure the
source flux density, it is important to correct for the fact that
the system temperature is different for the calibrator source
as compared to the target source. The system temperature
can typically be measured on rapid time scales by injecting a
noise source of known strength at the front end amplifier.

Another related way (to selfcal) of solving for the system
gains is the following. Suppose that the visibility on baselines
(i, j) and (k, l) are identical. Then the ratio of the measured
visibilities is directly related to the ratio of the complex instru-
mental gains of antennas i, j, k & l. If there are enough num-
ber of such ‘redundant’ baselines, one could imagine solving
for the instrumental gains. Some arrays, like the WSRT have
equispaced antennas, giving rise to a very large number of re-
dundant baselines, and this technique has been successfully
used to calibrate complex sources21 For a simple source, like
a point source, all possible baselines are redundant, and this
technique reduces essentially to self-calibration.

20Or change in a predictable manner with changing azimuth and elevation of the an-

tennas
21see Noordam, J. E. & de Bruyn A. G., 1982, Nature 299, 597.



102CHAPTER 5. SENSITIVITY AND CALIBRATION FOR INTERFEROMETERS

At the very lowest frequencies (ν < 200MHz, roughly for the
GMRT) the assumption that the source lies within the iso-
planatic patch probably begins to break down. The simple self
calibration scheme outlined above will stop working in that
regime. A possible solution then, is to solve (roughly speaking)
for the phase changes produced by each iso-planatic patch.
Often the primary beams of several antennas will pass through
the same iso-planatic patches, so the extra number of degrees
of freedom introduced will not be substantial, and an itera-
tive approach to solving for the unknowns will probably con-
verge22.

5.3 Further Reading

1. Hamaker J. P., O’Sullivan J. D. and Noordam J. E., Jour-
nal of the Opt. Soc. Of America, 67, 1122.

2. Thompson R. A., Moran J. M. and Swenson G. W. Jr.,
‘Interferometry & Synthesis in Radio Astronomy’, Wiley
Interscience.

3. Taylor G. B., Carilli C. L. and Perley R. A., ’Synthesis
Imaging in Radio Astronomy II’, ASP Conf. Ser. vol. 180.

22See Subrahmanya, C. R., (in ‘Radio Astronomical Seeing’, J. E. Baldwin & Wang

Shouguan eds.) for more details



Chapter 6

Phased Arrays

Yashwant Gupta

6.1 Introduction

A single element telescope with a steerable paraboloidal re-
flecting surface is the simplest kind of radio telescope that is
commonly used. Such a telescope gives an angular resolution
∼ λ/D, where D is the diameter of the aperture and λ is the
wavelength of observation. For example, for a radio telescope
of 100 m diameter (which is about the largest that is practi-
cally feasible for a mechanically steerable telescope), operat-
ing at a wavelength of 1 m, the resolution is ∼ 30

′

. This is a
rather coarse resolution and is much less than the resolution
of ground based optical telescopes.

Use of antenna arrays is one way of increasing the effec-
tive resolution and collecting area of a radio telescope. An
array usually consists of several discrete antenna elements
arranged in a particular configuration. Most often this con-
figuration produces an unfilled aperture antenna, where only
part of the overall aperture is filled by the antenna structure.
The array elements can range in complexity from simple, fixed
dipoles to fully steerable, parabolic reflector antennas. The

103
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. .21

d

θ

Figure 6.1: Geometry for the 2 element array.

outputs (voltage signals) from the array elements can be com-
bined in various ways to achieve different results. For exam-
ple, the outputs may be combined, with appropriate phase
shifts, to obtain a single, total power signal from the array –
such an array is generally referred to as a phased array. If
the outputs are multiplied in distinct pairs in a correlator and
processed further to make an image of the sky brightness dis-
tribution, the array is generally referred to as a correlator ar-
ray (or an interferometer). Here we will primarily be concerned
with the study of phased arrays, with direct comparison of the
performance with correlator arrays, where relevant.

6.2 Array Theory

6.2.1 The Two Element Array

We begin by deriving the far field radiation pattern for the case
of the simplest array, two isotropic point source elements sep-
arated by a distance d, as shown in Figure 6.1. The net far
field in the direction θ is given as

E(θ) = E1 e
jψ/2 + E2 e

−jψ/2 (6.2.1)
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where ψ = k d sin θ + δ , k = 2π/λ is the wavenumber and δ

is the intrinsic phase difference between the two sources. E1

and E2 are the amplitudes of the electric field due to the two
sources, at the distant point under consideration. The refer-
ence point for the phase, referred to as the phase centre, is
taken halfway between the two elements. If the two sources
have equal strength, E1 = E2 = E0 and we get

E(θ) = 2E0 cos(ψ/2) (6.2.2)

The power pattern is obtained by squaring the field pattern.
By virtue of the reciprocity theorem1, E(θ) also represents the
voltage reception pattern obtained when the signals from the
two antenna elements are added, after introducing the phase
shift δ between them.
For the case of δ = 0 and d≫ λ, the field pattern of this array

shows sinusoidal oscillations for small variations of θ around
zero, with a period of 2λ/d. Non-zero values of δ simply shift
the phase of these oscillations by the appropriate value.
If the individual elements are not isotropic but have iden-

tical directional patterns, the result of eqn 6.2.2 is modified
by replacing E0 with the element pattern, Ei(θ). The final pat-
tern is given by the product of this element pattern with the
cos(ψ/2) term which represents the array pattern. This brings
us to the important principle of pattern multiplication which
can be stated as : The total field pattern of an array of non-
isotropic but similar elements is the product of the individ-
ual element pattern and the pattern of an array of isotropic
point sources each located at the phase centre of the indi-
vidual elements and having the same relative amplitude and
phase, while the total phase pattern is the sum of the phase
patterns of the individual elements and the array of isotropic
point sources. This principle is used extensively in deriving
the field pattern for complicated array configurations, as well

1see Chapter 3
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as for designing array configurations to meet specified field
pattern requirements (see the book on “Antennas” by J.D.
Kraus (1988) for more details).

6.2.2 Linear Arrays of n Elements of Equal Amplitude

and Spacing

We now consider the case of a uniform linear array of n ele-
ments of equal amplitude, as shown in Figure 6.2. Taking the
first element as the phase reference, the far field pattern is
given by

E(θ) = E0

[
1 + ejψ + ej2ψ + . . . + ej(n−1)ψ

]
(6.2.3)

where ψ = k d sin θ+δ , k = 2π/λ is the wavenumber and δ is the
progressive phase difference between the sources. The sum of
this geometric series is easily found to be

E(θ) = E0
sin(nψ/2)

sin(ψ/2)
ej(n−1)ψ/2 (6.2.4)

If the centre of the array is chosen as the phase reference
point, then the above result does not contain the phase term
of (n − 1)ψ/2. For non-isotropic but similar elements, E0 is
replaced by the element pattern, Ei(θ), to obtain the total field
pattern.

. . . . .
d d d

2 3 4 n1

θ

Figure 6.2: Geometry for the n-element array
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The field pattern in eqn 6.2.4 has a maximum value of nE0

when ψ = 0, 2π, 4π, . . . . The maxima at ψ = 0 is called the
main lobe, while the other maxima are called grating lobes.
For d < λ, only the main lobe maxima maps to the physically
allowed range of 0 ≤ θ ≤ 2π. By suitable choice of the value of
δ, this maxima can be “steered” to different values of θ, using
the relation k d sin θ = −δ. For example, when all the elements
of the array are in phase (δ = 0), the maximum occurs at θ = 0.
This is referred to as a “broadside” array. For a maximum
along the axis of the array (θ = 90o), δ = −k d is required, giving
rise to an “end-fire” array. The broadside array produces a
disc or fan shaped beam that covers a full 360o in the plane
normal to the axis of the array. The end-fire array produces
a cigar shaped beam which has the same shape in all planes
containing the axis of the array. For nonisotropic elements,
the element pattern also needs to be steered (electrically or
mechanically) to match the direction of its peak response with
that of the peak of the array pattern, in order to achieve the
maximum peak of the total pattern.
For the case of d > λ, the grating lobes are uniformly spaced

in sin θ with an interval between adjacent lobe maxima of λ/d,
which translates to ≥ λ/d on the θ axis (see Figure 6.3).
The uniform, linear array has nulls in the radiation pattern

which are given by the condition ψ = ±2πl/n, l = 1, 2, 3, . . .

which yields

θ = sin−1

[
1

kd

(
±2πl

n
− δ

)]
(6.2.5)

For a broadside array (δ = 0), these null angles are given by

θ = sin−1

(
± 2πl

nkd

)
(6.2.6)

Further, if the array is long (nd≫ lλ), we get

θ ≃ ± λl

nd
≃ ± l

Lλ
(6.2.7)
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Main Lobe Grating LobeGrating Lobe

Resultant Pattern
Element Pattern

Figure 6.3: Grating lobes for an array of n identical elements. The solid

line is the array pattern. The broad, dashed line curve is an example of

the element pattern. The resultant of these two is shown as the dotted

pattern.

where Lλ is the length of the array in wavelengths and Lλ =
(n − 1)d/λ ≃ nd/λ for large n. The first nulls occur at l = ±1,
and the beam width between first nulls (BWFN) for such an
array is given by

BWFN =
2

Lλ
rad =

114.6

Lλ
deg (6.2.8)

The half-power beam width (HPBW) is then given by

HPBW ≃ BWFN

2
=

57.3

Lλ
deg (6.2.9)

Similarly, it can be shown that the HPBW of an end-fire ar-
ray is

√
2/Lλ (see “Antennas” by J.D. Kraus (1988) for more

details).
Such linear arrays are useful for studying sources of size

< λ/d radians, as only one lobe of the pattern can respond to
the source at a given time. Also, the source should be strong
enough so that confusion due to other sources in the grating
lobes is not significant. Linear grating arrays are particularly
useful for studying strong isolated sources such as the Sun.
The presence of grating lobes (with amplitude equal to the

main lobe) in the response of an array is usually an unwanted
feature, and it is desirable to reduce their levels as much as
possible. For non-isotropic elements, the taper in the element
pattern provides a natural reduction of the amplitude of the
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higher grating lobes. This is illustrated in Figure 6.3. To get
complete cancellation of all the grating lobes starting with the
first one, requires an element pattern that has periodic nulls
spaced λ/d apart, with the first null falling at the location of
the first grating lobe. This requires the elements to have an
aperture of ∼ d, which makes the array equivalent to a con-
tinuous or filled aperture telescope. This can be seen mathe-
matically by replacing E0 in eqn 6.2.4 by the element pattern
of an antenna of aperture size d and showing that it reduces to
the expression for the field pattern of a continuous aperture
of size nd.
The theoretical treatment given above is easily extended to

two dimensional antenna arrays.

6.2.3 The Fourier Transform Approach to Array Patterns

So far we have obtained the field pattern of an array by directly
adding the electric field contributions from different elements.
Now, it is well established that for a given aperture, if the elec-
tric field distribution across the aperture is known, then the
radiation pattern can be obtained from a Fourier Transform
of this distribution (see, for example, Christiansen & Hogbom
1985). This principle can also be used for computing the field
pattern of an array. Consider the case of the array pattern
for the 2-element array discussed earlier, as an example. The
electric field distribution across the aperture can be taken to
be zero at all points except at the location of the two elements,
where it is a delta function for isotropic point sources. The
Fourier Transform of this gives the sinusoidal oscillations in
sin θ, which have also been inferred from eqn 6.2.2.
Using the Fourier Transform makes it easy to understand

the principle of pattern multiplication described above. When
the isotropic array elements are replaced with directional ele-
ments, it corresponds to convolving their delta function elec-
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tric field distribution with the electric field distribution across
the finite apertures of these directional elements. Since convo-
lution of two functions maps to multiplication of their Fourier
Transforms in the transform domain, the total field pattern of
the array is naturally the product of the field pattern of the
array with isotropic elements with the field pattern of a single
element. The computational advantages of the Fourier Trans-
form makes this approach the natural way to obtain the array
pattern of two dimensional array telescopes having a compli-
cated distribution of elements.

6.3 Techniques for Phasing an Array

The basic requirement for phasing an array is to combine
the signals from the elements with proper delay and phase
adjustments so that the beam can be pointed or steered in
the chosen direction. Some of the earliest methods employed
techniques for mechanically switching in different lengths of
cables between each element and the summing point, to in-
troduce the delays required to phase the array for different
directions. The job became somewhat less cumbersome with
the use of electronic switches, such as PIN diodes. However,
the complexity of the cabling and switching network increases
enormously with the increase in number of elements and the
number of directions for which phasing is required.

Another method of phasing involves the use of phase shifters
at each element of the array. For example, this can be achieved
by using ferrite devices or by switching in incremental lengths
of cable (or microstrip delay lines), using electronic switches.
The phase increments are usually implemented in binary steps
(for example λ/2, λ/4, λ/8, . . . ). In this scheme, the value of the
smallest incremental phase difference controls the accuracy
of the phasing that can be achieved.
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In most modern radio telescopes, digital electronic tech-
niques are used for processing the signals. The output from
an antenna is usually down-converted to a baseband frequency
in a heterodyne receiver after which it is Nyquist sampled for
further processing. Techniques for introducing delays and
phase changes in the signal in the digital domain, using com-
puters or special purpose hardware, are fairly easy to imple-
ment and flexible.

The description of phasing techniques given above applies
when the delay compensation of the signals from the differ-
ent elements of the array is carried out at the radio frequency
of observation. When this delay compensation is carried out
at the intermediate or baseband frequency of the heterodyne
receiver, the signals pick up an extra phase term of 2π νLO τg,
where νLO is the local oscillator frequency used for the down
conversion and τg is the delay (with respect to the phase centre
of the array) suffered for the element (see for example Thomp-
son, Moran & Swenson, 1986). To obtain the optimum phased
array signal, these phase terms have to be compensated be-
fore the signals from array elements with different values of τg
are added. Furthermore, τg for an array element varies with
time for observations of a given source and this also needs to
be compensated.

For an array with similar elements, the amplitude of the
signals from the elements is usually kept constant at a com-
mon value, while the phase is varied to phase the array. How-
ever, in the most general case, the amplitude of the signals
from different elements can be adjusted to enhance some fea-
tures of the array response. This is most often used to re-
duce the sidelobe levels of the telescope or shift the nulls of
the array pattern to desired locations, such as directions from
which unwanted interference signals may be coming. Arrays
where such adjustments are easily and dynamically possible
are called adaptive beam-forming arrays, and are discussed
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further in Chapter 7.

6.4 Coherently vs Incoherently Phased Array

Normally, the signals from an n-element phased array are
combined by adding the voltage signals from the different an-
tennas after proper delay and phase compensation. This summed
voltage signal is then put through a square-law detector and
an output proportional to the power in the summed signal is
obtained. For identical elements, this phased array gives a
sensitivity which is n times the sensitivity of a single element,
for point source observations. The beam of such a phased ar-
ray is much narrower than that of the individual elements, as
it is the process of adding the voltage signals with different
phases from the different elements that produces the narrow
beam of the array pattern. For some special applications, it is
useful to first put the voltage signal from each element of the
array through a square-law detector and then add the powers
from the elements to get the final output of the array. This
corresponds to an incoherent addition of the signals from the
array elements, whereas the first method gives a coherent ad-
dition. In the incoherent phased array operation, the beam of
the resultant telescope has the same shape as that of a sin-
gle element, since the phases of the voltages from individual
elements are lost in the detection process. This beamwidth
is usually much more than the beamwidth of the coherent
phased array telescope. The sensitivity to a point source is
higher for the coherent phased array telescope as compared
to the incoherent phased array telescope, by a factor of

√
n.

The incoherent phased array mode of operation is useful
for two kinds of astronomical observations. The first is when
the source is extended in size and covers a large fraction of
the beam of the element pattern. In this case, the incoherent
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phased array observation gives a better sensitivity. The sec-
ond case is when a large region of the sky has to be covered in
a survey mode (for example, in a survey of the sky in search for
new pulsars). Here, the time taken to cover the same area of
sky to equal sensitivity level is less for the incoherent phased
array mode. Only for a filled aperture phased array telescope
are these times the same. For a sparsely filled physical aper-
ture such as an earth rotation aperture synthesis telescope,
this distinction between the coherent and incoherent phased
array modes is an important aspect of phased array operation.

6.5 Comparison of Phased Array with a Multi-

Element Interferometer

As has been mentioned in Section 1, the basic distinction be-
tween a phased array and a multi-element interferometer is
that in a phased array the signals from all the elements are
added in phase before (or after) being put through a square-
law detector, whereas in a multi-element interferometer, the
signals from the elements are correlated in pairs for each pos-
sible combination of two elements and these outputs are fur-
ther processed to make a map of the brightness distribution.
Thus, if the signal from element i is given by Vi, the output of
the (coherent) phased array can be written as

VPA =

〈(
n∑

i=1

Vi

)2〉
(6.5.10)

whereas the interferometer output (i.e. the visibility, see Chap-
ter 4) is given by

Vij = 〈Vi Vj〉 i, j = 1, 2, . . . , n ; i 6= j (6.5.11)

Expansion of the right hand side of eqn 6.5.10 produces
terms of the kind < Vi Vj > and V

2
i . The first kind are all avail-
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able from the correlator outputs and, if the correlator also
records the self products of all the elements, the second kind
are also provided by the correlator. Thus, by appropriate com-
binations of the outputs of the correlator used in the multi-
element interferometer, the phased array output can be syn-
thesised. Even the steering of the beam of the phased array
can be achieved by combining the visibilities from the corre-
lator after multiplying with appropriate phase factors. Also,
the incoherently phased array output can be synthesised by
combining only the self product outputs from the correlator,
viz.

VIA =

〈
n∑

i=1

V 2
i

〉
(6.5.12)

However, the network of multipliers required to implement
the correlator is a much more complicated hardware than the
adder and square-law detector needed for the phased array.
Further, the net data rate out of the correlator is much higher
than that from the phased array output, for data with the
same time resolution. Thus, the interferometer achieves the
phased array response in a very expensive manner. This is
especially true for very compact, point-like sources where ob-
servations with an interferometer do not provide any extra in-
formation about the nature of the source. For example, obser-
vations of pulsars are best suited to a phased array, as these
are virtually point sources for the interferometer and the re-
quirement for high time resolution that is relevant for their
studies is more easily met with a phased array output.

6.6 Further Reading

1. Kraus J. D., ’Radio Astronomy’, Cygnus-Quasar Books.

2. Kraus J. D. ’Antennas’, McGraw-Hill.
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3. Thompson A. R., Moran J. M. and Swenson G. W. Jr.,
’Interferometry and Synthesis in Radio Astronomy’, Wiley
Interscience.

4. Christiansen W. N. and Hogbom, J. A. ’Radio Telescopes’,
Cambridge.
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Chapter 7

Imaging With Dipolar Arrays

N. Udaya Shankar, RRI

In this lecture we will discuss the radio telescopes in which
a beamforming network is used to combine signals from the
antenna elements and may also provide the required aperture
distribution for beam shaping and sidelobe control.

7.1 Early History of Dipole Arrays

Radio telescopes with a variety of antennas of different forms
have been built to suit the large range of wavelengths over
which radio observations are made1. Quasi-optical antennas
such as parabolic reflectors are considered more appropriate
for millimeter and centimeter wavelengths. At the other end of
the radio spectrum, multi element arrays of dipole antennas
have been preferred for meter and decameter wavelengths.
Early observations in radio astronomy were made using one

of the two methods, either pencil beam aerials of somewhat
lower resolution to investigate the distribution of radio emis-
sion over the sky, or interferometers to observe bright sources

1see the illustrations in Chapter 3
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of small angular size. However, the observations made during
the early 1950’s, showed that to determine the real nature of
the radio brightness distribution it is necessary to construct
pencil beam radio telescopes having beam widths of the same
order as the separation between the lobes of the interferome-
ters then in use (∼ 1′). An important step towards such mod-
ern high-resolution radio telescopes was the realisation that
in many cases even unfilled apertures, which contain all the
relative positions of a filled aperture, (“skeleton telescopes”)
can be used to measure the brightness distribution. A cross-
type radio telescope, pioneered by Mills was the first to demon-
strate the principle of skeleton telescopes.
A cross consists of two long and relatively narrow arrays

arranged as a symmetrical cross, usually in the N − S and
the E −W directions, intersecting at right angles at their cen-
ters (Figure 7.1). Each array has a fan beam response, nar-
row along its length and wide in a perpendicular direction2.
The outputs from both the arrays are amplified and multi-
plied together; only sources of radiation that lie within the
cross hatched portion of Figure 7.1(b) produce a coherent sig-
nal. Thus an effective pencil beam is produced of angular
size determined solely by the length of the two arrays. A sub-
stantial number of telescopes were constructed based on this
principle.
The Sydney University telescope was constructed as a cross

with aerials of overall dimensions approximately 1 mile long
and 40 ft wide (Mills et al 1963). The mile-long reflectors are
in the form of cylindrical parabolas, with a surface of wire
mesh. Line feeds for two operating frequencies of 408MHz and
111.5 MHz were provided at their foci. The N − S arm employs
a fixed reflector pointing vertically upwards and the beam is
directed in the meridian plane by phasing the dipoles of the
feed. The E −W arm is tiltable about its long axis to direct

2See Section 6.2.2
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Figure 7.1: A cross type telescope. The arrays in Panel (a) produce the

fan beams shown in Panel (b). When the outputs of these two arrays are

multiplied together, only signals originating from the cross hatched region

common to both beams produce a coherent output. The resolution of such

a telescope hence depends only on the lengths of the arms.

the beam, also in the meridian plane, to intersect the N − S
response pattern. No phasing was employed in this aerial.
The angular coverage was 550 on either side of the zenith. The
E − W aperture is divided into two separate halves through
which the continuous N − S arm passes. The total collect-
ing area is 400, 000 sq.ft. This instrument had a resolution of
approximately 2′.8 at 408 MHz. This later came to be known
as the “Mills Cross” and is one of the earliest cross type ra-
dio telescope built. In order to reduce cost, this telescope was
built as a meridian transit instrument.

Note that in a cross antenna, one quarter of the antenna
provides redundant information, since all element spacings of
a filled aperture are still present if half of one array is removed.
In fact, it can be shown that the cosine response of a T array
is similar to that of a full cross. Thus a survey carried out
using a T array has the same resolution as that of a survey
carried out using a cross. However it has a collecting area

√
2

times lower than the corresponding cross and hence a lower
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sensitivity.

7.2 Image Formation

An array can be considered as a sampled aperture. When an
array is illuminated by a source, samples of the source’s wave-
front are recorded at the location of the antenna elements.
The outputs from the elements can be subjected to various
forms of signal processing, by which phase and amplitude ad-
justments are made to produce the desired outputs. If the
voltages from elemental antennas are simply added (as in the
phased arrays discussed in Chapter 6), the energy received
from a large portion of the sky will be rejected. When the ar-
ray is illuminated by a point source this gives the beam of the
array which is the Fourier transform of the aperture current
distribution. A single beam instrument can use only a part of
the total available time to observe each beam width of the sky.
One can generate multiple independent beams in the sky by
amplifying the signals from element separately and combin-
ing them with different phase shifts. Such a multiple-beam or
image forming instrument can observe different directions in
the sky simultaneously.

A simple linear array, which generates a single beam, can
be converted to a multiple beam antenna by attaching phase
shifters to the output of each element. Each beam to be
formed requires one additional phase shifter per element. Thus
an N-element array needs N2 phase shifters. Since the for-
mation of a beam is Fourier transforming the aperture distri-
bution, this requirement of N2 phase shifters is very similar
to the requirement of N2 multipliers for an N point Fourier
transform. Such a network is known as a Blass network (Fig-
ure 7.2). Similar to the fast Fourier transform, we also have
a Butler beam-forming matrix, which needs only N×logN el-
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ements for beam forming. The Butler matrix uses 900 phase-
lag hybrid junctions with 450 fixed-phase shifters. Blass and
Butler networks for a four-element array are shown in the
Figure 7.2. If the elemental spacing is λ/2, the butler matrix
produces four beams. Although these beams overlap, they
are mutually orthogonal. Surprisingly the Butler matrix was
developed before the development of the FFT.
There are a number of drawbacks with multiple-beam for-

mers, viz.

1. It is difficult to reconfigure the beam former. Most multi-
ple beam formers can only produce fixed beams.

2. The separation between the multiple beams cannot be any
less than that for orthogonal beams.

3. As the number of beams is increased, one has to keep
track of the signal to noise ratio (SNR) of the individual
beams.

4. As the array length becomes longer and the total span
of the multiple beams increases, the difference between
the arrival times of the wave-front from the source to the
ends of the array become comparable to the inverse of the
bandwidth of the signal used and the loss of SNR due to
bandwidth effects becomes large.

7.3 Digital Beam Forming

Digital Beam Forming (DBF) is a marriage between antenna
technology and digital technology. Workers in Sonar and Radar
systems first developed the early ideas of digital beam form-
ing. This coupled with the development of aperture synthesis
techniques in radio astronomy led to the development of the
modern dipolar array.
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Figure 7.2: A Blass beam forming network (Panel (a)). Such a network

requires N2 phase shifters to form N beams from N antennas. On the

other hand, the Butler beam forming network (Panels (b) and (c)) requires

only N log(N) phase sifters to achieve the same result.

An antenna can be considered to be a device that converts
spatio-temporal signals into strictly temporal signals, thereby
making them available to a wide variety of signal processing
techniques. From a conceptual point of view, its sampled out-
puts represent all of the data arriving at the antenna aperture.
No information is destroyed, at least not until the processing
begins and any compromises that are made in the processing
stages can be noted and estimates made of the divergence of
the actual system from the ideal.
Digital beam forming is based on the conversion of the RF

signal at each antenna element into two streams of binary
baseband signals representing cos and sin channels3. These
two digital baseband signals can be used to recover both the
amplitudes and phases of the signals received at each ele-

3See Section 4.4



7.4. RADIO TELESCOPESWITH DIGITAL BEAM FORMING NETWORKS123

ment of the array. The process of digital beamforming implies
weighting by a complex weighting function and then adding
together to form the desired output. The key to this technology
is the accurate translation of the analog signal into the digital
regime. Close matching of several receivers is not achieved in
hardware, but rather by applying a calibration process. It is
expected that more and more of receiver functions will be im-
plemented using software. Eventually one would expect that
the receiver would be built using software rather than hard-
ware. We shall get back to this aspect later.

Figure 7.3 depicts a simple structure that can be used for
beamforming. The process represented in Figure 7.3(a) is re-
ferred to as element-space beamfroming, where the data sig-
nals from the array elements are directly multiplied by a set
of weights to form the desired beam. Rather than directly
weighting the outputs from the array elements, they can be
first processed by a multiple-beam beamformer to form a suite
of orthogonal beams. The output of each beam can then be
weighted and the result combined to produce a desired out-
put. This process is often referred to as the beam-space beam-
forming (Fig. 7.3(b).

7.4 Radio Telescopes with Digital Beam Form-

ing Networks

7.4.1 The Clark Lake TEE-PEE-TEE Telescope

This telescope is no more existent. It is discussed here as a
good example of a telescope which uses a combination of beam
forming and synthesis-imaging techniques. This was a fully
steerable decametric array. This was a T array of 720 conical
spiral antennas, 3.0 km by 1.8 km. It had the best sensitivity in
the 25 MHz to 75 MHz range. Both its operating frequency and
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Figure 7.3: Digital beam forming networks. Panel (a) shows an element

space beam former while Panel (b) shows a beam space digital beam for-

mer.

beam position were adjustable in less than 1 ms (see Erickson
et al. 1982).

The basic element is a long spiral element utilising eight
wires wound around a support system that consists of eight
parallel filaments. Each element is circularly polarised with
a diode switch at its apex that rotates its excitation and thus
adjusts its phase. Steering of the array is accomplished by
introducing a linear phase gradient across groups of 15 ele-
ments, called banks. There are 16 banks in the 1800 m N − S

arm and 32 banks in the 3000m E−W arm. The output of each
bank is brought separately to the central observatory building.

A separate receiver channel is attached to the output of
each of the 48 banks. Each channel employs a superhetero-
dyne receiver4 to down-convert the signal to 10 MHz. The
10 MHz output of each of the receiver channel is sampled
at a frequency of 12 MHz, digitally delayed, and then cross-

4See Section 3.1
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correlated in a 512 channel two-bit three-level complex cor-
relator. An offline processor removes the fringe rotation5 in-
troduced by the earth’s rotation and integrates the data for
periods up to 5 minutes. A Fourier transform then produces
a map of the area of the sky under observation. These maps
may be averaged to effectively integrate the signal for periods
of hours.
It’s total collecting area was 250λ2. The synthesised beam at

30.9 MHz had a width of 13′.0 × 11′.1 at zenith. The confusion
limit of the telescope was around 1Jy. It produced 1024 picture
elements in a field of view roughly 60 × 40.

7.4.2 GEETEE: The Gauribidanur T Array

GEETEE is a low frequency radiotelescope operating at 34.5MHz.
It is situated near Gauribidanur, ∼ 80 km from Bangalore, In-
dia. The antenna system is a T shaped array with 1000 dipoles,
640 in the 1.4 km long E−W array and 360 in the 0.45 km long
S array. Its collecting area in the EW × S correlation mode is
18, 000 m2 and has a resolution of 26′ × 42′ sec(δ − 140.1). The
EW array consists of four rows of dipoles in the NS direction,
with 160 dipoles in each row. The S array consists of 90 rows
in the NS direction with four dipoles each placed in the EW
direction.
A multibeam-forming receiver has been built for GEETEE

to obtain long periods of interference free observation over as
large a patch of sky as possible in one day. A short observ-
ing time for a wide field survey at low frequencies minimises
the effects of the ionosphere. For multibeam operation a sin-
gle row of EW is used in the meridian transit mode. Single
row was chosen to maximise the coverage in declination. A
single beam in the EW direction was considered sufficient, as
the images are confusion limited. 90 outputs of the S array

5See Section 4.4
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are transmitted to the observatory in 23 open-wire transmis-
sion lines using time division multiplexing. In the observatory
building, the signals from the EW and S arrays are down-
converted to an intermediate frequency of 4 MHz. Then each
of the S array output is correlated with the EW array output
using one-bit correlators. This gives 90 visibilities sampled at
5 m intervals along the NS direction. The Fourier transform of
these visibilities gives 90 multiple beams in the NS direction
covering a span of ±470 of zenith angle along the meridian.
A two dimensional image of the sky is obtained by stacking
successive scans across the meridian.

7.4.3 MOST: The Molonglo Observatory Synthesis Tele-

scope

A severe disadvantage of the original Mills Cross was that it
could make only transit observations. It was recognized that a
steerable telescope was necessary to obtain extended observ-
ing times and greater sensitivity. To achieve this at a reason-
able cost it was decided to abandon the NS arm of the cross
and provide a new phased system for the EW arm only. With
this a two dimensional aperture is synthesised using earth ro-
tation synthesis. If linear polarisation is used, the position an-
gle of the feeds with respect to the sky will also rotate. Hence,
the existing linear feeds were replaced by a circularly polarised
feeds.
The usual aperture synthesis procedure accumulates data

as points in the spatial frequency (u, v) plane and then inter-
polates them onto a rectangular grid6. The map in the (θ, φ)

domain is produced by a fast Fourier transform. An important
requirement of this method is that the primary beam shape
must not vary throughout the observation. This makes it un-
suitable for the Molonglo telescope where the primary beam

6See Chapter 11
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is derived from a rectangular aperture. Because of the mu-
tual coupling problems together with the foreshortening of the
effective aperture, the gain of the telescope can vary by over
a factor of five as the pointing moves from the meridian to
600 from the meridian. This gain variation can be removed
from the sampled data, but the change in beam widths during
observations leading to a large variation in the relative gain,
between the center of the map and map edges, cannot be cor-
rected for.

The problem of non-circularity and variability of the pri-
mary beam may be overcome by the fan beam synthesis or
the beam space beam forming. For this the E and the W re-
flector, each 778m long and 11.6 m wide (separated by a gap of
15 m) are divided into 44 sections of length 17.7 m. The E and
W reflectors are tilted about an EW axis by a shaft extend-
ing the whole length. To control the direction of response in
an east-west direction a phase gradient is set up between the
feed elements by differential rotation. Each module output
is heterodyned to 11 MHz. A phase controlled transmission
line running the length of each antenna distributes the Local
Oscillator. One of these lines is phase switched at 400 Hz.

The detection and synthesis process involves the formation
of a set of contiguous fan beams in each antenna. The 44 sig-
nals are added together in a resistance array to produce 64

real-time fan beams. Signals from corresponding beams from
each antenna are multiplied to produce 64 real time interfer-
ometer beams. By switching the phase gradient by a small
amount every second, these 64 beams are time multiplexed
to produce either 128, 256, or 384 beams in each 24-second
sample. Each beam has an EW width of 43” and at meridian
passage a NS width of 20.3. The hardware beams have a sep-
aration of 22” and the time multiplexed beams 11”, which is
just under half the Nyquist sampling requirement.

If observations of a particular field extend over hour angles
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of ±6 h, the fan beam rotates through all position angles and
synthesis may be performed. The field is represented by a
square array of points corresponding to the projection of the
celestial sphere onto a plane normal to the earth’s rotation
axis. Every 24 seconds, the accumulated signal at each of
the 4x63 fan beam response angles are added to the nearest
(l, m) array points. This process continues throughout the 12
hours of synthesis. The computation apart from summation
includes gain, pointing, and phase corrections, cleaning to
improve the map, and routines to locate the sources and to
measure their flux densities and position.

7.4.4 Summary

These three radio telescopes illustrate different methods of
imaging using dipolar arrays as applied to radio astronomy.
GEETEE: One-dimensional image synthesis on the meridian
with the entire aperture being present at the same time; CLARK-
LAKE: A two dimensional image synthesis which gave peri-
ods of integration much larger than the meridian transit time.
The entire aperture was present during an observation sched-
ule; MOST: Rotational synthesis which is used to synthesise a
large two dimensional array, using a linear array. All of them
use principles of beam forming. GEETEE and CLARK LAKE
use the method of measurement of visibilities in the (u, v) do-
main, while MOST employs the method of direct fan beam
synthesis.

We see that the dipolar arrays are used in the meter wave-
length ranges more often than at high frequencies. They have
very wide fields of view (GEETEE, almost 1000) and are very
good workhorses for surveying the sky. They are good imag-
ing instruments also since they combine the phased array
techniques with the principles of synthesis imaging to make
images. Unfortunately most of the arrays are equipped with a



7.4. RADIO TELESCOPESWITH DIGITAL BEAM FORMING NETWORKS129

limited number of correlators and cannot measure all the pos-
sible n(n− 1)/2 baselines with n aperture elements. Thus they
are not well suited for applications of self-calibration. Being
skeleton telescopes, they have no redundancy in the imaging
mode and redundant baseline calibration is not easily appli-
cable. (See Chapter 5 for a discussion on self-calibration and
redundant baseline calibration). This has resulted in surveys
with limited dynamic range capability. None of these low fre-
quency arrays are equipped with feeds with orthogonal polar-
isation. So they are not suitable for polarisation studies.

While combining the beam forming techniques with the syn-
thesis techniques, one has to be very careful about the sam-
pling requirement of the spatial frequencies; otherwise one
will end up with grating lobes in the synthesised image, even
while using linear arrays with contiguous elements spaced λ/2
apart. Since the dipolar arrays are employed generally as cor-
relation telescopes and do not have a common collecting area
in the arms used for correlation, they suffer from the “zero-
spacing problem7”. Most often today’s receivers employ band-
pass sampling8 and if the sampling frequency is not properly
chosen one will degrade the signal to noise ratio. While imag-
ing with arrays one usually has to confronts conflicting re-
quirements of surveying sensitivity and the field of view.

A question may arise in your minds at this stage - with
a handful of telescopes using the phased array approach, is
there any future for them in radio astronomy? In the remain-
der of this chapter, I will discuss the possible future of dipolar
arrays for radio astronomy.

7The zero spacing problem refers to the difficulty in imaging very large sources, (whose

visibilities peak near the origin of the u-v plane) with arrays which provide few to no

samples near the u-v plane origin. See Section 11.6 for a more detailed discussion.
8See Chapter 1
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7.5 Square Kilometer Array (SKA) Concept

In one way or another, all of the various research directions in
radio astronomy are limited by our current instrumental sen-
sitivities. Only by ensuring the continued access to order-of-
magnitude improvements in our capabilities, can we ensure
a continued high rate of discovery! The sensitivity of radio
telescopes, in the time between 1940 and 1980, have shown
an exponential improvement, over at least 6 orders of magni-
tude (100 mJy to 0.1 mJy for 1 minute integration time). The
radio astronomers are toying with the idea of building a tele-
scope with an improvement in sensitivity by a factor of 100
and are hoping that it will lead to fundamental scientific ad-
vances (Braun, 1996)

Consideration of the many varied scientific drivers suggests
the following basic technical specifications for the instrument:

1. A frequency range of 200 to 2000 MHz.

2. A total collecting area of 1 km2

3. Distribution over at least 32 elements.

The NFRA in their study of the SKA concept suggest that a
broadband, highly integrated phased array of antennas should
be adopted for such an array. Some of the advantages are:

1. Phased arrays give “complete” control of beam. The main
application considered being the adaptive suppression of
RFI.

2. Multiple independent beams possible resulting support
for simultaneous independent programs as well as rapid
surveys.
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Figure 7.4: A two element adaptive array for interference suppression.

The array simultaneously accepts a signal coming from the zenith, while

rejecting an interfering signal 30o from the zenith by a suitable choice of

the weights Wi.

7.6 Adaptive Beam Forming

An adaptive beamformer is a device that is able to separate
signals co-located in the frequency band but separated in the
spatial domain. This provides a means for separating the de-
sired signal from interfering signals. An adaptive beamformer
is able to automatically optimise the array pattern by adjust-
ing the elemental control weights until a prescribed objective
function is satisfied. An algorithm designed for that purpose
specifies the means by which the optimisation is achieved.
These devices use far more of the information available at the
antenna aperture than does a conventional beamformer.

The procedure used for steering and modifying an array’s
beam pattern in order to enhance the reception of a desired
signal, while simultaneously suppressing interfering signals
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through complex weight selection is illustrated by the follow-
ing example. Let us consider the array shown in Figure 7.4.
The array consists of two antennas with a spacing of λ/2. Let
the signal S(t) arriving from a radio source at zenith be the de-
sired signal. Let I(t) be an interfering signal arriving from a di-
rection θ = π/6 radians. The signal from each element is mul-
tiplied by a variable complex weight (w1, w2) and the weighted
signals are then summed to form the array output. The array
output due to the desired signal is

Y (t) = A ej2πft[w1 + w2]. (7.6.1)

For the Y (t) to be equal to S(t), it is necessary that

Re[w1] + Re[w2] = 1 (7.6.2)

and
Im[w1] + Im[w2] = 0. (7.6.3)

Where Re and Im denote real and imaginary parts of the com-
plex weights. The interfering signal arrives at element 2 with
a phase lead of π/2 with respect to element 1. Consequently
the array output due to the interfering signal is given by

Yi(t) = [Nej2πft]w1 + [Nej2πft+π/2]w2. (7.6.4)

For the array response to the interference to be zero, it is nec-
essary that

Re[w1] +Re[jw2] = 0 (7.6.5)

and
Im[w2] + Im[jw2] = 0. (7.6.6)

The requirement that the array has to respond to only the
radio source and not to the interfering signal leads to the so-
lution

w1 = 0.5 − j0.5 (7.6.7)

and
w2 = 0.5 + j0.5 (7.6.8)
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With these weights, the array will accept the desired signal
while simultaneously rejecting the interference.

The method used in the above example exploits the fact
that there is only one interference source and uses the apri-
ori information concerning the frequency and the directions
of both of the signals. A more practical processor should not
require such a detailed apriori information about the location,
number and nature of sources. But this example has demon-
strated that a system consisting of an array, which is config-
ured with complex weights, provides numerous possibilities
for realizing array system objectives. We need to only develop
a practical processor for carrying out the complex weight ad-
justment. In such a processor the choice of the weighting will
be based on the statistics of the signal of interest received at
the array. Basically the objective is to optimise the beam-
former response with respect to a prescribed criterion, so that
the output contains minimal contribution from the interfering
signal.

There can be no doubt about the worsening observing situa-
tion in radio astronomy due to the increased use of frequency
space for communications. But a pragmatic view is that it
is hopeless to resist the increased use of frequency space by
others and we must learn to live with it. The saving grace is
that the requirements of mobile cellular, satellite and personal
communication services systems are pushing the advance-
ment in technology to provide increasingly faster and less ex-
pensive digital hardware. The present trend is to replace the
analog functions of a radio receiver with software or digital
hardware. The ultimate goal is to directly digitise the RF signal
at the output of the receiving antenna and then implement the
rest of the radio functions in either digital hardware or soft-
ware. Trends have evolved towards this goal by incorporating
digitisation closer and closer to the antenna at increasingly
higher frequencies and wider bandwidths. It is appropriate
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that the radio astronomer uses this emerging technology to
make future radio telescopes immune to interference. Adap-
tive arrays hold the key to this endeavour.
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Chapter 8

Correlator — Basics

D. Anish Roshi

8.1 Introduction

A radio interferometer measures the mutual coherence func-
tion of the electric field due to a given source brightness distri-
bution in the sky. The antennas of the interferometer convert
the electric field into voltages. The mutual coherence func-
tion is measured by cross-correlating the voltages from each
pair of antennas. The measured cross-correlation function
is also called visibility. In general it is required to measure
the visibility for different frequencies (spectral visibility) to get
spectral information for the astronomical source. The elec-
tronic device used to measure the spectral visibility is called a
spectral correlator. These devices are implemented using dig-
ital techniques. Digital techniques are far superior to analog
techniques as far as stability and repeatability are concerned.

The first of these two chapters on correlators covers some
aspects of digital signal processing used in digital correlators.
Details of the hardware implementation of the GMRT spectral
correlator are presented in the next lecture.

135



136 CHAPTER 8. CORRELATOR — BASICS

8.2 Digitization

The signals1 at the output of the antenna/receiver system are
analog voltages. Measurements using digital techniques re-
quire these voltages to be sampled and quantized.

8.2.1 Sampling

A band limited signal s(t) with bandwidth ∆ν can be uniquely
represented by a time series obtained by periodically sampling
s(t) at a frequency fs (the sampling frequency) which is greater
than a critical frequency 2∆ν (Shannon 1949). The signal is
said to be ‘Nyquist sampled’ if the sampling frequency is ex-
actly equal to the critical frequency 2∆ν.
The spectrum of signals sampled at a frequency less than

2∆ν (i.e. under sampled) is distorted. Therefore the time series
thus obtained is not a true representation of the bandlimited
signal. The spectral distortion caused by undersampling is
called aliasing.

8.2.2 Quantization

The amplitude of the sampled signal is a continuous value.
Digital systems represent values using a finite number of bits.
Hence the amplitude has to be approximated and expressed
with these finite number of bits. This processes is called quan-
tization. The quantized values are integer multiple of a quan-
tity q called the quantization step. An example of two bit (or
equivalently four level) quantization is shown in Fig. 8.1. For
the quantizer q = Vmax/2

2, where Vmax is the maximum voltage
(peak-to-peak) that can be expressed within an error of ±q/2.
1For all the analysis presented here we assume that radio astronomy signals are sta-

tionary and ergodic stochastic processes with a Gaussian probability distribution. We

also assume that the signals have zero mean.
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Figure 8.1: Transfer function of a two-bit four-level quantizer. The bi-

nary numbers corresponding to the quantized voltage range from 00 to

11. Quantization of a sine wave with such a quantizer is also shown.

Quantization distorts the sampled signal affecting both the
amplitude and spectrum of the signal. This is evident from
Fig. 8.1 for the case of a two bit four level quantized sine wave.
The amplitude distortion can be expressed in terms of an er-
ror function e(t) = s(t) − sq(t), which is also called the quan-
tization noise. Here sq(t) is the output of the quantizer. The
variance of quantization noise under certain restricted condi-
tions (such as uniform quantization) is q2/12. The spectrum
of quantization noise extends beyond the bandwidth ∆ν of s(t)
(see Fig. 8.2). Sampling at the Nyquist rate (2∆ν) therefore
aliases the power of the quantization noise outside ∆ν back
into the spectral band of s(t). For radio astronomy signals,
the spectral density of the quantization noise within ∆ν can
be considered uniform and is ∼ (q2/12)∆ν (assuming uniform
quantization). Reduction in quantization noise is hence pos-
sible by oversampling s(t) (i.e. fs > 2∆ν) since it reduces the
aliased power. For example, the signal to noise ratio of a dig-
ital measurement of the correlation function of s(t) (see Sec-
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ν

Original Spectrum
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quantization

Figure 8.2: Power spectrum of band limited Gaussian noise after one bit

quantization. The spectrum of the original analog signal is shown with a

solid line, while that of the quantized signal is shown with a dotted line.

tion 8.5) using a Nyquist sampling and a two-bit four-level
quantizer is 88% of the signal to noise ratio obtained by doing
analog correlation for Nyquist sampling and 94% if one were
to sample at twice the Nyquist rate.

The largest value that can be expressed by a quantizer is
determined by the number of bits (M ) used for quantization.
This value is 2M − 1 for binary representation. The finite num-
ber of bits puts an upper bound on the amplitude of input
voltage that can be expressed within an error ±q/2. Signals
with amplitude above the maximum value will be ‘clipped’,
thus producing further distortion. This distortion is minimum
if the probability of amplitude of the signal exceeding +Vmax/2

and −Vmax/2 is less than 10−5. For a signal with a Gaussian
amplitude distribution this means that Vmax = 4.42σ, σ being
the standard deviation of s(t).



8.3. DISCRETE FOURIER TRANSFORM 139

8.2.3 Dynamic Range

As described above, the quantizer degrades the signal if its
(peak-to-peak) amplitude is above an upper bound Vmax. The
minimum change in signal amplitude that can be expressed is
limited by the quantization step q. Thus a given quantizer op-
erates over a limited range of input voltage amplitude called its
dynamic range. The dynamic range of a quantizer is usually
defined by the ratio of the power of a sinusoidal signal with
peak-to-peak amplitude = Vmax to the variance of the quanti-
zation noise. For an ideal quantizer with uniform quantization
the dynamic range is 3

2
22M . Thus the dynamic range is larger

if the number of bits used for quantization is larger.

8.3 Discrete Fourier Transform

The Fourier Transform (FT) of a signal s(t) is defined as

S(w) =

∫ +∞

−∞
s(t)e−jωt dt (8.3.1)

Discrete Fourier Transform (DFT) is an operation to evaluate
the FT of the sampled signal s(n) (≡ s(n 1

fs
)) with a finite number

of samples (say N ). It is defined as

S(k) =

N−1∑

n=0

s(n)e−j2πnk/N ; 0 ≤ k ≤ N − 1 (8.3.2)

The relationship between FT and DFT and some properties of
DFT are discussed here.
Consider a time series s(n), which is obtained by sampling

a continuous band limited signal s(t) at a rate fs (see Fig. 8.3).
The sampling function is a train of delta function III(t). The
length of the time series is restricted to N samples by multi-
plying with a rectangular window function Π(t). The modifica-
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Figure 8.3: The relation between the continuous Fourier transform and the

discrete Fourier transform. The panels on the left show the time domain

signal and those on the right show the corresponding spectra.

tion of the signal s(t) due to these operations and the corre-
sponding changes in the spectrum are shown in Fig. 8.3. The
spectral modifications can be understood from the properties
of Fourier transforms. The FT of the time series can now be
written as a summation (assuming N is even)

S(ω) =

∫ +∞

−∞
s(t)

N/2−1∑

n=−N/2
δ(t− n

fs
)e−jωtdt
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=

N/2−1∑

n=−N/2
s(
n

fs
)e−

jωn
fs (8.3.3)

What remains is to quantize the frequency variable. For
this the frequency domain is sampled such that there is no
aliasing in the time domain (see Fig. 8.3). This is satisfied if
∆ω = 2πfs/N . Thus Eq. 8.3.3 can be written as

S(k∆ω) =

N/2−1∑

n=−N/2
s(
n

fs
)e−

jk∆ωn
fs (8.3.4)

Using the relation ∆ω/fs = 2π/N and writing the variables as
discrete indices we get the DFT equation. The cyclic nature of
DFT (see below) allows n and k to range from 0 to N−1 instead
of −N/2 to N/2 − 1.
Some properties that require attention are:

1. The spectral values computed for N/2 ≥ k ≥ 3N/2 − 1 are
identical to those for k = −N/2 to N/2 − 1. In fact the
computed values have a periodicity equal to N∆ω which
makes the DFT cyclic in nature. This periodicity is a con-
sequence of the sampling done in the time and frequency
domain (see Fig. 8.3).

2. The sampling interval of the frequency variable∆ω (= 2πfs/N )
is inversely proportional to the total number of samples
used in the DFT. This is discussed further in Section 8.3.1.

There are several algorithms developed to reduce the num-
ber of operations in the DFT computation, which are called
Fast Fourier Transform (FFT) algorithms. These algorithms
reduce the time required for the computation of the DFT from
O(N2) to O(N log(N)). The FFT implementation used in the
GMRT correlator uses Radix 4 and Radix 2 algorithms.
In the digital implementation of FFTs the quantization of

the coefficients e−j2πnk/N degrades the signal to noise ratio of
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the spectrum. This degradation is in addition to the quanti-
zation noise introduced by the quantizer. Thus the dynamic
range reduces further due to coefficient quantization. Coeffi-
cient quantization can also produce systematics in the com-
puted spectrum. This effect also depends on the statistics of
the input signal, and in general can be reduced only by using
a larger number of bits for coefficient representation.

8.3.1 Filtering and Windowing

The Fourier transform of a signal s(t) is a decomposition into
frequency or spectral components. The DFT also performs
a spectral decomposition but with a finite spectral resolution.
The spectrum of a signal s(t) obtained using a DFT operation
is the convolution of the true spectrum of the signal S(f) con-
volved by the FT W (f) of the window function, and sampled at
discrete frequencies. Thus a DFT is equivalent to a filter bank
with filters spaced at ∆ω in frequency. The response of each
filter is the Fourier transform of the window function used
to restrict the number of samples to N . For example, in the
above analysis (see Section 8.3) the response of each ‘filter’ is
the sinc function, (which is the FT of the rectangular window
Π(t)). The spectral resolution (defined as the full width at half
maximum (FWHM) of the filter response) of the sinc function
is 1.21∆ω

2π
. Different window functions w(n) give different ‘filter’

responses, i.e. for

S(k) =

N−1∑

n=0

w(n)s(n)e−j2πnk/N (8.3.5)

the Hanning window

w(n) = 0.5(1 + cos(2πn/N)) for −N/2 ≤ n ≤ N/2 − 1(8.3.6)

= 0 elsewhere
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has a spectral resolution 2∆ω
2π
. Side lobe reduction and resolu-

tion are the two principal considerations in choosing a given
window function (or equivalently a given filter response). The
rectangular window (i.e. sinc response function) has high res-
olution but a peak sidelobe of 22% while the Hanning window
has poorer resolution but peak sidelobe level of only 2.6%.

8.4 Digital Delay

In interferometry the geometric delay suffered by a signal (see
Chapter 4) has to be compensated before correlation is done.
In an analog system this can be achieved by adding or remov-
ing cables from the signal path. An equivalent method in dig-
ital processing is to take sampled data that are offset in time.
Mathematically, s(n−m) is the sample delayed by m×1/fs with
respect to s(n) (where fs is the sampling frequency). In such
an implementation of delay it is obvious that the delay can be
corrected only to the nearest integral multiple of 1/fs.

A delay less than 1/fs (called fractional delay) can also be
achieved digitally. A delay τ introduced in the path of a nar-
row band signal with angular frequency ω produces a phase
φ = ωτ . Thus, for a broadband signal, the delay introduces a
phase gradient across the spectrum. The slope of the phase
gradient is equal to the delay or τ = dφ

dω . This means that in-
troducing a phase gradient in the FT of s(t) is equivalent to
introducing a delay in s(t). Small enough phase gradients can
be applied to realize a delay < 1/fs. In the GMRT correlator,
residual delays τ < 1/fs are compensated using this method.
This correction is called the Fractional Sampling Time Correc-
tion or FSTC.
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8.5 Discrete Correlation and the Power Spec-

tral Density

The cross correlation of two signals s1(t) and s2(t) is given by

Rc(τ) = < s1(t)s2(t+ τ) > (8.5.7)

where τ is the time delay between the the two signals. In the
above equation the angle bracket indicates averaging in time.
For measuring Rc(τ) in practice an estimator is defined as

R(m) =
1

N

N−1∑

n=0

s1(n)s2(n+m) 0 ≤ m ≤M (8.5.8)

where m denotes the number of samples by which s2(n) is de-
layed,M is the maximum delay (M ≪ N ). By definition R(m) is
a random variable. The expectation value of R(m) converges to
Rc(τ = m

fs
) when N → ∞. The autocorrelation of the time series

s1(n) is also obtained using a similar equation as Eq. 8.5.8 by
replacing s2(n+m) by s1(n+m).
The correlation function estimated from the quantized sam-

ples in general deviates from the measurements taken with in-
finite amplitude precision. The deviation depends on the true
correlation value of the signals. The relationship between the
two measurements can be expressed as

R̂c(m/fs) = F(R̂(m)) (8.5.9)

where R̂c(m/fs) and R̂(m) are the normalized correlation func-
tions (normalized with zero-lag correlation in the case of auto-
correlation and with square root of zero-lag auto-correlations
of the signal s1(t) and s2(t) in the case of cross-correlation)
and F is a correction function. It can be shown that the cor-
rection function is monotonic (Van Vleck & Middelton 1966,
Cooper 1970, Hagan & Farley 1973, Kogan 1998). For exam-
ple, the functional dependence for a one-bit quantization (the
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‘Van Vleck Correction’) is

R̂c(m/fs) = sin(
π

2
R̂(m)) (8.5.10)

Note that the correction function is non-linear and hence
this correction should be applied before any further opera-
tion on the correlation function. If the number of bits used
for quantization is large then over a large range of correlation
values the correction function is approximately linear.
The power spectral density (PSD) of a stationary stochastic

process is defined to be the FT of its auto-correlation function
(the Wiener-Khinchin theorem). That is, if Rc(τ) = < s(t)s(t−
τ) > then the PSD, Sc(f) is

Sc(f) =

∫ ∞

−∞
Rc(τ)e

−j2πfτdτ (8.5.11)

From the properties of Fourier transforms we have

Rc(0) = < s(t)s(t) > =

∫ ∞

−∞
Sc(f)df (8.5.12)

i.e. the function Sc(f) is a decomposition of the variance
(i.e. ‘power’) of s(t) into different frequency components.
For sampled signals, the PSD is estimated by the Fourier

transform of the discrete auto-correlation function. In case
the signal is also quantized before the correlation, then one
has to apply a Van Vleck correction prior to taking the DFT.
Exactly as before, this estimate of the PSD is related to the
true PSD via convolution with the window function.
One could also imagine trying to determine the PSD of a

function s(t) in the following way. Take the DFTs of the sam-
pled signal s(n) for several periods of length N and average
them together and use this as an estimate of the PSD. It can
be shown that this process is exactly equivalent to taking the
DFT of the discrete auto-correlation function.
The cross power spectrum of the two signals is defined as

the FT of the cross-correlation function and the estimator is
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defined in a similar manner to that of the auto-correlation
case.
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Chapter 9

Correlator — Implementation

D. Anish Roshi

The visibility measured by an interferometer is character-
ized by the amplitude and phase of the fringe at different in-
stants. For simplicity first consider the output of a two ele-
ment interferometer. In the quasi monochromatic approxima-
tion the multiplier output can be written as (see Chapter 4)

rR(τg) = Re[v1(ν, t)v
∗
2(ν, t)] = |V| cos(2πντg + ΦV) (9.0.1)

where v1(ν, t) and v∗2(ν, t) are the voltages at the outputs of the
receiver systems of the two antennas, |V| and ΦV are the am-
plitude and the phase of the visibility and τg is the geometric
delay. The quantities required for mapping a source are |V|
and ΦV for all pairs of antennas of the interferometer. These
quantities are measured by first canceling the 2πντg term in
Eq. 9.0.1 by delay tracking and fringe stopping. In general,
one needs to know the amplitude and phase of the visibility
as a function of frequency. This chapter covers the implemen-
tation of a spectral correlator to measure the visibility ampli-
tude and phase. Further since the delay tracking (and fringe
stopping for some cases) is usually also done by the correlator,
these issues are also discussed.
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9.1 Delay Tracking and Fringe Stopping

Signals received by antennas are down converted to baseband
by mixing with a local oscillator of frequency νLO. The geomet-
ric delay compensation is usually done by introducing delays
in the baseband signal. The output of a correlator after intro-
ducing a delay τi can be written as (see Chapter 4)

rR(τg) = |V| cos(2πντg − 2πνBBτi + ΦV)

= |V| cos(2πνLOτg − 2πνBB∆τi + ΦV) , (9.1.2)

where νBB is the baseband frequency and ∆τi = τg− τi is the
residual delay. There are two terms that arise in the equation
due to delay compensation, (1) 2πνBB∆τi and (2) 2πνLOτg.
The first term is due to finite precision of delay compen-

sation and the second is a consequence of the delay being
compensated in the baseband (as opposed to the RF, which
is where the geometric delay is suffered, see Chapter 4). The
phase 2πνBB∆τi depends on νBB. For observations with a band-
width ∆ν this term produces a phase gradient across ∆ν.
The phase gradient is a function of time since the delay er-
ror changes with time. The phase 2πνLOτg is independent of
νBB, thus is a constant across the entire band. This phase is
also a function of time due to time dependence of τg. Thus
both these quantities have to be dynamically compensated.
Delay compensation in multiples of sampling interval 1/fs

can be achieved by shifting the sampled data (see Chapter 8).
This is schematically shown in Fig. 9.1. The digitized samples
are passed through shift registers. The lengths of the shift
registers are adjusted to introduce the required delay between
the signals. Another way of implementing delay is by using
random access memory (RAM). In this scheme, the data from
the antennas are written into a RAM (Fig. 9.1). The data is
then read out from this memory for further processing. How-
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Figure 9.1: Digital implementation of delay tracking in units of the sam-

pling period using shift registers (top) and random access memory (bot-

tom).

ever, the read pointer and the write pointer are offset, and the
offset between the two can be adjusted to introduce exactly
the required delay. In the GMRT correlator, the delay com-
pensation is done using such a high speed dual port RAM.
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A fractional delay can be introduced by changing the phase
of the sampling clock. The phase is adjusted such that sig-
nals from an antenna is sampled with a time delay equal to
the fractional delay. A second method is to introduce phase
gradients in the spectrum of the signal (see Chapter 8). This
phase gradient can be introduced after taking Fourier Trans-
forms of signals from the antennas (see Section 9.2.1).
Compensation of 2πνLOτg, (called fringe stopping), can be

done by changing the phase of the local oscillator signal by an
amount φLO so that 2πνLOτg − φLO = 0. Alternatively, this com-
pensation can be achieved digitally by multiplying the sam-
pled time series by e−jφLO. Recall from above that the fringe
rate is the same for all frequency channels, so this correction
can be done in the time domain. The fringe

φLO(t) = 2πνLOτg = 2πνLO
b sin(Ωt)

c
(9.1.3)

is a non-linear function of time (see Chapter 4). Here Ω is the
rate at which the source is moving in the sky (i.e. the angular
rotation speed of the earth), b is the baseline length and c is
the velocity of light. For a short time interval ∆t about t0 the
time dependence can be approximated as

φLO(t) = φLO(t0) + 2πνLO
bΩ cos(Ωt0)

c
∆t (9.1.4)

i.e. φLO(t) is the phase of an oscillator with frequency

νLO
bΩ cos(Ωt0)

c

After a time interval ∆t the frequency of the oscillator has to
be updated. Digital implementation of an oscillator of this type
is called a Number controlled oscillator (NCO). The frequency
of the oscillator is varied by loading a control number to the
device. The initial phase of the NCO can also be controlled
which is used to introduce φLO(t0). In the GMRT correlator,
fringe stopping is done using an NCO.
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9.2 Spectral Correlator
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Figure 9.2: Block diagram of a complex multiplier.

The output of a simple multiplier of the two element inter-
ferometer after delay compensation can be written as

rR = |V| cos(ΦV) (9.2.5)

To separate |V| and ΦV a second product is measured after
introducing a phase shift of 90o in the signal path (see Fig 9.2).
Introducing a 90o shift in the path of one of the signals will
result in (see Eq. 9.0.1)

rI(τg) = |V| cos(2πντg + ΦV + π/2) (9.2.6)

and after compensating for 2πντg

rI = |V| cos(ΦV + π/2) (9.2.7)

= |V| sin(ΦV)
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From these two measurement we get

|V| =
√
r2
R + r2

I (9.2.8)

ΦV = tan−1(
rI
rR

) (9.2.9)

Alternatively, for mathematical convenience, the two measure-
ments can be considered as the real and imaginary parts of a
complex number, i.e.

V = rR + jrI (9.2.10)

Thus the pair of multipliers together with an integrator (to get
the time average) form the basic element of a complex correla-
tor.
In the above analysis a narrow band signal (quasi monochro-

matic) is considered. In an actual interferometer the observa-
tions are made over a finite bandwidth ∆ν and one requires
the complex visibilities to be measured as a function of fre-
quencies within ∆ν. This can be achieved in one of the two
ways described below.

9.2.1 FX Correlator

The band limited signal can be decomposed into spectral com-
ponents using a filter bank. The spectral visibility is then ob-
tained by separately cross-correlating each filter output using
a complex correlator (see Fig. 9.3). The digital implementa-
tion of this method is called an FX correlator (F for Fourier
Transform and X for multiplication or correlation). The GMRT
correlator is an FX correlator. A schematic of an FX correla-
tor is shown in Fig. 9.4. The analog voltages V1(t) and V2(t)
are digitized first using ADCs. The geometric delay in steps of
the sampling intervals (integral delay) are then compensated
for. The integral delay compensated samples are multiplied
by the output of NCO for fringe stopping. The samples from
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Figure 9.3: A spectral correlator using filter banks and complex multipli-

ers.

each antenna are then passed through an FFT block to re-
alize a filter bank. Phase gradients are applied after taking
the Fourier Transform for fractional delay compensation. The
spectral visibility is then measured by multiplying the spec-
tral components of one antenna with the corresponding spec-
tral components of other antennas. These are then integrated
for some time to get an estimate of the cross-correlation. Since
the Fourier transform is taken before multiplication it is called
an FX correlator. For continuum observations with an FX cor-
relator the visibility measured from all spectral components
can be averaged after bandpass calibration.

9.2.2 XF Correlator

Eq. 9.0.1 for a broadband signal after delay compensation and
integration (time average) can be written as

< rR >= Re[

∫ +∞

−∞
< v1(ν, t)v

∗
2(ν, t) > dν] (9.2.11)
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Figure 9.4: Block diagram of an FX correlator.

where v1(ν, t) and v2(ν, t) can be considered as the spectral
components of the signals from the antennas. Introducing
a delay of τ to one of the signals v1(ν, t) modifies the above
equation to

< rR(τ) >= Re[

∫ +∞

−∞
< v1(ν, t)v

∗
2(ν, t) > e−j2πντ dν] (9.2.12)

The above equation is a Fourier Transform equation; the Fourier
Transform of the cross-correlation < v1(ν, t)v

∗
2(ν, t) > (where the

average is over t). Thus < rR(τ) > is the cross correlation mea-
sured as a function of τ . Since v1(ν, t) and v

∗
2(ν, t) are Hermitian

functions, as they are spectra of real signals, their product
is also Hermitian. Therefore < rR(τ) > is a real function and
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Figure 9.5: Block diagram of a XF correlator.

hence it can be measured with a simple correlator (not a com-
plex correlator). Thus the second method of measuring spec-
tral visibility is to measure < rR(τ) > for each pair of antennas
as a function of τ and later perform a Fourier Transform to get
the cross spectrum. The digital implementation of this method
is called an XF correlator.

A block diagram of an XF correlator is shown in Fig. 9.5. In
this diagram, fractional delays are compensated for by chang-
ing the phase of the sampling clock. After delay compensation,
the cross-correlations for different delays are measured using
delay lines and multipliers, which are followed by integrator.
Since the cross correlation function in general is not an even
function of τ , the delay compensation is done such that the
correlation function is measured for both positive and nega-
tive values of τ in the correlator. The zero-lag autocorrela-
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tions of the signals are also measured, which could be used to
normalize the cross-correlation. The quantization correction
(block marked as F) is then applied to the normalized cross
correlations. The cross-spectrum is obtained by performing a
DFT on the corrected cross-correlation function. A peculiarity
of this implementation is that the correlations are measured
first and the Fourier Transform is taken later to get the spec-
tral information. Hence it is called an XF correlator.

9.3 Further Reading

1. Thompson, A. R. and D’Addario, L. R. in ’Synthesis Imag-
ing in Radio Astronomy’, Perley R. A., Schwab F. R. and
Bridle A. H. eds., ASP Conf. Series, vol. 6.

2. Romney J. D., in ’Synthesis Imaging in Radio Astronomy
II’, Taylor G. B., Carilli C. L. and Perley R. A., ASP Conf.
Ser. vol. 180.

3. Thompson R. A., Moran J. M. and Swenson G. W. Jr.,
’Interferometry and Synthesis in Radio Astronomy’, Wiley
Interscience.



Chapter 10

Mapping I

Sanjay Bhatnagar

In the Chapters 2 & 4, the conceptual basis and formulation
of aperture synthesis in Radio Astronomy has been described.
In particular, it has been shown that

1. an interferometer records the mutual coherence function,
also called the visibility of the signals from the sky, and

2. the visibility is the Fourier transform of the sky brightness
distribution.

This chapter describes the co-ordinate systems used in prac-
tical aperture synthesis in Radio Astronomy and presents the
derivation of the 2D Fourier transform relation between the
visibility and the brightness distribution.

10.1 Co-ordinate Systems

10.1.1 Angular Co-ordinates

As described in Chapter 4, the response of an interferometer
to quasi-monochromatic radiation from a point source located

157
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at the phase center is given by

r(τ(t)) = cos(2πνoτ), (10.1.1)

where τ = τo = (D/c)sin(θ(t)) is the geometrical delay, θ is
the direction which the antennas are tracking with respect
to the vertical direction, λ is the wavelength, νo is the center
frequency of the observing band and D is the separation be-
tween the antennas. As the antennas track the source, the
geometrical delay changes as a function of time. Since delay
tracking and fringe stopping (see Chapter 4) exactly compen-
sate for this changing τ , for a point source at the phase center
the output of the interferometer is the amplitude of the fringe
pattern.
For a source located at an angle θ = θo + ∆θ, for small ∆θ,

τ = τo + ∆θ(D/c)cos(θ(t)). Since fringe stopping compensates
for τo, the response of the interferometer for a source ∆θ away
from the phase center is given by

cos(2π∆θDλ cos(θ))

where Dλ = D/λ. If the phase center is shifted by the
equivalent of λ/4, the interferometer will pick up an extra
phase of π/2 and the response will be sinusoidal instead of co-
sinusoidal. Hence, an interferometer responds to both even
and odd parts of the brightness distribution. Thus, the inter-
ferometers response can then be written in complex notation
as

r(τ(t)) = e2πi∆θDλcos(θ) (10.1.2)

Writing u = Dλcos(θ), which is the projected separation be-
tween the antennas in units of wavelength in the direction
normal to the phase center and l = sin(∆θ) ≈ ∆θ, we get

r(u, l) = e2πiul = e2πiu∆θ (10.1.3)

as the complex response of a two-element interferometer for
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a point source of unit flux located ∆θ away from the phase
center given by the direction θo.
Usually the phase center coincides with the center of the

field being tracked by all the antennas. Let the normalized
power reception pattern of antennas (which are assumed to be
identical) at a particular frequency be B(∆θ) and the surface
brightness of an extended source be represented by I(∆θ). The
response of the interferometer to a point source located ∆θ
away from the phase center would then be I(∆θ)B(∆θ)e2πiu∆θ.
For an extended source with a continuous surface brightness
distribution, the response is given by

V (u) =

∫
B(∆θ)I(∆θ)e2πiu∆θd∆θ =

∫
B(l)I(l)e2πiuldl. (10.1.4)

The above equation is a 1D Fourier transform relation between
the source brightness distribution and the visibility function
V . The integral is over the entire sky visible to the antennas
but is finite only for a range of l limited by the antenna pri-
mary reception pattern B(l). In practice, u is calculated as a
function of the source position in the sky, specified in an as-
tronomical co-ordinate system, as seen by the observer on the
surface of the earth.
l in the above equation is the direction of the elemental

source flux relative to the pointing center. u then has the
interpretation of spatial frequency and V (u) represents the 1D
spatial frequency spectrum of the source.

10.1.2 Astronomical Co-ordinate Systems

The position of a source in the sky can be specified in various
spherical co-ordinate systems in astronomy, differing from
each other by the position of the origin and orientation of the
axis. The position of the sources are specified using the az-
imuth and elevation angles in these co-ordinate systems. In
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the Equatorial Co-ordinate system the source position is spec-
ified by the Declination (δ) which is the elevation of the source
from the normal to the celestial equator and the Right Ascen-
sion (RA), which is the azimuthal angle from a reference posi-
tion (“the first point of Aries”). The reference direction for RA
is line of intersection of the equatorial and Ecliptic planes. The
position of the source in the sky, in this co-ordinate system,
remains constant as earth rotates. The azimuth and eleva-
tion of the antennas, which rotate with earth, are constantly
adjusted to track a point in the sky specified by (RA, δ) co-
ordinates. The changing position of the sources in the sky,
as seen by the observer on the surface of earth is specified
by replacing RA by Hour Angle (HA), which is the azimuth of
the source measured in units of time, with respect to the local
meridian of the source with HA = −6h pointing due East.

10.1.3 Physical Co-ordinate Systems

The antennas are located on the surface and rotate with re-
spect to a source in the sky due the rotation of the earth. For
aperture synthesis the antenna positions are specified in a co-
ordinate system such that the separation of the antennas is
the projected separation in plane normal to the phase center.
In other words, in such a co-ordinate system the separation
between the antennas is as seen by the observer sitting in the
source reference frame. This system, shown in Fig 10.1, is the
right-handed (u, v, w) co-ordinate system fixed on the surface
of the earth at the array reference point, with the (u, v) plane
always parallel to the tangent plane in the direction of phase
center on the celestial sphere and the w axis along the direc-
tion of phase center. The u axis is along the astronomical E-W
direction and v axis is along the N-S direction. The (u, v) co-
ordinates of the antennas are the E-W and N-S components of
position vectors. As the earth rotates, the (u, v) plane rotates
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Figure 10.1: Relationship between the terrestrial co-ordinates (X,Y,Z) and

the (u, v, w) co-ordinate system. The (u, v, w) system is a right handed sys-

tem with the w axis pointing to the source S.

with the source in the sky, changing the (u, v, w) co-ordinates
of the antennas, generating tracks in the uv-plane.
In the above formulation, the u co-ordinate of one antenna

is with respect to the other antenna making the interferome-
ter, which is located at the origin. If the origin is arbitrarily
located and the co-ordinates of the two antennas are u1 and
u2, Eq. 10.1.3 becomes

r(u, l) = e2πi(u1−u2)l (10.1.5)

Since only the relative positions of the antennas with re-
spect to each other enter the equations, it is only useful to
work with difference between the position vectors of various
antennas in the (u, v, w) co-ordinate system. The relative po-
sition vectors are called “Baseline vectors” and their lengths
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referred to as “baseline length”.

The source surface brightness distribution is represented
as a function of the direction cosines in the (u, v, w) co-ordinate
system. In Eq. 10.1.4 above, l is the direction cosine. The
source co-ordinate system, which is flat only for small fields of
view, is represented by (l, m, n). Since this co-ordinate system
represents the celestial sphere, n is not an independent co-
ordinate and is constrained to be n =

√
1 − l2 −m2.

10.1.4 Co-ordinate Transformation

(H =0h, δ = 0)

(H = −6h,δ = 0)

δ = 90)(

X

Y

Z

Figure 10.2: The (X,Y,Z) co-ordinate system used to specify antenna loca-

tions.

To compute the (u, v, w) co-ordinates of the antennas, the
antenna locations must first be specified in a terrestrial co-
ordinate system. The terrestrial co-ordinate system generally
used to specify the position of the antennas is a right-handed
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Cartesian co-ordinate system as shown in Figure 10.2. The
(X, Y ) plane is parallel to the earth’s equator with X in the
meridian plane and Y towards east. Z points towards the
north celestial pole. In terms of the astronomical co-ordinate
system (HA, δ), X = (0h, 0o), Y = (−6h, 0o) and Z = (δ = 90o). If
the components of D̄λ are (Xλ, Yλ, Zλ), then the components in
the (u, v, w) system can be expressed as


u

v

w


 =




sin(HA) cos(HA) 0

−sin(δ)cos(HA) sin(δ)sin(HA) cos(δ)

cos(δ)cos(HA) −cos(δ)sin(HA) sin(δ)






X

Y

Z




(10.1.6)
As the earth rotates, the HA of the source changes continu-
ously, generating different set of (u, v, w) co-ordinates for each
antenna pair at each instant of time. The locus of projected
antenna-spacing components u and v defines an ellipse with
hour angle as the variable given by

u2 +

(
v − Zcosδo
sinδo

)2

= X2 + Y 2, (10.1.7)

where (HAo, δo) defines the direction of phase center. In the
uv-plane, this is an ellipse, referred to as the uv-track with
HA changing along the ellipse. The pattern generated by all
the uv points sampled by the entire array of antennas over the
period of observation is referred to as the uv − coverage and as
is clear from the above transformation matrix, is different for
different δ. Examples of uv− coverage for a few declinations for
full synthesis with GMRT array are shown in Figure 10.3.
The uv domain is the spatial frequency domain and uv −

coverage represents the spatial frequencies sampled by the ar-
ray. The shorter baselines (uv points closer to the origin) pro-
vide the low resolution information about the source structure
and are sensitive to the large scale structure of the source
while the longer baselines provide the high resolution infor-
mation.
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Figure 10.3: uv-coverage for a full synthesis observation with the GMRT.

The panels show the uv coverage from: [A] Central Square antennas for a

source with δ = 90, [B] Central Square antennas for a source with δ = 0, [C]

Y-arm antennas for a source with δ = 90, [D] Y-arm for a source with δ = 0,

The u and v axes are in units meters.

The GMRT array has a hybrid configuration with approxi-
mately half the antennas located in a compact “central square”
and the remaining antennas stretched along 3 roughly ’Y’ shaped
arms (see Chapter 18). The baselines between the central
square antennas correspond to “short” spacings which are
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useful in mapping large sources, while the baselines between
the Y-arm antennas correspond to “long” spacings, which help
provide high angular resolution. The uv − coverage at two ex-
treme observing declinations are shown in Figure 10.3. Notice
that there are no measurements for (u = 0, v = 0). V (0, 0) (i.e.
the selfcorrelation data) represents the total integrated flux of
the source. The effect of this missing information1 on the im-
age will be discussed later.

The astronomical co-ordinates depend on the line of inter-
section of the ecliptic and equatorial planes. The uv − coverage
in turn depends on the position of the source in the astronom-
ical co-ordinate system. Since the reference line of the this co-
ordinate system changes because of the well-known preces-
sion of the earth’s rotation axis, the uv−coverage also becomes
a function of the reference epoch for which the source position
is specified. For the purpose of comparison and consistence
in the literature, all source positions are specified in stan-
dard epochs (B1950 or J2000). Since each point in the (u, v, w)

plane measures a particular spatial frequency and this spatial
frequency coverage differs from one epoch to another, it’s nec-
essary to precess the source co-ordinates to the current epoch
(also called the “date co-ordinates”) prior to observations and
all processing of the visibility data for the purpose of mapping
must be done with (u, v, w) evaluated for the epoch of obser-
vations. Precessing the visibilities to the standard epoch prior
to inverting the Eq.10.2.10 will require specifying the real and
imaginary parts of the visibility at (u, v, w) co-ordinates which
are in fact not measured (since the uv − coverage changes with
epoch) introducing errors in the mapping procedure.

1The GMRT correlator actually does measure the selfcorrelation of the voltage from

each antenna. However this quantity is dominated by the system noise, and recovery of

V (0, 0) from it requires accurate calibration of the system noise. Calibration of the total

power is an intricate and time consuming process, and is almost never done at the GMRT,

or other interferometric telescopes.
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10.2 2D Relation Between Sky and Aperture Planes
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Figure 10.4: Relationship between (l,m) and (u, v, w) co-ordinates

Below, we derive the generalized 2D Fourier transform re-
lation between the visibility and the source brightness distri-
bution in the (u, v, w) system. The geometry for this derivation
is shown in Fig 10.4.
Let the vector L̄o represent the direction of the phase center

and the vector D̄λ represent the location of all antennas of an
array with respect to a reference antenna. Then τg = D̄λ · L̄o.
Note that 2πD̄λ·L̄o = 2πw is phase by which the visibility should
be rotated to stop the fringe. For any source in direction L̄ =

L̄o + σ̄, the output of an interferometer after fringe stopping
will be

V (D̄λ) =

∫

4π

I(L̄)B(L̄)e2πiD̄λ·(L̄−L̄o)dΩ. (10.2.8)

The vector L̄ = (l, m, n) is in the sky tangent plane, L̄o is the
unit vector along the w axis and D̄λ = (u, v, w). The above
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equation can then be written as

V (u, v, w) =

∫ ∫
I(l, m)B(l, m)e2πi(ul+vm+w(

√
1−l2−m2−1)) dldm√

1 − l2 −m2

(10.2.9)
If the array is such that all antennas are exactly located

in the (u, v) plane, w is exactly zero and the above equation
reduces to an exact 2D Fourier transform relation between the
source brightness distribution and the visibility. This is true
for a perfect east-west array (like WSRT or ATCA). However to
maximize the uv − coverage arrays like GMRT or VLA are not
perfectly east-west. As mentioned earlier, the integrals in the
above equation are finite for a small portion of the sky (being
limited by the primary beam pattern). If the field of view being
mapped is small (i.e.. for small l and m)

√
1 − l2 +m2 − 1 ≈

−1
2(l

2 +m2) and can be neglected. Eq. 10.2.9 becomes

V (u, v, w) ≈ V (u, v, 0) =

∫ ∫
I(l, m)B′(l, m)e2πi(ul+vm)dldm.

(10.2.10)
where B′ = B/

√
1 − l2 −m2. Neglecting the w-term puts restric-

tions on the field of view that can be mapped without being
affected by the phase error which is approximately equal to
π(l2 +m2)w. Eq.10.2.10 shows the 2D Fourier transform rela-
tion between the surface brightness and visibility.
Since there are a finite number of antennas in an aperture

synthesis array, the uv − coverage is not continuous. Let

S(u, v) =
1 for all measured (u,v) points

0 everywhere else.
(10.2.11)

Then to represent the real life situation, assuming that B(l, m) =

1 over the extent of the source, Eq. 10.2.10 becomes

V (u, v)S(u, v) =

∫ ∫
I(l, m)e2πi(ul+vm)dldm. (10.2.12)

Inverting the above equation and using the convolution the-
orem, we get ID = I ∗ DB where DB is the Fourier transform
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of S. DB is the transfer function of the the telescope for imag-
ing and is referred to as the Dirty Beam. ID represents the
raw image produced by an earth rotation aperture synthesis
telescope and is referred to as the Dirty Map. Contribution of
Dirty Beam to the map and methods of removing these these
effects will be discussed in greater detail in later lectures.
In all the above discussion, we have assumed the observa-

tions are monochromatic with negligible frequency bandwidth
and that the (u, v) measurements are instantaneous measure-
ments. None of these assumptions are true in real life. Ob-
servations for continuum mapping are made with as large a
frequency bandwidth as possible (to maximize the sensitivity)
and the data is recorded after finite integration. Both result
into degradation in the map plane and these effects will be
discussed in the later chapters.
Neglecting the w-term essentially implies that the source

brightness distribution is approximated to be restricted to the
tangent plane at the phase center in the sky rather than on
the surface of the celestial sphere. At low frequencies, where
the antenna primary beams are larger and the radio emis-
sion from sources is also on a larger scale, this assumption
restricts the mappable part of the sky to a fraction of the pri-
mary beam. Methods to relax this assumption will also be
discussed in a later lecture.

10.3 Further Reading

1. Thompson R. A., Moran J. M. and Swenson G. W. Jr.,
‘Interferometry & Synthesis in Radio Astronomy’, Wiley
Interscience.

2. Taylor G. B., Carilli C. L. and Perley R. A., ’Synthesis
Imaging in Radio Astronomy II’, ASP Conf. Ser. vol. 180.



Chapter 11

Mapping II

Sanjay Bhatnagar

11.1 Introduction

An aperture synthesis array measures the visibilities at dis-
crete points in the uv-domain. The visibilities are Fourier
transformed to get the Dirty Map and the weighted uv-sampling
function is Fourier transformed to get the Dirty Beam using
the efficient FFT algorithm. This lecture describes the en-
tire chain of data processing required to invert the visibili-
ties recorded as a function of (u, v, w), and the resulting er-
rors/distortions in the final image. In this entire lecture, the
‘⋆’ operator represents convolution operation, the ‘.’ operator
represents point-by-point multiplication and the ‘⇋’ operator
represents the Fourier transform operator.
As described earlier, the visibility V measured by an aper-

ture synthesis telescope is related to the sky brightness dis-
tribution I as

V ⇋ I (11.1.1)

where ⇋ denotes the Fourier Transform. The above equation
is true only for the case of continuous sampling of the uv-plane
such that V is measured for all values of (u, v). However since

169
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there are finite antennas in an array, uv-plane is sampled at
discrete uv points and Eq. 11.1.1 has to be written as

V.S ⇋ I ∗DB(= ID) (11.1.2)

where ID is the Dirty Map, I is the true brightness distribution,
DB is the Dirty Beam and S is the uv-sampling function given
by

S(u, v) =
∑

k

δ(u− uk, v − vk) (11.1.3)

where uk and vk are the actual (u, v) points measured by the
telescope. The pattern of all the measured (u, v) points is re-
ferred to as the uv-coverage.
This function essentially assigns a weight of unity to all

measured points and zero everywhere else in the uv-plane.
Fourier transform of S is referred to as the Dirty Beam. As
written in Eq. 11.1.2, the Dirty Beam is the transfer function
of the instrument used as an imaging device. The shape of the
Dirty Beam is a function of the uv-coverage which in turns is
a function of the location of the antennas. Dirty Beam for a
fully covered uv-plane will be equal to sin(πlλ/umax)/(πlλ/umax)

where umax is the largest antenna spacing for which a mea-
surement is available. The width of the main lobe of this
function is proportional to λ/umax. The resolution of such a
telescope is therefore roughly λ/umax and umax can be inter-
preted as the size of an equivalent lens. For a real uv-coverage
however, S is not flat till umax and has ‘holes’ in between rep-
resenting unsampled (u, v) points. The effect of this missing
data is to increase the side-lobes and make the Dirty Beam
noisy, but in a deterministic manner. Typically, an elliptical
Gaussian can be fitted to the main lobe of the Dirty Beam and
is used as the resolution element of the telescope. The fitted
Gaussian is referred to as the Synthesized Beam.
The Dirty Map is a convolution of the true brightness dis-

tribution and the Dirty Beam. ID is almost never a satisfac-
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tory final product since the side-lobes of DB (which are due
to missing spacings in the uv-domain) from a strong source in
the map will contaminate the entire map at levels higher than
the thermal noise in the map. Without removing the effect
of DB from the map, the effective RMS noise in the map will
be much higher than the thermal noise of the telescope and
will result into obscuration of faint sources in the map. This
will be then equivalent to reduction in the dynamic range of
the map. The process of De-convolving is discussed in a later
lecture, which effectively attempts to estimate I from ID such
that (I − ID) ∗DB is minimized consistent with the estimated
noise in the map.
To use the FFT algorithm for Fourier transforming, the ir-

regularly sampled visibility V (u, v) needs to be gridded onto a
regular grid of cells. This operation requires interpolation to
the grid points and then re-sampling the interpolated func-
tion. To get better control on the shape of the Dirty Beam and
on the signal-to-noise ratio in the map, the visibility is first re-
weighted before being gridded. These operations are described
below.

11.2 Weighting, Tapering and Beam Shaping

The shape of the Dirty Beam can be controlled by multiply-
ing S with other weighting functions. Note that the measured
visibilities already carry a weight which is a measure of the
signal-to-noise ratio of each measurement. Since there is no
control on this weight while mapping, it is not explicitly writ-
ten in any of equations here but is implicitly used.
Full weighting function W as used in practice is given by

W (u, v) =
∑

k

TkDkδ(u− uk, v − vk) (11.2.4)

The function Tk is the ‘uv − tapering’ function to control the
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shape of DB and Dk is the ‘density-weighting’ function used
in all imaging programs. If S was a smooth function, going
smoothly to zero beyond the maximum sampled uv-point, DB
would also be smooth with no side lobes (e.g. if S was a Gaus-
sian). However, S is collection of delta functions with gaps in
between (for the missing uv-points not measured by the tele-
scope) and has a sharp cut-off at the limit of uv-coverage. This
results into DB being a highly non-smooth function with po-
tentially large side-lobes.

As is evident from the plots of uv-coverage, the density of uv-
tracks decreases away from the origin. If one were to use the
local average of the uv-points in the uv-plane for mapping as is
done in the gridding operation described below, the signal-to-
noise ratio of the points would be proportional to the number
of uv-points averaged. Since the density of measured uv-points
is higher for smaller values of u and v, visibilities for shorter
spacings get higher weightage in the visibility data effectively
making the array relatively more sensitive to the broader fea-
tures in the sky. The function Dk controls the weights result-
ing from non-uniform density of the points in the uv-plane.

Both Tk and Dk provide some control over the shape of the
Dirty Beam. Tk is used to weight down the outer edge of the
uv-coverage to decrease the side-lobes of DB at the expense
decreasing the spatial resolution. Dk is used to counter the
preferential weight that the uv-points get closer to the origin
at the expense of degrading the signal-to-noise ratio.

Tk is a smoothly varying function of (u, v) and is often used
as T (uk, vk) = T (uk)T (vk). For most imaging applications, T (uk, vk)
is a circularly symmetric Gaussian. However other forms are
also occasionally used.

Two forms of Dk are commonly used. When Dk = 1 for all
values of (u, v), it is referred to as ‘natural weighting’ where the
natural weighting of the uv-coverage is used as it is. This gives
best signal-to-noise ratio and is good when imaging weak com-
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pact sources but is undesirable for extended sources where
both large scale and small scale features are present.
When Dk = 1/Nk where Nk is a measure of the local density

of uv-points around (uk, vk), it is referred to as ‘uniform weight-
ing’ where an attempt is made to assign uniform weights to
the entire covered uv-plane. In standard data reduction pack-
ages available for use currently (AIPS, SDE, Miriad), while re-
gridding the visibilities (discussed below), Nk is equal the num-
ber of uv-points within a given cell in the uv-plane. However it
can be shown that this can result into serious errors, referred
to as catastrophic gridding error in some pathological cases.
This problem can be handled to some extend by using bet-
ter ways of estimating the local density of uv-points (Briggs,
1995).
Eq. 11.1.2, using the weighted sampling functionW is writ-

ten as

(V.S.W ) ⇋ (I ∗DB) (11.2.5)

Note that DB ⇋ S.W , i.e. the Dirty Beam is the Fourier trans-
form of the weighted sampling function.

11.3 Gridding and Interpolation

The inversion of the visibilities to make the Dirty Map is done
using FFT algorithm which requires that the function be sam-
pled at regular intervals and the number of samples be power
of 2. For the case of mapping the sky using an aperture syn-
thesis telescope, this implies that the visibility data be avail-
able on a regular 2D grid in the uv plane. Thus re-gridding
of the data onto a regular grid is required by potentially in-
terpolating the visibility to the grid points, since the visibility
function V (u, v) is measured at discrete points (u, v) which are
not assured to be at regular intervals along the u and v axis.
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Interpolation of V is done by multiplying a function and av-
eraging all the measured points which lie within the range of
the function with a finite support base, centered at each grid
point. The resultant average value is assigned to the corre-
sponding grid point. This operation is equivalent to discrete
convolution of V with the above mentioned function and then
sampling this convolution at the grid points. The convolving
function is referred to as the Gridding Convolution Function
(GCF). There are other ways of doing this interpolation. How-
ever the interpolation in practice is done by convolution since
this results into predictable results in the map plane which
are easy to visualize. Also using GCF with finite support base
results into each grid point getting the value of the local aver-
age of the visibilities.
After gridding Eq. 11.2.5 becomes

(V.S.W ) ∗ C ⇋ (I ∗DB).c (11.3.6)

where C represents the GCF and c ⇋ C.
The effect of gridding the visibilities on the map is to multi-

ply the map with function c and since C has a finite support
base (i.e. is of finite extent), c is infinite in extent which re-
sult into aliasing in the map plane (the other cause of aliasing
could be under-sampling of the uv-plane). The amplitude of
the aliased component from a position (l, m) in the map is de-
termined by c(l, m). Ideally therefore, this function should be
rectangular function with the width equal to the size of the
map and smoothly going to zero immediately outside the map.
However from the point of efficiency of the gridding process,
this is not possible, and GCF used in practice have a trade-off
between the roll-off properties at the edge and flatness within
the map.
Since the Dirty Map is multiplied by c, if c is well known,

then effect of convolution by the GCF can be removed by point-
wise division of Dirty Map and Dirty Beam given by ĪD = ID/c
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and D̄B = DB/c for later processing, particularly in deconvo-
lution of ID. In practice however, this division is not carried
out by evaluating c(l, m) over the map. Instead, for efficiency
purposes, this function is kept in the computer memory tabu-
lated with a resolution typically 1/100 times the size of the cell
in the image.
To take the Fourier transform of (V.S.W ) ∗ C using the FFT

algorithm one needs to sample the left hand side of Eq. 11.3.6
by multiplication with the re-sampling function R given by

R(u, v) =

∞∑

j=−∞

∞∑

k=−∞
δ(j − u/∆u, k − v/∆v) (11.3.7)

where ∆u and ∆v are the cell size in the uv-domain. Eq. 11.3.6
then becomes

R.((V.S.W ) ∗ C) ⇋ r ∗ ((I ∗DB).c) (11.3.8)

where R ⇋ r. The right hand side of this equation then is
the approximation of ID obtained in practice. As discussed
in Chapter 8 the FFT generates a periodic function (due to
the presence of R in the left hand side of Eq. 11.3.8) and ID

represents one period of such a function. To map an angular
region of sky of size (Nl∆l, Nm∆m), using the Nyquist sampling
theorem we get Nl∆u = 1/∆l and Nm∆v = 1/∆m where ∆l and
∆m is the cell size in the map and ∆u and ∆v are cell sizes in
the uv-plane.
C is usually real and even and is assumed to be separable

as C(u, v) = C1(u)C2(v). Various GCFs used in practice are
listed below. Functions listed below are in 1-dimension and
are truncated (set to zero) for |u| ≥ m∆u/2 where ∆u is the size
of the grid and m is the number of such cells used.

1. Pillbox function

C(u) =

{
1, |u| < m∆u/2

0, otherwise

}
(11.3.9)
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This amounts to simple averaging of all the uv-points with
in the rectangle defined by Eq. 11.3.9. However since its
Fourier transform is the sinc function which has large side
lobes, it provides poor alias rejection and is almost never
used in practice.

2. Truncated exponential function

C(u) = e
−|u|α

w∆u (11.3.10)

Typically m = 6, w = 1 and α = 2 is used and c can be
expressed in terms of error function.

3. Truncated sinc function

C(u) = sinc
( u

w∆u

)
(11.3.11)

For m = 6 and w = 1, this is the normal sinc function
expressed in terms of sin function. As m increases, the
Fourier transform of this function approaches a step func-
tion which is constant over the map and zero outside.

4. Sinc exponential function

C(u) = e
−|u|α

w1∆usinc

(
u

w2∆u

)
(11.3.12)

For m = 6, w1 = 2.52, w2 = 1.55, α = 2, the above equation
reduces to multiplication of Gaussian with the exponen-
tial function. This optimizes between the flat response of
exponential within the map and suppression of the side-
lobes due the presence of the Gaussian.

5. Truncated spheroidal function

C(u) = |1 − η2(u)|αφα0(πm/2.η(u)), (11.3.13)
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where φα0 is the 0-order spheroidal function, η(u) = 2u/m∆u

and α > −1.

Of all the square integrable functions, this is the most
optimal in the sense that it has maximum contribution to
the normalized area from the part of c(l) which is within
the map. This is referred to as the energy concentration
ratio, and is defined as

∫
map |c(l)|2dl
∞∫

−∞
|c(l)|2dl

11.4 Bandwidth Smearing

The effect of a finite bandwidth of observation as seen by the
multiplier in the correlator, is to reduce the amplitude of the
visibility by a factor given by

sin(πl∆ν/νoθ)/(πl∆ν/νoθ)

,
where θ is angular size of the synthesized beam, νo is the

center of the observing band, l is location of the point source
relative to the field center and ∆ν is the bandwidth of the sig-
nal being correlated.
The distortion in the map due to the finite bandwidth of

observation can be visualized as follows. For continuum ob-
servations, the visibility data integrated over the bandwidth
∆ν is treated as if the observations were made at a single fre-
quency νo, the central frequency of the band. As a result the u
and v co-ordinates and the value of visibilities are correct only
for νo. The true co-ordinate at other frequencies in the band
are related to the recorded co-ordinates as

(u, v) =
(νouν

ν
,
νovν
ν

)
(11.4.14)
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Since the total weights W used while mapping does not de-
pend on the frequency, the relation between the brightness
distribution and visibility at a frequency ν becomes

V (u, v) = V
(νouν

ν
,
νovν
ν

)
⇋

(
ν

νo

)2

I

(
lν

ν0
,
mν

ν0

)
(11.4.15)

Hence the contribution of V (u, v) to the brightness distribu-
tion get scaled by (ν/νo)

2 and the co-ordinates gets scaled by
(ν/νo). The effect of the scaling of the co-ordinates, assuming
a delta function for the Dirty Beam, is to smear a point source
at position (l, m) into a line of length (∆ν/νo)

√
l2 +m2 in the

radial direction. This will get convolved with the Dirty Beam
and the total effect can be found by integrating the brightness
distribution over the bandwidth as given in Eq. 11.4.15

ID(l, m) =




∞∫
0

|HRF (ν)|2
(
ν
νo

)2

I
(
lν
ν0
, mνν0

)
dν

∞∫
0

|HRF (ν)|2dν


 ∗DBo(l, m) (11.4.16)

where HRF (ν) is the band-shape function of the RF band and
DBo is the Dirty Beam at frequency νo. If one represents the
synthesized beam as a Gaussian function of standard devia-
tion σb = θb/

√
8ln2 and the bandpass represented by a rect-

angular function of width ∆ν, the fractional reduction in the
strength of a source located at a radial distance r =

√
l2 +m2

is given by

Rb = 1.064
θbνo
r∆ν

erf

(
0.833

r∆ν

θbνo

)
(11.4.17)

Eq. 11.4.16 is equivalent to averaging large number of
maps made from monochromatic visibilities at ν. Since each
of such maps would scale by a different factor, the source
away from the center would move along the radial line from
one map to another, producing the radial smearing convolved
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with the Dirty Beam. Since the source away from the center is
elongated radially, its side-lobes (because of the Dirty Beam)
will also be elongated in the radial direction. As a result the
side-lobes of distant sources will be elongated at the origin but
not towards 90o angle from the vector joining the source and
the origin.

The effect of bandwidth smearing can be reduced if the RF
band is split into frequency channels with smaller channel
widths. This effectively reduces the ∆ν as seen by the map-
ping procedure and while gridding the visibilities then, the u
and v can be computed separately for each channel and as-
signed to the correct uv-cell. The FX correlator used in GMRT
provides up to 128 frequency channels over the bandwidth of
observation.

11.5 Time Average Smearing

As discussed before, the u and v co-ordinates of an antenna
are a function of time and continuously change as earth ro-
tates generating the uv-coverage. To improve the signal-to-
noise ratio as well as reduce the data volume, the visibility
function V (u, v) is recorded after finite integration in time (typ-
ically 10-20s for imaging projects) and the average value of the
real and imaginary parts of V are used for average values of u
and v over the integration time. Effectively then, the assigned
values of u and v for each visibility point are evaluated for a
time which is wrong from the correct (instantaneous) time by
a maximum of τ/2 where τ is the integration time.

In the map domain, the resulting effect can be visualized
by treating the resulting map from the time average visibilities
as the average for a number of maps made from the instan-
taneous (unaveraged) visibilities. The baseline vectors in the
uv-domain follow the loci of the uv-tracks (which are parabolic
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tracks) and rotate at an angular velocity equal to the that of
earth, ωe. Since a rotation of one domain results into a rota-
tion by an equal amount in the conjugate domain in a Fourier
transform relation, the effect in the map domain is that the in-
stantaneous maps also are rotated with respect to each other,
at the rate of ωe. Hence, a point source located at (l, m) away
from the center of the map would get smeared in the azimuthal
direction. This effect is same as the smearing effect due to
finite bandwidth of observations, but in an orthogonal direc-
tion.

11.6 Zero-spacing Problem

Since visibility and the brightness distribution are related via
a Fourier transform, V (0, 0) measures the total flux from the
sky. However, since the difference between the antenna po-
sitions is always finite, V (0, 0) is never measured by an in-
terferometer. For a point source, it is easy to estimate this
value by extrapolation from the smallest u and v for which a
measurement exist, since V as a function of baseline length is
constant. However for an extended source, this value remains
unknown and extrapolation is difficult.

For the purpose of understanding the effect of missing zero-
spacings, we can multiply the visibility in Eq. 11.3.6 by a
rectangular function which is 0 around (u, v) = (0, 0) and 1
elsewhere. In the map domain then, the Dirty Map gets con-
volved with the Fourier transform of this function, which has
a central negative lobe. As a result, extended sources will
appear to be surrounded by negative brightness in the map
which cannot be removed by any processing. This can only
be removed by either estimating the zero-spacing flux while
restoring I from ID or V , or by supplying the zero-spacing flux
as an external input to the mapping/deconvolution programs.
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The Maximum Entropy class of image restoration algorithms
attempt to estimate the zero-spacing flux, while the CLEAN
class of image restoration algorithms needs to be supplied this
number externally. Both these will be discussed in the later
lectures.

11.7 Further Reading

1. Thompson R. A., Moran J. M. and Swenson G. W. Jr.,
‘Interferometry & Synthesis in Radio Astronomy’, Wiley
Interscience.

2. Taylor G. B., Carilli C. L. and Perley R. A., ’Synthesis
Imaging in Radio Astronomy II’, ASP Conf. Ser. vol. 180.

3. Briggs D, ’High Fidelity Deconvolution of Moderately Re-
solved Sources’, Ph.D. Thesis, 1995, The New Maxico In-
stitute of Mining and Technology.
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Chapter 12

Deconvolution in Synthesis

Imaging — An Introduction

Rajaram Nityananda

12.1 Preliminaries

These lectures describe the two main tools used for deconvolu-
tion in the context of radio aperture synthesis. The focus is on
the basic issues, while other lectures at this school will deal
with aspects closer to the actual practice of deconvolution.
The practice is dominated by the descendants of a deceptively
simple-looking, beautiful idea proposed by J. Högbom (A&A
Suppl., 15, 417, 1974) which goes by the name of CLEAN.
About the same time, another, rather different and perhaps
less intuitive idea due to the physicist E.T. Jaynes was pro-
posed by J.G. Ables (A&A Suppl., 15, 383, 1974) for use in
astronomy. This goes by the name of the Maximum Entropy
Method, MEM for short. MEM took a long time to be accepted
as a practical tool and even today is probably viewed as an
exotic alternative to CLEAN. We will see, however, that there
are situations in which it is likely to do better, and even be
computationally faster. The goal of these lectures is to give

183
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enough background and motivation for new entrants to appre-
ciate both CLEAN and MEM and go deeper into the literature.

12.2 The Deconvolution Problem

12.2.1 Interferometric Measurements

An array like the GMRT measures the visibility function V (u, v)

along baselines which move along tracks in the u − v plane
as the earth rotates, For simplicity, let us assume that these
measurements have been transferred onto a discrete grid and
baselines are measured in units of the wavelength. The sky
brightness distribution I(l, m) in the field of view is a function
of l, m which are direction cosines of a unit vector to a point
on the celestial sphere referred to the u and v axes. The basic
relationship between the measured visibility function V and
the sky brightness I is a Fourier transform.

V (u, v) =

∫ ∫
I(l, m) exp(−2πi(lu+mv)) dl dm (12.2.1)

This expression also justifies the term “spatial frequency”
to describe the pair (u, v), since u and v play the same role as
frequency plays in representing time varying signals.
Many things have been left out in this expression, such as

the proper units, polarisation, the primary beam response of
the individual antennas, the non-coplanarity of the baselines,
the finite observing bandwidth, etc. But it is certainly nec-
essary to understand this simplified situation first, and the
details needed to achieve greater realism can be put in later.
Aperture synthesis, as originally conceived, involved filling

in the u − v plane without any gaps up to some maximum
baseline bmax which would determine the angular resolution.
Once one accepts this resolution limit, and writes down zeros
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for visibility values outside the measured circle, the Fourier
transform can be inverted. One is in the happy situation of
having as many equations as unknowns. A point source at
the field centre (which has constant visibility) would be recon-
structed as the Fourier transform of a uniformly filled circular
disk of diameter 2bmax. This is the famous Airy pattern with its
first zero at 1.22/(2bmax). The baseline b is already measured
in wavelengths, hence the missing λ in the numerator. But
even in this ideal situation, there are some problems. Given
an array element of diameter D (in wavelengths again!), the
region of sky of interest could even be larger than a circle
of angular diameter 2/D. A Fourier component describing a
fringe going through one cycle over this angle corresponds to
a baseline of D/2. But measuring such a short baseline would
put two dishes into collision, and even somewhat larger base-
lines than D run the risk of one dish shadowing the other. In
addition, the really lowest Fourier component corresponds to
(u, v) = (0, 0), the total flux in the primary beam. This too is
not usually measured in synthesis instruments. Thus, there
is an inevitable “short and zero spacings problem” even when
the rest of the u− v plane is well sampled.

12.2.2 Dirty Map and Dirty Beam

But the real situation is much worse. With the advent of the
Very Large Array (VLA), the majestic filling in of the u−v plane
with samples spaced at D/2 went out of style. If one divides
the field of view into pixels of size 1/(2bmax), then the total
number of such pixels (resolution elements) would be signifi-
cantly larger than the number of baselines actually measured
in most cases. This is clearly seen in plots of u − v coverage
which have conspicuous holes in them. The inverse Fourier
transform of the measured visibility is now hardly the true
map because of the missing data. But it still has a name - the
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“dirty map” ID. We define a sampling cum weighting function
W (u, v) which is zero where there are no measurements and
in the simplest case (called uniform weighting) is just unity
wherever there are measurements. So we can get our limited
visibility coverage by taking the true visibilities and multiply-
ing by W (u, v). This multiplication becomes a convolution in
the sky domain. The “true” map with full visibility coverage
is therefore convolved by the inverse Fourier transform of W
which goes by the name of the “dirty beam” BD(l, m), i.e.

ID(l, m) =

∫ ∫
I(l′, m′)BD(l − l′, m−m′) dl′ dm′ (12.2.2)

where

BD(l, m) ∝
∑

W (u, v) exp(+2πi(lu+mv))

For a patchy u−v coverage, which is typical of many synthe-
sis observations, BD has strong sidelobes and other undesir-
able features. This makes the dirty map difficult to interpret.
What one sees in one pixel has contributions from the sky
brightness in neighbouring and even not so neighbouring pix-
els. For the case of W = 1 within a disk of radius bmax we get
an Airy pattern as mentioned earlier. This is not such a dirty
beam after all, and could be cleaned up further by making the
weighting non-uniform, i.e. tapering the function W down to
zero near the edge |(u, v)| = bmax. For example, if this weighting
is approximated by a Gaussian, then the sky gets convolved
by its transform, another Gaussian. This dirty map is now
related to the true one in a reasonable way. But, as Ables
remarked, should one go to enormous expense to build and
measure the longest baseline and then multiply it by zero?
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12.2.3 The Need for Deconvolution

Clearly, there has to be a better way than just reweighting
the data to make the dirty beam look better, (and fatter, in-
cidentally, since one is suppressing high spatial frequencies),
But this better way has to play the dangerous game of inter-
polating (for short spacings and for gaps in the u − v plane)
and extrapolating (for values beyond the largest baseline) the
visibility function which was actually measured. The stan-
dard terminology is that the imaging problem is “underdeter-
mined” or “ill-posed” or “ill-conditioned”. It has fewer equa-
tions than unknowns. However respectable we try to make
it sound by this terminology, we are no better than someone
solving x+ y = 1 for both x and y! Clearly, some additional cri-
terion which selects one (or a few) solutions out of the infinite
number possible has to be used. The standard terminology
for this criterion is “apriori information”. The term “apriori”
was used by the philosopher Kant to describe things in the
mind that did not seem to need sensory input, and is hence
particularly appropriate here.

One general statement can be made. If one finds more than
one solution to a given deconvolution problem fitting a given
data set, then subtracting any two solutions should give a
function whose visibility has to vanish everywhere on the data
set. Such a brightness distribution, which contains only un-
measured spatial frequencies, is appropriately called an “in-
visible distribution”. Our extrapolation/interpolation problem
consists in finding the right invisible distribution to add to the
visible one!

One constraint often mentioned is the positivity of the bright-
ness of each pixel. To see how powerful this can be, take a sky
with just one point source at the field centre. The total flux
and two visibilities on baselines (D/2, 0), (0, D/2) suffice to pin
down the map completely. The only possible value for all the
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remaining visibilities is equal to these numbers, which are
themselves equal. One cannot add any invisible distribution
to this because it is bound to go negative somewhere in the
vast empty spaces around our source. But this is an extreme
case. The power of positivity diminishes as the field gets filled
with emission.
Another interesting case is when the emission is known to

be confined to a window in the map plane. Define a function
w(l, m) = 1 inside the window and zero outside. Let w̃(u, v)
be its Fourier transform. Multiplying the map by w makes no
difference. In Fourier space, this condition is quite non-trivial,
viz. V (u, v) = V (u, v) ∗ w̃(u, v). Notice how the convolution on
the right transfers information from measured to unmeasured
parts of the u− v plane, and couples them.

12.3 CLEAN

12.3.1 The Högbom Algorithm

Consider a sky containing only isolated point sources. In the
dirty map, each appears as a copy of the dirty beam, cen-
tred on the source position and scaled by its strength. How-
ever, the maxima in the map do not strictly correspond to
the source positions, because each maximum is corrupted
by the sidelobes of the others, which could shift it and al-
ter its strength. The least corrupted, and most corrupting,
source is the strongest. Why not take the largest local maxi-
mum of the dirty map as a good indicator of its location and
strength? And why not subtract a dirty beam of the appropri-
ate strength to remove to a great extent the bad effects of this
strongest source on the others? The new maximum after the
subtraction now has a similar role. At every stage, one writes
down the co-ordinates and strengths of the point sources one
is postulating to explain the dirty map. If all goes well, then at
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some stage nothing (or rather just the inevitable instrumen-
tal noise) would be left behind. We would have a collection of
point sources, the so called CLEAN components, which when
convolved with the dirty beam give the dirty map.
One could exhibit this collection of point sources as the so-

lution to the deconvolution problem, but this would be arro-
gant, since one has only finite resolution. As a final gesture of
modesty, one replaces each point source by (say) a Gaussian,
a so called “CLEAN” beam, and asserts that the sky bright-
ness, convolved with this beam, has been found.

This strategy, which seems so reasonable today, was a real
breakthrough in 1974 when proposed by J. Högbom. Sud-
denly, one did not have to live with sidelobes caused by incom-
plete u − v coverage. In fact, the planning for new telescopes
like the VLA must have taken this into account- one was no
longer afraid of holes.

12.3.2 The Behaviour of CLEAN

With hindsight, one can say that the initial successes were
also due to the simplicity of the sources mapped. It is now
clear that one should not be applying this method to an ex-
tended source which covered several times the resolution limit
(the width of the central peak of the dirty beam). Such a
source could have a broad, gentle maximum in the dirty map,
and subtracting a narrow dirty beam at this point would gen-
erate images of the sidelobes with the opposite sign. This
would generate new maxima where new CLEAN components
would be placed by the algorithm, and things could go unsta-
ble. One precaution which certainly helps is the “gain factor”
(actually a loss factor since it is less than one). After finding a
maximum, one does not subtract the full value but a fraction g
typically 0.2 or less. In simple cases, this would just make the
algorithm slower but not change the solution. But this step
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actually helps when sources are more complex. One is being
conservative in not fully believing the sources found initially.
This gives the algorithm a chance to change its mind and look
for sources elsewhere. If this sounds like a description of ani-
mal behaviour, the impression being conveyed is correct. Our
understanding of CLEAN is largely a series of empirical obser-
vations and thumb rules, with common sense rationalisations
after the fact, but no real mathematical theory. One exception
is the work of Schwarz (A&A, 65, 345, 1978) which interpreted
each CLEAN subtraction as a least squares fit of the current
dirty map to a single point source. This is interesting but
not enough. CLEAN carries out this subtraction sequentially,
and that too with a gain factor. In principle, each value of the
gain factor could lead to a different solution, i.e a different col-
lection of CLEAN components, in the realistic case when the
number of u − v points is less than the number of resolution
elements in the map. So what are we to make of the practical
successes of CLEAN? Simply that in those cases, the patch of
the sky being imaged had a large enough empty portion that
the real number of CLEAN components needed was smaller
than the number of data points available in the u − v plane.
Under such conditions, one could believe that the solution is
unique. Current implementations of CLEAN allow the user
to define “windows” in the map so that one does not look for
CLEAN components outside them. But when a large portion
of the field of view has some nonzero brightness, there are in-
deed problems with CLEAN. The maps show spurious stripes
whose separation is related to unmeasured spatial frequen-
cies (that’s how one deduces they are spurious). One should
think of this as a wrong choice of invisible distribution which
CLEAN has made. Various modifications of CLEAN have been
devised to cope with this, but the fairest conclusion is that the
algorithm was never meant for extended structure. Given that
it began with isolated point sources it has done remarkably
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well in other circumstances.

12.3.3 Beyond CLEAN

Apart from the difficulties with extended sources, CLEAN as
described above is an inherently slow procedure. If N is the
number of pixels, subtracting a single source needs of the or-
der of N operations. This seems a waste when this subtrac-
tion is a provisional, intermediate step anyway! B.G. Clark
had the insight of devising a faster version, which operates
with a truncated dirty beam, but only on those maxima in the
map strong enough that the far, weak sidelobes make little
difference. Once these sources have been identified by this
rough CLEAN (called a “minor cycle”), they are subtracted to-
gether from the full map using a fast fourier transform (FFT)
for the convolution, which takes only N logN operations. This
is called the “major cycle”. The new residual map now has a
new definition of “strong” and the minor cycle is repeated.

A more daring variant, due to Steer, Dewdney, and Ito,
(hence SDI CLEAN) carries out the minor cycle by simply iden-
tifying high enough maxima, without even using CLEAN, which
is kept for the major cycle. Other efforts to cope with extended
sources go under the name of “multiresolution CLEAN”. One
could start with the inner part of the u − v plane and do a
CLEAN with the appropriate, broader dirty beam. The large
scale structure thus subtracted will hopefully now not spoil
the next stage of CLEAN at a higher resolution, i.e using more
of the u− v plane.
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12.4 Maximum Entropy

12.4.1 Bayesian Statistical Inference

This method, or class of methods, is easy to describe in the
framework of an approach to statistical inference (i.e all of ex-
perimental science?) which is more than two hundred years
old, dating from 1763! Bayes Theorem about conditional prob-
abilities states that

P (A|B)P (B) = P (B|A)P (A) = P (A,B) (12.4.3)

As a theorem, it is an easy consequence of the definitions of
joint probabilities (denoted by P (A,B)), conditional probabili-
ties (denoted by P (A|B)) and marginal or unconditional prob-
abilities (denoted by P (A)). In words, one could say that the
fraction of trials A and B both happen (P (A,B)) is the product
of (i) the fraction of trials in which A happens (P (A)) irrespec-
tive of B, and (ii) the further fraction of A-occurrences which
are also B-occurrences (P (B|A)). The other form for P (A|B)

follows by interchanging the roles of A and B.
The theorem acquires its application to statistical inference

when we think of A as a hypothesis which is being tested by
measuring some data B. In real life, with noisy and incomplete
data, we never have the luxury of measuring A directly, but
only something depending on it in a non-unique fashion. If we
understand this dependence, i.e understand our experiment,
we know P (B|A). If only, (and this is a big IF!), someone gave
us P (A), then we would be able to compute the dependence of
P (A|B) on A from Bayes theorem.

P (A|B) = P (B|A)P (A)/P (B) (12.4.4)

Going from P (B|A) to P (A|B) may not seem to be a big step
for a man, but it is a giant step for mankind. It now tells us the
probability of different hypotheses A being true based on the



12.4. MAXIMUM ENTROPY 193

given data B. Remember, this is the real world. More than one
hypothesis is consistent with a given set of data, so the best we
can do is narrow down the possibilities. (If “hypothesis” seems
too abstract, think of it as a set of numbers which occur as
parameters in a given model of the real world).

12.4.2 MEM Images

Descending now from the sublime to aperture synthesis, think
of A as the true map and B as the dirty map, or equivalently its
Fourier transform, the set of measured visibilities. We usually
want a single map, not a probability distribution of A. So we
need the further step of maximising P (A|B) with respect to A.
All this is possible if P (A) is available for a given true map
I(l, m). One choice, advocated by Gull and Daniell in 1978,
was to take

logP ({I(l, m)}) ∝ −
∫ ∫

I(l, m) ln I(l, m) dl dm (12.4.5)

The curly brackets around I on the left side are meant to
remind us that the entropy is a single number computed from
the entire information about the brightness, i.e the whole set
of pixel values. Physicists will note that this expression seems
inspired by Boltzmann’s formula for entropy in statistical me-
chanics, and communication engineers will see the influence
of Shannon’s concept of information. It was E.T. Jaynes writ-
ing in the Physical Review of 1957 who saw a vision of a uni-
fied scheme into which physics, communication theory, and
statistical inference would fall (with the last being the most
fundamental!). In any case, the term “entropy” for the loga-
rithm of the prior distribution of pixel values has stuck. One
can see that if the only data given was the total flux, then the
entropy as defined above is a maximum when the flux is dis-
tributed uniformly over the pixels. This is for the same reason
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that the Boltzmann entropy is maximised when a gas fills a
container uniformly. This is the basis for the oft-heard re-
mark that MEM produces the flattest or most featureless map
consistent with the data - a statement we will see requires
some qualification. But if one does not want this feature, a
modified entropy function which is the integral over the map
of −I ln(I/Id) is defined. Id(l, m) is called a “default image”.
One can now check that if only total flux is given the entropy
is a maximum for I ∝ Id.

The selection of a prior is, in my view, the weakest part
of Bayesian inference, so we will sidestep the debate on the
correct choice. Rather, let us view the situation as an oppor-
tunity, a license to explore the consequences of different pri-
ors on the “true” maps which emerge. This is easily done by
simulation – take a plausible map, Fourier transform, sample
with a function W so that some information is now missing,
and use your favourite prior and maximise “entropy” to get a
candidate for the true map. It is this kind of study which was
responsible for the great initial interest in MEM. Briefly, what
MEM seemed to do in simple cases was to eliminate the side-
lobes and even resolve pairs of peaks which overlapped in the
true map, i.e it was sometimes “better” than the original! This
last feature is called superresolution, and we will not discuss
this in the same spirit of modesty that prompted us to use a
CLEAN beam. Unlike CLEAN, MEM did not seem to have a se-
rious problem with extended structure, unless it had a sharp
edge (like the image of a planet). In this last case, it was found
that MEM actually enhanced the ripples near the edge which
were sitting at high brightness levels; though it controlled the
ripples which were close to zero intensity. This is perhaps not
surprising if one looks at the graph of the function = I ln I.
There is much more to be gained by removing ripples near
I = 0 than at higher values of I, since the derivative of the
function is higher near I = 0.
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Fortunately, these empirical studies of the MEM can be
backed up by an analytical/graphical argument due to Ramesh
Narayan, which is outlined below. The full consequences of
this viewpoint were developed in a review article (ARAA, 24,
127, 1986), so they will not be elaborated here, but the basic
reasoning is simple and short enough. Take the expression
for the entropy, and differentiate it with respect to the free pa-
rameters at our disposal, namely the unmeasured visibilities,
and set to zero for maximisation. The derivative of the entropy
taken with respect to a visibility V (u′, v′) is denoted byM(u′, v′).
The understanding is that u′, v′ have not been measured. The
condition for a maximum is

M(u′, v′) =

∫ ∫
(−1 − ln(I(l, m)) exp(+2πi(lu′ +mv′) dl dm = 0

(12.4.6)

This can be interpreted as follows. The logarithm of the
brightness is like a dirty map, i.e it has no power at unmea-
sured baselines, and hence has sidelobes etc. But the bright-
ness I itself is the exponential of this “bandlimited function”
(i.e one with limited spatial frequency content). Note first of all
that the positivity constraint is nicely implemented– exponen-
tials are positive. Since the exponential varies rather slowly
at small values of I, the ripples in the “baseline” region be-
tween the peaks are suppressed. Conversely, the peaks are
sharpened by the steep rise of the exponential function at
larger values of I. One could even take the extreme point
of view that the MEM stands unmasked as a model fitting
procedure with sufficient flexibility to handle the cases usu-
ally encountered. Högbom and Subrahmanya independently
emphasised very early that the entropy is just a penalty func-
tion which encourages desirable behaviour and punishes bad
features in the map (IAU Colloq., 49, 1978). Subrahmanya’s
early work on the deconvolution of lunar occultation records
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at Ooty (TIFR thesis, 1977) was indeed based on such penal-
ties.

More properties of the MEM solution are given in the refer-
ences cited earlier. But one can immediately see that taking
the exponential of a function with only a limited range of spa-
tial frequencies (those present in the dirty beam) is going to
generate all spatial frequencies, i.e., one is extrapolating and
interpolating in the u− v plane. It is also clear that the fitting
is a non-linear operation because of the exponential. Adding
two data sets and obtaining the MEM solution will not give the
same answer as finding the MEM solution for each separately
and adding later! A little thought shows that this is equally
true of CLEAN.

If one has a default image Id in the definition of the entropy
function, then the same algebra shows that I/Id is the expo-
nential of a bandlimited function. This could be desirable. For
example, while imaging a planet, if the sharp edge is put into
Id, then the MEM does not have to do so much work in gen-
erating new spatial frequencies in the ratio I/Id. The spirit is
similar to using a window to help CLEAN find sources in the
right place.

12.4.3 Noise and Residuals

The discussion so far has made no reference to noise in the
interferometric measurements. But this can readily be ac-
commodated in the Bayesian framework. One now treats the
measurements not as constraints but as having a Gaussian
distribution around the “true” value which the real sky would
Fourier transform to. Thus the first factor P (B|A) on the right
hand side of Bayes theorem would now read
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P (B|A) =
∏

exp(−(

∫ ∫
I(l, m)exp(−2πi(lu+mv)) dl dm−Vm(u, v)|2/2σ2

u,v

(12.4.7)

The product is over measured values of u, v. A nice feature
of the Gaussian distribution is that when we take its loga-
rithm, we get the sum of the squares of the residuals between
the model predictions (the integral above) and the measure-
ments Vm(u, v) – also known as “chi-squared” or χ2. The log-
arithm of the prior is of course the entropy factor. So, in
practice, we end up maximising a linear combination of the
entropy and χ2, the latter with a negative coefficient. This is
exactly what one would have done, using the method of La-
grange multipliers, if we were maximising entropy subject to
the constraint that the residuals should have the right size,
predicted by our knowledge of the noise.

All is not well with this recipe for handling the noise. The
discrepancy between the measured data and the model pre-
dictions can be thought of as a residual vector in a multidi-
mensional data space. We have forced the length to be right,
but what about the direction? True residuals should be ran-
dom, i.e the residual vector should be uniformly distributed
on the sphere of constant χ2. But since we are maximising en-
tropy on this sphere, there will be a bias towards that direction
which points along the gradient of the entropy function. This
shows in the maps as a systematic deviation tending to lower
the peaks and raise the “baseline” i.e the parts of the image
near zero I. To lowest order, this can be rectified by adding
back the residual vector found by the algorithm. This does
not take care of the invisible distribution which the MEM has
produced from the residuals, but is the best we can do. Even
in the practice of CLEAN, residuals are added back for similar
reasons.

The term “bias” is used by statisticians to describe the fol-
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lowing phenomenon. We estimate some quantity, and even
after taking a large number of trials its average is not the
noise-free value. The noise has got “rectified” by the non-
linear algorithm and shows itself as a systematic error. There
are suggestions for controlling this bias by imposing the right
distribution and spatial correlations of residuals. These are
likely to be algorithmically complex but deserve exploration.
They could still leave one with some subtle bias since one can-
not really solve for noise. But to a follower of Bayes, bias is not
necessarily a bad thing. What is a prior but an expression of
prejudice? Perhaps the only way to avoid bias is to stop with
publishing a list of the measured visibility values with their
errors. Perhaps the only truly open mind is an empty mind!

12.5 Further Reading
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Chapter 13

Spectral Line Observations

K. S. Dwarakanath RRI

This chapter is intended as an introduction to spectral line
observations at radio wavelengths. While an attempt will be
made to put together most of the relevant details, it is not
intended to be an exhaustive guide to spectral line observa-
tions but instead focuses more on the basics of spectral line
observations, keeping in mind synthesis arrays like the Giant
Meterwave Radio Telescope (GMRT).

13.1 Spectral Lines

Spectral lines originate under a variety of circumstances in
astronomy. The most ubiquitous element in the universe, the
Hydrogen atom, gives rise to the 21cm line (ν ∼ 1420.405
MHz) due to a transition between the hyperfine levels of its
ground state. If the Hydrogen atom is ionized, subsequent
recombinations of electrons and protons lead to a series of
recombination lines of the Hydrogen atom. It is easy to see
that such transitions between higher Rydberg levels give rise
to spectral lines at radio wavelengths. Transitions around Ry-
dberg levels of 280, for e.g., give rise to recombination lines at

199
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ν ∼ 300 MHz. In cold (kinetic temperature ∼ 100 K), and dense
(∼ 1000 cm−3) environments Hydrogen atoms form molecules.
The CO molecule which has been used as a tracer of molecular
Hydrogen has a rotational transition at ν ∼ 115 GHz. These
are a few illustrative examples.

The widths of spectral lines arise due to different mecha-
nisms. One such is the Doppler effect. The particles in a gas
have random motions corresponding to the kinetic tempera-
ture of the gas. The observed frequency of the line is thus
different from the rest frequency emitted by the particles. In
a collision-dominated system, the number density of particles
as a function of velocity is expected to be a Maxwellian dis-
tribution. The width of this distribution will result in a cor-
responding broadening of the observed spectral line due to
Doppler Effect. This width, arising due to the temperature of
the gas, is called thermal broadening. In addition to the ther-
mal motion of the particles, there can also be turbulent veloc-
ities associated with macroscopic gas motions. These motions
are often accounted for by an effective Doppler width, which
includes both thermal and turbulent broadening, assuming
a Gaussian distribution for the turbulent velocities also. An-
other mechanism which can contribute to the line width is
pressure broadening. This arises due to collisions and is
particularly relevant in high density environments and/or for
lines arising through transitions between high Rydberg levels.
In addition, there is always a natural width to the spectral
line imposed by the uncertainty principle, but it is almost al-
ways overwhelmed by that due to the mechanisms mentioned
earlier.

An observed spectral feature can be much wider than that
expected on the basis of the above mentioned mechanisms.
This is usually due to systematic motion of the gas responsible
for the spectral feature like, for e.g., rotation of a gas cloud,
expansion of a gas cloud, differential rotation of a galaxy, etc.
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13.2 Rest Frequency and Observing Frequency

The rest frequency of a spectral line of interest can be calcu-
lated if it is not already tabulated. The apparent frequency (or,
the observing frequency), however, needs to be calculated for
each source since it depends on the relative velocity between
the source and the observer. The observed frequency (νo) of a
given transition is related to the rest frequency of the line (νl)
and the radial velocity of the source w.r.t the observer (vr) as
(νl − νo)=νovr/c, where, c is the velocity of light. This relation
is valid for vr ≪ c, and θ ≪ π/2, where θ is the angle between
the velocity vector and the radiation wave vector. The radial
velocity is positive if the motion is away from the observer and
the observed frequency is smaller than the rest frequency of
the line. In this situation, the line is redshifted. If the veloc-
ity (vr) is known, the observing frequency can be calculated.
While dealing with extragalactic systems, one quotes the red-
shift rather than the radial velocity. The redshift (z) is related
to the rest and observed frequencies as z = (νl − νo)/νo and
approximates to vr/c for vr ≪ c.
It is more useful, and common to define velocities with re-

spect to the local standard of rest than with respect to an ar-
bitrary frame of reference. This transformation takes into ac-
count the radial velocity corrections due to the rotation of the
earth about its own axis, the revolution of the earth around
the Sun, and the motion of the Sun with respect to the lo-
cal group of stars. The magnitudes of these corrections are
within ∼ 1 km s−1, 30 km s−1, and 20 km s−1 respectively. The
actual value of the total correction depends on the equato-
rial co-ordinates of the source, the ecliptic co-ordinates of the
source, the longitude of the Sun, the hour angle of the source
and the geocentric latitude of the observer.

In principle, the apparent frequency of a spectral line from
a source is always changing due to the change in the radial
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velocity between the source and the observer. In a given ob-
serving session during a day the source can be observed from
rise to set. During this period, the radial component of the
velocity between the source and the earth due to the rota-
tion of the earth can (in an extreme case) change from -0.465
to +0.465 km s−1. Consider observing a narrow spectral line
(width ∼ 0.5 km s−1) from this source using a spectral resolu-
tion ∼ 0.1 km s−1. If no extra precautions are taken, the peak
of the spectral line will appear to slowly drift across the chan-
nels during the course of the day. This drift, if not accounted
for, will decrease the signal-to-noise ratio of the line, and in-
crease its observed width in the time-averaged spectrum. De-
pending on the circumstances, this can completely wash out
the spectral line. In order to overcome this, the continuous
change in the apparent frequency is to be corrected for during
an observing session so that the spectral line does not drift
across frequency but stays in the same channels. This pro-
cess of correction is known as Doppler Tracking. I would like
to emphasize that this is important if one is observing narrow
lines with high spectral resolution and that there is a signifi-
cant change in the sight-line component of the earth’s rotation
during the observing session.

13.3 Setting the Observing Frequency and the

Bandwidth

Once the apparent frequency νo of the transition of interest is
known, the Local Oscillator (LO) frequencies can be tuned to
select this frequency for observations. In general, there can
be more than one LO that need to be tuned. Consider the sit-
uation at the GMRT1. The First LO (νILO) can be chosen such
that νILO = νo ± νIF , where, νIF is the Intermediate Frequency

1For more details on the LO system see Chapter 23
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(IF). The First LO can be tuned in steps of 5 MHz at frequen-
cies above 350 MHz, and in steps of 1 MHz below that. The IF
is 70 MHz. The IF bandwidth (δνIF ) can be chosen from one
of 6, 16, and 32 MHz. Thus, the output of the first mixer will
be over a frequency range of νIF ± δνIF/2. The baseband LO
(νBBLO) can be tuned in the range of 50 to 90 MHz in steps
of 100 Hz to bring the IF down to the baseband. The band-
width of the baseband filter (δνBB) can be chosen from 62.5
KHz to 16 MHz in steps of 2. The bands from −δνBB/2 to
0, and from 0 to δνBB/2, which are the lower, and the upper
sidebands respectively, will be processed separately. The FX
Correlator at the GMRT will produce 128 spectral channels (0
– 127) covering each of these bands. The 0th channel corre-
sponds to a frequency of νo + νBBLO − νIF and the frequency
increases with channel number in the USB spectrum and de-
creases with channel number in the LSB spectrum.

While setting the LO frequencies one needs to make sure
that (a) the desired LO frequency is in the allowed range and
that the oscillator is ′locked′ to a stable reference, and, (b) that
the required power output is available from the oscillator. The
choice of the baseband filter bandwidth depends on the ve-
locity resolution and the velocity coverage required for a given
observation. In addition, it is preferable to have as many line-
free channels in the band as there are channels with the line
in order to be able to obtain a good estimate of the observed
baseline (or reference spectrum). One would also like to center
the spectral feature within the observed band so that line-free
channels on either side can be used to estimate the baseline.
The velocity resolution should be at least a factor of two better
than the full width at half maximum of the narrowest feature
one is expecting to detect.

At present, the FX Correlator at the GMRT produces 128
channels per sideband for each of the two polarizations for a
total bandwidth of 32 MHz. For bandwidths of 16 MHz and
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smaller one could have up to 256 channels per polarization
(see Chapters 25 & 26 for more details).

13.4 Calibration

The observed spectrum has to be corrected for the telescope
response as a function of frequency across the band to obtain
an estimate of the true spectrum. The telescope response is
in general complex with both amplitude and phase variations
across the observing band. This overall response across the
band can be split into two components : (1) an overall gain
(amplitude and phase) of the telescope for a reference radio
frequency (RF) within the observing band and (2) a variation
of this gain across channels (the bandshape). The telescope
response is thus a combination of RF gain calibration and IF
bandshape calibration. This way of looking at the telescope
calibration is useful since the requirements for determining
these two parts of the telescope response can be different. For
e.g., the IF bandshape variation is expected to be slower in
time than the RF gain variation and hence need to be esti-
mated less often. The spectral scale for the IF bandshape is
however narrower compared to that of the RF gain.

13.4.1 Gain Calibration

This is usually achieved by observing a bright, unresolved
source which is called a calibrator. In the case of a synthesis
array like, for e.g., the GMRT, the gain calibration amounts
to estimating the gains of the individual antennas in the ar-
ray. The gains of any given pair of antennas reflect in the
visibility (or the cross correlation) of the calibrator measured
by them. In an array with N antennas, there are N(N-1)/2
independent estimates of the calibrator (an unresolved bright
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source) visibility at any give instant of time. However, there
are only 2N unknowns, viz., N amplitudes and N phases of
the N antennas. Hence, the measured visibilities can be used
in a set of simultaneous equations to solve for these 2N un-
knowns. In practice, a calibrator close (in direction) to the
source is observed for a suitable length of time using the same
setup as that for the spectral line observations towards the
source. A suitable number of spectral channels are averaged
to improve the signal-to-noise ratio on the calibrator which
is then used to estimate the gains of the antennas. Apart
from the instrumental part, the gains include atmospheric
offsets/contributions also. The proximity of the calibrator to
the source ensures that the atmospheric offsets/contributions
are similar in both observations and hence get corrected for
through the calibration process.

How often does one do the calibration depends on various
factors, like for e.g., the observing frequency, the length of
the baseline involved, the telescope characteristics, the time
scale for variations in the atmospheric offsets/contributions,
etc. The frequency of calibration could vary from once in ∼ 10
minutes to once in an hour depending on these factors.

13.4.2 Bandshape Calibration

In this case too, a bright, unresolved source is used as a cal-
ibrator but the nearness requirement (as in the gain calibra-
tion) is not essential. On the other hand, the calibrator should
not have any spectral features in the band of interest. The
measured visibilities from the calibrator across the band of
interest can once again (like in the earlier gain calibration)
be used to estimate the antenna bandshapes. The observed
spectrum from the source is divided by the bandshapes to ob-
tain the true spectrum. The bandshape should have a signal-
to-noise ratio (SNR) significantly greater than that of the ob-
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served spectrum so that the SNR in the corrected spectrum
is not degraded. For e.g., if the bandshape and the observed
spectrum have equal SNR, then the corrected spectrum will
have an SNR which is

√
2 worse (assuming Gaussian statistics

of noise). Ideally, one wouldn’t want the corrected spectrum
to degrade in its SNR by more than ∼ 10%. This can be used
as a criterion to judge if a given calibrator is bright enough
and to decide the amount of integration time required for the
source and for the calibrator.
There are two methods of bandshape calibration.

1. Position Switching In this method, the telescope cycles
through the source and a bandshape calibrator but ob-
serving both at the same frequency and bandwidth. De-
pending on the accuracy to which the corrected band-
shape is required, and the stability of the receiver, the
frequency of bandshape calibration can vary from once in
∼20 minutes to once in a few hours.

2. Frequency Switching There are situations when position
switching is not a suitable scheme to do the bandshape
calibration. This can happen due to (at least) two reasons:
(a) the band of interest covers the Galactic HI. In this sit-
uation, all calibrators will also have some spectral feature
within this band due to the ubiquitous presence of Galac-
tic HI. No calibrator is suitable for bandshape calibration.
(b) The band is outside the Galactic HI but the source of
interest is a bright unresolved source. In this case one
might end up observing any other calibrator much longer
(∼ 10 times) than the source in order to achieve the de-
sired signal-to-noise ratio on the bandshape. In either of
these situations position switching is not desirable. An
alternative scheme is employed.

If a spectral feature covers a bandwidth of δν centered at
ν, quite often it is possible to find line-free regions in the
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bands centered at ν ± δν. The bandshapes at these ad-
jacent frequencies can be used to calibrate the observed
spectrum. This works well because the bandshape is
largely decided by the narrowest band in the signal path
through the telescope. This is usually decided by the
baseband filter. The bandwidth of this filter is selected
to be the same while observing at frequencies ν − δν, ν,
and ν + δν. It is important to keep in mind that frequency
switching works as long as δν is small compared with the
bandwidth of the front-end devices, and feeds. This is
usually the case. For e.g., at the GMRT, the 21-cm feeds
have a wide-band response, over 500 MHz. This is divided
into 4 sub-bands each of 120 MHz width. If the amount by
which the frequency is switched is small compared to 120
MHz this technique should work quite satisfactorily. A
typical frequency switching observation would thus have
an “off1”, “on”, and an “off2” setting. The “on” setting cen-
ters the band at the spectral feature of interest (at ν) with
a bandwidth of δν while the “off1” and “off2” settings will
be centered at ν−δν and ν+δν respectively. The three set-
tings will be cycled through with appropriate integration
times. The average of the “off1” and “off2” bandshapes
can be the effective bandshape to calibrate the “on” spec-
trum. In this situation, equal amounts of time are spent
“off” the line and “on” the line to achieve the optimum SNR
in the final spectrum. However, the switching frequency
itself will depend on the receiver stability and the flatness
of the corrected bandshape required. This could vary from
once in ∼20 minutes to once in a few hours.
There are situations when one might want to do both fre-

quency and position switching. If one is observing Galactic HI
absorption towards a weak continuum source, it is advanta-
geous to obtain bandshape calibration by observing a brighter
continuum source with frequency switching.
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13.5 Smoothing

The cross power spectrum is obtained by measuring the cor-
relation of signals from different antennas as a function of
time offset between them. A spectrum with a bandwidth δν

and N channels is produced by cross correlating signals sam-
pled at interval of τ with relative time offset in the range –Nτ
to (N-1)τ , where τ = 1/(2δν). Because of this truncation in
the offset time range amounting to a rectangular window, the
resulting spectrum is equivalent to convolving the true spec-
trum by a sinc function. Thus, a delta function in frequency
(a narrow spectral line, for e.g.) will result in an appropri-
ately shifted sin(Nπν/δν)/(Nπν/δν) pattern, where δν/N is the
channel separation. The full width at half maximum of the sinc
function is 1.2δν/N. This is the effective resolution. Any sharp
edge in the spectrum will result in an oscillating function of
this form. This is called the Gibbs’ phenomenon. There are
different smoothing functions that bring down this unwanted
ringing, but at the cost of spectral resolution. One of the com-
monly used smoothing functions in radio astronomy is that
due to Hanning weighting of the correlation function. This
smoothing reduces the first sidelobe from 22% (for the Sinc
function) to 2.7%. The effective resolution will be 2δν/N. Af-
ter such a smoothing, one retains only the alternate channels.
For Nyquist sampled data, the Hanning smoothing is achieved
by replacing every sample by the sum of one half of its original
value and one quarter the original values at the two adjacent
positions.

Apart from Hanning smoothing which is required to reduce
the ringing, additional smoothing of the spectra might be de-
sirable. The basic point being that a spectral line of given
width will have the best signal-to-noise ratio when observed
with a spectral resolution that matches its width. This is the
concept of matched-filtering and is particularly important in
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detection experiments.

13.6 Continuum Subtraction

Quite often spectral line observations include continuum flux
density present in the band. The continuum in the band can
arise due to a variety of reasons. Ionized Hydrogen regions,
for e.g., give rise to the radio recombination lines of Hydro-
gen due to bound-bound transitions and the radio continuum
due to thermal bremsstrahlung. Galaxies can have strong
non-thermal radio continuum as well as 21cm line emission
and/or absorption. In addition, any absorption spectral line
experiment involves a bright continuum background source.
In these and similar situations, detecting a weak spectral line
in the presence of strong continuum contribution can be very
difficult. Depending on the complexity of the angular distri-
bution of the continuum flux density and that of the spectral
feature this task might almost become impossible.

The basic problem here is one of spectral dynamic range
(SDR). The spectral dynamic range is the ratio of the weak-
est spectral feature that can be detected to the continuum
flux density in the band. This is limited by the residual er-
rors which arise due to a variety of reasons like, for e.g., the
instrumental variations, the atmospheric gain changes, the
deconvolution errors, etc.. Of these, the multiplicative errors
limit the SDR depending on the continuum flux density in the
band. Thus, if the multiplicative errors are at 1% level, and, if
the continuum flux density in the band is 10 Jy, no spectral
line detection is possible below 100 mJy. On the other hand,
a continuum subtraction (if successful) will lead to a situa-
tion where the SDR is decided by the peak spectral line flux
density rather than the continuum flux density. Apart from
the continuum flux density any other systematics which have
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a constant value or a linear variation across frequency will
be subtracted out in the continuum subtraction procedure.
This can lead to improvements in the SDR by several orders
of magnitude.

There are several methods for subtracting the continuum
flux density from a spectral line data. It is beyond the scope
of this lecture to discuss all of these. A brief mention will be
made of one of these simpler methods to illustrate some of
the principles involved. In this method, which has been called
′visibility-based subtraction′, a linear fit to the visibilities as a
function of frequency is performed for every sample in time.
This best-fit continuum can then be subtracted from the origi-
nal visibilities. The resulting data can be Fourier transformed
to produce continuum-free images. This method works quite
well if the continuum emission is spread over a sufficiently
small field of view. This limitation can be understood in the
following way. Consider a two-element interferometer sepa-
rated by d. Let each of the elements of the interferometer be
pointing towards θ0 which is also the fringe tracking (phase
tracking) center. The phase difference between θ0, and an an-
gle θ close to this, is φ = 2πνd(sin(θ) − sin(θ0))/c, where ν is
the observing frequency, and c is the velocity of light. For
the present purpose of illustration, assume that θ is in the
plane containing the pointing direction (θ0) and d. The vis-
ibilities from a source at θ will have the form Aνcos(φ) and
Aνsin(φ), where Aν is the amplitude of the source at ν. Writ-
ing ν = ν0 + δν, and θ = θ0 + δθ, where ν0 is the frequency of
the center of the band, it can be shown that the frequency-
dependent part of the phase is φν = 2πδνdcos(θ0)δθ/ν0λ0, where
c = ν0λ0. It is easy to see that the variation of visibilities as
a function of frequency is linear if φ ≪ 2π. This implies that
δνδθ/(ν0θsyn) ≪ 1, where θsyn = λ0/d. Thus, this method of con-
tinuum subtraction works if most of the continuum is within
ν0/δν synthesized beams from the phase tracking center.
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13.7 Line Profiles

If the line width is greater than the spectral resolution one can
discuss the variation of the intensity of the line as a function
of frequency. This description, called the line profile, can be
denoted by φ(ν). If the reason for the line width is thermal
broadening or turbulent broadening, the line profile will have
a Gaussian profile such that φ(ν) ∝ e−(ν−νl)

2/(δν)2, where νl is
the frequency at the line center and δν is the rms value of
the Gaussian. The width of the line refers to the full-width at
half-maximum and is equal to ∼ 2.35 δν. The observed width
of the line (δνo) and the true width of the line (δνl) are related by
δν2

o = δν2
l + δν2

r , where δνr is the width of each channel (spectral
resolution). This simple relation is strictly true only when the
spectral channels have a Gaussian response. In addition, this
is relevant if the widths of the spectral line and the spectral
channel are comparable.
Pressure broadened lines show Voigt profiles. This will have

a Doppler (Gaussian) profile in the center of the line whereas
the wings are dominated by the Lorentz profile. Obviously
an analysis of the line profile is crucial in understanding the
physical conditions of the system producing the spectral line.

Acknowledgments: I would like to thank A. A. Deshpande
for a critical reading of the manuscript and for useful com-
ments to improve its clarity.
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Chapter 14

Wide Field Imaging

Sanjay Bhatnagar

14.1 Introduction

It has been shown in Chapter 2 that the visibility measured
by the interferometer, ignoring the phase rotation, is given by

V (u, v, w) =

∫ ∫
I(l, m)B(l, m)e−2πi(ul+vm+w(

√
1−l2−m2)) dldm√

1 − l2 −m2

(14.1.1)
where (u, v, w) defines the co-ordinate system of antenna spac-
ings, (l, m, n) defines the direction cosines in the (u, v, w) co-
ordinates system, I is the source brightness distribution (the
image) and B is the far field antenna reception pattern. For
further analysis we will assume B = 1, and drop it from all
equations (for typing convenience1!)
Eq 14.1.1 is not a Fourier transform relation. For a small

field of view (l2 +m2 << 1) the above equation however can be
approximated well by a 2D Fourier transform relation. The
other case in which this is an exact 2D Fourier transform re-
lation is when the antennas are arranged in a perfect East-

1The same assumption has been made in Chapter 2
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West line. However often array configurations are designed
to maximize the uv-coverage and the antennas are arranged
in a ‘Y ’ shaped configuration. Hence, Eq 14.1.1 needs to be
used to map full primary beam of the antennas, particularly
at low frequencies. Eq 14.1.1 reduces to a 2D relation also for
non-EW arrays if the time of observations is sufficiently small
(snapshot observations).
In the first part of this chapter we will discuss the implica-

tions of approximating Eq 14.1.1 by a 2D Fourier transform
relation and techniques to recover the 2D sky brightness dis-
tribution.
The field of view of a telescope is limited by the primary

beams of the antennas. To map a region of sky where the
emission is at a scale larger than the angular width of the
primary beams, mosaicing needs to be done. This is discussed
in the second part of this lecture.

14.2 Mapping with Non Co-planar Arrays

14.2.1 Image Volume

Let n =
√

1 − l2 −m2 be treated as an independent variable.
Then one can write a 3D Fourier transform of V (u, v, w) with
the conjugate variable for (u, v, w) being (l, m, n), as

F (l, m, n) =

∫ ∫ ∫
V (u, v, w)e2πi(ul+vm+wn)dudvdw (14.2.2)

Substituting for V (u, v, w) from Eq 14.1.1 we get

F (l, m, n) =

∫ ∫ {∫ ∫ ∫
I(l′, m′)√

1 − l2 −m2
e−2πi(u(l′−l)+v(m′−m))e−2πi(w(

√
1−l′2−m′2−n))dudvdw

}
dl′dm′

(14.2.3)
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Using the general result

δ(l′ − l) =

∫
e−2πiu(l′−l)du (14.2.4)

we get

F (l, m, n) =

∫ ∫
I(l′, m′)√

1 − l2 −m2
δ(l′ − l)δ(m′ −m)δ(

√
1 − l′2 −m′2 − n)dl′dm′

(14.2.5)
This equation then provides the connection between the 2D

sky brightness distribution given by I(l, m) and the result of
3D Fourier inversion of V (u, v, w) given by F (l, m, n) referred to
as the Image volume.

F (l, m, n) =
I(l, m)δ(

√
1 − l2 −m2 − n)√

1 − l2 −m2
(14.2.6)

Hereafter, I would use I(l, m, n) to refer to the this Image
volume.
In Eq 14.1.1, we have ignored the fringe rotation term 2πiw

in the exponent. This is done here only for mathematical (and
typing!) convenience. The effect of including this term would
be a shift of the Image volume by one unit in the conjugate
axis, namely n. Hence, the effect of fringe stopping is to make
the top most plane of I(l, m, n) tangent to the phase center
position on the celestial sphere with the rest of the sphere
completely contained inside the Image volume as shown in Fig.
14.1.
Remember that the third variable n of the Image volume

is not an independent variable and is constrained to be n =√
1 − l2 −m2. Eq 14.2.6 then gives the physical interpretation
of I(l, m, n). Imagine the celestial sphere defined by (l, m, n) en-
closed by the Image volume I(l, m, n), with the top most plane
being tangent to the celestial sphere as shown in Fig. 14.1.
Eq 14.2.6 then says that only those parts of the Image volume
correspond to the physical emission which lie on the surface of
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The Tangent Plane

The Celestial sphere

n

l

m

Figure 14.1: Graphical representation of the geometry of the Image volume

and the celestial sphere. The point at which the celestial sphere touches

the first plane of the Image volume is the point around which the 2D image

inversion approximation is valid. For wider fields, emission at points along

the intersection of celestial sphere and the various planes (labeled here as

the celestial sphere) needs to be projected to the tangent plane to recover

the undistorted 2D image. This is shown for 3 points on the celestial

sphere, projected on the tangent plane, along the radial directions.
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Celestial sphere

n

θ

1-1
l

Figure 14.2: Graphical illustration to compute the distance between the

tangent plane and a point in the sky at an angle of θ.

the celestial sphere. Note that since the visibility is written as
a function of all the three variables (u, v, w), the transfer func-
tion will also be a volume. A little thought will then reveal that
I(l, m, n) will be finite away from the surface of the celestial
sphere also, but that would correspond to non-physical emis-
sion in the Image volume due to the side lobes of the telescope
transfer function (referred to by Point spread function (PSF) or
Dirty beam in the literature). A 3D deconvolution using the
Dirty image- and the Dirty beam-volumes will produce a Clean
image-volume. Therefore, after deconvolution, one must per-
form an extra operation of projecting all points in the image
volume along the celestial sphere onto the 2D tangent plane
to recover the 2D sky brightness distribution. Fig. 14.2 is the
graphical equivalent of the statements in this paragraph.
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14.2.2 Interpretation of the w-term

The term w
√

1 − l2 −m2 is often referred to as the w-term in the
literature. The origin of this term is purely geometrical and
arises due to the fact that fringe rotation effectively phases
the array for a point in the sky referred to as the phase cen-
ter direction. A wave front originating from this direction will
then be received by all antennas and the signals will be multi-
plied in-phase at the correlator (effectively phasing the array).
The locus of all points in 3D space, for which the array will
remain phased is a sphere, referred to as the celestial sphere.
A wave front from a point away from the phase tracking cen-
ter but on the surface of such a sphere, will carry an extra
phase, not due to the geometry of the array but because of its
separation from the phase center. In that sense, the phase
of the wavefront measured by a properly phased array in fact
carries the information about the source structure and the w-
term is the extra phase due to the spherical geometry of the
problem. The sky can be approximated by a 2D plane close
to the phase tracking center and the w-term can be ignored,
which is another way of saying that a 2D approximation can
be made for a small field of view. However sufficiently far away
from the phase center, the phase due to the curvature of the
celestial sphere, the w-term, must be take into account, and
to continue to approximate the sky as a 2D plane, we will have
to rotate the visibility by the w-term. This will be equivalent
to shifting the phase centre and corresponds to a shift of the
equivalent point in the image plane. Since the w-term is a
function of the image co-ordinates, this shift is different for
different parts of the image. Shifting the phase centre to any
one of the points in the sky, will allow a 2D approximation
only around that direction and not for the entire image. Hence
the errors arising due to ignoring the w-term cannot be re-
moved by a constant phase rotation of all the visibilities. This
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is another way of understanding that, in the strict sense, the
sky brightness is not a Fourier transform of the visibilities.

14.2.3 Inversion Of Visibilities

3D Imaging

The most straight forward method suggested by Eq 14.2.5 for
recovering the sky brightness distribution, is to perform a 3D
Fourier transform of V (u, v, w). This requires that the w axis be
also sampled at least at Nyquist rate. For most observations
it turns out that this is rarely satisfied and doing a FFT on
the third axis would result into severe aliasing. Therefore in
practice, the transform on third axis is usually done using the
direct Fourier transform (DFT), on the un-gridded data.
For performing the 3D FT (FFT on the u and v axis and DT

on the w axis) one would still need to know the number of
planes needed along the n axis. This can be found using the
geometry as shown in Fig. 14.2. The size of the synthesized
beam in the n direction is comparable to that in the other two
directions and is given by ≈ λ/Bmax where Bmax is the longest
projected baseline length. Therefore the separation between
the planes along n should be ≤ λ/2Bmax. The distance between
the tangent plane and points separated by θ from the phase
center is given by 1 − cos(θ) ≈ θ2/2. For critical sampling the
number of planes required would be

Nn = Bmaxθ
2/λ (14.2.7)

At 327 MHz for GMRT, Bmax ≈ 25 km. Therefore, for map-
ping 1◦ field of view without distortions, one would required 8
planes along the n axis. With central square alone however,
one plane should be sufficient. At these frequencies it be-
comes important to map most of the primary beam since the
number and the intensity of the background sources increase
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n

l
Tangent planes

Celestial sphere

Figure 14.3: Approximation of the celestial sphere by multiple tangent

planes (polyhedron imaging).

and the side lobes of these background sources limit the dy-
namic range in the maps. Hence, even if the source of interest
is small, to get the achievable dynamic range (or close to it!),
one will need to do a 3D inversion (and deconvolution).

Another reason why more than one plane would be required
for very high dynamic range imaging is as follows. Strictly
speaking, the only point which completely lies in the tangent
plane is the point at which the tangent plane touches the ce-
lestial sphere. All other points in the image, even close to the
phase center, lie slightly below the tangent plane. Deconvolu-
tion of the tangent plane then results into distortions for the
same reason as the distortions arriving from the deconvolu-
tion of a point source which lies between two pixels in the 2D
case. As in the 2D case, this problem can be minimized by
oversampling the image and that, in this case, implies having
at least 2 planes in the n axis, even if the Eq 14.2.7 tells that
1 plane is sufficient.
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Polyhedron Imaging

As mentioned above, emission from the phase center and from
points close to it lie approximately in the tangent plane. Poly-
hedron imaging relies on exploiting this fact by approximating
the celestial sphere by a number of tangent planes as shown
in Fig. 14.3. The visibility data is phase rotated to shift the
phase center to the tangent points of the various planes and a
small region around the tangent point is then mapped using
the 2D approximation. In this case however, one needs to per-
form a joint deconvolution involving all tangent planes since
the sides lobes of a source in one plane would leak into other
planes as well.
The number of planes required to map an object of size θ

can be found simply by requiring that maximum separation
between the tangent plane and the region around each tan-
gent point be less than λ/Bmax, the size of the synthesized
beam. As shown earlier, the separation of a point θ degrees
away from the tangent point is ≈ θ2. Hence for critical sam-
pling, the number of planes required is equal to the solid angle
subtended by the sky being mapped (θ2

f ) divided by the solid
angle of the synthesized beam (θ2)

Npoly = 2θ2
fBmax/λ = 2Bmaxλ/D

2 (for θf = full primary beam)

(14.2.8)
where D is the diameter of each dish. Notice that the num-

ber of planes required is twice as many as the number of
planes required for 3D inversion. However since a small por-
tion around the tangent point of each plane is used, the size
of each of these planes can be small, offsetting the increase
in computations due to the increase in the number of planes
required. Another approach which is often taken for very high
dynamic range imaging is to do a full 3D imaging on each of
the planes. This would effectively increase the size of the field
that can be imaged on each tangent plane, thereby reducing
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the number of planes required.

The polyhedron imaging scheme is available in the current
version of AIPS data reduction package and the 3D inversion
(and deconvolution) is implemented in the (not any more sup-
ported) SDEpackage written by Tim Cornwell et al. Both these
schemes, in their full glory, will be available in the (recently
released) AIPS++ package.

14.3 Mosaicing

The problem due to non-coplanarity discussed above are for
mapping the sky within the primary beam of the antennas
(which are assumed to be identical). In this section we discuss
the techniques used to handle the problem of mapping fields
of interest which are larger than the primary beam of the an-
tennas. The approach used is similar to that used for mapping
with a single dish, namely to scan the source to be mapped.
The fact that we are using an interferometer to synthesize the
“lens” (or the “single dish”) adds some more complications.

These techniques are useful for mapping with interferom-
eters operating in the millimeter range where the size of the
primary beams is less than an arcmin and at meter wave-
lengths where the primary beams are larger but so is the ex-
tent of emission. For example, the primary beam of GMRT
antennas at 327 MHz is ≈ 1.3◦ and there are mapping projects
which would benefit from mapping regions of the sky larger
than this (for example, in the Galactic plane).
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14.3.1 Scanning Interferometer

The co-planar approximation of Eq 14.1.1 for a pointing direc-
tion given by (lo, mo) can be written as

V (u, v, lo, mo) =

∫ ∫
I(l, m)B(l−lo, m−mo)e

2πi(ul+vm)dldm (14.3.9)

Here we also assume that B is independent of the pointing
direction and we label V with not just the (u, v) co-ordinates,
but also with pointing direction since visibilities for different
directions will be used in the analysis that follows. The ad-
vantage of writing the visibility as in Eq 14.3.9 is that the
pointing center (given by (lo, mo)) and the phase center (given
by (l, m) = (0, 0)) are separated.
V (0, 0, lo, mo) represents the single dish observation in the di-

rection (lo, mo) and is just the convolution of the primary beam
with the source brightness distribution, exactly as expected
intuitively. Extending the intuition further, as is done in map-
ping with a single dish, we need to scan the source around
(lo, mo) with the interferometer, which is equivalent to scan-
ning with a single dish with a primary beam of the size of the
synthesized beam of the interferometer. Then Fourier trans-
forming V (u, v, lo, mo) with respect to (lo, mo), assuming that B
is symmetric, one gets, from Eq 14.3.9
∫ ∫

V (u, v, lo, mo)e
2πi(uolo+vomo)dlodmo = b(uo, vo)i(u+ uo, v + vo)

(14.3.10)
where (uo, vo) corresponds to the direction (lo, mo) and b ⇋ B
and i ⇋ I. This equation essentially tells us the following: the
Fourier transform (with respect to the pointing directions),of
the visibility from a scanning interferometer is equal to the
visibility of the entire source modulated by the Fourier trans-
form of the primary beams for each pointing direction. For
a given direction (lo, mo) we can recover spatial frequency in-
formation spread around a nominal point (u, v) by an amount
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D/λ where D is the size of the dish. In terms of information,
this is exactly same as recovering spatial information smaller
than the size of the resolution of a single dish by scanning the
source with a single dish. As in the case of a single dish, con-
tinuous scanning is not necessary and two points separated
by half the primary beam is sufficient. In principle then, by
scanning the interferometer, one can improve the short spac-
ings measurements of V , which is crucial for mapping large
fields of view.
Image of the sky can now be made using the full visibility

data set (made using the Eq 14.3.10). However, this involves
the knowledge of Fourier transform of the sky brightness dis-
tribution, which in-turn is approximated after deconvolution.
Hence, in practice one uses the MEM based image recovery
where one maximizes the entropy given by

H = −
∑

k

Ikln
Ik
Mk

(14.3.11)

with χ2 evaluated as

χ2 =
∑

k

|V (uk, vk, lok, mok) − V M(uk, vk, lok, mok)|2
σ2
V (uk,vk,lok,mok)

(14.3.12)

where V M(uk, vk, lok, mok) is the model visibility evaluated using
Eq 14.3.9. ∆χ2 at each iteration is estimated by the following
steps:

• initialize ∆χ2 = 0

• For all pointings

1. Apply the appropriate primary beam correction to the
current estimate of the image

2. FT to generated V M

3. Accumulate χ2
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4. Subtract from the observed visibilities

5. Make the residual image

6. Apply the primary beam correction to the residual im-
age

7. Accumulate ∆χ2

The operation of primary beam correction on the residual
image is understood by the following argument: For any given
pointing, an interferometer gathers radiation within the pri-
mary beam. In the image plane then, any feature, outside the
range of the primary beam would be due to the sidelobes of
the synthesized beam and must be suppressed before compu-
tation of ∆χ2 and this is achieved by primary beam correction,
which essentially divides the image by Gaussian which repre-
sents the main lobe of the antenna radiation pattern.
This approach (rather than joint deconvolution) has several

advantages:

1. Data from potentially different interferometers for differ-
ent pointings can be used

2. Weights on each visibility from each pointing are used in
the entire image reconstruction procedure

3. Single-dish imaging emerges as a special case

4. It is fast for extended images

The most important advantage that one gets by MEM recon-
struction is that the deconvolution is done simultaneously on
all points. That this is an advantage over joint-deconvolution
can be seen as follows: If a point source at the edge of the
primary beam is sampled by 4 different pointings of the tele-
scope, this procedure would be able to use 4 times the data
on the same source as against data from only one pointing in
joint-deconvolution (where deconvolution is done separately



226 CHAPTER 14. WIDE FIELD IMAGING

on each pointing). This, apart from improvement in the signal-
to-noise ratio also benefits from a better uv-coverage available.
Flexible software for performing Mosaic-ed observations is

one of the primary motivation driving the AIPS++ project in
which algorithms to handle mosaic-ed observations would be
available in full glory.

14.4 Further Reading

1. Thompson R. A., Moran J. M. and Swenson G. W. Jr.,
‘Interferometry & Synthesis in Radio Astronomy’, Wiley
Interscience.

2. Taylor G. B., Carilli C. L. and Perley R. A., ’Synthesis
Imaging in Radio Astronomy II’, ASP Conf. Ser. vol. 180.



Chapter 15

Polarimetry

Jayaram N. Chengalur

15.1 Introduction

Consider the simplest kind of electromagnetic wave, i.e. a
plane monochromatic wave of frequency ν propagating along
the +Z axis of a Cartesian co-ordinate system. Since electro-
magnetic waves are transverse, the electric field E must lie in
the X-Y plane. Further since the wave is mono-chromatic one
can write

E(t) = Ex cos(2πνt)ex + Ey cos(2πνt+ δ)ey (15.1.1)

i.e. the X and Y components of the electric field differ in phase
by a factor which does not depend on time. It can be shown1

that the implication of this is that over the course of one pe-
riod of oscillation, the tip of the electric field vector in general
traces out an ellipse. There are two special cases of interest.
The first is when δ = 0. In this case the tip of the electric field
vector traces out a line segment, and the wave is said to be
linearly polarized. The other special case is when Ex = Ey and
δ = ±π/2. In this case the electric field vector traces out a
1See for example, Born & Wolf, ‘Principles of Optics’, Sixth Edition, Section 1.4.2
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circle in the X-Y plane, and depending on the sense2 in which
this circle is traversed the wave is called either left circular
polarized or right circular polarized.
As you have already seen in chapter 1, signals in radio

astronomy are not monochromatic waves, but are better de-
scribed as quasi-monochromatic plane waves3. Further, the
quantity that is typically measured in radio astronomy is not
related to the field (i.e. a voltage), but rather a quantity that
has units of voltage squared, i.e. related to some correlation
function of the field (see chapter 4). For these reasons, it is
usual to characterize the polarization properties of the incom-
ing radio signals using quantities called Stokes parameters.
Recall that for a quasi monochromatic wave, the electric field
E could be considered to be the real part of a complex ana-
lytical signal E(t). If the X and Y components of this complex
analytical signal are Ex(t), and Ey(t), respectively, then the four
Stokes parameters are defined as:

I = < ExE∗
x > + < EyE∗

y >

Q = < ExE∗
x > − < EyE∗

y >

U = < ExE∗
y > + < E∗

xEy >
V = 1

i (< ExE∗
y > − < E∗

xEy >)

or

< ExE∗
x > = (I +Q)/2

< EyE∗
y > = (I −Q)/2

< ExE∗
y > = (U + iV )/2

< E∗
xEy > = (U − iV )/2.

(15.1.2)
where the angle brackets indicate taking the average value4.
The Stokes parameters as defined in equation (15.1.2) clearly
depend on the orientation of the co-ordinate system. In radio
astronomy it is conventional (see chapter 10) to take the +X
2Note that there is an additional ambiguity here, i.e. are you looking along the direction

of propagation of the wave, or against it? To keep things interesting neither convention is

universally accepted, although in principle one should follow the convention adopted by

the IAU (Transactions of the IAU Vol. 15B, (1973), 166.)
3Recall that as all astrophysically interesting sources are distant, the plane wave ap-

proximation is a good one
4Strictly speaking this is the ensemble average. However, as always, we will assume

that the signals are ergodic, i.e. the ensemble average can be replaced with the time

average.



15.1. INTRODUCTION 229

axis to point north and the +Y axis to point east. It is impor-
tant to realize that the Stokes parameters are descriptors of
the intrinsic polarization state of the electro-magnetic wave,
i.e. the Stokes vector (I Q U V )T is a true vector. The equa-
tions (15.1.2) simply give its components in a particular co-
ordinate system, the linear polarization co-ordinate system5.
One would instead work in a circularly polarized reference
frame, i.e. where the electric field is decomposed into two
circularly polarized components, Er(t) and El(t). The relation
between these components and the Stokes parameters are:

I = < ErE∗
r > + < ElE∗

l >

Q = < ErE∗
l > + < E∗

r El >
U = 1

i (< ErE∗
l > − < E∗

r El >)

V = < ErE∗
r > − < ElE∗

l >

< ErE∗
r > = (I + V )/2

< ElE∗
l > = (I − V )/2

< ErE∗
l > = (Q+ iU)/2

< E∗
r El > = (Q− iU)/2

(15.1.3)

Interestingly, equations (15.1.3) are formally identical to
equations (15.1.2) apart from the following transformations
viz. Q+ → V ⊙, U+ → Q⊙, V + → U⊙, where the superscript
+ indicates linear polarized co-ordinates and ⊙ circular po-
larized co-ordinates. Although these two co-ordinate systems
are the ones most frequently used, the Stokes vector could in
principle be written in any co-ordinate system based on two
linearly independent (but not necessarily orthogonal) polariza-
tion states. In fact, as we shall see, such non orthogonal co-
ordinate systems will arise naturally when trying to describe
measurements made with non ideal radio telescopes.

The degree of polarization of the wave is defined as

P =

√
Q2 + U 2 + V 2

I
. (15.1.4)

5These polarization co-ordinate systems are of course in some abstract polarization

space and not real space
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From equation (15.1.2) we have

I2 −Q2 − U 2 − V 2 = 2
(〈

E2
x

〉 〈
E2
y

〉
− 〈ExEy〉2

)
(15.1.5)

and hence from the Schwarz inequality it follows that 0 ≤ P ≤
1 and that P = 1iffEx = cEy, where c is some complex constant.
For a mono-chromatic plane wave (Eq (15.1.1)) therefore, P =
1 or equivalently I2 = Q2 + U 2 + V 2, i.e. there are only three
independent Stokes parameters. For a general quasi mono-
chromatic wave, P < 1, and the wave is said to be partially
polarized.
It is also instructive to examine the Stokes parameters sep-

arately for the special case of a monochromatic plane wave.
We have (see equations (15.1.1) and (15.1.2)):

I = E2
x + E2

y

Q = E2
x − E2

y

U = 2ExEy cos(δ)

V = 2ExEy sin(δ),

i.e. for a linearly polarized wave (δ = 0) we have V = 0, and
for a circularly polarized wave (Ex = Ey, δ = ±π/2) we have
Q = U = 0. So Q and U measure linear polarization, and V
measures circular polarization. This interpretation continues
to be true in the case of partially polarized waves.

15.2 Polarization in Radio Astronomy

Emission mechanisms which are dominant in low frequency
radio astronomy, produce linearly polarized emission. Thus
extra-galactic radio sources and pulsars are predominantly
linearly polarized, with polarization fractions of typically a few
percent. These sources usually have no circular polarization,
i.e. V ∼ 0. Maser sources however, in particular OH masers
from galactic star forming regions often have significant cir-
cular polarization. This is believed to arise because of Zeeman
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splitting. Interstellar maser sources also often have some lin-
ear polarization, i.e. all the components of the Stokes vector
are non zero. In radio astronomy the polarization is funda-
mentally related to the presence of magnetic fields, and po-
larization studies of sources are aimed at understanding their
magnetic fields.

The raw polarization measured by a radio telescope could
differ from the true polarization of the source because of a
number of effects, some due to propagation of the wave through
the medium between the source and the telescope, (see chap-
ter 16) and the other because of various instrumental non-
idealities. Since we are eventually interested in the true source
polarization our ultimate aim will be to correct for these var-
ious effects, and we will therefore find it important to distin-
guish between depolarizing and non-depolarizing systems. A
system for which the outgoing wave is fully polarized if the in-
coming wave is fully polarized is called non-depolarizing. The
polarization state of the output wave need not be identical to
that of the incoming wave, it is only necessary that Pout = 1 if
Pin = 1.

The most important propagation effect is Faraday rotation,
which is covered in some detail in chapter 16. Here we restrict
ourselves to stating that the plane of polarization of a linearly
polarized wave is rotated on passing through a magnetized
plasma. Faraday rotation can occur both in the ISM as well
as in the earth’s ionosphere. If the Faraday rotating medium is
mixed up with the emitting region, then radiation emitted from
different depths along the line of sight are rotated by different
amounts, thus reducing the net polarization. This is called
Faraday depolarization. If the medium is located between the
source and the observer, then the only effect is a net rotation
of the plane of polarization, i.e.

E ′

x = Ex cosχ+ Ey sinχ, E ′

y = −Ex sinχ+ Ey cosχ (15.2.6)
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where χ is the angle of rotation of the plane of polarization, Ex,
E ′

x are the X components of the incident and emergent field
respectively and similarly for Ey, E

′

y. In terms of the Stokes
parameters, the transformation on passing through a Faraday
rotating medium is

I
′

= I

V
′

= V

Q
′

= Q cos 2χ+ U sin 2χ

U
′

= −Q sin 2χ + U cos 2χ
(15.2.7)

i.e. a rotation of the Stokes vector in the (U,V) plane. The
fractional polarization is hence preserved6. Equation (15.2.7)
can also be easily obtained from equation (15.1.3) by noting
that in a circularly polarized co-ordinate system, the effect
of Faraday rotation is to introduce a phase difference of 2χ
between Er and El.
Consider looking at an extended source which is not uni-

formly polarized with a radio telescope whose resolution is
poorer than the angular scale over which the source polariza-
tion is coherent. In any given resolution element then there
are regions with different polarization characteristics. The
beam thus smooths out the polarization of the source, and
the measured polarization will be less than the true source
polarization. This is called beam depolarization. Beam depo-
larization cannot in principle be corrected for, the only way
to obtain the true source polarization is to observe with suffi-
ciently high angular resolution.
A dual polarized radio telescope has two voltage beam pat-

terns, one for each polarization. These two patterns are of-
ten not symmetrical, i.e. in certain directions the telescope
response is greater for one polarization than for the other.
The difference in gain between these two polarizations usu-
ally varies in a systematic way over the primary beam. Be-

6Note that non-depolarizing only means that Pout = 1 if Pin = 1, and this does not neces-

sarily translate into conservation of the fractional polarization when P < 1. Pure Faraday

rotation is hence not only non-depolarizing, it also preserves the fractional polarization.
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cause of this asymmetry, an unpolarized source could appear
to be polarized, and further its apparent Stokes parameters
in general depend on its location with respect to the center of
the primary beam. The polarization properties of an antenna
are also sharply modulated by the presence of feed legs, etc.
and are hence difficult to determine with sufficient accuracy.
For this reason determining the polarization across sources
with dimensions comparable to the primary beam is a non-
trivial problem. Given the complexity of dealing with extended
sources, most analysis to date have been restricted to small
sources, ideally point sources located at the beam center.
Most radio telescopes measure non-orthogonal polarizations,

i.e. a channel p which is supposed to be matched to some
particular polarization p also picks up a small quantity of the
orthogonal polarization q. Further, this leakage of the orthogo-
nal polarization in general changes with position in the beam.
However, for reflector antennas, there is often a leakage term
that is independent of the location in the beam, which is tra-
ditionally ascribed to non-idealities in the feed. For example,
for dipole feeds, if the two dipoles are not mounted exactly at
right angles to one another, the result is a real leakage term,
and if the dipole is actually matched to a slightly elliptical
(and not purely linear) polarization the result is an imaginary
leakage term. For this reason, the real part of the leakage is
sometimes called an orientation error, and the imaginary part
of the leakage is referred to as an ellipticity error7. However,
one should appreciate that the actual measurable quantity is
only the antenna voltage beam, (i.e. the combined response
of the feed and reflector) and this decomposition into ‘feed’
related terms is not fundamental and need not in general be

7Several telescopes, for example the GMRT, use feeds which are sensitive to linear

polarization, but by using appropriate circuitry (viz a π/2 phase lag along one signal path

before the first RF amplifier) convert the signals into circular polarization. Non-idealities

in this linear to circular conversion circuit could also produce complex leakage terms

even if the feed dipoles themselves are error free.
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physically meaningful.

The final effect that has to be taken into account has to do
with the orientation of the antenna beam with respect to the
source. For equitorially mounted telescopes this is a constant,
however for alt-az mounted telescopes, the telescope beam ro-
tates on the sky as the telescope tracks the source. This rota-
tion is characterized by an angle called the ⁀parallactic angle,
ψp, which is given by:

tanψp =
cosL sinH

sinL cos δ − cosL sin δ sinH (15.2.8)

where L is the latitude of the telescope, H is the hour-angle
of the source, and δ is the apparent declination of the source.
So if one observes a source at a parallactic angle ψp with a
telescope that is linearly polarized, the voltages that will be
obtained at the terminals of the X and Y receivers will be

Vx = Gx(Ex cosψp + Ey sinψp), Vy = Gy(−Ex sinψp + Ey cosψp)

(15.2.9)
where Gx and Gy are the complex gains (i.e. the product of the
antenna voltage gains and the receiver gains) of the X and Y
channels.

15.3 The Measurement Equation

In this section we will develop a mathematical formulation
useful for polarimetric interferometry. The theoretical frame-
work is the van Cittert-Zernike theorem, which was discussed
in chapter 2 in the context of the reconstruction of the Stokes
I parameter of the source. However, as can be trivially veri-
fied, the theorem holds good for any of the Stokes parameters.
So, apart from the issues of spurious polarization produced by
propagation or instrumental effects, making maps of the Q, U,
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and V Stokes parameters is in principle8 identical to making
a Stokes I map.

Not surprisingly, matrix notation leads to an elegant formu-
lation for polarimetric interferometry9. Let us begin by defin-
ing a coherency vector,




< EapE∗
bp >

< EapE∗
bq >

< EaqE∗
bp >

< EaqE∗
bq >




where a, b refer to the two antennas which compose any given
baseline, and p, q are the two polarizations measured by the
antenna. The coherency vector can be expressed as an outer
product of the electric field, viz:




< EapE∗
bp >

< EapE∗
bq >

< EaqE∗
bp >

< EaqE∗
bq >




=

〈(
Eap
Eaq

)
⊗
(

E∗
bp

E∗
bq

)〉
(15.3.10)

The Stokes vector can be obtained by multiplying the co-
herency vector with the Stokes matrix, (S). In a linear polar-

8apart from the fact that one has to record four correlation functions, < EapE∗
bp >,

< EapE∗
bq >, < EaqE∗

bp >, < EaqE∗
bq >, where a, b refer to the two antennas which compose any

given baseline, and p, q are the two polarizations measured by the antenna. Since Stokes

I maps are often all that is required, many observatories, including the GMRT, make a

trade off such that fewer spectral channels are available if you record all four correlation

products, than if you recorded only the two correlation products which are required for

Stokes I.
9Although this formulation has been in use in the field of optical polarimetry for

decades, it was not appreciated until recently (Hamaker et al. 1996, and Sault et al.

1996) that it is also extendable to radio interferometric arrays.
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ized co-ordinate system the components are:


I

Q

U

V




=
1

2




1 0 0 1

1 0 0 −1

0 1 1 0

0 −i i 0







< EaxE∗
bx >

< EaxE∗
by >

< EayE∗
bx >

< EayE∗
by >




(15.3.11)

The component form could also be written down in the circu-
lar polarized co-ordinate system, in which case the matrix S
would be:



I

Q

U

V




=
1

2




1 0 0 1

0 1 1 0

0 −i i 0

1 0 0 −1







< EarE∗
br >

< EarE∗
bl >

< EalE∗
br >

< EalE∗
bl >




(15.3.12)

The matrix in equation (15.3.12) is related to that in equa-
tion (15.3.11) by a simple permutation of rows, as expected.
The outer product has the following associative property,

viz. for matrices, A,B, C, and D

(AB) ⊗ (CD) = (A⊗ C)(B⊗D).

For any one antenna a, putting in all the various effects dis-
cussed in section(15.2) we can write the voltage at the antenna
terminals as:

Va = GaBaPaFaEa
= JaEa

(15.3.13)

where,
Va = the voltage vector at the terminals of antenna a

Ga = the complex gain of the receivers of antenna a

Ba = the voltage beam matrix for antenna a

Pa = the parallactic angle matrix for antenna a

Fa = the Faraday rotation matrix for antenna a

Ea = the electric field vector at antenna a

Ja = the Jones matrix for antenna a
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The Jones matrix has been so called because of its analogy
with the Jones matrix in optical polarimetry. All of these ma-
trices are 2×2. In the linear polarized co-ordinate system. For
example, we have:

F =

(
cosχ sinχ

− sinχ cosχ

)
P =

(
cosψp sinψp

− sinψp cosψp

)

B =

(
bpp(l, m) bpq(l, m)

bqp(l, m) bqq(l, m)

)
G =

(
gp 0

0 gq

) (15.3.14)

The Jones matrix in polarimetric interferometry plays the
same role as the complex gain does in scalar interferome-
try. Consequently one could conceive of schemes for self-
calibration, since for an array with a large enough number of
antennas sufficient number of closure constraints are avail-
able. However, since astrophysical sources are usually only
weakly polarized, the signal to noise ratio in the cross-hand
correlation products is often too low to make use of these clo-
sure constraints.
In scalar interferometry, phase fluctuations caused by the

atmosphere and/or ionosphere were lumped together with the
instrumental gain fluctuations. In the vector formulation how-
ever, this is strictly speaking not possible, since these correc-
tions occur at different points along the signal path, (see equa-
tions (15.3.13)) and matrices in equations (15.3.14) do not in
general commute. However, for most existing radio telescopes,
and for sources small compared to the primary beam, the ma-
trices in equations (15.3.14) (apart from the Faraday rotation
and Parallactic angle matrices) differ from the identity matrix
only to first order (i.e. the off diagonal terms are small com-
pared to the diagonal terms, and the diagonal terms are equal
to one another to zeroth order), and consequently these ma-
trices commute to first order. To first order hence, it is correct
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to lump the phase differences accumulated at different points
along the signal path into the receiver gain. Alternatively, if
we make the (reasonable) assumption that the complex atten-
uation (i.e. any absorption and phase fluctuation) produced
by the atmosphere is identical for both polarizations, then it
can be modeled as a constant times the identity matrix. Since
the identity matrix commutes with all the other matrices, this
factor can be absorbed in the receiver gain matrix, exactly as
was done when dealing with interferometry of scalar fields.
This is the reason why no separate matrix was introduced in
equation (15.3.13) to account for atmospheric phase and am-
plitude fluctuations.

The matrix B in this formulation also deserves some atten-
tion. It simply contains the information on the relation be-
tween the electric field falling on the antenna and the voltage
generated at the antenna terminals. It is an extension of the
voltage beam in scalar field theory, and each element in the
matrix depends on the sky co-ordinates (l, m). As described
above in section 15.2, it is traditional to decompose it into
a part which does not depend on (l, m), which is called the
leakage (or in the matrix formulation, the leakage matrix “D”),
and a part which depends on (l, m). Provided that the leakage
terms are small compared to the parallel hand antenna volt-
age gain, it can be shown that this decomposition is unique to
first order.

In terms of the Jones matrix, the measured visibility on a
single baseline for a point at the phase center can be written
as: 



VI
VQ
VU
VV




= SJa ⊗ J
∗
bS

−1




I

Q

U

V




(15.3.15)

Note that this is a matrix equation, valid in all co-ordinate
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frames, i.e. it holds regardless of whether the antennas are
linear polarized or circular polarized. In fact it holds even if
some of the antennas are linear polarized, and the others are
circular polarized.
If the point source were not at the phase center, then the

visibility phase is not zero, and in equation (15.3.15), one
would have to pre-multiply the Jones matrices with a matrix
containing the Fourier kernel, viz. Ka(l, m), andKb(l, m)defined
as:

Ka(l, m) =

(
e−2π(ual+vam) 0

0 e−2π(ual+vam)

)

Kb(l, m) =

(
e−2π(ubl+vbm) 0

0 e−2π(ubl+vbm)

) (15.3.16)

To get the visibility for an extended incoherent source, one
would have to integrate over all (l, m), thus recovering the vec-
tor formulation of the van Cittert-Zernike theorem. In order
to invert this equation, it is necessary not only to do the in-
verse Fourier transform, but also to correct for the various
corruptions introduced, i.e. the data has to be calibrated. The
rest of this chapter discusses ways in which this polarization
calibration can be done.

15.4 Polarization Calibration

We restrict our attention to a point source at the phase cen-
ter10. The visibility that we measure, averaged over all base-
lines is

V =
1

N(N − 1)
S

∑

a 6=b
(Ja ⊗ J

∗
b)S

−1. (15.4.17)

10For VLBI observations this is a very good approximation, since the source being im-

aged is very small compared to the primary beams of any of the antennas in the VLBI

array.
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Any system describable by a Jones matrix is non-depolarizing11.
In the general case however, the summation in equation (15.4.17)
cannot be represented by a single Jones matrix, and an inter-
ferometer is not therefore a non-depolarizing system. How-
ever, ideally, after calibration, the effective Jones matrices are
all unit matrices, and the interferometer would then be non-
depolarizing.

Intuitively, it is clear that if one looks at an unpolarized
calibrator source, one should be able to solve for the leak-
age terms, (which will produce apparent polarization) but that
some degrees of freedom would remain unconstrained. Fur-
ther it is also intuitive that the degrees of freedom which re-
main unconstrained are the following: (1) The absolute orien-
tation of the feeds, (2) The intrinsic polarization of the feeds
(i.e. for example, are they linear polarized or circular polar-
ized?) and (3) The phase difference between the two polar-
izations. While one would imagine that the situation may be
improved by observation of a polarized source, it turns out
that this too is not sufficient to determine all the free pa-
rameters. What is required is observations of at least three
differently polarized sources. For alt-az mounted dishes, the
rotation of the beam with respect to the sky changes the ap-
parent polarization of the source. For such telescopes hence,
it is sufficient to observe a single source at several, sufficiently
different hour angles. This is the polarization strategy that is
commonly used at most telescopes. Faraday rotation due to
the earth’s ionosphere is more difficult to correct for. In prin-
ciple models of the ionosphere coupled with a measure of the
total electron content at the time of the observation can be
used to apply a first order correction to the data.

11This follows trivially from the fact that for 100% polarization we must have Ep =

cEq, where p, q are any two orthogonal polarizations, and c is some complex constant.

Multiplication by the Jones matrix will preserve this relationship (only changing the value

of the constant c) thus producing another 100% polarized wave.
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We end this chapter with a brief description of the effect
of calibration errors on the derived Stokes parameters. When
observing with linearly polarized feeds, from equation (15.1.2)
it is clear that if one observes a linearly polarized calibrator,
the parallel-hand correlations will contain a contribution due
to the Q component of the calibrator flux. Consequently, if
one assumes (erroneously) that the calibrator was unpolar-
ized the gain of the X channel will be overestimated and that
of the Y channel underestimated. For this reason, for obser-
vations which require only measurement of Stokes I, circular
feeds are preferable, since the Stokes V component of most
calibrators is negligible, and consequently, measurements of
the parallel hand correlations12 are sufficient to measure the
correct Stokes I flux.
It is easy to show, that (to first order) if one observes a

polarized calibrator with an error free linearly polarized inter-
ferometer and solves for the instrumental parameters under
the assumption that the calibrator is unpolarized, the derived
instrumental parameters of all the antennas will be in error
by13:

∆gx = +Q/2I ∆gy = −Q/2I
dx = (Q+ iU)/2I dy = −(U − iQ)/2I

where:
∆gx is the gain error of the X channel.

∆gy is the gain error of the Y channel.

dx is the leakage from the Y channel to the X channel.

dy is the leakage from the X channel to the Y channel.

If these calibration solutions are then applied to an unpo-
larized target source, then the source will appear to be polar-
ized, with the same polarization percentage as the calibrator,

12recall from equations (15.1.3) that when V = 0, < ErE∗
r > + < ElE∗

l >= I.
13A similar result can of course be derived for the case of circularly polarized antennas,

the only difference will be the usual transpositions of Q,U, and V .



242 CHAPTER 15. POLARIMETRY

but opposite sense. This again is simply the extension from
scalar interferometry that if the calibrator flux is in error by
some amount, the derived target source flux will be in error
by the same fractional amount, but with opposite sense.
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Chapter 16

Ionospheric effects in Radio

Astronomy

A. P. Rao

16.1 Introduction

At the low densities encountered in the further reaches of
the earth’s atmosphere and in outer space, collisions between
particles are very rare. Hence, unlike in a terrestrial labora-
tory, it is possible for gas to remain in an ionized state for
long periods of time. Such plasmas are ubiquitous in astro-
physics, and have been extensively studied for their own sake.
In this chapter however, we focus on the effects of this plasma
on radio waves propagating through them, and will find astro-
physical plasmas to be largely of nuisance value.
The refractive index of a cold neutral plasma is given by

µ(ν) =

√
1 −

ν2
p

ν2
(16.1.1)

where νp, the “plasma frequency” is given by

νp =

√
nee2

πme
≃ 9

√
ne kHz (16.1.2)
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where e is the charge of the electron, me is the mass of the
electron and ne is the electron number density (in cm

−3). At
frequencies below the plasma frequency νp the refractive in-
dex becomes imaginary, i.e. the wave is exponentially at-
tenuated and does not propagate through the medium. The
earth’s ionosphere has electron densities ∼ 104 − 105 cm−3,
which means that the plasma frequency is ∼ 1 − 10 MHz. Ra-
dio waves with such low frequencies do not reach the earth’s
surface and can be studied only by space based telescopes.
The plasma between the planets is called the Interplanetary
Medium (IPM) and has electron densities ∼ 1 cm−3 (at the
earth’s location); the corresponding cut off frequency is ∼
9 kHz. The typical density in the Interstellar Medium (ISM)
is ∼ 0.03 cm−3 for which the cut off frequency is ∼ 1 kHz.
Waves of such low frequency from extra solar system objects
cannot be observed even by spacecraft since the IPM and ISM
will attenuate them severely.
The dispersion relationship in a cold plasma is given by

c2k2 = ω2 − ω2
p. Since this is a non linear relation there are

two characteristic velocities of propagation, the phase velocity
given by

vp =
ω

k
=
c

µ
≃ c (1 +

1

2

ν2
p

ν2
) (16.1.3)

and the group velocity which is given by

vg =
dω

dk
= cµ ≃ c (1 − 1

2

ν2
p

ν2
) (16.1.4)

Where for the last expression we have assumed that ν >> νp
(which is usually the regime of interest).

16.2 Propagation Through a Homogeneous Plasma

Even above the cutoff frequency there are various propagation
effects that are important for a radio wave passing through
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a plasma. Let us start with the most straightforward ones.
Consider a radio signal passing through a homogeneous slab
of plasma of length L. The signal is delayed (with respect to the
propagation time in the absence of the plasma) by the amount

∆T =
L

vg
− L

c
=
L

c
(1/µ− 1) ≃ L

c

1

2

ν2
p

ν2
.

The magnitude of the propagation delay can hence be written
as

|∆T | =
L

c
× 4 × 106

ν2
Hz

ne.

The propagation delay can also be considered as an “excess
path length” ∆L = c ∆T . Further since (vg/c− 1) and (vp/c− 1)

differ only in sign1, the magnitude of the “excess phase” (viz.
2πν(L/vp − L/c)) is given by ∆Φ = 2πν∆T . Note that since the
propagation delay is a function of frequency ν, waves of dif-
ferent frequencies get delayed by different amounts. A pulse
of radiation incident at the far end of the slab will hence get
smeared out on propagation through the slab; this is called
“dispersion”. If the plasma also has a magnetic field run-
ning through it then it becomes birefringent – the refractive
index is different for right and left circularly polarized waves.
A linearly polarized wave can be considered a superposition
of left and right circularly polarized waves. On propagation
through a magnetized plasma the right and left circularly po-
larized components are phase shifted by different amounts, or
equivalently the plane of polarization of the linearly polarized
component is rotated. This rotation of the plane of polarization
on passage through a magnetized plasma is called “Faraday
rotation”. The angle through which the plane of polarization is
rotated is given by

Θ = RMλ2 = 0.81λ2

∫
neB||dl.

1to first order for ν >> νp, as can be easily verified.
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and RM is called the rotation measure. For the second equal-
ity λ is in meters, ne is in cm

−3, B|| is in µG and the length is
in parsecs.

16.3 Propagation Through a Smooth Ionosphere

z0

D

z

µ

1 2

Figure 16.1: Propagation through a plane parallel ionosphere

For an interferometer, there are two quantities of inter-
est (i) the delay difference between the signals reaching the
two arms of the interferometer (δT = ∆T1 − ∆T2), where
∆T1 and ∆T2 are the propagation delays for the two arms of
the interferometer, and (ii) the phase difference between the
signals reaching the two arms of the interferometer (δφ =
(2π/λ)(∆L1 − ∆L2)), where ∆L1 and ∆L2 are the excess path
lengths for the two arms of the interferometer. Generally δT is
small compared to the coherence bandwidth of the signal and
can be ignored to first order, however δφ could be substantial.
In a homogeneous plane parallel ionosphere with refractive

index µ (see Figure 16.1), we have from Snell’s law µ sin(z0) =

sin(z). The observed geometric delay is τg = µD sin(z0)/c, since
the group velocity is c/µ. From Snell’s law therefore, τg =

D sin(z)/c, the same as would have been observed in the ab-
sence of the ionosphere. A homogeneous plane parallel iono-
sphere hence produces no net effect on the visibilities, even
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though the apparent position of the source has changed. In
the case where the interferometer is located outside the slab,
there is neither a change in the apparent position nor a change
in the phase, as is obvious from the geometry. This entire
analysis holds for a stratified plane parallel ionosphere (since
it is true for every individual plane parallel layer). However, in
the real case of a curved ionosphere, with a radial variation of
electron density, then neither the change in the apparent po-
sition nor δφ are zero even outside the ionosphere. Effectively,
the direction of arrival of the rays from the distant source ap-
pears to be different from the true direction of arrival (as il-
lustrated in Figure 16.2) and unlike in the plane parallel case
this is not exactly canceled out by the change in the refractive
index. If ∆θ is the difference between the true direction and
apparent directions of arrival, then one can compute that

Earth’s surface

Curved
Ionosphere

µ

1 2

(h)

Figure 16.2: Propagation through a curved ionosphere

∆θ =
A sin(z0)

r0

∫ ∞

0

α2µ(h)dh

(1 − α2 sin2(z0))
(16.3.5)

where z0 is the observed zenith angle, r0 is the radius of the
earth, h is the height above the earth’s surface and, µ(h) is the
refractive index at height h, and A is a constant. For baseline
lengths typical of the GMRT, this value is the same for both
arms of the baseline. If the baseline has UV co-ordinates (u,v),
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Max. Val Min Val Freq. Dependence

(Day) (Night)

Total Electron Content (TEC) 5 × 1013 cm−2 5 × 1012 cm−2 -

Group Delay 12 µsec 1.2 µsec ν−2

Excess Path 3500 m 350 m ν−2

Phase Change 7500 rad 750 rad ν−2

Phase Fluctuation ±150 rad ±15 rad ν−2

Mean Refraction 6
′

0.6
′

ν−2

Faraday Rotation 15 cycles 1.5 cycles ν−2

Table 16.1: Typical numerical values of various ionospheric effects

then the phase difference due to the apparent change in the
source position is given by

∆φ = 2π(u∆θEW + v∆θNS).

Typical values for some of the ionospheric prorogation effects
that we have been discussing are given in Table 16.1.

16.4 Propagation Through an Inhomogeneous

Ionosphere

So far we have been dealing with an ionosphere, which, while
not homogeneous, is still fairly simple in that the density fluc-
tuations are smooth, slowly varying functions. Further, the
ionospheric density was assumed to not vary with time. In
reality, the earth’s ionosphere shows density fluctuations on
a large range of length and time scales. A density fluctuation
of length scale l at a height h above the earth’s surface cor-
responds to a fluctuation on an angular scale of l/h. For a
typical length scale l of 10 km, at a height of 200 km, the cor-
responding angular scale is ∼ 3o. This means that the phase
difference introduced by the ionosphere changes on an angu-
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lar scale of 3o. If this phase is to be calibrated out, then one
would need to pick a calibrator that is within 3o of the target
source — for most sources it turns out that there is no suit-
able calibrator this close by. This problem gets increasingly
worse as one goes to lower frequencies since the excess iono-
spheric phase increases as ν−2. As discussed in Chapter 5
therefore, as long as the excess ionospheric phase is constant
over the field of view, this phase can be lumped in with the
electronic phase of receiver chain, and can be solved for using
self-calibration.

D

l

1 2

h

Figure 16.3: For short enough baselines, the isoplantic assumption holds

even if the field of view is larger than the typical coherence length of the

ionospheric irregularities. This is because both arms of the interferometer

get essentially the same excess phase.

However, for a given antenna, as one observes at lower and
lower frequencies, the field of view increases as ν−1. Since
the excess ionospheric phase is also increasing rapidly with
decreasing frequency, one will soon hit a point where the as-
sumption that the excess phase is constant over the field of
view is a poor one. At this point the self-calibration algorithm
is no longer applicable. Variations of the ionospheric phase
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over the field of view are referred to as “non isoplanaticity”. As
illustrated in Figure 16.3, when the baseline length is small
compared to the typical length scale of ionospheric density
fluctuations, even though the ionospheric phase is different
for different sources in the field of view, the excess phase is
nearly identical at both ends of the baseline. Since interfer-
ometers are sensitive only to phase differences between the
two antennas, the isoplanatic assumption still holds. The
non isoplanaticity problem hence arises only when the base-
lines as well as the field of view are sufficiently large. For the
GMRT, isoplanaticity is often a poor assumption at frequen-
cies of 325 MHz and lower.

16.5 Angular Broadening
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Figure 16.4: Angular broadening.

As discussed in the previous sections, the small scale fluctu-
ations of electron density in the ionosphere lead to an excess
phase for a radio wave passing through it. This excess phase
is given by

φ(x) =
2π

λ

∫
∆µdz,

φ(x) = Cλ

∫
∆n(x, z)dz,
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where ∆µ is the change in refractive index due to the electron
density fluctuation, C is a constant and ∆n(x, z) is the fluctu-
ation in electron density at the point (x,z) and the integral is
over the entire path traversed by the ray (see Figure 16.4).
If we assume that φ(x) is a zero mean Gaussian random

process, with auto-correlation function given by φ2
0ρ(r), where

ρ(r) = e−r
2/2a2

φ, then from the relation above for φ(x) we can
determine that φ2

0 ∝ λ2∆n2L, where L is the total path length
through the ionosphere2. Let us assume that a plane wave-
front from an extremely distant point source is incident on the
top of such an ionosphere. In the absence of the ionosphere
the wave reaching the surface of the earth would also be a
plane wave. For a plane wave the correlation function of the
electric field (i.e. the visibility) is given by 〈Ei(x)Ei

∗(x+r)〉 = Ei
2,

i.e. a constant independent of r. On passage through the iono-
sphere however, different parts of the wave front acquire dif-
ferent phases, and hence the emergent wavefront is not plane.
If E(x) is the electric field at some point on the emergent wave,
then we have E(x) = Eie

−iφ(x). Since Ei is just a constant, the
correlation function of the emergent electric field is

〈E(x)E∗(x+ r)〉= E2
i 〈e−i(φ(x)−φ(x+r))〉.

From our assumptions about the statistics of φ(x) this can be
evaluated to give

〈E(x)E∗(x+ r)〉 = E2
i e

−2φ2
0(1−ρ(r)) (16.5.6)

If φ2
0 is very large, then the exponent is falls rapidly to zero

as (1 − ρ(r)) increases (or equivalently when r increases). It
is therefore adequate to evaluate it for small values of r, for
which ρ(r) can be Taylor expanded to give ρ(r) ≃ 1 − r2/2a2

φ.
and we get

〈E(x)E∗(x+ r)〉 = E2
i e

−φ2
0

r2

a2
φ .

2This follows from the equation for φ(x) if you also assume that < ∆n(x, z)∆n(x, z
′

) > =

∆n2δ(z, z
′

).
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The emergent electric field hence has a finite coherence length
(while the coherence length of the incident plane wave was
infinite). From the van Cittert-Zernike theorem this is equiv-
alent to saying that the original unresolved point source has
got blurred out to a source of finite size. This blurring out of
point sources is called “angular broadening” or “scatter broad-
ening”. If we define a = aφ/φ0 then the visibilities have a Gaus-
sian distribution given by e−ir

2/a2

, meaning that the charac-
teristic angular size θscat of the scatter broadened source is
∼ λ/a ∝ λ2

√
∆n2L. θscat is called the “scattering angle”.

On the other hand if φ2
0 is small then the exponent in eqn 16.5.6

can be Taylor expanded to give

〈E(x)E∗(x+ r)〉 = E2
i [1 − 2φ2

0(1 − ρ(r))]

= E2
i [(1 − 2φ2

0) + 2φ2
0e

− r2

2a2
φ ]

This corresponds to the visibilities from an unresolved core (of
flux density E2

i (1 − 2φ2
0)) surrounded by a weak halo.

16.6 Scintillation

In the last section we dealt with an ionosphere which had
random density fluctuations in it. In the model we assumed
the density was assumed to vary randomly with position, but
not with time. In the earth’s ionosphere however, the density
does vary with both position and time. Temporal variations
arise both because of intrinsic variation as well as because of
traveling disturbances in the ionosphere, because of which a
given pattern of density fluctuations could travel across the
line of sight.
This temporal variation of the density fluctuations means

that the coherence function (even at some fixed separation on
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Figure 16.5: Scintillation due to the ionosphere

the surface of the earth) will vary with time. This phenomenon
is generically referred to as “scintillation”. Depending on the
typical scattering angle as well as the typical height of the
scattering layer from the surface of the earth, the scintillation
could be either “weak” or “strong”.

As discussed in the previous section, rays on passing through
an irregular ionosphere get scattered by a typical angle θscat. If
the scattering occurs at a height h above the antennas, then
as shown in Figure 16.5 these scattered rays have to traverse
a further distance h before being detected. The transverse dis-
tance traveled by a scattered ray is ∼ hθscat. If this length is
much less than the coherence length a, then the rays scat-
tered by different irregularities in the scattering medium do
not intersect before reaching the ground. The corresponding
condition is that hθscat < a, i.e. hθscat < λ/θscat or hθ2

scat < λ.

If this condition holds, then, at any instant of time (as dis-
cussed in the previous section), what the observer sees is an
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undistorted image of the source, which is shifted in position
due to refraction. As time passes, the density fluctuations
change3 and so the image appears to wander in the sky and
in a long exposure image which averages many such wander-
ings, the source appears to have a scattered broadened size
θscat. Provided that one can do self calibration on a time scale
that is small compared to the time scale of the “image wan-
der”, this effect can be corrected for completely. On the other
hand, when the hθ2

scat > λ the rays from different density fluc-
tuations will intersect and interfere with one another. The
observer sees more than one image, and because of the inter-
ference, the amplitude of the received signal fluctuates with
time. This is called “amplitude” scintillation. Amplitude scin-
tillation at low frequencies, particularly over the Indian sub-
continent can be quite strong. The source flux could change
by factors of 2 or more on very short timescales. This effect
cannot be reliably modeled and removed from the data, and
hence observations are effectively precluded during periods of
strong amplitude scintillation.

16.7 Further Reading

1. Burke B. F. and Graham-Smith F., ’An Introduction to
Radio Astronomy’, Cambridge.

2. Thompson R. A., Moran J. M. and Swenson G. W. Jr.,
‘Interferometry & Synthesis in Radio Astronomy’, Wiley
Interscience.

3. Taylor G. B., Carilli C. L. and Perley R. A., ’Synthesis
Imaging in Radio Astronomy II’, ASP Conf. Ser. vol. 180.

3but we assume that their statistics remain exactly the same, i.e. that they continue

to be realization of a Gaussian random process with variance φ0 and auto-correlation ρ(r)



Chapter 17

Pulsar Observations

Yashwant Gupta

17.1 Introduction

Amongst the various kinds of sources observed in Radio As-
tronomy, pulsars are perhaps the most unique kind, from
many points of view. A pulsar is a neutron star – the ultra-
dense core that remains after a massive star undergoes a su-
pernova explosion – spinning at very rapid rates ranging from
once in a few seconds to as much as ∼ 1000 times per second.
A pulsar has a magnetosphere with a very high value of the
magnetic field (∼ 106 − 109 Gauss). The emission mechanism
(which is not understood yet) produces radio frequency radi-
ation that comes out in two beams, one from each pole of the
magnetosphere. These rotating beams of radiation are seen
by us whenever they intersect our line of sight to the pulsar,
much like a lighthouse on the sea-shore. Each rotation of the
pulsar thus produces a narrow pulse of radiation that can be
picked up by a radio telescope. Several properties of pulsars
– such as their ultra-compact size, the occurrence of narrow
duty cycle pulses with highly stable periods, intensity fluctu-
ations on very short time scales and high degree of polarisa-

255
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tion of the radiation – make for a set of observation and data
analysis techniques that are very different from those used
in radio interferometry. Here we take a look at these special
techniques in some detail.

17.2 Requirements for Pulsar Observations

17.2.1 Phased Array Requirements

Like all radio sources, the sensitivity of pulsar observations
benefits from the availability of a large collecting area. How-
ever, because of the compact nature of the source of radiation
(typically a few hundred kilometers across), a pulsar is effec-
tively a point source for the largest interferometer baselines
on the Earth. Hence, there is not much to be learned from
making a map of a pulsar! This means that single dish ob-
servations are enough for pulsar work. However, since pul-
sars are relatively weaker sources (typical average flux den-
sities ≤ 100 mJy), large collecting areas are very useful and
hence array telescopes are used for this advantage. These ar-
ray telescopes are not used in the interferometric mode, but
in the phased array mode (see chapter 6). This means that
much of the complicated hardware of the correlator required
for measuring the visibilities on all baselines is not needed. In
phased array mode, pulsar observations can be carried out in
two different ways : (i) incoherent phased array observations
and (ii) coherent phased array observations. In the incoher-
ent phased array mode, the signal from each antenna is put
through a detector and the output from these is added to ob-
tain the net signal. In the coherent phased array mode, the
voltage signal from each antenna is added and the summed
output is put through a detector to obtain the final power sig-
nal. For an array of N antennas, the incoherently phased
array gives a sensitivity of

√
N times that of a single antenna,
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while the coherent array gives a sensitivity of N times that of
a single antenna. The incoherent array has an effective beam
that is same as that of a single antenna of the array, whereas
the coherent array has a beam width that is much narrower
than that of a single antenna, being ∼ λ/D, where D is the
largest spacing between antennas in the array. The coherent
phased array mode is ideally suited for observations of known
pulsars. The incoherent phased array mode is most useful
for large-scale pulsar search observations, where the aim is to
cover a maximum area of the sky in a given time, at a given
level of sensitivity. For a sparsely filled aperture array, inco-
herent phased array observations will certainly be faster for
such applications.

17.2.2 Spectral Resolution Requirements

Again like all radio sources, pulsar observations also benefit
from large bandwidths of observation. However, unlike any
other kind of continuum radio source, pulsar observations
can not often combine the data from across a large bandwidth
in a single detector. This is mainly because of the smearing
of the pulses produced by differential dispersion delay of fre-
quencies across the band, due to propagation of the pulsar
signal through the interstellar medium. This is explained in
some detail in section 17.4 below. In the simplest technique
for reducing the effect of dispersion delay smearing, the pul-
sar signal is processed in a multichannel receiver where the
observing band is broken up into narrower frequency chan-
nels. The signal in each channel is detected and acquired
separately. This requirement of narrower frequency channels
across the observing band makes a pulsar receiver similar to
a spectral line receiver, though for entirely different reasons.
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17.2.3 Requirements for Time Resolution and Accurate

Time Keeping

Unlike other radio sources which are taken to be statistically
constant in their strength as a function of time, pulsar sig-
nals are intrinsically periodic signals. The pulses have pe-
riods ranging from a few seconds for the slowest pulsars to
about a millisecond for the fastest pulsars known. Further,
the pulses have a very small duty cycle, with typical pulse
widths of the order of 5− 10% of the period. Thus typical pulse
widths range from a few tens of milliseconds down to a frac-
tion of a millisecond. Study of such pulsar signals clearly
requires the final data to have time resolutions ranging from
∼ milliseconds to ∼ microseconds. Pulsar observations thus
require very fast sampling times for the data. This leads to
a substantial increase in the speed (and therefore complexity)
of the back-end designed for pulsar observations and also in
the speed of the data acquisition system and off-line comput-
ing capabilities. Also, the value of the sampling interval needs
to be known quite accurately in order to preserve the pulse
phase coherence over a long stretch of pulsar data spanning
many periods.

The other property of the time variation of pulsar signals is
that the rotation rate of pulsars is very accurate. This means
that if the time of arrival of the Nth and (N+1)th pulses is
known, the arrival time for the (N+M)th pulse can be predicted
very accurately. Further, slow variations of the pulsar period
(for example due to rotational slow down of the pulsar) can be
studied if the absolute time of arrival of the pulses can be mea-
sured sufficiently accurately. This requires the availability of
a very precise clock at the observatory, such as that provided
by a GPS receiver (see section 17.7 for more details).
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17.2.4 Requirements for Polarimetry

Radiation from pulsars has been shown to be highly polarised.
The linear polarisation can at times reach close to 100%. Sig-
nificant amounts of circular polarisation is also seen frequently.
The study of these polarisation characteristics is very impor-
tant for understanding the emission mechanism of pulsars.
Hence pulsar studies often require that the telescope support
full polarisation observations that finally yield the four Stokes
parameters, as a function of time and frequency. Remember
that each of these polarisation parameters needs to satisfy
all the time and frequency resolution criteria outlined above,
leading to a four-fold increase in hardware complexity and
data flow rate over simple total power observations.

17.2.5 Flux Calibration Requirements

The intensity of individual pulses varies randomly over var-
ious timescales. On the shortest timescale, pulse-to-pulse
intensity fluctuations are thought to be due to intrinsic pro-
cesses in the pulsar magnetosphere. Longer time scale fluc-
tuations in the mean pulsar flux are produced by propagation
processes in the ionised plasma of the interstellar medium
(ISM). Furthermore, some of these intensity fluctuations can
be uncorrelated over large frequency intervals. Thus for pur-
poses of estimating the pulsar flux (including estimates of the
spectral index) and for studying the variations in the pulsar
flux to understand properties of the ISM, pulsar observations
need to be calibrated with known sources of power. This can
be done by using either calibrated noise sources that can be
switched into the signal path or known calibration sources in
the sky.
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17.3 Block Diagram of a Pulsar Receiver
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Figure 17.1: Block diagram of a typical pulsar receiver

Incorporating the above requirements into a realistic set-
up for pulsar observations leads to the following block level
diagram for pulsar observations (see Fig 17.1). In a mod-
ern radio telescope, most of the processing of the signals is
carried out in the digital domain, after down-conversion to a
baseband signal (of bandwidth B). Hence the first block is an
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analog to digital converter (ADC), which is run on an accurate
and controlled sampling clock. For multi-element or array
telescopes, the signals from the different elements need to be
phased. This involves proper adjustments of amplitude, delay
and phase of the signals (see chapter 6). The output of this
block is the phased array signal which goes to the ‘Spectral
Resolution Block’. For a single dish telescope, the signal comes
directly from the sampler to this block. This block produces
the multiple narrow-band channels from the broad-band in-
put data. This can be achieved using a filter bank or a FFT
spectrometer or an auto-correlation spectrometer. The output
is a baseband voltage signal for each of Nch frequency chan-
nels, sampled at the Nyquist rate. For a multi-element tele-
scope, the location of this block and the Phased Array block
can be interchanged, in part or in whole. For example, at the
GMRT, the integer sample delay correction is done before the
FFT; the fractional sample delay correction and the phase cor-
rection is done in the last stage of the FFT and the addition of
the signals is done in a separate block located after the FFT.
Note that for incoherent phased array operation to be possible,
the addition of the signals MUST be after the spectral resolu-
tion block, because the square law detection has to be carried
out before incoherent addition can be done.

The second orthogonal polarisation from the telescope is
also processed similarly till the output from the spectral reso-
lution block. These outputs can then be given to two different
kinds of processors. The first is a total power adder that sim-
ply adds the powers of the signals in the two polarisations to
give a measure of the total intensity from the telescope as a
function of time and frequency. The second is a polarimeter
that takes the voltage signals from the two polarisations and
produces the four Stokes parameters, as a function of time
and frequency. The data from the incoherent phased array,
for example, can only be put through the total power path.
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The outputs from these two processors are then put through
an adder that integrates the data to the required time con-
stant, τs. The final output going to the recorder then is either
one (total intensity mode) or four (polarimetry mode) signals
each containing Nch frequency channels coming at the rate of
1/τs samples per second. The net data rate into the recorder
is then Nch/τs samples per second for the total intensity mode
and four times as much for the polarimetry mode. As an ex-
ample, if data from 256 spectral channels is being acquired
with a time constant of 0.25ms, the data rate is 1 Megasam-
ple per second for the total intensity mode. If one sample is
stored as a two-byte word, we can see that a storage space of
1 Gigabyte would get filled in about 2 minutes! In cases where
the data rate going into the recorder in the above set-up is dif-
ficult to handle for storage or offline processing, special pur-
pose hardware to do some of the processing online can also
be used. Typical examples of such processing would be online
dedispersion, online folding at the pulsar period and online
gating of the data (to pass on only some region of each pul-
sar period that is around the on-pulse region). Each of these
techniques reduces the net data rate so that it can be com-
fortably acquired and further processed offline. The choice of
the processing technique depends on the scientific goals of the
observations.

17.4 Dispersion and Techniques for its Correc-

tion

As mentioned earlier, propagation of pulsar signals through
the tenuous plasma of the ISM produces dispersion of the
pulses. This is because the speed of propagation through a
plasma varies with the frequency of the wave (see chapter 16).
Low frequency waves travel progressively slowly, with a cut-off
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in propagation at the plasma frequency. At high frequencies,
the velocity reaches the velocity of light asymptotically. The
difference in travel time between two radio frequencies f1 and
f2 is given by

td = KDM

(
1

f 2
1

− 1

f 2
2

)
(17.4.1)

where DM =
∫
ne dl is the dispersion measure of the pulsar,

usually measured in the somewhat unusual units of pc cm−3,
and K = 4.149 × 106 is a constant. In this equation, td is in
units of ms and f1, f2 are in units of MHz. For the typical ISM,
a path length of 1kpc amounts to a DM of about 30 pc cm−3.
Eq. 17.4.1 can be used to derive the following approximate
relationship for the dispersion smear time for a bandwidth B
centred at a frequency of observation f0, for the case when
B ≪ f0

τdisp ≃
(

202

f0

)3

DM B (17.4.2)

where τdisp is in ms, f0 and B are in MHz and DM is in the
units given earlier. Interstellar dispersion degrades the effec-
tive time resolution of pulsar data due to smearing, and this
effect becomes worse with decreasing frequency of observa-
tion. For example, the dispersion smear time is about 0.25ms
per MHz of bandwidth per unit DM at an observing frequency
of 325 MHz. This means that a pulse of 25ms width would be
broadened to twice its true width when observed with a band-
width of 10 MHz, for a DM of 10 pc cm−3. Even worse, signal
from a pulsar of period 25ms would be completely smeared
out and not be visible as individual pulses. Thus it is impor-
tant to reduce the effect of interstellar dispersion in pulsar
data. This is called dedispersion.
There are two main methods used for dedispersion – inco-

herent dedispersion and coherent dedispersion. In incoherent
dedispersion, which is a post-detection technique, the total
observing band (of bandwidth B) is split into Nch channels and
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the pulsar signal is acquired and detected in each of these.
The dispersion smearing in each channel is less than the to-
tal smearing across the whole band, by a factor of Nch. The
detected signal from each channel is delayed by the appropri-
ate amount so that the dispersion delay between the centers
of the channels is compensated. These differentially delayed
data trains from the Nch channels are added to obtain a final
signal that has the dispersion smearing time commensurate
with a bandwidth of B/Nch, thereby reducing the effect of dis-
persion. In practical realisations of this scheme, the splitting
of the band into narrow channels is usually carried out online
in dedicated hardware (as described in section 17.3) while the
process of delaying and adding the detected signals from the
channels can be done online using special purpose hardware
or can be carried out offline on the recorded, multi-channel
data. In this scheme, the final time resolution obtained for a
given pulsar observation is limited by the number of frequency
channels that the band is split into.

In coherent dedispersion, one attempts to correct for in-
terstellar dispersion in a pulsar signal of bandwidth B before
the signal goes through a detector, i.e. when it is still a volt-
age signal. It is based on the fact that the effect of interstel-
lar scintillation on the electromagnetic signal from the pulsar
can be modeled as a linear filtering operation. This means
that, if the response of the filter is known, the original sig-
nal can be deconvolved from the received voltage signal by an
inverse filtering operation. The time resolution achievable in
this scheme is 1/B – the maximum possible for a signal of
bandwidth B. Thus coherent dedispersion gives a better time
resolution than incoherent dedispersion, for the same band-
width of observation. It is the preferred scheme when very
high time resolution studies are required – as in studies of
profiles of millisecond pulsars and microstructure studies of
slow pulsars. The main drawback of coherent dedispersion



17.5. PULSE STUDIES 265

is that practical realisations of this scheme are not easy as
it is a highly compute intensive operation. This is because
the duration of the impulse response of the dedispersion filter
(equal to the dispersion smear time across the bandwidth) can
be quite long. To reduce the computational load, the decon-
volution operation of the filtering is carried out in the Fourier
domain, rather than in the time domain. Nevertheless, real
time realisations of this scheme are limited in their bandwidth
handling capability. Most coherent dedispersion schemes are
implemented as offline schemes where the final baseband sig-
nal from the telescope is recorded on high speed recorders and
analysed using fast computers.

17.5 Pulse Studies

Pulsar pulse studies encompass a broad set of topics rang-
ing from the study of the average properties of pulsar profiles
to the study of microscopic phenomena in individual pulses.
Though individual pulses from a pulsar show tremendous vari-
ations in properties such as shape, width, amplitude and po-
larisation, it is found that when a few thousand pulses (typi-
cally) are accumulated synchronously with the pulsar period,
the resulting average profile shows a steady and constant form
which can be considered to be a signature of that pulsar. Such
an average profile typically exhibits one or more well defined
regions of emission within the profile window. These are usu-
ally referred to as emission components and they can be par-
tially or completely separated in pulse longitude. Similarly,
the average polarisation properties also show a well defined
signature in terms of the variations (across the profile window)
of the amplitudes of linear and circular polarisation, as well
as the angle of the linear polarisation vector. The average pro-
file however does change with observing frequency for a given
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pulsar, with the typical signature being that profiles become
wider at lower frequencies. Average pulse profile studies are
important for characterising the overall properties of a pulsar.
To obtain accurate average pulse profiles, one needs to ob-

serve the pulsar for a long enough stretch so that (i) the pro-
file converges to a stable form and (ii) there is enough signal
to noise. The time resolution should be enough to resolve
the features of interest in the profile (typically 1% to 0.1% of
the pulse period). Since the average profile is obtained by
synchronous accumulation at the pulsar period (this is called
‘folding’ in pulsar jargon), the period and the sampling inter-
val need to be known with sufficient accuracy to avoid any
distortions due to smearing effects. It is easy to show that the
fractional error in the period and the resultant fractional error
in phase are related by

∆P

P
=

1

Np

∆φ

φ
(17.5.3)

where Np is the number of pulses used in the folding. As an
example, if the distortions due to phase error are to be kept
under one part in a thousand and Np = 1000, then the period
needs to be known to better than 1 part in a million.
Let us know look at the signal to noise ratio (SNR) for an av-

erage profile observation. For a pulsar of period P and pulse
width W having a time average flux Sav, observed with a tele-
scope of effective aperture Aeff and system noise temperature
Tsys, using a bandwidth B and time constant τs, the signal to
noise ratio at a point on a profile obtained from Np pulses is
given by

SNRavg =
SavAeff

k Tsys

P

W

√
Bτs

√
Np (17.5.4)

Here the P/W term is to convert the time average flux to on-
pulse flux and the

√
Np term accounts for the SNR improve-
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ment due to addition of Np pulses. The other terms are as for
normal SNR calculations for continuum sources.

When single pulses from a pulsar are examined in detail, it
is seen that the radiation in each pulse does not always oc-
cur all over the average profile window. Usually, the signal is
found located sporadically at different longitudes in the pro-
file window. These intensity variations are called sub-pulses
and they have a typical width that is less than the width of
the average profile. For some pulsars, sub-pulses in succes-
sive pulses don’t always occur randomly in the profile window;
they are found to move systematically in longitude from one
pulse to the next. These are called drifting sub-pulses and
are thought be one of the intriguing features of the emission
mechanism. For some pulsars, there are times when there is
practically no radiation seen in the entire profile window for
one or more successive pulses. This phenomenon is called
nulling and is another of the unexplained mysteries of pulsar
radiation. Polarisation properties of sub-pulses also show sig-
nificant deviations from the overall polarisation properties of
the average profile. Studies of sub-pulses require time resolu-
tions that are 0.1% of the pulse period, or better.

When single pulses are observed with still higher time res-
olution, it is found that narrow bursts of emission are also
seen at time scales much shorter than sub-pulse widths. This
is called microstructure and the time scales go down to mi-
croseconds and less. Seeing pulsar microstructure almost
always requires the use of coherent dedispersion techniques
to achieve the desired time resolution. It is clear from the
above that pulsar intensities show fluctuations at various time
scales within a pulse period. A useful analysis technique that
separates out the various time scales is the intensity correla-
tion function.

It is worth pointing out that single pulse observations are
the worst affected among all kinds of pulsar studies, from the



268 CHAPTER 17. PULSAR OBSERVATIONS

point of view of signal to noise ratio. This is simply because
the

√
Np advantage in Eq. 17.5.4. is not available. Also, as

τs is reduced for higher time resolution studies, the SNR de-
creases further. Hence such studies need the largest collecting
area telescopes and can often be done on only the strongest
pulsars.

17.6 Interstellar Scintillation Studies

The propagation of pulsar signals through the interstellar medium
of the Galaxy modifies the properties of the received radiation
in several ways. A study of these effects can give useful in-
formation about the interstellar medium. One of these effects
that has already been looked at is interstellar dispersion. It
gives us information about the mean electron density of the
interstellar plasma.

Another effect that is significant in pulsar observations is
interstellar scintillations. It is caused by scattering of the ra-
diation due to random fluctuations of electron density in the
interstellar plasma. It produces the following effects (not all
of which are easily observable!): (i) angular broadening of the
source, as scattered radiation now arrives from a range of an-
gles around the direction to the pulsar; (ii) temporal pulse
broadening due to the delayed arrival of scattered radiation;
(iii) random fluctuations of pulsar intensity as a function of
time and frequency due to interference effects between ra-
diation arriving from different directions. All these effects
increase in strength with decreasing frequency and with in-
creasing length of plasma between source and observer. A
detailed study of interstellar scintillation effects in pulsar sig-
nals can be used to obtain valuable constraints on the extent
and location of scattering plasma in the interstellar medium,
as well as on the spatial power spectrum of electron density
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fluctuations in the medium.

Of the three effects of scintillations described above, the
random fluctuations of intensity are the most easily observ-
able and form the best probes of the phenomenon. They are
readily seen in pulsar dynamic spectra which are records of
the on-pulse intensity as a function of time and frequency.
A single time sample in the dynamic spectra is obtained by
accumulating the total energy under the pulse window for a
given number of pulses, for each of Nch channels. These ran-
dom intensity fluctuations have typical decorrelation scales
in time and frequency, which are estimated by performing a
two dimensional autocorrelation of the dynamic spectra data.
These decorrelation widths are of the order of a few minutes
and hundreds of kHz, respectively, at metre wavelengths. This
means that typical observations have to be carried out with
time and frequency resolutions of the order of tens of seconds
and tens of kHz in order to observe the scintillations. This
requirement becomes more stringent at lower frequencies and
for more distant pulsars (which are more strongly scattered).
Also, the observations need to span enough number of these
random scintillations in order to obtain statistically reliable
values for the two decorrelation widths. This usually requires
observing durations of an hour or so with bandwidths of a few
MHz.

Due to the effect of large scale electron density fluctua-
tions in the interstellar medium, the values of the decorre-
lation widths and the mean pulsar flux fluctuate with time. A
study of this phenomenon (called refractive scintillations) re-
quires regular monitoring of pulsar dynamic spectra at differ-
ent epochs, typically a few days apart and spanning several
weeks to months. Such data can also be used to estimate the
mean transverse speeds of pulsars.
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17.7 Pulsar Timing Studies

Pulsar timing studies involve accurate measurements of the
time of arrival of the pulses, followed by appropriate modeling
of the observed arrival times to study and understand various
phenomena that can effect the arrival times.

The first step of accurate estimation of arrival times is achieved
as follows. First, at each epoch of observation, data from the
pulsar is acquired with sufficient resolution in time and fre-
quency and over a long enough stretch so that a reliable es-
timate of the average profile can be obtained. The effective
time resolution should be about one-thousandth of the period.
Second, the absolute time for at least one well defined point
in the observation interval is measured with the best possi-
ble accuracy. Traditionally, atomic clocks have been used for
this purpose. With the advent of the Global Positioning Sys-
tem (GPS), absolute time (UTC) tagging with an accuracy of ∼
100ns is possible using commercially available GPS receivers.
Third, the fractional phase offset with respect to a reference
epoch is calculated for the data at each epoch. This is gen-
erally best achieved by cross-correlating the average profile at
the epoch with a template profile and estimating the shift of
the peak of the cross-correlation function. This shift, in units
of time, is added to the arrival time measurement to reference
the arrival times to the same phase of the pulse. Fourth, the
arrival times measured at the observatory on the Earth are
referred to a standard inertial point, which is taken as the
barycenter of the solar system. These corrections include ef-
fects due to the rotation and revolution of the Earth, the effect
of the Earth-Moon system on the position of the Earth and
the effect of all the planets in the Solar System. Relativistic
corrections for the clock on the Earth are also included, as
are corrections for dispersion delay at the Doppler corrected
frequency of observation. Last, a pulse number, relative to the



17.8. PULSAR SEARCH 271

pulse at the reference epoch, is attached to the arrival time for
each epoch. This can be a tricky affair, since to start with the
pulsar period may not be known accurately, and it is possible
to err in integer number of pulses when computing the pulse
number. To avoid this danger, a boot-strapping technique is
used where the initial epochs of observations are close enough
so that, given the accuracy of the period, the phase error can
not exceed one cycle between two successive epochs. As the
period gets determined with better accuracy by modeling the
initial epochs, the spacing between successive epochs can be
increased. The net result of the above exercise is a series of
data pairs containing time of arrival and pulse number, both
relative to the same starting point.
The second step in the analysis is the modeling of the above

data points. This is usually done by expressing the pulse
phase at any given time in terms of the pulsar rotation fre-
quency and its derivatives as follows

φi = φ0 + ν0ti + ν̇0ti
2/2 + . . . (17.7.5)

where ν0 = 1/P . Least squared fits for φ0, ν0, ν̇0 etc., can be
obtained from such a model. In addition, by examining the
residuals between the model and the data, other parameters
that effect the pulsar timing can be estimated. These include
errors in the positional estimate of the pulsar, its proper mo-
tion, perturbations to the pulsar’s motion due to the presence
of companions, sudden changes in the pulsar’s rotation rate
etc. In fact, good quality timing observations can be used to
extract a wealth of information, including stability of pulsars
vis-a-vis the best terrestrial clocks!

17.8 Pulsar Search

At the end, we come to the observation and analysis tech-
niques used for discovering new pulsars. Pulsar searches fall
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into one of two broad categories : targeted and untargeted
searches. In an untargeted search (or survey) for pulsars,
the idea is to uniformly cover a large area of the sky with a
desired sensitivity in flux level. In targeted searches, one is
searching a limited area of the sky where there is a higher
than normal probability of finding a pulsar (for example, the
region in and around a supernova remnant or a steep spec-
trum point source identified in mapping studies). Here some
of the parameters of the search can be tailored to suit the
apriori knowledge about the search region.

For a pulsar survey, the choice of (i) the range of directions
to search in, (ii) the frequency of observations, (iii) the band-
width and number of spectral channels, (iv) the sampling in-
terval and (v) the duration of the observations are some of the
critical items that need to be chosen carefully. The choice of
these parameters is interlinked in many cases.

Analysis of pulsar search data is an extremely compute in-
tensive task. For each position in the sky for which data is
recorded, the analysis technique needs to search for the pres-
ence of a periodic signal in the presence of system noise. How-
ever, from the discussion in section 3, it is clear that if ap-
propriate dispersion correction is not done, the sensitivity to
the presence of a periodic signal can be reduced significantly.
Since a pulsar can be located at any distance (and hence DM)
along a given direction in the sky, the search has to be car-
ried out in (at least) two dimensions : DM and period. For this,
the data is dedispersed for different trial dispersion measures.
For each choice of DM, the dedispersed data is searched for a
periodic signal.

To reduce the computational load for search data analysis,
several optimised algorithms are used. For example, when
dedispersing for a range of DM values, it is possible to use the
results from the computations for some DM values to com-
pute part of the results for some other DM values. This saves
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a lot of redundant calculations. This method, known as Tay-
lor’s Dedispersion Algorithm, is used quite often. Similarly,
there are optimised techniques for searching for periodic sig-
nals in the presence of noise. The simplest method is to fold
the dedispersed data for each choice of possible period and
examine the resulting profile for the presence of a significant
peak that is well above the noise level. Once again, com-
putations done for folding at a given period can be used for
folding at other periods. This redundancy is exploited by the
Fast Folding Algorithm. A signal containing a periodic train of
pulses gives a well defined signature in the Fourier domain –
its spectrum consists of peaks at the frequency corresponding
to the periodicity, and harmonics thereof. It can be shown
that it is possible to detect the periodic signal by searching for
harmonically related peaks in the spectral domain. It turns
out that it is more economical to implement the FFT followed
by harmonic search technique compared to the folding search
techniques.
Additional complications are introduced in the search al-

gorithm when one allows the parameter space to cover pul-
sars in binary orbits as the period can actually change during
the interval of observation. Special processing techniques are
needed to handle such requirements.

17.9 Further Reading

1. Hankin T.H. and Rickett, B.J. ’Pulsar Signal Processing’,
McGraw-Hill.

2. Lyne A.G. and Smith F.G., ’Pulsar Astronomy’, Cambridge.

3. Manchester R. N. and Taylor, J.H. ’Pulsars’, W.H. Free-
man & Co.
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Chapter 18

An Overview of the GMRT

Jayaram N. Chengalur

18.1 Introduction

The Giant Metrewave Radio Telescope (GMRT) consists of an
array of 30 antennas. Each antenna is 45 m in diameter, and
has been designed to operate at a range of frequencies from
50 MHz to 1450 MHz. The antennas have been constructed
using a novel technique (nicknamed SMART) and their reflect-
ing surface consists of panels of wire mesh. These panels
are attached to rope trusses, and by appropriate tensioning of
the wires used for attachment the desired parabolic shape is
achieved. This design has very low wind loading, as well as a
very low total weight for each antenna. Consequently it was
possible to build the entire array very economically. In this
chapter I give a very brief overview of the GMRT. Subsequent
chapters discuss in detail each of the major subsystems of the
GMRT.
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Figure 18.1: GMRT array configuration.

18.2 Array Configuration

The GMRT has a hybrid configuration, (see Figure 18.1) with
14 of its antennas randomly distributed in a central region
(∼ 1 km across), called the central square. The distribution of
antennas in the central square was deliberately “randomized”
to avoid grating lobes. The antennas in the central square
are labeled as Cnn, with nn going from 00 to 14 (i.e. C00,
C01,...C14)1. The remaining antennas are distributed in a
roughly Y shaped configuration, with the length of each arm

1The array was originally meant to have 34 antennas, but because of escalating costs,

was finally constructed with 30. Consequently some antenna stations do not actually

have any antennas in them, resulting in “missing” numbers (C07, E01, S05) in the num-

bering sequence.
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of the Y being ∼ 14 km. The maximum baseline length between
the extreme arm antennas is ∼ 25 km. The arms are called the
“East” “West” and “South” arms and the antennas in these
arms are labeled E01...E06, W01...W06 and S01...S06 for the
east, west and south arm respectively.

The central square antennas provide a large number of rel-
atively short baselines. This is very useful for imaging large
extended sources, whose visibilities are concentrated near the
origin of the UV plane. The arm antennas on the other hand
are useful in imaging small sources, where high angular res-
olution is essential. A single GMRT observation hence yields
information on a variety of angular scales.

18.3 Receiver System

The GMRT currently operates at 5 different frequencies rang-
ing from 150 MHz to 1420 MHz. Some antennas have been
equipped with receivers which work up to 1750 MHz. Above
this frequency range however, the antenna performance de-
grades rapidly both because the reflectivity of the mesh falls
and also because of the rapidly increasing aperture phase er-
rors because of the deviations of the plane mesh facets from a
true parabola. A 50 MHz receiver system is also planned. Ta-
ble 18.1 gives the relevant system parameters at the nominal
center frequency of the different operating frequencies of the
GMRT.

The GMRT feeds, (except for the 1420 feed), are circularly
polarized. The circular polarization is achieved by means of a
polarization hybrid inserted between the feeds and the RF am-
plifiers. No polarization hybrid was inserted for the 1420 MHz
feed, in order to keep the system temperature low. None of
the receivers are cooled, i.e. they all operate at the ambient
temperature. The feeds are mounted on four faces of a feed
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System Properties in MHz
50 153 233 327 610 1420

Primary beam (degree) 3.8 2.5 1.8 0.9 0.4×(1400/f)
Synthesized beam
Full array (arcsec) 20 13 09 05 02
Central array (arcmin) 7.0 4.5 3.2 1.7 0.7
System temperature (K)
(1) Treceiver 144 55 50 60 40
(including cable losses)
(2) Tground = Tmesh + Tspillover 30 23 18 22 32
(3) Tsky 308 99 40 10 4
Total Tsys 482 177 108 92 76
= Tsky + Treceiver + Tground (582) (234) (101)
Gain of an antenna (K/Jy) 0.33 0.33 0.32 0.32 0.22
RMS noise in image⋆ (µJy) 46 17 10 09 13

⋆For assumed bandwidth of 16 MHz, integration of 10 hours and natural

weighting (theoretical), the current observation numbers are given in

brackets.

Table 18.1: System parameters of the GMRT

turret placed at the focus of the antenna. The feed turret can
be rotated to make any given feed point to the vertex of the an-
tenna. The feed on one face of the turret is a dual frequency
feed, i.e. it works at 233 MHz as well as 610 MHz.
After the first RF amplifier, the signals from all the feeds

are fed to a common second stage amplifier (this amplifier has
an input select switch allowing the user to choose which RF
amplifier’s signal is to be selected), and then converted to IF.
Each polarization is converted to a different IF frequency, and
then fed to a laser-diode. The optical signals generated by the
laser-diode are transmitted to a central electronics building
(CEB) by fiber optic cables. At the central electronic build-
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ing, they are converted back into electrical signals by a photo-
diode, converted to baseband frequency by another set of mix-
ers, and then fed into a suitable digital backend. Control and
telemetry signals are also transported to and from the antenna
on the fiber-optic communication system. Each antenna has
two separate fibers one each for for uplink and downlink.

18.4 Digital Backends

There are a variety of digital backends available at the GMRT.
The principal backend used for interferometric observations
is a 32 MHz wide FX correlator. The FX correlator produces
a maximum of 256 spectral channels for each of two polariza-
tions for each baseline. The integration time can be as short
as 128ms, although in practice 2s is generally the shortest in-
tegration time that is used. The FX correlator itself consists of
two 16 MHz wide blocks, which are run in parallel to provide a
total instantaneous observing bandwidth of 32 MHz. For spec-
tral line observations, where fine resolution may be necessary,
the total bandwidth can be selected to be less than 32 MHz.
The available bandwidths range from 32 MHz to 64 kHz in
steps of 2. The maximum number of spectral channels how-
ever remains fixed at 256, regardless of the total observing
bandwidth. The GMRT correlator can measure all four Stokes
parameters, in this mode the maximum total bandwidth is
16 MHz and the maximum number of spectral channels is
128. Dual frequency observations are also possible at 233 and
610 MHz, however in this case, only one polarization can be
measured at each frequency. The array can be split into sub-
arrays, each of which can have its own frequency settings and
target source. The correlator is controlled using a distributed
control system, and the data acquisition is also distributed.
The correlator output, i.e. the raw visibilities are recorded in
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a GMRT specific format, called the “LTA” format. Programs
are available for the inspection, display and calibration of LTA
files, as well as for the conversion of LTA files to FITS.

The first block of the GMRT pulsar receiver is the GMRT
Array Combiner (GAC) which can combine the signals from
the user-selected antennas (up to a maximum of 30) for both
incoherent and coherent array operations. The input signals
to the GAC are the outputs of the Fourier Transform stage
of the GMRT correlator, consisting of 256 spectral channels
across the bandwidth being used, for each of the two polariza-
tions from each antenna. The GAC gives independent outputs
for the incoherent and coherent array summed signals, for
each of two polarizations. For nominal, full bandwidth mode
of operation, the sampling interval at the output of the GAC is
16µsec.

Different back-end systems are attached to the GAC for pro-
cessing the incoherent and coherent array outputs. The inco-
herent array DSP processor takes the corresponding GAC out-
put signals and can integrate the data to a desired sampling
rate (in powers of 2 times 16µs). It gives the option of acquir-
ing either one of the polarizations or the sum of both. It can
also collapse adjacent frequency channels, giving a slower net
data rate at the cost of reduced spectral resolution. The data
is recorded on the disk of the main computer system.

The coherent array DSP processor takes the dual polar-
ization, coherent (voltage sum) output of the GAC and can
produce an output which gives 4 terms – the intensities for
each polarization and the real and imaginary parts of the cross
product – from which the complete Stokes parameters can be
reconstructed. This hardware can be programmed to give a
sub-set of the total intensity terms for each polarization or the
sum of these two. The minimum sampling interval for this
data is 32µs, as two adjacent time samples are added in the
hardware. Further preintegration (in powers of 2) can be pro-
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grammed for this receiver. The final data is recorded on the
disk of the main computer system.
There is another independent full polarimetric back-end sys-

tem that is attached to the GAC. This receiver produces the
final Stokes parameters, I,Q,U & V. However, due to a limi-
tation of the final output data rate from this system, it can
not dump full spectral resolution data at fast sampling rates.
Hence, for pulsar mode observations the user needs to opt
for online dedispersion or gating or folding before recording
the data (there is also an online spectral averaging facility for
non-pulsar mode observations).
In addition, there is a search preprocessor back-end at-

tached to the incoherent array output of the GAC. This unit
gives 1-bit data, after subtracting the running mean, for each
of the 256 spectral channels. Either one of the polarizations
or the sum of both can be obtained.
Most sub-systems of the pulsar receiver can be configured

and controlled with an easy to use graphical user interface
that runs on the main computer system. For pulsar obser-
vations, since it is advisable to switch off the automatic level
controllers at the IF and baseband systems, the power levels
from each antenna are individually adjusted to ensure proper
operating levels at the input to the correlator. The format for
the binary output data is peculiar to the GMRT pulsar re-
ceiver. Simple programs to read the data files and display the
raw data - including facilities for dedispersion and folding -
are available at the observatory and can be used for first or-
der data quality checks, both for the incoherent mode and
coherent mode systems.
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Chapter 19

GMRT Antennas and Feeds

G. Sankar

19.1 Introduction

A radio telescope in its simplest form consists of three com-
ponents (see also Chapter 3), (i) an antenna that selectively
receives radiation from a small region of the sky, (ii) a receiver
that amplifies a restricted frequency band from the output of
the antenna and (iii) a recorder for registering the receiver out-
put. In this chapter we focus on the antenna, and in particular
the antennas used for the GMRT.

The GMRT antennas are parabolic reflector antennas. The
first reflector antenna was invented by Heinrich Hertz in 1888
to demonstrate the existence of electromagnetic waves which
had been theoretically predicted by J.C.Maxwell. Hertz’s an-
tenna was a cylindrical parabola of f/D = 0.1 and operated
at a wavelength of 66 cm.(450 MHz). The next known reflec-
tor antenna was that constructed in 1930 by Marconi for in-
vestigating microwave propagation. Later, in 1937, Grote Re-
ber constructed the prototype of the modern dish antenna -
a prime-focus parabolic reflector antenna of 9.1m diameter,
which he used to make the first radio maps of the sky. Dur-

285
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ing and after World War II, radar and satellite communication
requirements caused great advances in antenna technology.

19.2 Types of Antennas

A diverse variety of antennas have been used for radio astron-
omy (see eg. Chapter 3); the principal reason for this being the
wide range of observing wavelengths from ∼ 100m to ∼ 1mm –
a range of 105. However the most common antenna used for
radio astronomy is the paraboloid reflector with either prime-
focus feeds or cassegrain type feed arrangement.

Prime-focus parabolic antennas although mechanically sim-
ple have certain disadvantages, viz. (i) the image-forming qual-
ity is poor due to lower f/D ratios, and (ii) the feed antenna
pattern extends beyond the edge of the parabolic reflector and
the feed hence picks up some thermal radiation from ground.
The cassegrain system which uses a secondary hyperboloid
reflector and has the feed located at the second focus of the
secondary solves these problems. For cassegrain systems the
f/D ratio is higher and further the feed “looks” upwards and
hence pick up from the ground is minimized. This is a great
advantage at higher frequencies, where the ground brightness
temperature (∼ 300 K) is much higher than the brightness tem-
perature of the sky. However this is achieved at the price of
increased aperture blockage caused by the secondary reflec-
tor.

A primary advantage of paraboloid antennas (prime focus
or cassegrain) is the ease with which receivers can be coupled
to it. The input terminals are at the feed horn or dipole. A
few other advantages are: (i) high gain, a gain of ≃ 25 dB for
aperture diameters as small as 10λ is easily achievable, (ii) full
steerability, generally either by polar or azimuth-elevation mount-
ing. Further the antenna characteristics are to first order
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independent of pointing, (iii) operation over a wide range of
wavelengths simply by changing the feed at the focus.
Compared to optical reflectors paraboloid reflectors used

for radio astronomy generally have a short f/D ratio. Highly
curved reflectors required for higher f/D ratios result in in-
creased costs and reduced collecting areas. Although the re-
flecting antennas are to first order frequency independent,
there is nonetheless a finite range of frequencies over which a
given reflector can operate. The shortest operating wavelength
is determined by the surface smoothness of the parabolic re-
flector. If λmin is the shortest wavelength,

λmin ≈ σ/20 (19.2.1)

where, σ is the rms deviation of the reflector surface from a
perfect paraboloid. Below λmin the antenna performance de-
grades rapidly with decreasing wavelength. The longest oper-
ating wavelength λmax, is governed by diffraction effects. As a
rule of thumb the largest operating wavelength λmax is given
by

λmax < 2L̄ (19.2.2)

where, L̄ is the mean spacing between feed–support legs. At
λ = L̄ the feed support structure would completely shadow the
reflector.

19.3 Characterizing Reflector Antennas

One important property of any antenna is that its radiation
characteristics when it is used as a transmitter are the same
as when it is in the receiving-mode. This is a consequence
of the well-known principle of reciprocity. Even though radio
telescope antennas are generally used only for receiving sig-
nals, it is often simpler to characterize it by considering the
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antenna to be in the transmitting mode. Antenna terminology
is also influenced by the reciprocity principle. For example
we have been calling the dipole or horn placed at the focus of
the reflector to receive the signal from distant sources as the
“feed”, i.e. as though it were coupled to a transmitter rather
than a receiver.

All antennas can be described by the following characteris-
tics (see also Chapter 3)

1. Radiation pattern The field strength that the antenna ra-
diates as a function of direction. The simplest type of
antenna normally radiates most of its energy in one direc-
tion called the ‘primary beam’ or ‘main lobe’. The angular
width of the main lobe is determined by the size and de-
sign of the antenna. It is usually parametrized by its full
width at half maximum, also called its 3dB beamwidth.
Weaker secondary maxima in other directions are called
sidelobes. Although the pattern is a function of both el-
evation and azimuth angle, it is often only specified as
a function of elevation angle in two special orthogonal
planes, called the E-plane and the H-plane.

2. Directivity The radiated power in the direction of the main
lobe relative to what would be radiated by an isotropic
antenna with the same input power. A related quan-
tity called the Gain also takes into account any electrical
losses of the antenna. For reflector antennas, one can
also define an aperture efficiency which is the ratio of the
effective collecting area of the telescope to its geometric
area. For the relation between the gain and the effective
collecting area see Chapter 3.

3. Polarization The sense of polarization that the antenna ra-
diates or receives as a function of direction. This may be
linear, circular, or elliptical. Note that when describing
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the polarization of a wave, it is sufficient to specify the
polarization of the electric-field vector.

4. Impedance From the point of view of the microwave cir-
cuit behind the antenna, the antenna can be represented
as a complex load impedance. The characteristics of this
load depend on the radiation patterns of the antenna and
hence the design of the antenna. The goal of a good de-
sign is to match the impedance of the antenna to the
impedance of the transmission line connecting the an-
tenna to the receiver. The impedance match can be char-
acterized by any one of the following parameters:

• the voltage reflection coefficient, ρv
• the return loss (in dB), RL = −20log |ρv|
• the voltage standing-wave ratio, V SWR = 1+|ρv|

1−|ρv|

5. Phase Center All horns and feeds have a phase center.
This is the theoretical point along the axis of the feed
which is the center of curvature of the phase fronts of
the emerging spherical waves.

19.4 Computing Reflector Antenna Patterns

Reflector antenna radiation patterns are determined by a num-
ber of factors, but the most important ones are the radia-
tion pattern of the feed antenna and the shape of the reflec-
tor. Parabolic reflectors have the unique feature that all path
lengths from the focal point to the reflector and on to the aper-
ture plane are the same. As shown in Figure 19.1,

FP + PA = ρ+ ρcos θ′

= ρ(1 + cos θ′) (19.4.3)

= 2f
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Figure 19.1: Geometry for determining the aperture field distribution for a

prime focus parabolic antenna.

since the parabola is described in polar form by ρ(1+cos θ′) = 2f

When the reflector dimensions are large compared to the
wavelength, geometrical optics principles can be used to de-
termine the power distribution in the aperture plane. If the
feed pattern is azimuthally symmetric, then the normalized
far-field radiation pattern of reflector depends on

1. πu = k a sin θ, where a is the radius of the aperture, k =

2π/λ, and θ is the angle subtended by the far-field point
with respect to the parabola’s focal axis

2. The feed taper,C, which is defined as the amplitude of the
feed radiation pattern at the rim of the parabolic reflector
relative to the maximum value (assumed to be along the
parabola axis). (Note that in standard power plots of radi-
ation patterns (in dB), the edge taper TE is related to C by
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TE = 20logC).

3. The focal length f , which determines how the power from
the feed is spread over the aperture plane. If g̃(θ′) is the
radiation pattern of the feed, r is distance in the aperture
plane, and g(r) is the power density in the aperture plane,
then we have

g(r) dr = g̃(θ′) dθ′, or g(r) = g̃(θ′)
dθ′

dr
(19.4.4)

and from Figure 19.1 we have

dθ′

dr
=

2f

1 + cos(θ′)
(19.4.5)

In Chapter 3 we saw that the far field is in general the
Fourier transform of the aperture plane distribution. In the
case of azimuthally symmetric distributions, this can be writ-
ten as

F (u) =

∫ π

0

g(q)J0(qu)q dq (19.4.6)

where F (u) is the far field pattern, q is a normalized distance
in the aperture plane, q = π(r/a), g(q) is the feed’s pattern pro-
jected onto the aperture plane as discussed above. A conve-
nient parametrization of the feed pattern in terms of the taper,
C is

g
(r
a

)
= C + (1 − C)

[
1 −

(r
a

)2
]n

(19.4.7)

The aperture illuminations corresponding to different val-
ues of the parameter n are shown in Figure 19.2. The case
n = 0 corresponds to a uniform aperture distribution.
For uniform illumination the far field pattern is given by
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Figure 19.2: The shape of the aperture illumination as given by eqn 19.4.7

for different values of the parameter n.

F (u) = 2·J1(πu)

(πu)
(19.4.8)

where J1 is the Bessel function of the first order. Simple
closed-form expressions are available for integer values of n.
If the above expression F (u) is denoted as F0(u) (since n = 0),
the general form for any integer n is given by

Fn(u) =
n+ 1

Cn+ 1
·
[
CF0(u) +

1 − C

n+ 1
fn(u)

]
(19.4.9)

where,

fn(u) = 2n+1(n+ 1)!
Jn+1(πu)

(πu)n+1
(19.4.10)

Table 19.1 gives the halfpower beamwidth (HPBW), the first
sidelobe level and the taper efficiency (see Section 19.4.1) for
various edge tapers C and shape parameter n.
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Table 19.1: Radiation characteristics of circular aperture

Edge Taper n = 1 n = 2

TE HPBW Sidelobe ηt HPBW Sidelobe ηt

(dB) C (rad.) level (dB) (rad.) level (dB)

-8 0.398 1.12λ/2a -21.5 0.942 1.14λ/2a -24.7 0.918

-10 0.316 1.14λ/2a -22.3 0.917 1.17λ/2a -27.0 0.877

-12 0.251 1.16λ/2a -22.9 0.893 1.20λ/2a -29.5 0.834

-14 0.200 1.17λ/2a -23.4 0.871 1.23λ/2a -31.7 0.792

-16 0.158 1.19λ/2a -23.8 0.850 1.26λ/2a -33.5 0.754

-18 0.126 1.20λ/2a -24.1 0.833 1.29λ/2a -34.5 0.719

From Table 19.1 (see also the discussion in Chapter 3) we
find that as the edge-taper parameter C decreases, the HPBW
increases, the first sidelobe level falls and the taper-efficiency
also decreases. Note that C has to be less than unity since we
have assumed a radiation pattern which decreases monotoni-
cally with increasing angle from the symmetry-axis (Eqn 19.4.7,
Fig 19.2).

19.4.1 Aperture Efficiency

The “aperture efficiency” of an antenna was earlier defined
(Sec 19.3) to be the ratio of the effective radiating (or collecting)
area of an antenna to the physical area of the antenna. The
aperture efficiency of a feed-and-reflector combination can be
decomposed into five separate components: (i) the illumina-
tion efficiency or “taper efficiency”, ηt, (ii) the spillover effi-
ciency, ηS, (iii) the phase efficiency, ηp, (iv) the crosspolar effi-
ciency, ηx and (v) the surface error efficiency ηr.

ηa = ηt ηS ηp ηx ηr (19.4.11)

The illumination efficiency (see also Chapter 3, where it was
called simply “aperture efficiency”) is a measure of the nonuni-
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formity of the field across the aperture caused by the tapered
radiation pattern (refer Figure 19.2). Essentially because the
illumination is less towards the edges, the effective area being
used is less than the geometric area of the reflector. It is given
by

ηt =
|
∫ R

0 g(r)dr|2
∫ R

0 |g(r)|2dr
(19.4.12)

where g(r) is the aperture field. Note that this has a maxi-
mum value of 1 when the aperture illumination is uniform,
i.e. g(r) = 1. The illumination efficiency can also be written in
terms of the electric field pattern of the feed E(θ), viz.

ηt = 2cot2 θ0

2
· |
∫ θ0

0 E(θ)tan(θ/2)dθ|2
∫ θ0

0 |E(θ)|2sin(θ)dθ
(19.4.13)

where θ0 is angle subtended by the edge of the reflector at the
focus (Figure 19.1).
When a feed illuminates the reflector, only a proportion of

the power from the feed will intercept the reflector, the remain-
der being the spillover power. This loss of power is quantified
by the spillover efficiency, i.e.

ηS =

∫ θ0
0 |E(θ)|2sin(θ)dθ∫ π
0 |E(θ)|2sin(θ)dθ

(19.4.14)

Note that the illumination efficiency and the spillover effi-
ciency are complementary; as the edge taper increases, the
spillover will decrease (and thus ηS increases), while the illu-
mination or taper efficiency ηt decreases1. The tradeoff be-
tween ηS and ηt has an optimum solution, as indicated by the
product ηS ηt in Figure 19.3. The maximum of ηSηt occurs for
an edge taper of about -11 dB and has a value of about 80 %.
In practice, a value of -10 dB edge taper is frequently quoted
as being optimum.
1Recall also from Chapter 3 that as the illumination is made more and more uniform

the sidelobe level increases.
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Figure 19.3: Illumination efficiency and spillover efficiency as a function

of edge taper. The optimum taper is at ∼ −11 dB.

The surface-error efficiency is independent of the feed’s il-
lumination. It is associated with far-field cancellations arising
from phase errors in the aperture field caused by errors in the
reflector’s surface. If δ is the rms error in the surface of the
reflector, the surface-error efficiency is given by

ηr = exp−(4πδp/λ)2 (19.4.15)

The remaining two efficiencies, the phase efficiency and the
cross polarization efficiency, are very close to unity; the former
measures the uniformity of the phase across the aperture and
the latter measures the amount of power lost in the cross-
polar radiation pattern. For symmetric feed patterns[6], ηx
is defined through the copolar (Cp(θ)) and cross-polar (Xp(θ))
patterns:
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ηx =

∫ θ0
0 |Xp(θ)|2sin(θ)dθ

∫ θ0
0 (|Cp(θ)|2 + |Xp(θ)|2) sin(θ)dθ

(19.4.16)

where,

Cp(θ) = 1/2[E(θ) +H(θ)] (19.4.17)

Xp(θ) = 1/2[E(θ)−H(θ)]

It can be seen that if one can design an antenna having iden-
tical E(θ), H(θ) patterns the cross-polar pattern will vanish.
Taking the cue from this, the feed for antenna could also de-
signed with a goal to match E and H patterns at least up to the

subtended angle of the dish edge, θ0.
With this background we now proceed to take a detailed

look at the GMRT antennas.

19.5 Design Specifications for the GMRT An-

tennas

The f/D ratio for the GMRT antennas was fixed at the value
0.412 based both on structural design issues as well as pre-
liminary studies of various feed radiation patterns. Since the
antennas are to work at meter wavelengths prime focus feeds
were preferred. Cassegrain feeds at meter wavelengths would
result in impractically large secondary mirrors (the mirror has
to be several λ across) and concomitant large aperture block-
age.
Six bands of frequencies had been identified [1] for the GMRT

observations. It was deemed essential to be able to change the
observing frequency rapidly, and consequently the feeds had
to mounted on a rotating turret placed at the prime focus.
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If one were to mount all the six feeds on a rotating hexagon
at the focus, the adjacent feeds will be separated by 60◦. If
one wants to illuminate the entire aperture, then one has
to have a feed pattern that extends at least up to the sub-
tended angle of the parabola edge, which is θ0 = 62.5◦ (Note
that cot(θ0/2) = 4f/D, Figure 19.1). Hence this arrangement
of feeds would cause the one feed to “see” the feeds on the
adjacent faces. It was decided therefore to mount the feeds
in orthogonal faces of a rotating cube. Since one needs six
frequency bands, this leads to the constraint that at least two
faces of the turret should support dual frequency capability.
For astronomical reasons also dual frequency capability was
highly desirable.

One specific aspect of GMRT design is the use of mesh pan-
els to make the reflector surface[1]. Since the mesh is not per-
fectly reflective, transmission losses through the mesh have to
be taken into account. Further, the expected surface errors of
the mesh panels was ∼ 5 mm. This implies that the maximum
usable frequency is (see Section 19.2) ∼ 3000 MHz, indepen-
dent of the transmission losses of the mesh. (Incidentally,
since the mean-spacing of feed-support legs, L̄ = 23.6 m, the
lowest usable frequency is around 6 MHz).

Several analytical methods exist in literature to compute
the transmission loss through a mesh as a function of the
cell size, the wire diameter and the wavelength of the inci-
dent radiation. The one chosen for our application is has good
experimental support [2,3]. At the GMRT, the mesh size is
10 × 10 mm for the central 1/3 of the dish, 15 × 15 mm of the
middle 1/3 of the dish and 20 × 20 mm for the outer 1/3 of
the dish. The wire diameter is 0.55 mm. The transmission loss
for at two fiducial wavelengths for these various mesh sizes is
given in Table 19.2.

Each section of the dish not only has a separate mesh size
but also a separate surface rms error. If we call these rms
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Mesh λ = 21 cm. λ = 50 cm.

size

10 mm. -15.8 dB -23.3 dB

15 mm. -11.4 dB -18.4 dB

20 mm. -8.1 dB -14.6 dB

Table 19.2: Transmission losses through the GMRT wire mesh

surface errors σ1, σ2, σ3 and the respective transmission losses
(at some given wavelength) τ1, τ2, τ3, then the surface rms effi-
ciency given by Eqn 19.4.15 has to be altered to a weighted
rms efficiency:

ηr =
A1 +A2 + A3∫ θ0

0 |E(θ)|2sin(θ)dθ

where,

A1 = exp

[
−
(

4πσ1

λ

)2
]∫ θ2

0

|E(θ)|2sin(θ)dθ (19.5.18)

A2 = exp

[
−
(

4πσ2

λ

)2
]∫ θ1

θ2

|E(θ)|2sin(θ)dθ (19.5.19)

A3 = exp

[
−
(

4πσ3

λ

)2
]∫ θ0

θ1

|E(θ)|2sin(θ)dθ (19.5.20)

and θ2, θ1 are the subtended angles of the first and second
points of mesh–transition–zones, as illustrated in Figure 19.4
The transmission loss gives a corresponding mesh–leakage

or mesh–transmission efficiency, ηmt , which is given by

ηmt =
B1 +B2 + B3∫ θ0

0 |E(θ)|2sin(θ)dθ
(19.5.21)

where,
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Figure 19.4: Schematic of the sub division of the GMRT antenna surface

into 3 zones. The mesh size as well as the rms surface error is different in

the different zones.

B1 = (1 − τ1)

∫ θ2

0

|E(θ)|2sin(θ)dθ (19.5.22)

B2 = (1 − τ2)

∫ θ1

θ2

|E(θ)|2sin(θ)dθ (19.5.23)

B3 = (1 − τ3)

∫ θ0

θ1

|E(θ)|2sin(θ)dθ (19.5.24)

Efficiencies computed for the different GMRT feeds (using
their measured pattern, being the input) are given in Table 19.4.

19.5.1 Secondary Patterns

The antenna pattern at 327 MHz as computed using geomet-
ric optics is shown in Figure 19.5. More rigorous analytical
models (the Uniform Theory of Diffraction [7]) gives the pattern
shown in Figure 19.6.
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Figure 19.5: Computed pattern (using geometric optics) of a GMRT an-

tenna at 327 MHz.

There is a pronounced difference seen at the side–lobe struc-
tures between these two models, while the primary beam shows
near–identical shapes and the HPBW value matches to a sec-
ond decimal accuracy. The computed HPBW also agrees to
within measurement errors with the observed HPBW of the
actual GMRT antennas.

19.6 GMRT Feeds

19.6.1 Feed Placement

Recall that from the constraints outlined in Sec 19.5 it had
been decided that the feed turret should be cubical in shape.
Fig 19.7 shows the placement of feeds on the turret. The
phase–centers of all the feeds are coincident with the paraboloid
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Figure 19.6: Computed pattern (using uniform theory of diffraction) of a

GMRT antenna at 327 MHz.

focus. The space between the turret and the feed is utilized for
mounting the front-end electronics. There are six bands alto-
gether, 1000− 1450 MHz2, 610 MHz, 327 MHz, 233 MHz, 150 MHz
and 50 MHz. The 50 MHz feed3 is fixed to the feed support legs
and not onto the turret. As such it is in focus at all times. The
610 MHz and 233 MHz feeds are mounted on the same turret
face.

Each type of feed - its design and performance are briefly
outlined in the following sections. More information can be
found in [8].

2Note that some of the antennas have feeds that extend to 1750 MHz.
3Which is not yet operational



302 CHAPTER 19. GMRT ANTENNAS AND FEEDS

SAK/BPk..(vkkfeed1).251193

THICK  DIPOLES

KILDAL  FEED

CORRUGATED  HORN

DUAL  COAXIAL

2  ORTHOGONAL  PAIRS

610 MHz FEED

PRIME  FOCUS  FEEDS

327 MHz FEED

1420 MHz
FEED

150 MHz FEED

233 MHz FEED

50 MHz FEED

of 45m dish
Towards vertex

QUADRIPOD  LEG

Figure 19.7: Schematic diagram showing the arrangement of the different

feeds on the feed turret.

19.6.2 150 MHz Feed

This feed employs four dipoles in a “boxing ring” configura-
tion, placed above a plane reflector. The unique feature of the
dipole is that it is wide-band i.e. has an octave bandwidth.
It is a folded dipole with each arm being a “thick” dipole. A
dipole is called ’thin’ when its diameter, d < 0.05λ. For such
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dipoles a sinusoidal current distribution can be assumed for
the computation of input impedance and related radiation pa-
rameters.
Thin dipoles have narrowband radiation characteristics. One

method by which its acceptable operational bandwidth can be
increased is to decrease the l/d ratio. For example, an an-
tenna with a l/d≈ 5000 has an acceptable bandwidth of about
3%, while an antenna of the same length but with a l/d ≈ 260
has a bandwidth of about 30%. By folding the dipole, one
gets a four–fold increase in input impedance compared to a
simple dipole. The 150 MHz feed also has a transmission line
impedance transformer coupled to the excitation point [9].
Traditionally crossed–dipoles are used to give sensitivity to

both polarizations. However since a crossed–dipole configura-
tion in this design would be extremely cumbersome, a “boxing
ring” design was instead chosen. Here one pair of dipoles at
λ/2 spacing provides sensitivity to one linear polarization. An-
other pair orthogonally oriented with respect to the first pair
gives sensitivity to the orthogonal polarization. The overall di-
mensions of the feed are:

• Folded dipole length : 0.39 λ

• Dipole height above reflector : 0.29 λ

• Reflector (diagonal of octagon) : 1.2 λ

The dipoles have an l/d ratio of 6.48, and the phase center
was determined to be at a height of 100 mm above the re-
flector. The feed’s impedance bandwidth can be seen on the
VSWR plot of Figure 19.8
The usable bandwidth for a feed is given approximately by

the range for which SWR ≤ 2.0. By this criteria, the frequency
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Figure 19.8: VSWR for the 150 MHz feed.

coverage of the 150 MHz feed is from 117 MHz to 247 MHz, i.e.
a bandwidth of 130 MHz, or 86% bandwidth. The radiation
pattern gives an edge taper, TE = −9 dB.

One undesirable feature of this feed is the high value of
cross–polarization, as compared to that at other frequencies
(see Figure 19.9)4. The cross–polar peak for 150 MHz is -
17 dB and the on–axis cross polarization is also at about the
same level.

One–pair of outputs from the dipoles which are parallel to
each other are connected to a power–combiner, whose output
goes to one port of the quadrature hybrid (which adds two
linear polarized signals to yield one circular polarized signal).
Similarly the orthogonal pair of dipoles are connected to the

4Note that the cross polar pattern was measured using the standard technique out-

lined in [4 ; pp.177–79]. The cross–polar levels are measured with respect to a co–polar

maximum of 0 dB.
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Figure 19.9: The cross polarization of different GMRT feeds. The 150 MHz

feed has relatively larger cross-polarization.

other port of the hybrid. Both the power combiners and the
quadrature hybrid are mounted inside one of the front-end
chassis, placed behind the feed.

19.6.3 327 MHz Feed

Generally a dipole has a broader H pattern than its E pattern
(the E pattern being in the plane containing the dipole). Re-
call from the discussion in section 19.4.1 that for good cross–
polarization properties it was essential to have matched E and
H plane patterns. An elegant method for achieving this pat-
tern matching was given by P.S.Kildal [10], and involves plac-
ing a beam forming ring (BFR) above the dipole5. The con-
ducting ring is placed above the dipole in a plane parallel to

5This design has been christened ’Kildal Feed’ in the local jargon.
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the reflector and is supported by dielectric rods. The beam
forming ring compresses the H-plane pattern while it has no
significant effect on the E-plane.
The optimum dimensions of the dipole, BFR and reflector

were arrived at by careful measurements done on a scaled-up
version (i.e. at 610 MHz) and a follow–up measurements on a
prototype 327 MHz model. The values arrived at were :

• Reflector diameter : 2.2λ

• Height of dipole above reflector : 0.26λ

• BFR diameter : 1.22λ

• BFR height above reflector : 0.51λ

The measured phase center is at 26 mm above the reflector
for both E and H- planes. Crossed dipoles are employed for
dual polarization. The 327 MHz feed actually deviates slightly
from the original Kildal design – there are sleeves over the
dipoles. These sleeves increase the bandwidth of the feed [5].
The VSWR plot for the 327 MHz feed is given in Figure 19.10.
For SWR ≤2.0, the bandwidth is 138 MHz (286 to 424 MHz.)

The measured antenna pattern is given in Fig 19.11. The edge
taper, TE is −12.2 dB. Fig 19.9 shows the cross-polar pattern.
It is seen that a cross-polar maximum of −27.5 dB (mean value)
has been achieved.
The linear polarized outputs of the dipoles are mixed in

a quadrature hybrid at one of the front-end chassis to pro-
duce two circular polarized (both left and right) signals, which
go further into the amplifying, signal conditioning circuits of
front-end electronics.

19.6.4 Dual-Frequency Coaxial Waveguide Feed

The 610 MHz and 233 MHz feeds are dual frequency coaxial
feeds. The single most attractive feature of coaxial waveguide
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Figure 19.10: The VSWR as a function of frequency for the 327 MHz feed.

feed is its multi-frequency launching capability. Simultane-
ous transmission or reception of well separated frequencies
is possible. Coaxial feeds have been used as on board satel-
lite antennas to provide coverage at three separate frequency
bands [11]. Coaxial feeds have also been used at the WSRT.
The prime focus feed system at WSRT has two separate multi-
frequency coaxial waveguides, covering 327 MHz, 2300 MHz
in one and 610 MHz, 5000 MHz in another [12],[13].

The design of the GMRT 610 MHz/233 MHz waveguide feeds
is based on an exhaustive theoretical analysis of the design of
coaxial waveguide feeds [14],[15]. A constraint in such multi-
frequency designs is that adjacent frequency bands should
not overlap to within an octave. Thus at the GMRT either
the 150 MHz or the 233 MHz could have been combined with
610 MHz However the former choice was rejected since it re-
sulted in unwieldy dimensions of the feed.
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Figure 19.11: The measured antenna pattern at 327 MHz

The fundamental mode of propagation in coaxial structures
is TEM, hence the radiated field component along the axis is
zero everywhere. Obviously for a feed this is the most un-
desirable characteristic. So propagation by an alternate mode
(single or multiple) is essential. Coaxial waveguides must then
be forced to radiate in TE11 mode. This can be achieved simply
by exciting the probes in phase opposition6.

In the dual frequency construction the outer conductor of
the 610 MHz serves as the inner one for the 233 MHz. Quarter
wavelength chokes are provided in both the frequency parts
to cut down the surface currents on the outer conductor and
6Low loss baluns are essential in such designs.
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Dimensions 610 MHz Coaxial 233 MHz Coaxial

Aperture diameter 0.9 λ 0.85 λ

Waveguide cavity length 0.95 λ 0.73 λ

Table 19.3: Dimensions of the 610/233 MHz coaxial feed.

thereby ensure pattern symmetry. The waveguide feeds have
two pairs of probes. One pair supports a given plane polar-
ization while the orthogonal pair supports the orthogonal po-
larization. Similar to the dipole feed discussed in the previous
section, a quadrature hybrid at the back-end of the coaxial
feed is used to convert the linear polarization to circular polar-
ization. The rear-half of the 610 MHz feed, separated by a par-
tition disc, is utilized to accommodate the baluns, quadrature
hybrids and low-noise amplifiers of 610 MHz and the baluns
of 233 MHz. The overall dimensions of the feed are given in
Table 19.3

The phase center is not at the aperture plane, but at a point
60 mm in front of the aperture. A similar displacement of
the phase center is also seen in the WSRT coaxial feeds [13].
Fig 19.12 shows the VSWR plot for an optimized probe geom-
etry at 610 MHz For SWR ≤ 2.0, the band goes from 580 MHz
to 707 MHz, i.e. a total bandwidth of 127 MHz. The feed pat-
terns measured at 610 MHz are shown in Fig 19.13; the edge
taper is −9.8 dB. The cross-polar maximum is −22.8 dB.

Fig 19.14 shows the VSWR plot of 233 MHz– part of the
coaxial feed. For SWR ≤ 2.0, the bandwidth is 12 MHz, i.e.
this feed is rather narrow as compared to all other frequency
bands. The effect of the inter-coupling of radiated power be-
tween the two frequencies of the coaxial feed on the radiation
patterns has been studied. The main lobe does not show any
significant change due to the presence of the other coaxial
waveguide part.
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Figure 19.12: The VSWR as a function of frequency for the 610 MHz feed.

19.7 1000–1450 MHz Feed

This feed was designed and constructed by the Millimeter Wave
Laboratory of the Raman Research Institute. It is of the cor-
rugated horn type - known for its high aperture efficiency and
very low cross-polarization levels. In any horn, the antenna
pattern is severely affected by the diffraction from the edges
which can lead to undesirable radiation not only in the back
lobes but also in the main lobe. By making grooves on the
walls of the of a horn, the spurious diffractions are eliminated.
Such horns are called “corrugated horns”. Our feed at 1420
MHz has fins instead of grooves, since the whole assembly is
made out of brass sheets. The flare–angle of the horn is 120◦.
The dimensions of the feed are:
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Figure 19.13: The feed pattern of the 610 MHz feed.

• Aperture diameter : 3.65 λ

• Horn length : 4.48 λ

The phase center has been found out to be at the apex of the
cone - at a depth of 200 mm from the aperture plane. This
feed has an impressive bandwidth: 580 MHz, starting from
1000 MHz to 1580 MHz, as can be seen from Fig 19.15
Radiation patterns, including the cross-polar pattern is shown

in Fig 19.16.
The edge taper is −19 dB and the cross-polar peak is −24

dB. The front-end electronics is housed in a rectangular box,on
the rear of the horn, forming one integral unit. The entire
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Figure 19.14: The VSWR as a function of frequency for the 233 MHz feed.

band is divided into 4 subbands, each 140 MHz wide and cen-
tered on 1390, 1280, 1170 and 1060 MHz. There is also a
bypass mode in which the entire bandwidth is available.

19.8 GMRT Antenna Efficiencies

The efficiency relations shown in Section 19.5, have not con-
sidered the effect of aperture blockage by feeds and feed-support
frames (quadripod legs in GMRT–parlance). Simple geometri-
cal optics based models for such computation exist[16], which
were used along with GMRT–specific efficiency relations, to
produce Table 19.4. Limitations of this model are highlighted
in [17].

Some of the loss terms can be expressed as equivalent noise
temperatures (see Chapter 3). The spillover temperature is
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Figure 19.15: The VSWR as a function of frequency for the 1420 MHz

feed.

given by (see also Eqn 19.4.14)

TSp = Tg·
∫ π/2
θ0

|E(θ)|2sin(θ)dθ
∫ π

0 |E(θ)|2sin(θ)dθ
(19.8.25)

where Tg is the ground temperature. Considering the reflectance
of soil at microwave frequencies, it is presumed as 259◦ K.
Similarly, the mesh–leakage Tml, scattered radiation by the

feed– support frames Tsc, can also be expressed in terms of Tg.
The overall system temperature (see Chapter 3) is the sum of
all these and the receiver noise temperature, Tr and the sky
temperature,Tsky, which is assumed to be

Tsky = 3.0 + 20·(408/f)2.75 (19.8.26)

where f is the frequency of the received signal (in MHz). Hence

Tsys = Tr + Tsky + TSp + Tml + Tsc (19.8.27)
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Figure 19.16: Radiation Pattern of the 1420 MHz feed.

Finally the figure–of–merit of any radio antenna, is the gain-
by-system temperature ratio, G/Tsys, expressed as :

G =
SApηa

2k
(19.8.28)

where S is flux density in units of Jansky, Ap, is the physical
area of the parabolic dish and ηa is the overall aperture effi-
ciency. For a 1 Jy. source at the beam of the antenna and
value of Boltzmann’s constant k included in the above rela-
tion,

G =
Apηa
2760

(19.8.29)

Hence, the ratio G/Tsys is expressed in units of Jy
−1

A summary of the relevant parameters for the GMRT anten-
nas is given in Table 19.4. These have been computed based
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Frequency (MHz)

Eff. 150 233 327 610 1000 1200 1400

Tap Eff. 0.689 0.823 0.715 0.775 0.566 0.533 0.592

Spill. Eff. 0.952 0.799 0.944 0.835 0.967 0.971 0.971

Mesh Eff. 0.999 0.999 0.998 0.991 0.943 0.941 0.94

RMS Eff. 0.997 0.992 0.986 0.948 0.88 0.835 0.78

Aper. Eff. 0.652 0.651 0.664 0.608 0.452 0.405 0.422

Tsys(◦ K) 428 229 152 92 65 77 62
G

Tsys
× 10−3 0.877 1.64 2.53 3.81 4.04 3.02 3.17

HPBW 2◦ 52’39” 1◦ 51’06” 1◦ 21’15” 0◦ 42’48” 0◦ 19’26”

Table 19.4: Calculated aperture efficiencies and system temperatures for

the GMRT antennas.

on the following assumptions.

1. Tr = 100◦K for 150, 233 and 327 MHz bands; 50◦K for 610
MHz and 35◦ K for the 1000 to 1400 MHz bands.

2. The surface rms, σ1, σ2, σ3 values are 8.0, 9.0, and 14.0
mm respectively.

The agreement between the observed HPBW, gain and system
temperature and the computed values is in general quite good.
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Chapter 20

The GMRT Servo System

V. Hotkar

20.1 Introduction

The GMRT servo system is a dual drive position feed-back
control system. It can track a source in the sky with an rms
accuracy of ∼ 0.5

′

. To realise such a system practically, the ex-
pertise from various engineering disciplines are put to work.
In order to understand such a system, one has to become
familiar with the theory of feedback control systems as well
as its application for position control. This chapter discusses
these issues. The material is presented in an simplified form
and an effort has been made to use, wherever possible, graph-
ical explanations instead of a mathematical treatment.

20.2 Objectives of the GMRT Servo System

The servo systems used for position control of the radio tele-
scopes must meet following objectives.

1. Ability to point anywhere in the sky.

2. High pointing & tracking accuracy.

319
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3. Able to accelerate rapidly in the direction of source.

4. Able to manoeuver remotely

The first requirement is met by making a two axes mount
for the antenna. For large antennas like those used in the
GMRT (i.e. with weight in excess of 80 tones) an alt-azimuth
mount is preferred. In such a mount the antenna can be
moved in two axes viz. azimuth and elevation. The azimuth
axis movement is parallel to the horizon, while elevation axis
movement is normal to the horizon. Alt-az mounts are me-
chanically simple, yet very stable.

Radio telescope antennas are required to point within +/-
10HPBW at any given wavelength of operation of the antenna.
This means that the pointing accuracy of the antenna should
be fairly good. The following issues are of concern when trying
to achieve high accuracy pointing or tracking:

1. Structural deformation due to gravity.

2. Structural vibrations/deformations due to wind forces.

3. Servo positioning error.

Note that not only can the reflecting surface of the antenna
be affected by gravity, the feed support legs too could deform,
leading to a displacement of the feed from the focus of the an-
tenna. The GMRT antennas are built using a novel technique
(nicknamed “SMART”) involving a stainless steel mesh which
is attached to rope trusses by wires which are are tensed ap-
propriately in order to achieve the desired parabolic reflecting
surface. This results in a dramatic reduction in the gravita-
tional and wind loading on the structure, as well as in the
total weight of the dish.
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20.3 The GMRT Servo System Specifications

A summary of the GMRT Servo Specifications is given in Ta-
ble 20.1.

Table 20.1: GMRT Servo system summary

Dish mount Altitude-Azimuth mount.

Drive Dual drive in counter torquing mode.

Dish movement Azimuth +270 to −270 deg.
Elevation 15 deg to 110 deg.

Dish slewing speed Azimuth 30 deg/min.

Elevation 20 deg/min.

Minimum Tracking speed Azimuth 5 arcmin/min.

Elevation 5 arcmin/min.

Maximum Tracking speed Azimuth 150 arcmin/min.

Elevation 15 arcmin/min.

Tracking & pointing accuracy 1 arcmin for wind speed <20 kmph.

Gear reduction ratio Azimuth 18963.

Elevation 25162.

Antenna acceleration Full speed in ≥ 3 sec for both axes.
Design Wind speed 40 kmph Operational.

80 kmph Parking.

133 kmph survival.

System operating voltage 415 VAC, 3 Phase, 50 Hz.

Antenna parking Antenna parking using 96 V DC battery.

20.4 Control System Description

The GMRT servo system is a closed loop position feed-back
control system, designed for tracking & positioning of the GMRT
radio telescopes. The use of dual drive and counter-torque,
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eliminates non-linearity due to back-lash associated with the
gearbox.

20.4.1 Closed Loop Control Systems

All automatic control systems use −ve feedback for controlling
a physical parameter like position, velocity, torque etc. The
parameter which has to be controlled is sensed by a suitable
transducers and fed back to the input, for comparison with
the reference value (see Figure 20.1. This subtraction of the
sampled output signal with that of reference input is called as
−ve feedback. The difference signal, called the “error” is then
amplified to drive the system (referred to as actuation ) in such
a manner that the output approaches the set reference value.
In other words the system is designed to minimize the error
signal.

All practical loads have inertia and spring constants due
to which there is a delay in actuation. Hence, even though
a system may be designed for −ve feedback, due to inherent
time lags, the feedback may turn into +ve feedback at certain
frequencies. If the loop gain is more than unity at some fre-
quency at which the feedback is +ve, the system will oscillate.
Hence, in designing control systems great care has to be taken
to avoid such situations.

(Gs) = Compensator transfer function
= Plant transfer functionHs

Reference

Feedback

+

-
E / A

Compensator
(Gs)

Amplification
(Actuation)

Plant Under Control
(Ha)

Kf

Figure 20.1: Closed loop control system.
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20.4.2 Principles of Position Control

For controlling a heavy load, one could, (as illustrated in Fig-
ure 20.2) use three nested feedback loops viz. a position loop,
a velocity loop and a current loop. This configuration allows
independent tuning of the loop parameters without affecting
the adjacent loop. A current amplifier is used to amplify the
current for driving the motor. The position is sensed by a
suitable transducer. The velocity of the antenna is generally
sensed by the tachometers mounted on the motor shaft.

Current
Feedback

O

A

L

D

+

-
PLA +

-
RLA +

-
CLAVel.

Feedback

Posn.
Feedback

Posn.
Command

ENCN
1

Amplifier
Power

Motor

Tacho

Pin

GB = Gear box.     ENC = Encoder.     PLA = Position Loop Amplifier.     RLA = Rate Loop Amplifier.

Figure 20.2: Three nested feed back loop.

The block diagram shown above can not be directly used
in all position control applications. The back-lash which is
inherent in any gear box, introduces a non-linearity in the
position loop. Such a system exhibits a phenomena called as
“limit cycle hunting”. This affects the positioning accuracy of
the antenna.

20.4.3 Position Loop Amplifier

The position loop amplifier (PLA) has two inputs viz. command
input and feedback input. In an automatic position control
system, the output of the position sensor is filtered, scaled
and then applied to the PLA. The command signal is applied
to the other input of the PLA. The PLA (which can be either
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analog or digital) subtracts its two inputs to generate an error
signal. This error signal is then applied to the compensator.

A compensator is designed depending on the application.
For example the GMRT antennas are used for tracking of stel-
lar radio sources which are moving at constant speed in the
sky (15o/hr, the speed of the earth’s rotation). For such an
application, a position system having type II response is re-
quired. With a type I position compensator and with the use
of rate loop in the position control, the overall system response
is of type II .

Type of position system Pointing Error Tracking Error

Type O Finite Finite

Type I Zero Finite

Type II Zero Zero

Parameters like the structural natural resonant frequency
(Wc) and the frictional (Bc) constants of the structure are re-
quired for the design of the position loop compensator . The
main objective while designing the position compensator is
that it should offer enough attenuation at the natural reso-
nant frequency of the structure.

The output of the PLA acts as velocity command. If the
target’s angular position is far removed from the current po-
sition, then the error is very large and could saturate the PLA
. The saturation of the PLA is considered as a fixed velocity
command to the rate loop. The rate loop moves the antenna
with a constant velocity towards the target position. As the
antenna approaches the target position, the error at the out-
put of the PLA goes on reducing, which commands the rate
loop to reduce the speed of the antenna. When the antenna is
at the target position the error at the output of the PLA goes
to zero, which translates to a zero speed command to the rate
loop. The sign of the error signal at the output of the PLA de-
cides whether the antenna is to be moved forward or reverse
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.

20.4.4 Rate Loop Amplifier

The function of the Rate Loop Amplifier (RLA) is to control the
velocity of the antenna. In position control applications, the
rate loop improves the transient response of the position loop
by adding a pole in the position loop.
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E/A = Error Amplifier

Figure 20.3: Rate loop amplifier.

The output of the PLA which acts as a velocity command, is
applied to the one input while tachometer signal is applied to
the other input. The RLA subtracts both the input signals and
generates an error signal which is then applied to the compen-
sator. For position control applications like the GMRT the rate
loop compensator can be of phase flag type (Type O) which
avoids limit cycle hunting. The electro-mechanical time con-
stant of the combined motor and load determines the band-
width of the compensator. The output of the RLA acts as a
command to the current loop. If the command speed is more
than the actual speed, then the error at the output of the
RLA becomes large, which commands the current loop to pass
more current through the motor.
For GMRT antennas, where a dual drive system is used, the

rate loop controls the antenna velocity by sensing the tacho
signal from both the motors. Both these tacho signals are
averaged and then applied to RLA as feedback. A voltage cor-
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responding to torque bias is added/subtracted at the output
of the rate loop, to generate two current commands. These two
current commands are applied to the two current loop ampli-
fiers, for controlling currents in accordance with the rate loop.

20.4.5 Current Loop Amplifier

The function of the Current Loop Amplifier (CLA) is to con-
trol/regulate the current of the motor which results in the
control of the motor torque. The current of the motor is sensed
either by a resistive shunt or with a Hall effect sensor. The
control of over current should be fast in order to protect the
power semiconductors during starting/stopping of the motor
or in the event of fault. Also the steady state error of the cur-
rent should be zero (as any error in torque affects the speed).
These requirements can be met by using a “PI” (Proportional
Integral) compensator.

CLA Pin

+

-
E / A

Current
Feedback

Current
Command

Motor

Shunt

Amplifier
Power

Loop

Current

Compensator

Figure 20.4: Current loop amplifier.

The current signal is filtered, scaled and then applied to the
CLA. The output of the RLA which acts as a current command,
is applied to the other input. The CLA subtracts both the in-
put signals and generates the error signal. The error signal
is applied to the proportional-integral (PI) compensator. In a
3-phase SCR amplifier like one used at the GMRT, the motor
current has a 150 Hz component along with the DC compo-
nent. As the current is sampled and fed back to the loop am-



20.5. SERVO AMPLIFIERS 327

Table 20.2: Servo amplifier specifications

Type 3-Phase, SCR based, 4-quadrant fully regenerative.

Control Type Phase angle control with current loop.

Input Volts 275VAC L-L, 50 Hz, 3-Phase, 4-wire.

Command Volts +/- 10 Volt.

Maximum Current +/- 80 Amp.

Protection Over current & over speed.

plifier, the 150 Hz component of the current gets injected into
the loop. This is like injecting a noise into a system. In order
to avoid oscillations in the loop, the current loop compensator
is designed to heavily attenuate the 150 Hz signal component.
The filtered output of the error amplifier is applied to the 4-
quadrant power amplifier.

20.5 Servo Amplifiers

Servo amplifiers are 4-quadrant, regenerative power ampli-
fiers, supplying appropriate power to the motor as commanded
by a control voltage. These amplifiers are capable of supply-
ing energy to the load, as well as absorbing energy from the
load. They are designed to convert the kinetic energy of the
combined motor load, into electrical energy while the load is
decelerating.

The GMRT servo amplifier is a three phase, half wave, four-
quadrant, fully regenerative, SCR CLA for the control of per-
manent magnet DC brush type motors. A CLA is a device,
which keeps the current through the motor proportional to a
commanded input signal.
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20.6 Servo Motors

Servo motors are special category of motors, designed for ap-
plications involving position control, velocity control and torque
control. These motors are special in the following ways:

1. Lower mechanical time constant.

2. Lower electrical time constant.

3. Permanent magnet of high flux density to generate the
field.

4. Fail-safe electro-mechanical brakes.

For applications where the load is to be rapidly acceler-
ated or decelerated frequently, the electrical and mechanical
time constants of the motor plays an important role. The
mechanical time constants in these motors are reduced by
reducing the rotor inertia. Hence the rotor of these motors
have an elongated structure. For DC brush type motors, the
permanent magnets are mounted on the stator, while the ar-
mature conductors are on the rotor. The rotating conduc-
tors make contact with the stationary electrical source via a
brush-commutator assembly. A DC tacho is mounted on the
motor shaft, for indicating the shaft speed in-terms of a volt-
age. These motors also come with fail-safe electro-mechanical
brakes. In the event of failure of the utility mains, the anten-
nas are stopped by these brakes.

20.7 Gear Reducers

Generally the motors which are commercially available deliver
low torque at high speed and can not be used for driving the
load directly. Gear reducers are used to increase the torque
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Table 20.3: Servo motor specifications

Type DC brush type, permanent magnet field.

Horse Power rating 6 HP.

Rated motor voltage 150 V (DC).

Rated motor current 80 Amp (Continuous).

Rated motor speed 2250 rpm.

Continuous stall torque 47 N-m.

Peak Torque 111 N-m.

Torque Sensitivity 0.56 N-m / Amp.

Back E.M.F. Constant 59 V / krpm.

Armature resistance 0.045 Ohm.

Armature inductance 0.33 mH.

Tacho sensitivity 17 V / krpm.

so as to meet the torque demand of the load . For servo appli-
cation i.e. for positioning the load, the gear reducers should
possess following characteristics.

1. Bi-directional energy flow

2. Low back-lash

3. Low moment of inertia

4. High efficiency

The bi-directional reducers means that, the energy can be
transferred from input to output as well as from output to
input. During deceleration, the motor is forced to act like a
generator, converting the kinetic energy of the load into elec-
trical energy. The deceleration of the load is decided by the
rate of consumption of the electrical energy produced. Plane-
tary gear boxes meets this requirement and are hence used at
the GMRT.
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20.8 Position Sensors

Optical position sensors are the sensors of choice for highly
accurate positioning of antennas. There are two broad styles
of the encoders viz. incremental and absolute. An incremental
encoder is made of a glass disc and a light interrupter. Trans-
parent and opaque markings are put on the outer periphery of
the glass disc. Light emitted from a lamp or LED is interrupted
by the glass disc and received by a photo diode. As the disk
rotates, the light falling on the photo detector is interrupted
by the opaque markings, leading to pulses in the photdetector.
These pulses are counted to determine the change in position.
The disk has an index marker, is used to provide a reference.
Though incremental encoders are simple in construction and
provide a cheap solution for position sensing, they suffer from
one drawback. On the failure of the power to the encoder or
the electronic circuit, the electronic counter looses its count
value, and hence all information as to the current position.
Hence, upon the resumption of the power to the antenna, one
would need to move the antenna until the index marker pulse
is received, a procedure called “homing”. For large antennas
like those at the GMRT, this is unacceptable and hence abso-
lute encoders have to be used.

In an absolute encoder, a pattern corresponding to a gray
code is printed on the glass disc. The glass disc moves through
a light emitter and a set of light detectors. The number of light
detectors are in proportion with the number of bits of the en-
coders. This enables the encoder to generate a binary word
corresponding to the angular position of its shaft. The elec-
tronics housed inside the encoder converts the gray code to
the natural binary . Also the parallel code gets converted into
serial format for transmitting over long distance cable. The
encoder is directly mounted on each axis of an antenna.
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Table 20.4: Encoder specifications.

Type Optical, absolute shaft encoder.

Resolution 17 bit (10 arcsec).

Max . Shaft speed 600 rpm.

Max. Data rate update 100 kHz.

Illumination light emitting diode.

Input Power + 5V DC at 300 mA.

Output Code Natural binary.

Output data format Serial.

Data transmission RS −422 differential line driver.
Serial output MSB first, LSB last & then parity bit.

Count Direction CW increasing.

Operating temp. 0◦ C to +70◦ C.

20.9 Dual Drive

For a large antenna, the torque required to move the antenna
is high, hence the large ratio gear reducers are used to meet
the required torque demand. It is almost impossible in prac-
tice to manufacture a gear box which can deliver a large power
with no back-lash. Any effort to reduce back-lash by tight cou-
pling of pinions increases the friction of the gear box which
reduces its efficiency. With the use of large gear ratios the
backlash, hysteresis, and between the motor shaft and the
load shaft increases. With the increase in these parameters
the nonlinearity in the position loop increases, which leads to
position loop instability. There are various ways to reduce the
back-lash mechanically but they are inefficient and are un-
suitable for a giant antennas like those at the GMRT. Instead
one uses a dual drive. Here a pair of motors, gearbox and
pinion are used to drive the common load.

Two amplifiers individually drive the motors. When the load
is to be held at some position, the torque produced by two mo-
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tors are equal and opposite, thereby eliminating the backlash.
The net torque on the load is zero hence it does not move. For
a slight movement of the load in a given direction, one motor
increases its torque in that direction while the other reduces
its torque. The load will be subjected to a net torque which
causes small movement of the load.

20.10 Digital Controller

The digital controller for GMRT antennas, is built around In-
tel’s 8086 processor running at 8 MHz and is called as the
“Station Servo Computer” The 8086 is a bus master, control-
ling two slave processors 8031, for analog and encoder inter-
face. The position loop of both the axes of the GMRT servo
system is implemented digitally in this servo computer. The
elevation and azimuth axes angles along with time, are fed
to the servo computer by the antenna base computer (ABC,
see Section 24.2.4). The servo computer computes the error
of both the axes and performs necessary filtering (compensa-
tion). The compensator output is converted into analog signal
by using 16 bit DAC and then applied to the rate loop.

For the digital implementation of a position loop, the sam-
pling rate must be large enough. The “S” domain transfer
function of the compensator is converted into a “Z” domain
transfer function, by using the “Tustins approximations”. The
Z-domain transfer function is further converted into a differ-
ence equation, to be solve recursively at a regular interval.
Tustin proposes that the sampling frequency must be greater
than 10 times the compensator bandwidth. With 1.5 Hz as
a structural resonant frequency of the GMRT antennas, the
position loop bandwidth can be around 0.4 Hz to 0.5 Hz . For
a 0.5 Hz loop bandwidth the sampling rate should be more
than 5 Hz. This sets the lower limit of the sampling rate. The
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Figure 20.5: Dual drive position control system.

upper limit of the sampling rate is determined by the proces-
sor speed, other tasks of the processor, the transport lag etc.
We have chosen 10 Hz as a sampling rate. The processor is
interrupted at regular interval of 100 ms to run the real time
program.

20.11 Servo Operational Commands

The central control station sends commands to a group of an-
tennas via an optical fiber link (see Chapter 24). Some of the
operational commands, related to the servo is described next.

1. COLDSTART On receiving this command, the servo sys-
tem removes the stow-lock pins, releases the motor brakes,
enables the servo amplifiers, holds both the axes at the
current angle and waits for next command.

2. MV arg1, arg2 Move along the azimuth and elevation axes
to the angles arg1 and arg2 respectively. The servo system
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releases the motor and moves the antenna.

3. TRACK arg1, arg2, arg3 Track in azimuth and elevation
axes with the destination angle as arg1 and arg2 and the
time parameter as arg3.

4. HOLD Holds both the axes. On receiving this command,
servo system releases brakes of both axes motors and
holds the antenna in position.

5. STOP Stops both the axes. On receiving this command,
servo system disables amplifiers & applies brakes to both
axes motors.

6. CLOSE Close the observations. On receiving this com-
mand, servo system positions the elevation axis to 90:00:00
deg., disables all amplifiers, applies brakes to all motors
& inserts the stow-lock pin.

7. STOW Inserts the stow-in pin in the elevation axis and
locks the axis.

8. SWRELE Releases stow-in pin from the elevation axis and
frees the axis.

9. RSTSERVO Resets the station servo computer.



Chapter 21

GMRT Receivers

Praveen Kumar

21.1 Introduction

This chapter discusses the GMRT receiver system chain. This
chain starts from the multi-frequency RF Front-Ends and ends
at the Baseband system. The major blocks in this chain along
with their various possible configurations are described.

A detailed analysis of the noise contributed by the various
components of this chain is presented. The length of the fiber
optic cables linking the antennas to the CEB varies from about
600m for the nearest antennas to about 21km for the most
distant ones. Since the transmission loss increases with in-
creasing fiber length, different antenna systems will have dif-
ferent signal to noise ratios at the CEB. However, by optimally
adjusting the operating power levels at different points of the
receiver chain one can ensure that the maximum degradation
of the system noise temperature is less than 1% for all anten-
nas.

335
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21.2 Overview of the GMRT Receiver Chain

The GMRT receiver chain is shown schematically in Figure 21.1.
The first block is the multi-frequency front-end. This is lo-
cated in a rotating turret at the prime focus. All the feeds
and low noise RF front-ends have been configured to receive
dual polarization signals. Lower frequency bands (from 50 to
610 MHz) have dual circular polarization channels, i.e. left
circular and right circular polarizations which have been la-
beled as CH1 and CH2 respectively. The L-band (1000-1450 MHz)
system has dual linear polarization channels, i.e. vertical and
horizontal polarizations (also labeled CH1 and CH2 respec-
tively).

The first local oscillator (I LO, situated at the base of the
antenna, inside a shielded room) converts the RF band to an
IF band centered at 70 MHz. After passing the signal through
a bandpass filter of selectable bandwidth, the IF at 70 MHz is
then translated (using II LO) to a second IF at 130 MHz and
175 MHz for CH1 and CH2, respectively. The maximum band-
width available at this stage is 32 MHz for each channel. This
frequency translation is done so that signals for both polar-
izations can be frequency division multiplexed onto the same
fiber for transmission to the CEB.

At the CEB, these signals are received by the Fiber-Optic
Receiver and the 130 and 175 MHz signals are then separated
out and sent for base band conversion. The baseband con-
verter section converts the 130 and 175 MHz IF signals first
to 70 MHz IF (using III LO), these are then converted to upper
and lower sidebands (each at most 16 MHz wide) at 0 MHz
using a tunable IV LO. The various local oscillators and the
baseband system are discussed in more detail in Chapter 23.
There are also two Automatic Level Controllers (ALCs) in the
receiver chain (not shown in Figure 21.1 but discussed in
more detail below). The first is just before the Fiber Optic
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transmitter and the second is at the output of the baseband
unit.
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Figure 21.1: Schematic block diagram of the GMRT receiver. See the text

for more information.

21.3 Receiver Design Considerations

Each of the various blocks in the receiver chain has some gain
(or loss) associated with it. The receiver chain hence has a
distributed gain. There are several considerations involved in
determining exactly how to distribute the gain across the RF,
IF and BB electronics, viz.

1. The response of the entire system must remain linear over
a wide range of noise temperatures from cold sky to the
high antenna temperatures anticipated when observing
strong sources like the Sun.
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2. The entire receiver system should remain linear even in
the presence of strong interference signals. In particu-
lar the inter-modulation distortion (IMD) products should
be below a critical threshold1. Also the receiver should
have a high desensitization dynamic range2 so that a sin-
gle dominant out of band interfering signal does not re-
duce the receiver SNR by saturating the subsystems in
the receiver.

3. The RF Front-End gain should be such that no more than
1 K noise is added to the Low Noise Amplifier (LNA) input
noise temperature by the rest of the receiver chain.

4. The gain should be so distributed that no more than 1%
gain compression should occur at any stage of the receiver
chain.

5. The level of signals at the input of the cables that run
from antenna turret to the base of antenna should be
sufficiently high compared to any extraneous interference
signals that might be picked by these cables.

6. Components whose contribution to the signal phase needs
to be kept constant should preferably be located at the
antenna base room where the temperatures are relatively
stable compared to that at the prime focus.

1Basically one needs a receiver with high enough Compression and Spurious Free

Dynamic Range (CDR and SFDR) to handle the range of astronomical signals and inter-

ference signals present. In communications receiver parlance, the SFDR is defined as the

power ratio between the receiver thermal noise floor and the two tone signal level that will

produce third order IMD products equal to the noise floor level. The CDR is defined as

the power ratio between the receiver thermal noise floor and the 1 dB compression point.

However, for radio astronomical receivers it is customary to define the upper limit for the

CDR as the signal level where 1% gain compression occurs and in the case of SFDR, the

upper limit as the two tone signal levels which produce IMD products 20 dB below the

noise floor.
2The desensitization dynamic range is defined as the power ratio between the level of

the strong undesired signal which reduces the SNR by 1 dB and the receiver noise floor.
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7. Internally generated spurious products (if any) in the re-
ceiver, must be very low compared to the receiver noise
floor.

8. The Antenna Base Receiver (ABR) input (which receives
the the RF signals from the front-end through long lengths
(about 100m) of cable should be well matched for the full
RF band, i.e. 10 MHz to 1600 MHz. A poor match would
result in passband ripples.

9. The receiver should have a good image rejection (at least
25 dB). Further since the RF passband in the common box
electronics (see below) has 10 MHz - 2000 MHz coverage,
a 70 MHz signal may find a path past the amplifiers and
mixer and be coupled into the 70 MHz IF circuitry. The
units have to be optimally configured such that a good IF
rejection3 is achieved.

10. The ALCs should be active over a large signal amplitude
range.

21.4 The Multi Frequency Front-Ends

A block diagram of the Multi-Frequency Front-Ends is given in
Figure 21.2. There are six possible observing bands centered
at 50 MHz4, 150 MHz, 233 MHz, 327 MHz, 610 MHz and an
L-band extending from 1000 to 1450 MHz5. The L-band is
split into four subbands centered at 1060 MHz, 1170 MHz,
1280 MHz and 1390 MHz, each with a bandwidth of 120 MHz.
The L-band receiver also has a bypass mode in which the en-

3IF rejection is a measure of attenuation between the receiver input and the IF circuit.
4The 50 MHz feed is as of yet not commissioned.
5Some of the L-band feeds have coverage up to 1750 MHz to allow observations of the

OH molecular lines.
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tire RF band can be brought down to the ABR.6 The 150 MHz,
233 MHz, 327 MHz and 610 MHz bands have a nominal band-
width of 40 MHz7. Table 21.1 gives a break-up of the contribu-
tion from various sources to the system noise temperatures at
the different frequency bands. Figure 21.3 gives the expected
RF power (for a 32 MHz bandwidth) at different stages of the
multi-frequency front-end.

At the lower frequencies (50 MHz to 610 MHz) there is a po-
larizer before the LNA which converts the received linear po-
larization to circular. At L band, in order to keep the system
temperature low, this element is not inserted into the signal
path, and the linear polarized signals are fed directly to the
LNA. To calibrate the gain of the receiver chain, it is possible
to inject an additional noise signal (of known strength) into the

6This mode is useful in for example making observations at frequencies below

1000 MHz the nominal bottom of the L band.
7But the usable bandwidth is often somewhat larger.
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input of the LNA. It is possible to inject noise at any one of four
levels. These are called Low cal, Medium cal, High cal and Ex-
tra high cal and are of monotonically increasing strength. To
minimize crosstalk between different signals, a phase switch-
ing facility using separate Walsh functions for each signal path
is available at the RF section of the receiver. It is also possible
to connect a 50 ohm resistor instead of the LNA to the output
of the RF receiver. This is primarily of use in debugging.
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At all bands the signals go through one additional stage of
amplification in the ‘Common Box’. The common box has a
broadband amplifier which covers the entire frequency range
of the GMRT. The band selector in the common box can be
configured to take signals from any one of the six RF ampli-
fiers. The common box (and the entire receiver system) has
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the flexibility to be configured for receiving either both polar-
izations at a single frequency band or a single polarization
at each of two different frequency bands. It is also possible to
swap the polarization channels (i.e. to make LCP come on CH2
instead of CH1 and RCP on CH1 instead of CH2), primarily for
debugging use. For observing strong radio sources like Sun,
solar attenuators of 14 dB, 30 dB or 44 dB are available in
the common box. In addition there is a power monitor whose
output can be continuously monitored to verify the health of
the subsystems upstream of the common box.

Table 21.1: Contributions from different sources to the system tempera-

ture at the various GMRT bands.

Band BW Cable Loss Pol Loss LNA Receiver Ground Sky Sys

(MHz) (MHz) (dB) (dB) (K) (K) (K) (K) (K)

50 40 1.33 0.80 895 1651 19 6500 8170

150 40 0.2 0.75 150 260 12 308 580

235 40 0.55 0.25 35 103 32 99 234

327 40 0.13 0.18 30 55 13 40 108

610 40 0.22 0.15 30 59 32 10 101

1060 120 0.22 - 35 53 25 5 83

1170 120 0.22 - 32 49 24 4 77

1280 120 0.22 - 30 47 23 5 74

1390 120 0.22 - 28 45 23 5 72

21.5 The Antenna Base Receiver

From the Common Box, the signal is brought down via a coax-
ial cable8 to the Antenna Base Receiver (ABR), which is housed

8The loss in this cable is a strong function of frequency. This fact can be used to

advantage in the bypass mode for image rejection. In the bypass mode if one places

the I LO above the RF of interest, the image frequency is suppressed due to the greater

attenuation at higher frequencies.
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in a shielded room inside the antenna shell9. Figure 21.4
shows a schematic block diagram (and also gives the expected
signal levels for a 32 MHz bandwidth) at different stages of
the ABR, and the nominal values to be set for the pre and
post attenuators.
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Figure 21.4: Schematic block diagram of the antenna base receiver. The

nominal values that the attenuators should be set to, as well as the ex-

pected power levels at different stages are also shown. See the text for

more information.

The highpass filter (HPF) at the input of the ABR has a rejec-
tion of about 40 dB at 70 MHz and provides the IF rejection10.
After mixing the signal power level can be adjusted using a

9The concrete structure on which the dish rests is called in local parlance the “antenna

shell”.
10i.e. prevents passage of a 70 MHz signal from the RF directly through to the 70 MHz

IF stages.
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variable attenuator11 (which can be set from 0 to 30 dB in
steps of 2 dB). After this the signal passes through a SAW
filter where one of three bandwidths (32 MHz, 16 MHz and
5.5 MHz) can be chosen. The net gain of the filter is inde-
pendent of the chosen bandwidth due to the incorporation of
bandwidth compensating gain circuitry. The signal is then
up-converted to either 130 or 175 MHz (depending on which
polarization it is), passed through further gain and an atten-
uation12 and then an Automatic Level Controller (ALC). The
ALC ensures that the even if the RF signal level varies (for eg.
because the telescope is pointed at a bright source) the signal
level at the IF remains at the optimum level for transmission
through the optical fiber13. The IF powers are continuously
monitored and the monitoring data is sent to the CEB. The
recommended IF power level is −20 dBm per polarization.
At the final stage of the ABR, the LO round trip carriers,

the monitoring data as well as the astronomical signal are
combined in a 5-way combiner and sent to the CEB via the
optical fiber link.

21.6 The Fiber-Optic Link

Figure 21.5 shows the schematic block diagram and the nom-
inal powers at different stages of the the fiber-optic return
link14. The link consists of a laser diode (which converts the
input electrical signal into an optical signal), the optical fiber

11Which in local parlance is called the “pre-attenuator”.
12Also settable from 0 to 30 dB in steps of 2 dB, and called the “post-attenuator”.
13The ALC has a time constant of the order of 0.1 seconds. This can produce artifacts in

signals (eg. pulsars) whose short timescale structure is of interest. For such observations

there is a provision to switch the ALC off.
14As discussed in Chapter 22 each antenna has two fibers connecting it to the CEB.

One fiber is used to send control signals to the antenna, and is referred to as the forward

link, while the other fiber is used to bring back the astronomical signal and monitoring

data to the CEB and is called the return link.
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Figure 21.5: Schematic block diagram of the Fiber Optic Link. See the text

for more information on each block.

itself, a photo diode (which converts the optical signal back
into an electrical signal) followed by an amplifier and a 5-way
divider which separates out the monitoring data as well as the
two polarizations of the astronomical signal.

The Fiber optic link is designed to provide a net gain of
0 dB from the input (P9 in Figure 21.4) to the output (P14 in
Figure 21.5) which is also the input to the baseband system
discussed in Chapter 23. The link is meant to have 0 dB gain
irrespective of the length of the fiber optic cable linking the
antenna to the CEB. The attenuator (ATT3 in the Figure 21.5)
can be varied in accordance with link optical loss to provide
this no loss/gain configuration. The level diagram shows the
attenuator settings for 0, 5, 10 and 11 dB of optical loss (Lopt).

The fiber-optic receiver also contains 32 MHz SAW filters
centered at 130 and 175 MHz to separate out the 130 and the
175 MHz IF signals for routing to the baseband converter sub-
system. The level of the signal at this point (P15) is nominally
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Figure 21.6: Values or expressions for the gain/loss at in the various

stages of the fiber optic link. See also Figure 21.7.

An ideal communications link would transfer signals un-
altered from the input to the output. Any real link however
introduces both additional noise as well as distortions into
the signal it transports. In the GMRT fiber-optic link, these
non idealities include the laser intensity noise, shot noise and
thermal noise of the laser diode, loss and reflections in the
optical fiber, as well as shot noise and thermal noise in the
photo-diode. Figure 21.6 gives expressions for these various
noise terms, and Figure 21.7 and Table 21.2 give the expected
values for the various noise terms for the GMRT fiber optical
link. The largest loss is for the most distant antennas, and
turns out to be ∼ 11 dB. From Table 21.2 (or Fig 21.8) the
corresponding equivalent input noise (EIN) is ∼ −41 dBm. The
nominal input power level (P9) of −20 dBm would hence give
a signal to noise ratio of ∼ 20 dB, i.e. 100. In this case, the

15The fiber-optic receiver has a monitor point at the front panel in order to allow mea-

surements of the IF signals and other carriers using a Spectrum Analyzer.
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Figure 21.8: Equivalent input noise as a function of optical loss for the

GMRT fiber optic link. The maximum optical loss (which occurs for the

most distant antennas) is ∼ 11 dB.
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Chapter 22

The GMRT Optical Fiber System

M. R. Sankararaman

22.1 Introduction

The Giant Metrewave Radio Telescope (GMRT) consists of a
distributed array of antennas all connected to a Central Elec-
tronics Building (CEB) via optical fiber links. Optical fibers are
superior to the more traditional co-axial cables or waveguides
in a variety of respects. Optical fibers have lower transmission
losses, higher bandwidth and have better isolation against ra-
dio frequency interference. More quantitatively, while the loss
in co-axial cables are several 10s of dB/km, the loss in op-
tical fibers is as low as 0.2 dB/km. Further 100 GHz-km
bandwidths are routinely achievable in single mode optical
fibers, while the achievable bandwidth for co-axial cables is
only ∼ 20 MHz-km.
The optical fiber link between the CEB and a given antenna

has two major functions:

1. Transmission of local oscillator (LO) as well as control sig-
nals from the CEB to the antenna, and

2. Transmission of the astronomical signal as well as moni-
toring data from the antenna to the CEB.

349



350 CHAPTER 22. THE GMRT OPTICAL FIBER SYSTEM

=  ANTENNA  SITE

=  VIDEO  ’DOWN’  PATH

=  LO - UP/DOWN  PATH

=  CENTRAL ELECTRONICS BUILDINGCEB

CEB

D
ra

w
n 

by
 -

 B
. P

re
m

ku
m

ar
...

...
...

.S
E

R
C

 S
ch

oo
l..

...
...

2/
3/

2K
...

...
.

Figure 22.1: Schematic of the optical link at the GMRT. Each antenna

is connected to the central electronics building by two fibers, one for the

forward link, and the other for the return link.

As shown in Figure 22.1 there are two fibers between each
antenna and the CEB, one of which forms part of the forward
link and carries the control and LO signals to the antenna, and
the other of which forms part of the return link and carries the
astronomical signal (at the IF frequency, see Chapters 21, 23)
and the monitoring data (also referred to as telemetry data)
and the return LO1 back to the CEB. Each link consists an
optical transmitter, (a laser diode), the fiber itself, (which is a
single mode glass fiber), and a receiver (a photo diode). A block
diagram of the GMRT optical link is show in Figure 22.2 and
the frequencies of the different signals that are transported
by the link are also indicated. We now discuss the various
elements of the GMRT optical link in more detail.

1The return LO is useful in measuring the phase stability of the system as well as in

correction for the phase introduced during the LO transmission process.
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Figure 22.2: Configuration of the GMRT optical communications link. The

upper panel shows the forward link that takes control signal and LO sig-

nals from the CEB to the antenna. The lower panel shows the return link

that brings the astronomical signal (at the IF frequency) as well as the

telemetry and return LO signals from the antenna to the CEB. The fre-

quencies of the various signals transported by the link are also indicated.

22.2 The Laser Transmitter

A block diagram of the GMRT optical transmitter is shown in
Figure 22.3. The optical signal that is transmitted down the
fiber is generated by appropriately modulating a laser diode,
which is essentially a forward biased p-n junction diode, (typ-
ically InGaAsP). The edges of the p-n diode are cleaved such
that they act as mirror resonators. Photons travel between
the mirrors and for the wavelengths which bear the following
relationship with distance between the mirrors, longitudinal
mode oscillations occur:

νq = q(c/(2 × n× l)) (22.2.1)

where q is an integer, l is the length of cavity, n is the re-
fractive index of the medium and νq is the longitudinal mode
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Figure 22.3: Block Diagram of the GMRT optical transmitter.

frequency. An active medium within the diode provides posi-
tive feedback to these photons thus providing amplification.

The laser used in GMRT is of multi-mode type. The nomi-
nal peak wavelength is 1300 nm and the rms spectral width
is 2nm. Multi-mode lasers are appropriate for “low” (i.e <
10 GHz) bandwidth applications. At higher bandwidths multi-
mode lasers are not acceptable, since they lead to more dis-
persion and also to inter-modulation products. Inter-modulation
(IM) products are essentially a particular kind of non-linear re-
sponse. When two pure sine waves are fed to a non-ideal de-
vice, the output will have additional frequency products that
are related to the frequencies of the two input sine waves.
These are called IM products of different orders. Figure 22.4
shows a few low order inter-modulation products. The ampli-
tudes for these products is a non-linear function of the am-
plitudes of the input sine waves (see Figure 22.5). The figure
also illustrates gain compression where beyond a critical in-
put power the output is no longer linearly related to the input,
even at the fundamental frequency.

The laser intensity is modulated according to the signal that
is to be transmitted, i.e at the GMRT one uses analog modu-
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Figure 22.4: The relationship between the frequencies of a few low or-

der inter-modulation products (bold lines) and the the fundamental input
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Figure 22.5: Output of a slightly non-ideal optical transmitter showing

2nd and 3rd order inter-modulation products as well as gain compression
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lation. There are two types of analog modulation, direct and
external. In direct modulation the signal is applied directly
to an optical carrier generator whose light output varies as
per the applied signal. In external modulation the modulating
signal is applied outside the device for changing the intensity
of the light carrier. In GMRT the simpler direct modulation
method is employed.
In the linear regime, the optical power output, Popt by the

laser is proportional to the input current in, the constant of
proportionality is the slope of the characteristic curve and is
usually denoted by S.

22.2.1 Laser Specifications

Rated power output : 1 mW @ 51 mA bias current

Threshold current : 28 mA

Peak wavelength : 1306 nm

Slope of the transfer curve : 0.04 mW/mA ( appendix 2)

EIN (Eqv. Input Noise) : −137.57 dBm/Hz

22.3 The Optical Fiber

An optical fiber is essentially a dielectric (silica glass) waveg-
uide consisting of a core and cladding. The core usually has a
circular cross-section (although elliptical or other cross-sections
are also used) and is made of doped silica of refractive index
slightly higher than that of the cladding (which is made of
pure silica). Light waves are guided along the fiber via to-
tal internal reflection. If light is launched at an angle greater
than the critical angle, the rays are reflected back into the
core from the surface separating the core and cladding. The
rays travel along the length of the fiber by continuous reflec-
tions of this type. Rays launched at different angles travel
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along different paths (or modes) and arrive at the receiver at
different times, leading to inter-modal dispersion. Fibers are
classified as single-mode or multi-mode depending on whether
they support one or more. Single mode fibers have narrow
cores, typically 10µm. Multimode fibers have core dimensions
∼ 5 times larger. The number of modes a given fiber can sup-
port is characterized by the V number, which depends on the
frequency, the core radius and the refractive indices of the
core and the cladding.

V =
ω

c
a
√
n1

2 − n2
2 (22.3.2)

where n1, n2 are the refractive indices of the core and cladding,
a is the radius of the core and ω is the angular frequency of
the light being transmitted through the fiber. The number of
modes N is given by N = V 2/2. Multimode fibers have band-
widths that are ∼ 100 times smaller than single mode fibers
and are best suited to short haul applications. In addition
to the number of modes supported, the polarization proper-
ties of the fiber are also of interest. One can make fibers
that maintain the polarization state of the transmitted light by
proper choice of core cross-section and refractive index gradi-
ent across the core and the cladding.
Dispersion is an important characteristic of an optical fiber;

it determines the bandwidth and channel carrying capacity
of the fiber. There are three kinds of dispersion viz. inter-
modal dispersion, material dispersion and waveguide disper-
sion. Inter-modal dispersion occurs because of the different
modes in which the light propagates in the fiber travel dif-
ferent paths. This causes differences in the arrival time of
the rays at the receiver and hence a distortion of the signal.
Inter-modal dispersion is less in fibers which have a parabolic
refractive index profile in the core region. This change in re-
fractive index causes a change in the light travel time in dif-
ferent parts of the core which partially compensates for the



356 CHAPTER 22. THE GMRT OPTICAL FIBER SYSTEM

different path lengths. Material and waveguide dispersion are
wavelength dependent. Material dispersion arises because of
variation in the refractive index of the core material (i.e. sil-
ica ) across the transmission band. Waveguide dispersion is
due to the propagation constant (i.e. the inverse of the group
velocity) dependent property of the medium. The derivative of
the propagation constant with respect to frequency is depen-
dent on the frequency itself, even in the absence of material
dispersion.

Dispersion affects both the temporal and spectral charac-
teristics of the signals and it is essential to minimize it as far
as possible. This can be done by

1. Choosing the 1300 nm window where dispersion is min-
imum. It may be noted that dispersion for silica fiber
is minimum in the 1300 nm band( typically 2 ps/km-
nm) compared to that at the 1550 nm band (15 ps/km-
nm). However the attenuation is higher in the 1300 nm
band (0.31dB/km) than that in the 1550 nm band (0.15
dB/km).

2. Choosing a laser with linewidth as small as possible(<
1 nm), like a single longitudinal mode type or DFB laser.

3. Using external modulation. Unlike direct modulation, ex-
ternal modulation does not affect the physical mechanism
of the laser and does not introduce spreading of frequency
or chirping.

4. Using dispersion compensation. This is essentially achieved
by proper design of the refractive index gradient across
the fiber.
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Figure 22.6: Block diagram of the GMRT optical receiver.

22.4 The Optical Receiver

Photo-detection is the process of conversion of signals from
optical to electrical domain. A block diagram of the GMRT op-
tical receiver is shown in Figure 22.6. The basic detector is
a reverse biased p-n junction diode. In this bias condition a
reverse leakage current (the dark current) flows. The thresh-
old for detection is determined by the dark current. The other
important characteristic of a photo-detector is its responsiv-
ity R. The responsivity is a measure of the efficiency with
which light is converted to electrical current and it is related
to the width of the depletion region of the diode and to the
spectral response of the receiver. A larger depletion region
leads to a better responsivity. PIN diode detectors made of In-
GaAsP and grown on InP are popular photo-detectors as they
have low dark currents and high responsivity. In the case of
the GMRT, the detector used has a dark current of 5 nA and
R of 0.8 mA/mW.
In order to match the device to the electrical output device,

care has to be taken to maintain a wide frequency response
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and to keep the thermal noise contribution of the detector low.
In the case of the GMRT the laser noise is more than the ther-
mal noise contribution of the photo-detector.

22.5 Link Performance

The relation between the power delivered at the output of the
detector to the power input to the laser is:

Po = Pi[
SRl

2
]2 (22.5.3)

Where S is the slope of the laser diode characteristic curve,
R is the responsivity of the photodiode and l is the loss in the
fiber. The total loss is the combination of losses due to atten-
uation in the fiber, splices, bending of the fiber and couplers.
Measurements show that the optical losses of the links vary
between 0.3 to 8.7 dB for the various antenna stations.
In addition to this change in signal power level, the link

also introduces noise. Noise is introduced by the laser diode,
the photo- diode as well as all resistive elements in the signal
path.
The laser diode introduces noise due to quantum fluctua-

tions even under conditions of constant bias current. This is
called Relative Intensity Noise (RIN) and is defined as:

RIN =
〈∆P 2〉
〈P 2〉 (22.5.4)

where ∆P are the fluctuations in the laser diode output
power, and P is the instantaneous laser diode output power.
The laser diode noise is also often characterized by the Equiv-
alent Input Noise (EIN) which is defined as

EIN = 〈∆I2〉Ri (22.5.5)
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where ∆I is the input current fluctuation that would corre-
spond to the output power fluctuations ∆P . It can be shown
that

EIN = RIN(Ibias − Ithreshold)
2 ×Ri (22.5.6)

where Ri is the input resistance.
The noise generated within the the photo-detector is called

shot noise. As the name suggests, it is due to the discrete na-
ture of light and the interaction of photons with matter. Shot
noise is present in the detector even in the absence of illu-
mination and increases with illumination of the detector with
light. All resistive elements contribute to thermal noise. The
total noise power(N) is the sum of the laser, shot and thermal
noise components. The signal to noise ratio (SNR) of the link
can be shown to be

SNR =
Pi(SRl/2)2

[EIN(SRl/2)2 + 25e(RP0l + Id) + FkT ]B
(22.5.7)

where F is the noise figure of the detector amplifier, T is the
temperature of the resistive elements, B is the bandwidth of
the link, Id is the dark current, P0 is the average output power
of the laser, and e is the electron charge. The analog optical
fiber communication system of the GMRT has been designed
to ensure a minimum SNR of 20 dB .
In addition to this intrinsic additive noise, there are vari-

ous other imperfections in the fiber optic link. Discontinuities
in the refractive index near the connectors, couplers, bends
in the fiber and impurities along the length of the fiber could
cause part of the light to get reflected back into the laser. This
leads to the formation of a resonant cavity between the dis-
continuity and the laser, and hence to ghosts. To overcome
this problem, optical isolators and low reflection connectors
are used. An optical isolator is a unidirectional device with



360 CHAPTER 22. THE GMRT OPTICAL FIBER SYSTEM

highly reduced signal transmission in the reverse direction.
Low reflection connectors are special devices with refractive
index matching and focusing arrangements.
The other important characteristic of the optical link, apart

from the SNR is the dynamic range, i.e. the range over which
its response is linear. The dynamic range of the GMRT optical
fiber link is ∼ 14 dB were the input to be purely Gaussian
random noise, and ∼ 19 dB for quasi-sinusoidal input.



Chapter 23

Local Oscillator and Base-band

Systems

T. L. Venkatasubramani

23.1 Requirement for a Local Oscillator System

at the GMRT

The GMRT Analog Receiver, in its simplest form, can be con-
sidered as a 2-terminal black box, as given in Figure 23.1.

Receiving Element
30 MHz to 1450 MHz

To Sampler
(64 kHz to 16 MHz)RECEIVER

ANALOG
GMRT

Figure 23.1: A two-terminal representation of the GMRT analog receiver

system.

The receiving element (i.e. any of the dual linearly polarised
feed systems of the GMRT) is connected to the input of the
black box and provides a signal consisting of:
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1. Thermal noise power kTB1 where k is the Boltzmann con-
stant, T is the system temperature and B is the bandwidth
of the signal.

2. The astronomical signal, which is usually much weaker
than the thermal noise power.

3. Unwanted Radio Frequency Interference (RFI), which could
occur anywhere in the frequency spectrum and is often
much stronger than the thermal noise power.

The output of the black box is in baseband frequency range,
which is typically from DC to a maximum of 16 MHz. The
upper value determines the maximum instantaneous band-
width of GMRT. The baseband signals are then digitized by a
sampler. The nominal power level needed for the sampler is
0 dBm. Since the typical input power level is −100 dBm, the
gain within the black box is about 100 dB.

This large amplification has to be achieved while simultane-
ously providing the desired band-limiting2 and spurious free
dynamic range3 in the presence of strong RFI. For this, the
electronics system within the black box has been implemented
as a heterodyne receiver, where the RF signal from the receiv-
ing element is converted to the baseband signal via different
stages of frequency translation, (see also Chapter 3). This fre-
quency translation requires multiple Local Oscillator signals.

1At the GMRT for a 32 MHz bandwidth this power is typically of the order of -100 dBm.
2i.e. one needs to filter the signal so that only frequencies within the band of astro-

nomical interest are accepted.
3i.e. one needs to ensure that the entire system is sufficiently linear so that RFI at one

frequency does not produce spurious spikes at other frequencies.
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23.2 The Frequency Translation Scheme used

at the GMRT

The simplified block diagram of frequency translation scheme
used to convert the RF signals from each antenna of the GMRT
to the baseband signals required by the sampler is given in
Figure 23.2. A schematic of the typically used mixing scheme
at the GMRT is shown in Figure 23.3.
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Figure 23.2: Block diagram of frequency translation Scheme at the GMRT.

The numbers in the boxes are the Centre Frequency of the signal at that

point.

The pair of RF signals from the Front End (FE), which are
typically in the range of 30 to 1660 MHz are initially converted
to a first IF signal centered at 70 MHz. The choice of the first
IF frequency has been decided by the availability of commer-
cial sharp cut-off bandpass filters with a wide choice of band-
width at this frequency4. This translation from RF to the first
IF needs a first LO signal, which should be tunable at least
over the range of 100 to 1590 MHz. The GMRT is designed
to simultaneously process two RF signals (RF1 and RF2, also
called the 130 signal and the 175 signal respectively). These

4At the GMRT, IF bandwidths of 32, 16 and 5.5 MHz are available. See Chapter 21 for

more details
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signals could be either (a) two polarisation signals at the same
RF band, or (b) one polarisation signal in each of two different
RF bands. To cater to case (b), we need two independent first
LO sources.
The pair of first IF signals are brought from each antenna

to the central electronics building (CEB) by a single optical fi-
bre for further processing. Hence, we need to separate the two
first IF signals (centered at 70 MHz) in the frequency domain
before they can be combined and fed to the optical transmitter
(OTx) unit. For this, one of the first IF signals is translated to
a second IF signal centered at 130 MHz and the other, to an-
other second IF centered at 175 MHz. The choice of these cen-
tre frequencies has been decided by (a) The maximum band-
width of the first IF signal and (b) the need to keep the overall
band occupancy on the fibre to within an octave. The value
for the two second LO signals chosen for the GMRT are hence
200 and 105 MHz. At the CEB the reverse translation is done
after the optical receiver (ORx) unit, to produce a pair of third
IF signals centered at 70 MHz. This requires two third LO
signals, at 200 and 105 MHz respectively.
The last stage of frequency translation is to the baseband,

using a fourth LO signal, which can be set to any frequency
from 50 to 90 MHz in 100 Hz steps. The step size is deter-
mined by the need to incorporate online Doppler tracking, so
that a spectral line under observation can be confined to a
specified channel in the correlator throughout the entire ob-
servation.

23.3 Generation of Phase-Coherent Local Oscil-

lator Signals

The GMRT is generally used in the interferometric mode where
the correlation between the electric field vectors received by
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LO3

LO4

175 130

Figure 23.3: A typical mixing scheme at the GMRT. LO1 is tunable in the

range 30 - 1590 MHz, in steps of 1 MHz below 350 MHz and 5 MHz above

that. LO2 and LO3 are not tunable. LO4 is tunable in the range from 50 -

90 MHz, in steps of 100 Hz. As can be seen from the figure, if νLO1 > νRF

then the sky frequency increases with correlator channel number for the

USB and decreases with increasing correlator channel number for LSB.

This is true for both the 175 and the 130 signals. If νLO1 < νRF , then for

both 175 and 130 signals, the sky frequency decreases with increasing

correlator channel number for USB and increases with increasing channel

number of LSB.

each feed element is measured. To maintain the relative phase
between the electric field vectors incident on different anten-
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nas, it is essential that the local oscillators used must be
phase-coherent5. This implies that the frequency of the LOs
at the various antennas must be identical and the variation of
phase of the LO at a given antenna (with respect to the phase
of some reference antenna) must be precisely known during
an observation so that necessary correction can be made in
real time. This is acheived by requiring that all the local os-
cillator signals be generated from a single reference frequency
source using phase-locked loop (PLL) techniques.

In detail, the third and fourth LO signals are generated in
the CEB from an ultra-high stable and pure quartz oscillator
at 5 MHz. The second LO generation uses a voltage controlled
crystal oscillator (VCXO) in a PLL, while the first LO needs
a phase-coherent frequency synthesiser. Signals at 106 MHz
and 201 MHz are broadcast from the CEB to each antenna,
and these are used at the antennas to generate the 105 MHz
and 200 MHz second LOs. The 105 MHz second LO signal is in
turn used to generate the first LO. Thus the phase coherence
of all the LOs at all the antennas is maintained.

Despite being derived from a common signal, there are still
phase variations of the LOs at the different antennas for a
variety of reasons. The physical length of the optical fibre
link to various antennas varies from a few hundred meters
to about 20 kms. As the temperature coefficient for expan-
sion of the fibre is not zero, there will be a variation of the
phase of LO signal broadcast from CEB and received at an
antenna. The receiver system in each antenna is housed in
an air-conditioned environment and undergoes independent
cyclic variation in temperature. This also causes the LO phase
between antennas to vary in a random manner. All of this
would make it desirable to have a system for estimation of

5i.e. the phase difference between the LO signals at antenna i and antenna j should be

constant with time for all antennas i, j. If this is not achievable, then at least the phase

difference between the LOs at different antennas should be calibratable in real time.
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phase of the LO signals at all antenna locations. This could
be achieved by bringing back the second LO signals from each
antenna to the CEB and comparing its phase with that of the
signal originally generated at CEB. From this information, the
phase variation introduced by the transmission process could
be estimated. Of course, this needs the pair of optical fibre
to an antenna to be reciprocal and non-dispersive, which has
been independently confirmed. However, this scheme is not
yet fully implemented.

23.4 Noise Calibration and Walsh Switching

As discussed in Chapter 21, all the GMRT receivers have the
facility for noise injection. By injecting noise of known power
the system temperature can be measured. The noise at any
antenna can be switched on and off (on sub second time scales)
according to a pre-determined pattern, which is encoded in
PROMs in the Antenna Based Receiver (ABR). By synchronously
measuring the total power, it is possible to calibrate the sys-
tem temperature. The synchronous total power measurement
however has not yet been implemented.

Signals from one antenna could leak into another antenna
at various points along the signal flow chain. This is normally
referred to as cross-talk. This would cause a spurious correla-
tion between the baseband signals from these two antennas.
This leakage can be minimized by switching the phase of the
RF signal of each antenna by a pattern that is ortho-normal
to the pattern used for all other antennas. At the correlator
the exact reverse phase switching is done for each antenna
so that the original phase is recovered just before the cross-
correlation is done. Such a scheme would greatly reduce the
cross-talk at all points between the RF amplifier and the base-
band. Typically the ortho-normal functions used are Walsh



368 CHAPTER 23. LOCAL OSCILLATOR AND BASE-BAND SYSTEMS

functions, and this scheme is called Walsh Switching. The
required Walsh patterns for each antenna are also encoded in
PROMs situated at the ABR. However the Walsh demodulation
at the correlator is yet to be implemented.

23.5 The Baseband System

The baseband system of GMRT processes the IF signals re-
ceived from the antennas and makes them compatible for the
correlator.

The maximum bandwidth of the IF signal is 32 MHz. Con-
sidering the fact that the correlator system can run at a maxi-
mum clock speed of around 40 MHz, a Single SideBand (SSB)
conversion with image rejection approach is used in the base-
band. This results in two baseband signals, (the Upper Side
Band, (USB) and the Lower Side Band (LSB)) each with a
maximum bandwidth of 16 MHz, for each of the third IF sig-
nal. There are hence 120 baseband outputs resulting from
60 third IF signals (typically one from each of two polariza-
tions) from 30 antennas of the GMRT. A simplified block di-
agram for the system to handle one of the third IF signals is
given in Figure 23.4
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LPF
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Add
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Third IF
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Figure 23.4: A simplified block diagram of the baseband processing at the

GMRT.
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The input third IF signal at 70 MHz is converted to two
baseband signals, the Upper Side Band (USB) corresponding
to 70+16MHz and Lower Side Band (LSB), to 70−16MHz. This
single sideband mixers are based on in-phase and quadrature-
phase power dividers for the third IF and fourth LO as well as
a broadband quadrature network in the baseband. The typical
image rejection which has been achieved is 25 dB.

The baseband system has facility for a wide choice for band-
width, from 62.5 kHz to 16 MHz, in octave steps. This is
achieved in the variable lowpass filter block. The power output
from the system is kept constant by automatically increasing
the gain as the bandwidth is decreased, to keep the product
constant. In addition the ALC stage ensures that the sam-
pler is supplied with a constant power. For some applications
(eg. Pulsar observations) however, the finite time constant of
the ALC produces undesirable distortions of the astronomical
signals. For these observations, the ALC can be switched off.

23.6 A Summary of Important Specifications

23.6.1 Array Frequency Reference

Model used Frequency and Time Standard (FTS)

make 1000B Quartz TCXO

Output frequency 5 MHz, 2 Hz, (adjustable externally)

Aging per day 1 × 10−10

Short-term Stability over 1 to 100 sec 1 × 10−12

SSB Phase noise −116 dBc/Hz at 1 Hz offset

−140 dBc/Hz at 10 Hz offset

−150 dBc/Hz at 100 Hz offset

Harmonics −40 dBc

Spurious −100 dBc
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23.6.2 First LO Synthesiser

Frequency Coverage 100 MHz to 1795 MHz

Step Size 1 MHz from 100 MHz to 354 MHz

5 MHz from 350 MHz to 1795 MHz

Power output +11 dBm −3 dB

Harmonics Better than −20 dBc

Spurious Better than −60 dBc

Phase Noise Better than −60 dBc/ Hz at 10 kHz offset,
(corresponding to a peak-to-peak

phase jitter of better than 0.1 deg in time

scales of 0.1 msec)

Line Frequency modulation Better than −20 dBc

23.6.3 Second and Third LO Sources and Offset Frequency

Sources

Oscillator circuit Transistorised VCXO with 5th overtone

crystals for sources around 105 MHz

and 7th overtone crystal for 200 MHz.,

operating in a PLL with loop bandwidth

of 70 Hz

Maximum frequency deviation 2 kHz for 10 V range.

Spurious Better than −50 dBc

Harmonic Better than −70 dBc

Phase jitter Less than 1 nsec

SSB Phase noise Better than −90 dBc/Hz at 100 Hz offset

23.6.4 Fourth LO Synthesiser

Frequency Coverage 50 to 90 MHz

Step Size 100 Hz

Inband spurious Better than -60 dBc

Phase noise −80 dBc/ Hz at 1 kHz offset



23.6. A SUMMARY OF IMPORTANT SPECIFICATIONS 371

23.6.5 Baseband System

Lower cut-off frequency ∼ 10 kHz

Choice for Upper cut-off frequency 62.5 kHz, 125 kHz, 250 kHz, 500 kHz,

1 MHz, 2 MHz, 4 MHz, 8 MHz and 16 MHz

Passband ripple < 0.5 dB

Stop band rejection 48 dB/octave

Image Rejection minimum 20 dB

Fourth LO leakage to output Better than 60 dB

Third IF input level −65 dBm to −55 dBm
Baseband output power level 0 dBm (ALC ON mode)

Typical Third IF level in ALC OFF mode −50 dBm, to give 0 dBm output
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Chapter 24

A Control and Monitor System

for the GMRT

R. Balasubramanian

24.1 Introduction

Modern radio telescopes are complex assemblies of electronic
and electro-mechanical subunits. To allow a successful ob-
servation, all of these sub-units have to be “set” as per the
users’ requirements. For example, the antennas have to track
the selected source, the front-ends have to be tuned to the
chosen frequency band, all the amplifiers along the signal
path have to be set at the value which would give the optimum
signal to noise ratio, the local oscillators have to be tuned to
select the desired frequency, the correlator has to be set up
to do the appropriate fringe and delay tracking, etc. In an in-
terferometer like the GMRT this means that one has to, in a
co-ordinated manner, control sub-systems which are several
tens of kilometers separated from one another. In addition,
it would be highly desirable for the health of the critical sub-
systems to be able to be periodically monitored, so that should
any subsystem fail, the affected data can be flagged, and also

373



374CHAPTER 24. A CONTROL AND MONITOR SYSTEM FOR THE GMRT

of course remedial action could be taken to fix the faulty unit.
Further since it is not humanly possible to remember all the
various safety limits of each of the sub-systems, one requires
the telescope control system to not permit operations which
could endanger the safety of the telescope or the human op-
erators. The GMRT Monitor and control system was designed
with all these different requirements in mind.
The GMRT control and monitor system (also referred to as

the “telemetry system”) allows one to

1. Rotate all the thirty antennas in azimuth and elevation,
and/or to track a celestial source.

2. Bringing the required feed in the feed turret to the focus
via the Feed Position System(FPS).

3. Select front-end system parameters like the observing fre-
quency band, desired noise calibration, etc.

4. Sets the IF sub-systems including the LO frequencies, the
IF bandwidths and attenuation, the ALC1 operation, etc.

5. Sets the baseband bandwidth and attenuation.

6. Monitor, literally, hundreds of system parameters at all
points along the signal flow path.

7. Have a voice link between each antenna shell and the con-
trol room in the CEB (Central Electronics Building).

24.2 Overview

The major components of the Monitor and Control system (see
Figure 24.1) are ONLINE (a unix level program that provides
the user interface), PCROUTER, a PC based router, COMH –
1Automatic Level Controller
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a communications handler that deals with the packet based
communication between the Unix workstation on which ON-
LINE is running and the Antenna Based Computer (ABC, also
called ANTCOM) located in each antenna shell, and finally sev-
eral Monitor and Control Modules, (MCM) which provide the
monitoring and control interfaces to the various sub-units (i.e.
the LOs, amplifiers, etc.).

UNIX PC ROUTER COMH

MCM1

MCM0

MCM31

RECEIVER ROOM
( CEB )

SOFTWARE / HARDWARE COMPONENTS OF THE  ONLINE  SYSTEM

ANTCOM 0

by  RBS/DSP

COMH       :      Communication Handler
ANTCOM  :      Antenna Computer
SCC            :      Servo Control Computer
MCM          :      Monitor & Control Module
FPS             :      Feed Position System

( TOTAL  30 ANTENNAs )

@ 38.4 Kbps@ 10 Mbps

SCC

MCM0 MCM1 MCM2 FPS

ANTCOM 1

ANTENNA 1

( MAXIMUM 16 MCMs CONFIGURABLE )

RS 485 SERIAL COMMUNICATION   @ 9.6 Kbps.

@ 9.6 Kbps
RS 422 SERIAL LINK 

HDLC/FSK LINK
 @ 250 Kbps

RS 422 SERIAL LINKETHERNET LINK

Figure 24.1: Block diagram of the GMRT monitor and control System. See

the text for more information.

We now look at each of these subsystems in more detail.

24.2.1 ONLINE

The ONLINE software running on a UNIX workstation pro-
vides the user interface for the control and monitor system.
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The commands typed by the user are sent to the relevant an-
tenna(s) by the telemetry system. The monitoring data from
all the various GMRT subsystems are also logged by ONLINE.
Should some critical subsystem fail, ONLINE will raise an ap-
propriate alarm so that remedial action can be taken.

24.2.2 PCROUTER

This converts the data from the format used for TCP/IP (eth-
ernet) communication to one suitable for the serial communi-
cation links used by the GMRT telemetry system. As the name
suggests, this is PC based.

24.2.3 COMH

COMH is the communication handler and it handles all the
communication between the UNIX workstation on which ON-
LINE is running and the various Antenna Base Computers
(ABCs). COMH operates in a time division multiplexing (TDM)
mode, i.e. it sends the formatted user commands to the first
antenna and then waits for an acknowledgment. If it receives
an error-free reply before the timeout period it selects the next
antenna and the operation continues. In case COMH doesn’t
get a reply before the timeout period or if the reception is er-
roneous then it tries the same antenna again. After a total of
three failures COMH passes on a Timeout or Checksum er-
ror (as appropriate) to ONLINE and then moves on to the next
antenna.

24.2.4 ANTCOM or ABC

There is an ANTCOM (also called an ABC) located in each an-
tenna shell. All communication between the antenna and ON-
LINE is routed through the ANTCOM in that antenna. The
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ANTCOM receives various parameters sent by COMH, per-
forms some computations if necessary, and passes on the
commands to the appropriate subsystem of the antenna. In
detail, the ANTCOM has three communication links, viz. (a) the
main link between COMH & ANTCOM which operates at 250 kbps,
(b) an asynchronous 9.6 kbps RS 422 communication link
between ANTCOM & the Servo Control Computer (SCC) and
(c) an asynchronous 9.6 kbps RS 485 communication link
between ANTCOM & up to 16 Monitor and Control Modules
(MCMs).

In addition to the ANTCOMs in the various antennas, there
is also an ANTCOM (called ABC0) in the receiver room of the
CEB. ABC0 handles the configuring of the baseband system
in the receiver room.

24.2.5 Servo Control Computer

In addition to an ANTCOM, each antenna has a Servo Control
Computer (SCC) which is responsible for controlling the mo-
tion of the antenna. The SCC accepts movement commands,
position information, etc. from the ANTCOM, checks that the
command is sensible, and if so obeys it. It also returns the an-
tenna status information periodically through the same link.
This information is passed on by the ABC to ONLINE and is
displayed on a monitor in the CEB.

24.2.6 Monitor and Control Modules

MCMs are general purpose microcontroller based cards which
provide 16 TTL Control outputs and can monitor up to 64 ana-
log signals. These MCMs are the interface to all the settable
GMRT subsystems, like the front-ends, the LOs, the attenua-
tors, etc. In detail, at each antenna, MCM 5 is the interface to
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the front end system, while MCMs 2,3, and 9 are the interface
to the LO and IF systems.
The Feed Positioning System (FPS) which is used to posi-

tion the feed turret so that the desired feed is at focus is also
controlled by the ANTCOM.

24.3 Signal Flow in the GMRT Control & Moni-

tor System

User commands for various antennas are processed by ON-
LINE running on a UNIX workstation and are sent to the COMH
via the PCROUTER. The PCROUTER acts as a buffer and ac-
cepts the TCP/IP data on a 10/100 Mbps (i.e. a standard
ethernet) link, strips the TCP/IP header and sends the data
to COMH on a 38.4 kbps link. This uses a standard RS232-C
link on the PC side and a conversion to RS 422 signals (differ-
ential TTL signals) on the COMH side.
COMH (see Figure 24.2) is basically an 80C186, 16 bit micro-

controller based card, which works at a clock speed of 6 MHz.
This card also contains a Zilog 85C30 dual-channel communi-
cation controller. The two channels are respectively for SDLC/
HDLC communication at 125 kbps (for communication with
the ANTCOMs at the different antennas) and an asynchronous
communication at 38.4 kbps (for communicating with the PC-
ROUTER). COMH also has an Intel 29C17 CODEC (voice coder-
decoder) to handle voice communication at 62.5 kbps, cir-
cuitry for digital Phase Lock Loop and other combinational
logic to handle clock recovery and bit-interleaving functions,
as well as FSK modem chips NE 5080 and NE 5081 to han-
dle FSK modulation and demodulation. COMH multiplexes
command data, digitized voice, synchronization pulses, dial
pulses and two aux channels into a single bit stream. This
bit stream is then converted (via FSK, see section 24.4.1 for
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details) to an analog signal at 18 MHz.
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Figure 24.2: Block diagram of the GMRT communication handler (COMH).

The antenna computer (ANTCOM) has essentially the configuration.

The block diagram for this multiplexing of voice and data
is shown in Figure 24.3. The structure of the multiplexed bit
interleaved data frame is shown in Figure 24.4. At the bottom
of this figure is shown the flow diagram for the synchronous
detector state machine.
The FSK analog signal is sent via the fiber optic link to the

ANTCOM at the antenna base. The ANTCOM has the same
circuitry as COMH but unlike COMH it handles two serial
communication links (using an INTEL 82510 Communication
Controller), i.e. the ANTCOM-MCM communication link and
a serial link to the Servo Control Computer (SCC). ANTCOM
demodulates the FSK signal into 250 kbps data, regenerates
the 250 kHz clock using a digital Phase Lock Loop, looks for
sync bits and if it finds a match with no error or one bit er-
ror then it demultiplexes the data into command, voice, dial
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Figure 24.3: Block diagram of the voice and data multiplexer.

pulse and aux data and passes each to the appropriate cir-
cuit for further processing (see Figure 24.3). The ANTCOM
communicates with and controls the various subsystems in
the antenna (other than the servo subsystem for which there
is the dedicated SCC) via the MCM cards. A block diagram
of the MCM card is shown in Figure 24.5. The MCM card is
a general purpose 80C535 microcontroller based card which
provides 16 TTL Control outputs and monitors up to 64 analog
signals. It also has an RS485 communication link for commu-
nicating with the ANTCOM.

For the return link, the ANTCOM takes the monitoring in-
formation from SCC, MCMs and FPS forms a packet of SDLC/HDLC
data and multiplexes with voice, hook status and aux chan-
nels into a single bit stream. This bit stream is converted into
an FSK analog signal at 4.5 MHz, which is then up converted
to 205.5 MHz using the regenerated 201 MHz as the LO (see
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the bottom of the figure is the flow diagram for the synchronous detector

state machine.

Figure 24.8). This analog signal is sent along with the as-
tronomical signals to the CEB. At the CEB thirty CEBCOMs
(one for each antenna) demodulate the FSK signal to convert
it back into a digital 250 kbps data stream which is passed on
to COMH via a 32-way multiplexer (MUX 32) card. The voice
signals from the antennas are routed to the EPABX (telephone
exchange) system. The block diagram for this telephonic com-
munication is shown in Figure 24.6. The voice signals are
digitized using an INTEL 29C17 CODEC IC using a 7.8 kHz
clock to produce a 62.5 kbps data stream. The CODEC uses
“A law” for data companding.



382CHAPTER 24. A CONTROL AND MONITOR SYSTEM FOR THE GMRT

M

U

X

1

M

U

X

1

M

U

X

1

LEVEL

GAIN

&

CONV.

LEVEL

GAIN

&

CONV.

LEVEL

GAIN

&

CONV.

LEVEL

GAIN

&

CONV.

P

R

O

C

E

S

S

O

R

B

U

F

F

E

R

M

U

X

E

P

R

O

M

L

A

T

C

H

DIP

SW

SAB 80C535

A

D

C

M

U

X

2

S / H

A1

A16

A17

A64

6 BITS

ADD

MCM 

RBS / TBA    06/03/2000.       mcm.fig

A32

A33

A48

A49

1

MICROCONTROLLER

BLOCK  DIAGRAM  OF  MCM  CARD

M
O

N
I
T

O
R

I
N

G
  
I
/P

s
  
- 

 6
4
  
I
/P

s

I/F
FOR  COMMN.

RS-485  O/Ps

16  CONTROL

O/Ps 

Figure 24.5: Block diagram of the monitor and control (MCM) cards.

24.3.1 Error Detection

The error detection uses both Cyclic Redundancy Check (CRC)
and checksum methods. SDLC/HDLC supports 16 bit CRC
error detection. CRC can detect all the single errors, double
errors and burst errors up to 16 bits in length and can also
detect 99% of burst errors of lengths greater than 16 bits.

The way this works is as follows. A cyclic code message
consists of a specific number of data bits G(X) and a Block
Check Character (BCC). Let n equal the total number of bits
in the message, k equal the number of data bits, i.e. n−k is the
number of bits in the BCC. The code message is derived from
two polynomials which are algebraic representations of two
binary words, the generator polynomial P (X) and the message
polynomial G(X). The generator polynomial P (X) is a type of
code used in CRC-12, CRC-16 and CRC-CCITT.
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Figure 24.6: Block diagram of the telephony interfaces.

For example, n bits of binary data can be represented as a
message polynomial of degree n − 1. Thus, an eight-bit long
message 10101010 is represented as

G(X) = X7 +X5 +X3 +X1. (24.3.1)

The code message can be constructed as follows:

1. Multiply the message G(X) by Xn−k where n − k is the
number of bits in the BCC.

2. Divide the resulting product Xn−k[G(X)] by the generator
polynomial P (X).

3. Disregard the quotient and add the remainder C(X) to the
product to get the code message polynomial F (X), which
is represented as Xn−k[G(X)] + C(X).
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The division is performed in binary without carries or bor-
rows. The code message F (X) is transmitted as binary data
and the receiver at the other end retrieves the message us-
ing the same generator polynomial and accepts the data if the
remainder is zero.

24.4 Signal Modulation

As described above, the Control and Monitor system hardware
essentially consists of a digital part, an analog part and the
Optical Fiber system (see Figure 24.7).
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OPTICAL
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SYSTEM

ANALOG

PART PART

DIGITAL
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CEB ANTENNA ’N’

( TELEMETRY, VOICE, DIAl, AUX. )
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( TELEMETRY, VOICE, DIAl, AUX. )
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DIGITAL

SYSTEM

FIBER

OPTICAL

250 Kbps 250 Kbps

Figure 24.7: Schematic of the GMRT telemetry system. See the text for

more information.

The optical fiber is a single mode analog link operating at
1310 nm, and can carry signals from a few MHz to about
1 GHz. There are two fibers (a ‘forward link’ and a ‘return link’)
between the Central Electronics Building (CEB) and each an-
tenna. In the forward link the telemetry signals use an 18 MHz
carrier, and the return link has a 205.5 MHz carrier. See Fig-
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ure 24.8 for a schematic of the different signals carried by the
forward and return links.
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link. See the text for more information.
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24.4.1 Frequency Shift Keying

As mentioned above, the digital data that the telemetry system
generates is converted to an analog signal using Frequency
Shift Keying (FSK). FSK is a special type of modulation where
the digital signals (“0” & “1”) changes the frequency of the
pseudo carrier to one of two frequencies, usually denoted as
MARK and SPACE respectively.
If T is the duration of a bit, then the bandwidth (BW) occu-

pied by the FSK signal is:

[ν(MARK) +
1

T
] − [ν(SPACE)− 1

T
] = ν(MARK) − ν(SPACE) +

2

T
.

(24.4.2)
For example, in the Forward Link, ν(mark) = 19MHz, ν(space) =

17 MHz and t = 4 microseconds (i.e. corresponding to a data
rate of 250 kbps). Therefore, the bandwidth of the FSK signal
in the forward link is

∆ν = (19 − 17) +
2

4 × 10−6
= 2.5 MHz. (24.4.3)

24.5 System specifications of the Control & Mon-

itor system

24.5.1 Overview

1. Non-coherent FSK is used for data transmission over the
optical fiber links. The baud rate is 250 Kbits/sec.

2. Bit-interleaving is used for multiplexing the Telemetry,
Voice, Sync., Dial and Aux channels.

3. Data integrity is checked using polynomial and checksum
error detection with ARQ capability.

4. The Bit Error Probability is 10−10.
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24.5.2 Bit rates available for various services

Service Bit Rate (kbps)

1 DATA (COMH - ANTCOM COMM) 125.000

2 VOICE (TELEPHONY VOICE) 62.500

3 DIAL (TELEPHONY SIGNALING) 15.625

4 SYNC (SYNCHRONIZATION PATTERN) 15.625

5 AUX1 (AUXILIARY CHANNEL1) 15.625

6 AUX2 (AUXILIARY CHANNEL2) 15.625

TOTAL BIT RATE 250.000

24.5.3 Details of the various communication links

Type Subsystems Involved Rate

Ethernet UNIX WS <==> PC ROUTER 10.0 Mbps

Asynchronous PC ROUTER <==> COMH 38.4 kbps

RS232-C 10 bit

SDLC/HDLC COMH <==> ANTCOM 125 kbps

Asynchronous ANTCOM <==> MCM 9.6 kbps

RS485 11 bit

Asynchronous ANTCOM <==> SCC 9.6 kbps

RS422 10 bit

FSK MODEM COMH <==> ANTCOM 250.0 kbps

VOICE CEB <==> ANTENNA 62.5 kbps
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Chapter 25

The GMRT Correlator

D. Anish Roshi & Jayaram N. Chengalur

25.1 Introduction

Chapters 8 and 9 covered the basics of correlator design and
implementation. Recall that there are two popular types of
correlators, viz. the FX and XF types. The FX design has a
number of advantages including (a) low cost, (b) digital fringe
stopping and fractional delay compensation and (c) minimal
closure errors. The GMRT correlator is an FX correlator. The
integrated circuit (IC) used for performing the FFT and the
correlation is an application specific IC (ASIC) designed by
the NRAO for the VLBA correlator. This chapter provides an
overview of the GMRT correlator and discusses its various
modes of operation. The material is meant as a guide for the
correlator users (i.e. astronomers). For details of hardware
implementation see Tatke (1997).
The main considerations while designing the GMRT corre-

lator were the following:

1. Astronomical requirement : Briefly, the correlator should
have the capability to make continuum radio maps of all
the Stokes parameters as well as spectral line radio maps.

389
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2. Radio frequency interference : As a low frequency telescope
the GMRT is highly susceptible to man made interfer-
ence. To observe weak celestial sources in the presence
of strong radio frequency interference (RFI), the dynamic
range of the receiver system and the correlator should be
large. If the RFI spectrum is narrow-band, it may also be
possible to edit it out from the data if the visibility spec-
trum is measured with sufficiently high resolution.

3. Cost : The overall cost of the correlator system should be
kept at a minimum.

The last two requirements favor an FX configuration. Since
the FX correlator inherently measures the visibility spectrum,
any narrow-band RFI can be edited out. To improve the dy-
namic range, 4-bit sampling is used.
Recall that the GMRT has 30 antennas and that each an-

tenna provides signals in two orthogonal1 polarizations. The
maximum operating bandwidth at all frequency bands is 32 MHz,
which is provided as two 16 MHz wide baseband signals (cor-
responding to the two sidebands) for each polarization (see
Fig. 25.1). From the basic block diagram of an FX correlator
(see Fig 9.4 in Chapter 9) it is evident that the GMRT correla-
tor should have 120 (= 30× 4) ADCs, integral delay compensa-
tion units, number controlled oscillators, FFTs and fractional
delay compensation units.
The total number of multiplier units required for the GMRT

can be calculated as follows. The total number of cross prod-
ucts for a n element array is n × (n − 1)/2. If the self prod-
ucts are also computed then the total number of products is
n(n− 1)/2 + n = n(n+ 1)/2. In an FX correlator these products
have to be measured for each spectral channel. The GMRT
correlator provides 256 spectral channels, the total number of

1All the frequency bands of GMRT except the L band are circularly polarized. At L band

two linearly polarized signals are provided.
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175 (LCP)130 (RCP)

USB LSB USB LSB

Antenna

Baseband System

Figure 25.1: Schematic showing the four baseband outputs from each

GMRT antenna. Each antenna is dual-polarized and each polarization sig-

nal (which is of maximum bandwidth 32 MHz) is split into two sidebands,

each of maximum bandwidth 16 MHz. At all frequencies of operation, ex-

cept the 1420 MHz band, right (RCP) and left (LCP) circular polarizations

are measured. At the 1420 MHz band two orthogonal linear polarizations

are measured. The two sidebands are called the Upper Side Band (USB)

and Lower Side Band (LSB) respectively. The RCP is transported at an

IF frequency of 130 MHz while the LCP is transported at an IF frequency

of 175 MHz. The signals are hence generally referred to at the GMRT as

USB-130, LSB-130, USB-175 and LSB-175.

multiplier units required is hence [n× (n+ 1)/2]× 256. Further
since, as discussed above, there are four baseband signals for
each antenna, the number of multiplier units required goes
up by a factor of 4. To measure all the four Stokes parameters
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the cross products between different polarizations need to be
measured (see chapter 15); this causes the required number
of multiplier units to increase by another factor of 2. Thus for
n = 30 the total number of multipliers required is 9,52,320.
However, to lower the cost and to simplify the hardware de-
sign the number of multiplier units in the GMRT correlator
is only 2,38,080. To minimize the impact of this reduction
in multipliers, the GMRT correlator has a highly configurable
design. Depending on the astronomical requirement the cor-
relator can be configured to minimize the loss of information;
for example in many spectral line observations it is not nec-
essary to measure all four Stokes parameters. The following
sections give an overview of the GMRT correlator and also dis-
cuss these different correlator configurations.

25.2 An overview of the GMRT Correlator

Baseband
Inputs

(30x4=120 nos)

ADC
32 MHz
(120 nos)

Delay-DPC

(120 nos)
FFT

(120 nos)

MAC

(238080 nos)

Delay control
circuit

FFT control
circuit

MAC
control
circuit

Data Acquisition
computer

Figure 25.2: A simplified block diagram of the GMRT correlator

A simplified block diagram of the GMRT correlator is shown
in Fig. 25.2. The basic units are the analog to digital convert-
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ers (ADC), Delay and Data Preparation (Delay-DPC) subsys-
tem, the Fourier transform and fractional delay compensation
(FFT) subsystem and the Multiply and Accumulate (MAC) unit.
The data from the MAC output is acquired using a special
purpose PC add-on card. All of the subsystems, except the
ADC, have DSP (digital signal processor) based control cir-
cuits. These control circuits are in turn controlled by various
high level programs; see Chapter 26 for more details.

25.2.1 ADC

The GMRT correlator uses 6-bit, uniform quantization ADCs.
The ADCs are designed such that an input Gaussian ran-
dom signal of 0 dBm power will have minimum distortion (see
Chapter 8). The ADCs operate at a fixed clock frequency of
32 MHz. This means that when the input signal has a band-
width of 16 MHz the digitized signal is Nyquist sampled. How-
ever at the GMRT, the input signal could have a bandwidth
less than 16 MHz2, for these signals the Delay-DPC effec-
tively resamples the digitized signal so that downstream of the
Delay-DPC unit the signal is Nyquist sampled.

25.2.2 Delay-DPC

The block diagram of the delay and data preparation unit
(delay-DPC 3) is shown in Fig. 25.3. Each basic unit of the
delay-DPC takes the four outputs of ADCs corresponding to
(see Fig 25.1) the signals USB-130, USB-175, LSB-130, LSB-
175 from a given antenna. These 6-bit quantized signals are
rounded off to 4 bits and then sent to a multiplexer. The mul-
tiplexer has various modes; for example any one of the four

2Available bandwidths go from 64 kHz to 16 MHz in steps of 2, (see also Chapter 23).
3At the time of writing some information on the Delay-DPC could be found at

http://www.ncra.tifr.res.in/ sirothia/project/newdlydpc/NEWDLYDPC.htm
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Figure 25.3: Block diagram of the delay-DPC unit of the GMRT correlator

inputs of the multiplexer can be mapped to all four of its out-
puts (A,B,C,D in Fig. 25.3). Other mappings include (a) A =

USB − 130, B = USB − 175, C = USB − 175, D = USB − 130, and
(b) A = LSB−130, B = LSB−175, C = LSB−175, D = LSB−130

(called the USBPolar and LSBPolar modes respectively). As
described in more detail below, these are used for polarization
observations with the correlator. The multiplexer outputs are
passed through a memory based integral delay compensation
circuit (see Chapter 9). The delay compensated outputs are
then fed to the FFT subsystem.

The rate at which data is written to the memory in the
delay-DPC unit is tunable. In particular it can be any one
of 32/2k MHz, where k = 0 to k = 7. This rate is chosen to be
the Nyquist rate for the input signal bandwidth, i.e. for band-
widths smaller than 16 MHz, the rate is less than 32 MHz.
However, the data is always read out at a constant rate of
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32.25 MHz. To maintain the data throughput, data from the
memory has to be read out in an ‘overlapping’ fashion. This
way of reading the data provides the facility to perform ‘over-
lapping’ FFTs (and hence an improvement in the signal to
noise ratio) when the input bandwidth is less than 16 MHz.
Two other functions of the delay-DPC system are (a) gain

measurement (b) Walsh demodulation. Neither of these two
functions is currently available.

25.2.3 FFT
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Figure 25.4: Block diagram of the FFT unit of the GMRT correlator

The block diagram of the FFT subsystem is shown in Fig. 25.4.
The basic unit of the FFT subsystem takes two data streams
(either A,B or C,D in Fig. 25.3) from the Delay-DPC. In the
first stage, a weighting function can be applied to the 4-bit
time series. The weighting function is software selectable, and
can be chosen to be one of the standard “window functions”
discussed in Chapter 8. This is followed by a number con-
trolled oscillator (NCO), which does the fringe stopping (see
Chapter 9). The two fringe stopped time series are passed
through two sets of FFT engines, realized using VLBA ASICs,
to perform Fourier transforms. Phase gradients are then ap-
plied to the spectrum of the signal to correct for delays smaller
than the sampling interval (FSTC).
Each FFT engine can perform a Fourier transforms of max-

imal length 512 points. This length is software selectable to
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be 256, 128 or 16 points; it is even possible to bypass the
FFT operation altogether. A 512 point FFT gives 256 chan-
nels, however in the next stage of the correlator (MAC) there
are only enough multipliers for 128 channels per sideband
per polarization. In the standard mode of operation, two ad-
jacent FFT channels are hence averaged together in the MAC.
A single MAC also acquires data from two FFT engines in a
time multiplexed fashion. The data is multiplexed as shown
in Fig. 25.4, where ai and bi are the spectral channels from the
two FFT engines.

25.2.4 MAC

VLBA

ASIC

(256 nos
of MAC)

VLBA

ASIC

(256 nos
of MAC)

VLBA

ASIC

(256 nos
of MAC)

Antenna 1

Antenna 1

Antenna2

Antenna 3

Figure 25.5: Block diagram of the Multiplier-Accumulator (MAC) unit for

the GMRT correlator
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The Multiplier and Accumulator (MAC) is, hardware wise,
the most complex subsystem of the correlator. The MAC takes
the FFT outputs computes the cross and self products and
accumulates them for a maximum of 128 ms and a minimum
of 4 ms. A schematic of the configuration of the multipliers is
shown in Fig 25.5. Each MAC unit consists of 256 accumula-
tors. The MAC can be configured in several different modes.
As described in more detail below this flexibility allows the
GMRT correlator to be used to make a wide variety of obser-
vations. Data from the MAC unit is read out by the Data Ac-
quisition System (DAS) using a special purpose add-on card
on a PC (see Chapter 26 for more details).

25.3 Modes of operation of the GMRT correla-

tor

As mentioned above the total number of multipliers available
in the correlator is less than that required for the measure-
ment of all four Stokes parameters in all spectral channels
for all sidebands of all antennas. Instead ,the correlator is
configurable in various ways. Some configurations would sac-
rifice polarization measurements for improved spectral reso-
lution, while others allow the measurement of all four Stokes
parameters at the expense of total bandwidth. The most com-
monly used configurations of the correlator are described in
some more detail below. In keeping with the common usage
at the GMRT, we will label the 4 baseband input signals from
each antenna as ‘USB-130” (U130), “USB-175” (U175), “LSB-
130” (L130) and “USB-175” (L175). As discussed above, the
GMRT correlator can process a maximum of 120 such 16 MHz
wide inputs (i.e. corresponding to 30 antennas) in real time.
As designed the correlator consists of two essentially identi-
cal units, each capable of processing 60 16 MHz wide inputs.
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Conventionally, the USB inputs from all antennas are con-
nected to one unit and the LSB inputs from all antennas are
connected to the second unit. These units are hence often
referred to as the ”USB” and the “LSB” halves of the corre-
lator. Data from the “USB” half is acquired on a host called
“corracqa”, and then transferred to a server called “mithuna”
for further processing and recording. Similarly, data from the
“LSB” half is acquired on a host called “corracqb”, and then
transferred to a server called “mithunb” for further processing
and recording. Throughout this document, these two halves
of the correlator will be called the “A” and “B” halves respec-
tively. This is because (as will be clear shortly), the “USB”
and “LSB” labels are not appropriate for most of the correlator
configurations. For completeness, it should also be noted that
there is a third host associated with the correlator, viz “cor-
rctl”. This host is responsible for initial configuration and run
time control of the correlator hardware. Finally, the user gen-
erally issues configuration commands from yet another host,
which we will call the ONLINE host.

The block diagram in Fig. 25.6 starts after the sampler unit.
Each MAC block accepts four input signals. In Fig 25.6 they
have been labeled as A1, A2, B1 and B2. Depending on how
the MAC has been configured, it performs different operations
on these inputs. There are three possible MAC configurations
(or modes). In the RRLL mode (also called the “INDIAN PO-
LAR” mode) the products formed in the MAC are A1*B1 and
A2*B2. Adjacent frequency channels from the FFT are av-
eraged together in this mode. One therefore has two output
data streams, each of which has 128 complex channels. In the
RRRL (or POLAR) mode, the products formed are A1*B1 and
A2*B1. Once again, adjacent frequency channels are averaged
together in the MAC, so each output data stream has 128 com-
plex spectral channels. The last mode is RR, in which only one
product, viz. A1*B1 is produced. Adjacent frequency channels
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Figure 25.6: A block diagram of the GMRT correlator (excluding the sam-

plers). The four signal outputs from a given GMRT antenna (see Sec 25.3

for details) are connected to the Delay/DPC block. After signal condition-

ing, these signals are sent to the FFT block. Any one of the input De-

lay/DPC signals can be sent to any one (or more) of the the FFT inputs.

The FFT output is then sent to the Multiply and ACcumulate (MAC) block.

Each MAC block has four inputs. As shown in the figure (and described in

Sec 25.3) it can be configured into one of three different modes.

are not averaged together, and hence the output data stream
has 256 complex spectral channels.
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25.4 Correlator Configurations

25.4.1 The Indian Polar mode

In this mode the correlator gives four products for each pair
of antennas viz. U130*U130, U175*U175, L130*L130 and
L175*L175. There are 128 spectral channels for each of these
products and the maximum bandwidth is 32 MHz. Since vis-
ibilities are measured for two orthogonal polarizations, this
mode is appropriate when one is interested only in the total
intensity (Stokes I) of the source. The DELAY/DPC and MAC
have to be configured as shown in Fig. 25.7. As can be seen
from the figure “A” half of the correlator (see Sec 25.3) will
produce USB visibilities while the “B” half will produce LSB
visibilities.
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Figure 25.7: Schematic configuration for the Indian Polar Mode.
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25.4.2 The USB Polar mode

In this mode the correlator again gives four products for each
pair of antennas, viz. U130*U130, U175*U130, U130*U175
and U175*U175. There are 128 spectral channels for each
of these products and the maximum bandwidth is 16 MHz.
This mode is suitable for observations where it is desired to
measure all four Stokes parameters.

The DELAY/DPC and MAC configurations are shown schemat-
ically in Fig. 25.8. As can be seen, USB data from the base-
band receiver system is sent to both quadrants of the corre-
lator. The Delay/DPC is configured so that in one half of the
correlator (“A”) the data flow is as for the Indian Polar mode.
For the other half (“B”) the U130 data stream is redirected to
the port where the L175 data used to go in the Indian Polar
mode. Similarly the U175 data stream is redirected to where
the L130 data used to go in the Indian Polar mode. The MAC
is configured in the RRRL mode. The “A” half of the corre-
lator produces U175*U175 and U130*U175 visibilities, while
the “B” half produces U130*U130 and U175*U130 visibilities.

25.4.3 The USB High Resolution mode

In this mode the correlator gives only two products for each
pair of antennas, viz. U130*U130 and U175*U175. There
are 256 spectral channels for each of these products and the
maximum bandwidth is 16 MHz. This mode is suitable for
observations where the bandwidth of interest is 16 MHz or
smaller (e.g. for spectral line observations, or continuum ob-
servations at frequencies where 32 MHz RF is not available)
and only Stokes I needs to be measured.

The DELAY/DPC and MAC configurations are shown schemat-
ically in Fig. 25.9. As can be seen, the Delay/DPC configura-
tion in this mode is identical to that in the USB Polar mode.
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Figure 25.8: Schematic configuration for the USB Polar Mode.

The MAC mode is however different, viz. RR. In this mode the
“A” half of the correlator produces U175*U175 while the “B”
half produces U130*U130 visibilities.

25.4.4 Other General Configurations

Three possible configurations were illustrated above, but there
are infact an immodest number of modes. For example, anal-
ogous to the USB Polar and USB HighRes modes one can have
LSB Polar and LSB HighRes modes. One could also imagine
modes where the same data is correlated one or more times,
either for testing of the correlator, or for possible improve-
ments in the signal to noise ratio. All combinations of DE-
LAY/DPC and MAC configurations are supported by the cur-
rent version of the DAS software. Details on how to actually
configure and run these modes can be found in the following
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sections.

25.5 Configuring and running different modes

In earlier DAS versions, the correlator was configured by edit-
ing (by hand) various configuration files. In this scheme one
would have to consistently edit several configuration files on
up to four different hosts to properly run some given mode.
Given the very large number of possible configurations of the
correlator, this scheme is no longer viable. The DAS pro-
grams4 were hence modified so that all the user configura-
tion information is contained in only one file, “corrsel.hdr”.

4It is assumed that readers are familiar with the DAS chain. Introductory material on

the DAS chain can be found in Chapter 26; and detailed descriptions of an earlier version

of the chain in Chengalur (2000).
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In addition to this, the DAS chain gets information on which
antenna data stream is connected to which sampler via the
“sampsys.hdr” file, while the information on the positions and
instrumental delays of each antenna are contained in the file
“antsys.hdr5”. These files are contained in the directory pointed
to by the $SYS DIR environmental variable. For completeness,
it is also worth noting that the “sampsys.hdr” file contains in-
formation on the connection of all 120 samplers. This con-
tents of this file should be identical on all the three hosts. In
the earlier scheme, the corrctl host had information of 120
samplers, while the corracqa and corracqb hosts had infor-
mation on only 60 samplers each, and the number assigned
to a given sampler differed on the different hosts.

The “corrsel.hdr” file resides on the ONLINE host (i.e. cur-
rently aditya or bhaskar). Configuration information from this
file is consistently passed on to all relevant programs on all
hosts. The file itself is also no longer meant to be edited
by hand6. Instead the file is generated by a program which
presents the user with a menu of possible configurations. This
program is called corrsel .

The corrsel menu starts with the observing mode; at the
moment ten observing modes are predefined. The predefined
modes are 1. IndianPolar, 2. UsbPolar, 3. LsbPolar, 4. Usb-
HighRes, 5. LsbHighRes, 6. UsbCopy, 7. LsbCopy, 8. AllU130,
9. AllU175, 10. AllL130, and 11. AllL175

The names are hopefully self-explanatory. A given mode
corresponds to some particular configuration of the DELAY/DPC

5This is the file that would need to be updated by, for e.g. fdelay when one wants

to put in new instrumental delay values. Since correlator control happens only from

the corrctl machine, the antsys.hdr file on this PC is the only one that affects the fringe

stopping and delay tracking. However the antenna positions and delay values copied into

the ASCII header of the LTA files are taken from the files in corracqa and corracqb. It is

hence important to make sure that the files on all three hosts are identical.
6Although since it is an ASCII file, one could if one wanted to. Details on what this file

contains can be found further in this section.
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and the MAC. For example, in the Indian Polar mode, the DE-
LAY/DPC has a straight one-to-one mapping between its in-
put and its output, and the MAC mode is RRLL. It should be
noted that strictly speaking, the straight DPC map and the
RRLL MAC mode define the IndianPolar mode. The actual
correlations that will be measured in this mode depend on
what the sampler connections (as given in the “sampsys.hdr”
file) are. Throughout it has been assumed that the sampler
connections are the default ones, viz. that SMP4n = L130,
SMP4n+1 = L175, SMP4n+2 = U130 and SMP4n+3 = U175
(where n is an integer from 0 to 29). This means, that to pre-
serve the meanings of these definitions care must be taken
while reconnecting the samplers. Any interchange of anten-
nas must involve all samplers associated with those two an-
tennas. Exchanging just the USB or LSB samplers would lead
to inconsistencies. The data would continue to be labeled cor-
rectly and fringe stopped correctly, but the correlation prod-
ucts themselves may not be astronomically useful.

The next menu item presented by corrsel is LTA1, this is
the integration to be done by acq 30. The value is in units of
STA cycles (i.e. 128 ms). The typical value used at the GMRT
is 16, which corresponds to ∼ 2 sec. Running of the entire
DAS chain at the full time resolution (i.e. 128ms, LTA1=1) is
supported by the current version of the DAS software. Users
should be aware however that only limited testing of this mode
has been done so far.

The next item on the menu is the bandwidth, this can be
any value from 16 MHz to 0.125 MHz in steps of 2. This is the
bandwidth that each half of the correlator is set to. Hence, in
the IndianPolar mode the total bandwidth is twice the value
set here. In the Polar modes the total bandwidth is the same
as the value set here.

The final item on the menu is the spectral channels for
which data is to be acquired. corrsel produces an output file
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called “corrsel.hdr”, a sample of which shown below.

{ Corrsel.def

LTA = 16

CLK_SEL = 0 / * bandwidth = 16 MHz * /

CHAN_NUM= 0:127:1

MAC_MODE= RRLL /* legal values: RRLL RRRL RR * /

DPC_MUX = IndianPolar

MODE = 0

FFT_MODE= 0 /* fft_size = 512/2\ˆfft_mode * /

} Corrsel

*

Most of the items in this file should be self explanatory.
The MODE entry specifies which kind of fringe stopping is
to be done (i.e. whether this is for e.g. a TransitObs or
not). The DPC MUX specifies the mapping between the in-
put and output of the DPC. The following special names are
recognized here: IndianPolar, UsbPolar, LsbPolar, UsbCopy,
LsbCopy, AllU130, AllU175, AllL130, AllL1757. In addition,
strings of the form “dpc abcd” are recognized. A DPC MUX
value of dpc abcd means that input channel a is mapped to
output channel 0, input channel b is mapped to output chan-
nel 1 and so on.
The “corrsel.hdr” file is generated on the ONLINE machine.

Information in this file is read by the program dassrv and then
passed on to sockcmd , acq 30 etc. on all relevant hosts.
This ensures that information on the selected configuration is
properly passed on to the entire DAS chain. In addition one
has to ensure that the correlator hardware itself is also config-
ured as specified in the corrsel.hdr file. The program set corr
7In addition, for sentimental reasons, strings of the sort “arar arar”, “aral brbl” are also

recognized; but this is really very arcane and probably of no interest to anyone currently

at NCRA.
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(which is run on the ONLINE host) does this. set corr reads
the corrsel.hdr file, and then passes the configuration infor-
mation on to the correlator configuration programs. set corr
takes the following options

set_corr --subsys SubSystem [--host CorrHostName]

[--file ConfigFile] [--version Version]

Where SubSystem is one of:

delay_full (Complete Delay Config)

delay (Set DpcMode & ClkSel)

fft_mac (Complete Corr Config)

mac (Config Mac Mode)

pulsar (Corr Config for Pular Mode)

and Version is one of: new old tst dvl

set corr is a fairly simple program; all it does is parse the
corrsel.hdr file and then run the appropriate program on the
corrctl host using ssh. The actual configuration programs be-
ing run on corrctl are corrconfig, corr configa and newdly config
and dlyconfig. corr config configures the FFT and MAC blocks.
corr configa configures the FFT as appropriate for pulsar ob-
servations. newdly config does a complete initialization of the
DELAY/DPC block. dlyconfig on the other hand, only sets
the DPC mode and the CLK SEL (i.e. the desampling value
or bandwidth). All of these programs can also be run from
the shell prompt on corrctl. dlyconfig understands all of the
special modes described above (e.g. IndianPolar, AllL130...)
as well as strings of the form dpc abcd. The mode is speci-
fied to dlyconfig using the -m option, and the CLK SEL using
the -c option. When configuring the correlator from the shell
prompt, the onus lies on the user to ensure that the DAS chain
configuration corresponds to the actual hardware configura-
tion. While this is an extra burden, it may also be convenient
for users who wish to spoof the system in some way.
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For ease of use, the set corr program is bundled into a shell
script called corr. This shell script takes one argument, which
has to be one of init, reconf, or pulsar. corr init causes a full
initialization of the correlator. This initialization puts the cor-
relator into the IndianPolar mode with a bandwidth of 16 MHz
irrespective of the contents of the corrsel.hdr file. corr reconf
reconfigures the correlator as specified in the corrsel.hdr file.
And finally corr pulsar reconfigures the correlator as appro-
priate for pulsar observations8.

25.6 Further Reading

1. Tatke, V. M., 1997, M.Sc.(Engg) Thesis, Indian Institute
of Science, Bangalore.

2. Chengalur, J. N., 2006, “Polar and other new modes of the
GMRT Correlator”, NCRA Technical Report 182.

3. Chengalur, J. N., 2000, “ Subarray operation at GMRT”,
NCRA Technical Report 176.

8In practice this means calling the program corr configa instead of corr config on cor-

rctl.



Chapter 26

The GMRT Correlator Data

Acquisition System

R. K. Singh and Jayaram N. Chengalur

This chapter describes the data acquisition system for the
GMRT correlator. A functional description of the GMRT corre-
lator can be found in chapter 25, and it is assumed that the
reader is familiar with the contents of that chapter.

26.1 Data Acquisition

Let us first estimate the maximum data rate produced by the
GMRT correlator. Recall that for each antenna there are four
associated data streams (two sidebands USB and LSB, in each
of two polarizations), with the bandwidth of each stream being
16 MHz bandwidth. Since each stream is Nyquist sampled,
the input data rate is 120 × 32 × 106 = 3840 Mega samples per
second. Each sample is initially 6-bits, but after the delay-
DPC section it is cut down to 4 bits per sample. For each
stream there is a corresponding FFT unit in the correlator.
This FFT unit carries out a 512 data point transform in real
time, i.e. one 512 point transform every 16µsec. This 512 point
transform produces 256 complex numbers, i.e. 256 frequency

409
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channels. The time to acquire 512 data samples, i.e. 16µsec is
called a FFT cycle. The number of distinct pairs of antennas
(including an antenna with itself, i.e. self-correlations) that
can be made from 30 antennas is 30 × (30 + 1)/2 = 465. For
two polarizations and 2 sidebands the total number of base-
lines is 465 × 4 = 1860. The GMRT correlator is designed to
provide some redundancy. The actual number of MACs in the
correlator is 176 × 6 (there are 6 Racks with 176 MAC units
each) or 1056, with each MAC being able correlate 2 baselines.
Each MAC unit averages the data for 8192 FFT cycles (which
is called Short Term Accumulation or STA). One STA cycle
lasts 8192×16µsec = 132ms. The MAC data format is such that
it takes 4 bytes to encode one complex number. In most of the
correlator modes, the MAC also averages adjacent frequency
channels, so finally only 128 spectral channels are produced
per baseline1. Therefore the total data output per second is
1056 × 2 × (1sec/132ms) × 128 × 4 bytes = 8MB. This data is ac-
quired using a special purpose PCI based card. As described
in chapter 25 the correlator consists of two identical halves,
usually labeled the “USB” and “LSB” halves. Data is acquired
from these two halves independently. So there are two ac-
quisition hosts (“corracqa” and “corracqb”) each of which ac-
quires data at 4 Mbps. Most astronomical observations do
not require observations to be taken with a 132ms time reso-
lution, so the data is generally averaged further before being
stored onto disk. This averaging is done in the software and
is called Long Term Accumulation (or LTA). Typical final aver-
aging times are ∼ 16 seconds. The final data format takes 8
bytes to store one complex number, which means that a typi-
cal 10 hour observation with the GMRT produces about 4 GB
of data.

1In modes like USBHighRes (see Chapter 25) where this averaging is not done, data for

only half the number of baselines is output. The effective data rate is hence the same in

all the correlator modes
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26.2 Correlator Control

As described in Chapter 4 prior to correlating the signals from
two antennas one has to correct for the (time variable) ge-
ometric delay, as well as the static instrumental delay. As
discussed in detail in that chapter this correction is typically
implemented in three parts, an “integer delay correction”, a
fraction delay or “fractional sampling time correction (FSTC)”,
and finally a “fringe stop”. In the GMRT correlator the integer
delay correction is done in the delay-DPC section, while the
FSTC and the fringe stopping are done in the FFT section (see
Chapter 25 for details). The delay-DPC and FFT sections of the
correlator hence require continuous update of the delay and
fringe stopping parameters. In addition both these sections as
well as the MAC section need to be configured before the start
of the observation. The configuration of the delay-DPC section
includes choosing the observing mode (e.g. IndianPolar, Polar
etc.) and the bandwidth. The FFT section can be configured to
produce FFTs of different lengths (up to a maximum of 512).
This option is rarely used. The MAC section also has to be
configured for the chosen observing mode. The Sampler sec-
tion of the correlator does not need any control; regardless of
the bandwidth of the input signal the sampler card samples
at a 32 MHz rate.

A block diagram of the GMRT correlator including the con-
trol and data acquisition hosts is shown in Figure 26.1. All
sections of the correlator are controlled from a single host,
called “corrctl”. Data acquisition is however split across two
hosts, “corracqa” (which usually acquires “USB” data) and
“corracqb” (which usually acquires “LSB” data). These two
hosts do the long term accumulation (“LTA”) and then pass
the data onto to two other hosts “mithuna” and “mithunb”.
Users run programs on these hosts to examine the data in
real time, record the data to disk, etc. Information on which
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source is being observed, the correlator configuration desired,
etc. are specified by the astronomer in the “ONLINE ” system.
From here it is passed on to the correlator control host “cor-
rctl”. ONLINE also sends scan start and stop commands to
the the data acquisition hosts “corracqa” and “corracqb”.
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Figure 26.1: The schematic block diagram of the correlator. The four major

blocks of the hardware as well as the control and data acquisition hosts

are shown.

26.3 Online Data Processing

GMRT correlator data acquisition involves a large number of
cooperative processes distributed over several hosts. A block
diagram of the data acquisition chain is shown in Figure 26.2.
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Figure 26.2: The GMRT correlator data acquisition chain

26.3.1 The low level programs

In addition to the programs shown in Figure 26.2, there are
a number of low level programs (drivers) that are involved in
the data acquisition and control. These are described briefly
below.

1. pcidev24
As mentioned above, each half of the correlator has 3
MAC racks, each of which passes data over a separate
channel to the data acquisition card. Every STA cycle
the pcidev24 program collects one block worth of data
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from each of these three channels. The size of a block
is 11 × 16 × 2 × 128 × 4 bytes = 176 KB. (11 cards per rack,
16 MAC chips per card, 2 baselines with 128 channels
each per MAC chip, and 4 bytes per complex data point).
Each MAC chip has two buffers; one is used for accumu-
lating the incoming data over a STA cycle, and another is
used for transmitting data accumulated during the pre-
vious STA cycle. One of the bits of the 16-bit word is
reserved to indicate the beginning of a fresh STA cycle.

We use a custom made PCI bus based interface card to
input this data. The interface card has four ports each
of which has 16 data lines and separate control lines.
Three of the ports are configured to accept the data on
an independent external clock. The interface card has to-
tal 64/128 KB total memory, which is equally distributed
among the 4 ports. Three ports are configured for stream-
ing mode operation, where the 16/32 KB memory for a
port is divided into two halves, such that when one half
is full, an interrupt is generated for the host computer’s
CPU for transferring this data into the memory of the com-
puter. While this transfer continues from one half of the
data, the external data continues to fill the other half of
the memory for each port. This process continues end-
lessly. pcidev24 stores the data from the three in separate
local buffers. For every block of data corresponding to the
half of port memory (8 KB/16 KB, depending on the port
memory size), the PC time is noted. This time corresponds
to the end of the block of data just arrived, and can also be
thought of as the time corresponding to the beginning of
the next data block. This time will be used for timestamp-
ing of data by the next level software referred to as ‘acq’ in
Figure 26.2. pcidev24 stores a good fraction of a second’s
worth of data in three separate circular buffers. Hence
it is highly unlikely that the higher level program ‘acq’
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(even if it is temporarily busy elsewhere) will be unable to
drain out this data before the buffers overflow. Note that
pcidev24 makes no effort to look inside the data buffers
and synchronize three streams into one logical stream.

2. 16link24.
This low level program communicates with the correla-
tor through a homemade custom communication proto-
col. It is primarily used for configuring the correlator.
A higher level correlator configurator program communi-
cates to the hardware through this low level program.

26.3.2 The high level programs

The high level programs are shown in Figure 26.2. A conve-
nient start point is the rightmost block in this diagram “ON-
LINE ”. The astronomer specifies in ONLINE which source he
wants to observe, as well as when to start and stop the obser-
vation etc. This information is passed (via a message queue)
from ONLINE to the program “dassrv ”, which runs on the
same host as ONLINE . dassrv passes this information (via a
socket) to the program “sockcmd ” which runs on the hosts
on which the data is being acquired. Since there are two such
hosts (“corracqa” and “corracqb”, one copy of sockcmd runs
on each host, and dassrv communicates with them serially).
sockcmd passes these commands (via a message queue) to
acq30. The program acq30 has two major functions: (1) to
compute the delay and fringe stopping corrections that have
to be applied and (1) to collect and properly organize the data
acquired from the correlator. We look at these two functions
in some more detail below.

1. Delay Tracking and Fringe Stopping

Given the source position and the antenna co-ordinates,
acq30 computes the appropriate delay, fringe stop and
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FSTC values. The calculation of these quantities for a
given point of time is referred to as ‘model calculation’,
and the values as ‘model parameters’ or ‘model values’.
From its mapping of antennas to samplers to FFT pipelines,
acq30 can determine which delay value to send to which
delay control card, etc. The delay and fringe stop pa-
rameters computed by acq30 are passed on to the fstop
program. fstop handles the fringe stopping and the frac-
tional sampling time correction (FSTC). Recall that both of
these get applied in the FFT block of the correlator. fstop
passes on the integer delay correction (via a socket) to the
program dlytrk, from where it goes to the delay-DPC sec-
tion of the correlator. These parameter values (also called
“model values”) have to be downloaded to the embedded
systems at a time and in a manner such that the normal
working of those systems are not affected. Further the
protocol should be such that higher level software must
know in advance at what instant of time these new values
will be made effective by the lowlevel software. For this
purpose, the following norms are followed.

(a) The model values are downloaded at times which are
not close to the beginning of a new STA cycle. At the
start of an STA cycle the embedded systems have sev-
eral time-critical tasks to perform.

(b) The embedded systems are initialized with a STA cy-
cle sequence number. This sequence number is incre-
mented by all the embedded systems at the start of
new STA cycle, so that all the embedded systems are
properly synchronized. When model values are down-
loaded, the configurator also passes the STA sequence
number at which these values are to be effected. The
activity across all the components of correlator are
hence synchronized. The protocol takes into account
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the fact that erroneous conditions which require cor-
rective action could arise.

(c) acq30 runs independently on three hosts (“corracqa”,
“corracqb” and “corrctl”). On the first two hosts its
only function is to acquire data (since the hosts are
not connected to the correlator control cards), while
on the third host, its only function is to control the
correlator (see “corrctl” is not connected to the MAC
output cards). These three processes are kept syn-
chronized via the host computer clocks (which are in
turn synchronized using ntp) and via the correlator
STA interrupt.

acq30 accepts from sockcmd (and passes on to down-
stream programs) several user commands, of which the
four major ones are:

(a) Init: Initiate an observation session. During initializa-
tion, parameters which will remain constant during
the observation session (eg. the bandwidth, the polar-
ization mode, the number of channels to record, which
antennas to record etc.) have to be specified.

(b) StartScan: Start a scan on a specified source. Re-
quired parameters include source position, observing
frequency, observer’s name, etc.

(c) StopScan: This indicates the end of the present scan.
At this stage one can start a new scan on the same or
different source using the ‘StartScan’ command.

(d) End: Close the observation session. On receiving this
command ‘acq30 ’ informs all other dependent pro-
grams to shut down and then shuts itself down.

acq30 also accepts these (and more commands) from a
standalone program getcmd . This mode of operation is
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generally used by the correlator team for debugging pur-
poses, and is not generally used by astronomers.

2. Data Acquisition

(a) pcidev24, acq, acq30

acq30 gets the correlator data from a program called
acq, which in turn gets it from the driver pcidev24
described in section 26.3.1. acq acquires the data
from pcidev24, and looks for the STA cycle markers
described above. It still maintains the data in three
separate streams, but marks each data block in each
stream with a sequence number. The sequence num-
ber is derived from the time noted as the beginning of
STA cycle for that block. This basically synchronizes
the three streams. The program then places the data
(in three separate circular buffers), and also consider-
able book keeping information in a common memory
resource (shared memory). This shared memory is ac-
cessed by acq30 for further real time processing.

When acq30 is started, it scans a set of files that de-
scribe the correlator hardware configuration. These
files contain information such as what are the coordi-
nates of the antennas, which antenna is connected to
which sampler, which samplers is connected to which
FFT pipeline, and which FFT pipelines are connected
to which MAC chips, etc. From this information acq30
builds a complete mapping of all the connectivity in
the correlator. Once initialized, acq30 reads the data
from the shared memory created by acq . Recall that
in this shared memory one has ’raw’ data, i.e. the data
is organized into three streams (one per rack) and in
each stream the ordering depends on the ordering of
the MAC chips in that rack. acq30 merges these three
streams into one stream using the sequence number
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information planted in each data block by acq (see
above). Further it also notes the common IST ar-
rival time of the data corresponding to a given STA
sequence. Once the data has been merged into one
stream, acq30 uses its knowledge of the correlator
connectivity, to determine which piece of the data cor-
responds to which antennas, and which samplers, and
which FFT pipelines. acq30 also converts the data for-
mat from the ‘MAC format’ (i.e. 4 bytes for each com-
plex word) to the IEEE standard floating point format.
The Long Term Accumulation (LTA) is also performed
by this program. The observer specifies the number
of STA cycles for which the data should be further
summed before recording. This summation is carried
out at the same point as the conversion to IEEE float-
ing point format. The averaging period (termed LTA1)
is user specifiable, and is usually set to 2 seconds (16
STA cycles). After performing LTA1 acq30 sends the
resulting data on the network to a separate program
collect which runs on another computer.

(b) collect

places the data that it gets from acq30 into a shared
memory. Several different programs access this shared
memory to do independent manipulations of the cor-
relator data. The two most commonly used programs
are record , which records the data into hard disk
(in a format called the “LTA format”), and dasmon ,
which allows a variety of different real time displays of
the data to be made. A screen shot of a typical das-
mon session is shown in Figure 26.3. Any number of
copies of dasmon can be run at a given time, this al-
lows many people to simultaneously inspect the data.
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Figure 26.3: Screen shot of the dasmon application. Two windows are

shown, viz. “matmon”, which gives a matrix style display of the instanta-

neous visibilities, and “bandmon” which shows the bandpasses (i.e. self

correlations) of the different antennas.

(c) record

record can do a further averaging (called LTA2) of the
data before it records it to the disk. Most users spec-
ify LTA2 to be 8, i.e. 8 LTA1 blocks are averaged be-
fore being written to disk. If LTA1 is set to 2 seconds,
the total integration time would be 16 seconds. record
also allows one to record only the self correlation data,
which is useful in observations which use the GMRT
as a collection of 30 single dish telescopes. Any num-
ber of copies of record can be run at a given time al-
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lowing data from different subarrays (see Sec. 26.3.3
below) to be recorded into different files, multiple si-
multaneous copies of the data (with for e.g. different
integration times) to be made, etc.

One copy of the chain described above runs one each
of the two halves of the correlator. An observation
that uses both halves of the correlator hence results
in two “lta” files, one from each half2. These files can
be merged at the end of the observation to produce a
single file.

Figure 26.4: Screen shot of the dasconsole application.

All the programs in the DAS chain can be started and

2Traditionally these are called the “lta” and “ltb” for the nominal USB and LSB file

respectively
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stopped via an application called dasconsole . A screen-
shot is shown in Figure 26.4. This frees the user from
needing to keep track of which processes need to be
running on which host. Instead one can take an inte-
grated view, and start and stop the chain as a whole.

26.3.3 Subarrays

The GMRT antennas can be divided into subarrays, with an-
tennas in different subarrays looking at different sources and
operating at different frequencies. The DAS chain supports
simultaneous operation of up to 8 subarrays. While the RF
frequencies of these subarrays can be different, the baseband
bandwidth is currently required to be the same for all subar-
rays. Further, one cannot dynamically change the number of
antennas in a subarray once an observation is started. The
data from each subarray is uniquely identified by its 7 letter
project code. This project code needs to be given as a param-
eter to record, and dasmon, so that the user can select by
subarray as to which data s/he wants to monitor, record to
disk, etc. Subarrays cannot have overlapping antennas, and
different subarrays can be started and stopped independently.
The different subarrays have the same LTA1 but can have dif-
ferent LTA2s and hence different effective visibility integration
times.
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