GIANT METREWAVE RADIO TELESCOPE

PPS Generation on Serial Port using Python and	
Processing It	
PROJECT REPORT Submitted To Shri Sandeep Chaudhari By Dhiraj Tambade	
	STP 2012

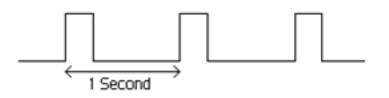
GMRT Project, P. B. No. 6, Narayangoan, Tal - Junnar, Dist - Pune. State - Maharashtra

Index

Title	Page No.
Abstract	2
What is PPS SIGNAL?	3
Graphical overview of project	4
Introduction to NTP	5
Installation and Configuration of NTP	5
Python Installation	7
Flow Chart	8
Python Script	9
Max 485 circuitry	10
Results and Conclusion	11
References	14

Abstract

A Pulse per Second (PPS) signal is required as triggering input to packetized design. As per existing setup in GMRT, a long differential cable approx. length of 45m is required to be laid from GPS receiver to Digital Backend Lab. This is unrealistic in terms of cost and noise immunity.

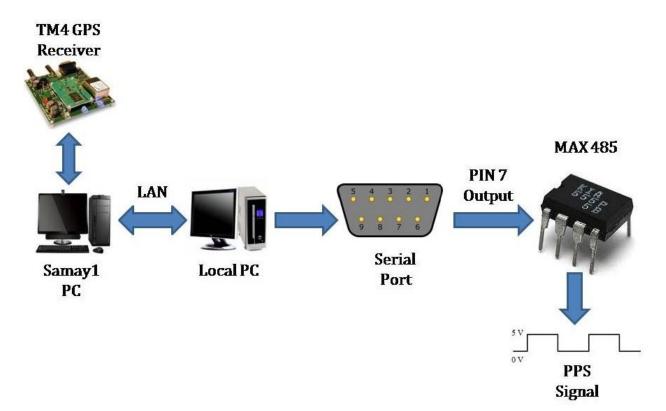

To solve this problem, a PPS signal can be generated on serial port of computer which is locked to NTP server for precise timing. The PPS waveform is generated using Python programming and modules in it called Pyserial and Time. Using small MAX 485 circuitry, we will convert output of Serial Port in 0V-5V level i.e. Digital Logic.

What is PPS Signal?

A pulse per second (PPS) is an electrical signal that has a width of less than one second and a sharply rising or abruptly falling edge that accurately repeats once per second.

PPS signals are output by radio beacons, frequency standards, other types of precision oscillators and some GPS receivers.

- Accuracy 12 picoseconds to a few microseconds per second 2 nanoseconds to a few milliseconds per day
- **Use –** Triggering input to Packetized Design Precise timekeeping and time measurement


Common use for the PPS signal is to connect it to a PC using a low-latency, low-jitter wire connection and allow a program to synchronize to it. This makes the PC a stratum-1 time source.

Note that because the PPS signal does not specify the time, but merely the start of a second.

One must combine the PPS functionality with another time source that provides the full date and time in order to ascertain the time both accurately and precisely.

Graphical Overview of Project

Hardware Used

- ✓ PC connected to samay1 and Ubuntu OS installed on it.
- ✓ Serial Cable
- ✓ MAX 485
- ✓ Resistors 6.8k, 4.7k
- ✓ Connecting wires
- ✓ 5V Power Supply
- ✓ Tektronics DP02024

Network Timing Protocol (NTP)

The Network Time Protocol (NTP) is a protocol designed for accurately synchronizing local time clocks with networked time servers.

NTP is distributed, hierarchical system.

Primary Servers are machines that are synchronized to external time sources Secondary Servers allow thousands of machines/organizations to synchronize without overloading primary servers.

- ✓ GPS is considered a stratum-0 source.
- ✓ Samay1 PC is primary server connected to TM4 GPS receiver.
- ✓ Local PC is connected to primary server and can also be used as secondary server.

How to Maintain an Accurate System Clock with ntpd

1. Install the NTP daemon:

sudo apt-get install ntp

2. Configure the daemon properly:

The configuration file for ntpd is located at /etc/ntp.conf First section you may want to modify is the list of servers to synchronize with.

You do need to talk to an NTP server or two (or three). server samay1.gmrt.ncra.tifr.res.in

3. Make sure the configuration works

Now that you have a proper server list in your /etc/ntp.conf file, it is time to run the daemon and see if you synchronize properly! Make sure you have an active Internet connection, and then run:

sudo /etc/init.d/ntp restart

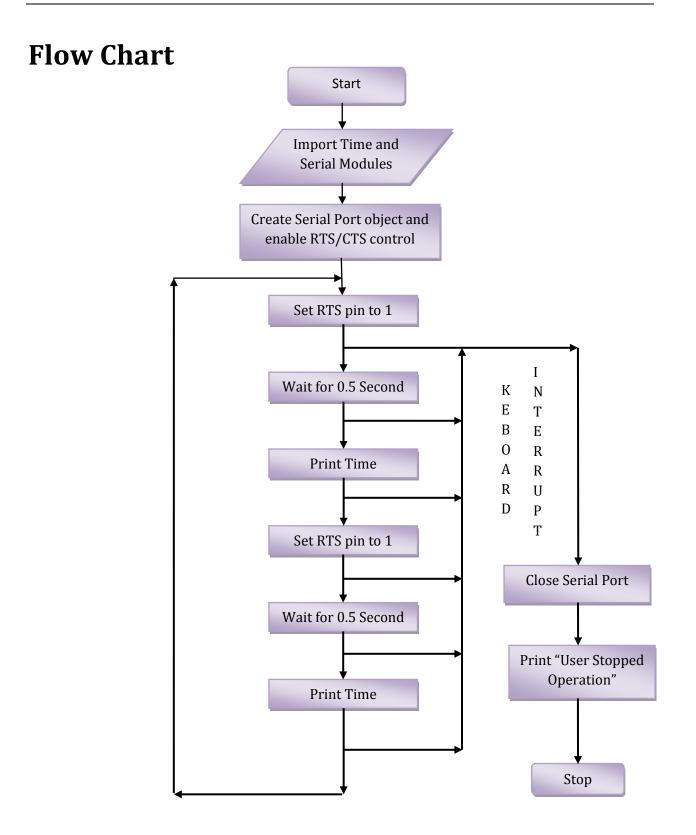
4. Check status of ntp:

ntpq –p

It will give result like this

<mark>⊗ ⊙ ⊘</mark> Terminal File Edit View Terminal Help		
sandeep@sdippc:~\$ ntpq -p remote refid	st t when poll reach	delay offset jitter
*samay1.gmrt.ncr PPS(0) sandeep@sdippc:~\$ []	2 u 11 64 377	0.138 -0.019 0.003

- ✓ Outputs a two-line header and then one line per server, with 11 fields
- ✓ 1st char: '*' for the host we sync to ; '+' for OK ; '−' and 'x' for bad ; " for unreachable; '0' for PPS sync source
- ✓ Hostname
- ✓ Where does it get time from?
- \checkmark Its stratum
- ✓ Type of peer ('u' is for 'unicast')
- \checkmark Seconds ago we heard from it
- \checkmark How often do we currently poll, in seconds
- ✓ Octal reach ability mask, 377 means A-OK
- ✓ Delay (round-trip) to the server, in milliseconds
- ✓ Offset in milliseconds
- ✓ Jitter in milliseconds


Python

- 1. Install Python: sudo apt-get install ipython
- 2. Create file: sudo vi <filename>.py
- 3. Write the script given on next page and save the file.
- 4. Run the program sudo python <filename>.py
- 5. Output will look like this

6. Stop operation only by pressing **ctrl+c**

Python Script to generate PPS signal

#!/usr/bin/python
import serial
import time
ser=serial.Serial('/dev/ttyS0',rtscts=True)

try:

while(1):

x=time.time()-int(time.time())

if (x+.5)>1: x=(x%1)-0.5

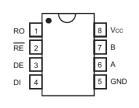
ser.setRTS(1)

while((x+0.5)>(time.time()-int(time.time()))):
 pass
print "%4.5f"%time.time()

ser.setRTS(0)

while ((x+0.5)<(time.time()-int(time.time()))):
 pass
print "%4.5f"%time.time()</pre>

except:KeyboardInterrupt
ser.close()
print("\n User stopped operation")



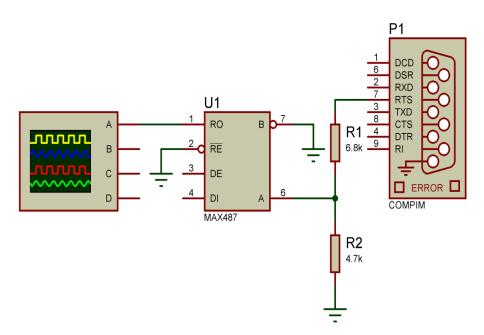
MAX 485 Circuitry

Need -

Output of serial port varies between ±15V We need PPS Signal varying from 0V to 5V.

PIN CONFIGURATION

Features

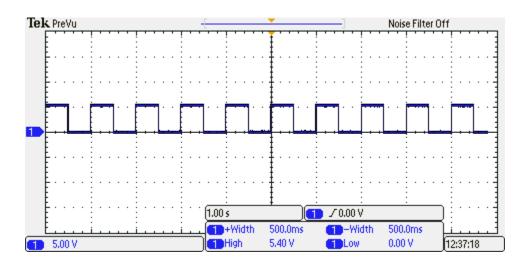

- ✓ -7V to +12V Input Voltage Range
- ✓ 30ns Propagation Delays
- ✓ Operate from a Single 5V Supply

D OR P PACKAGE

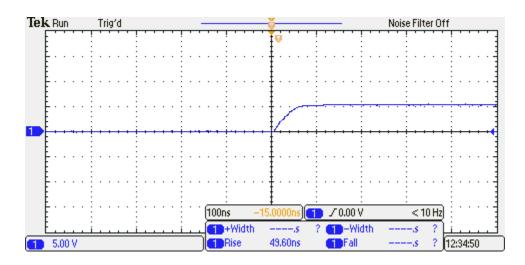
(Top View)

Circuit Description –

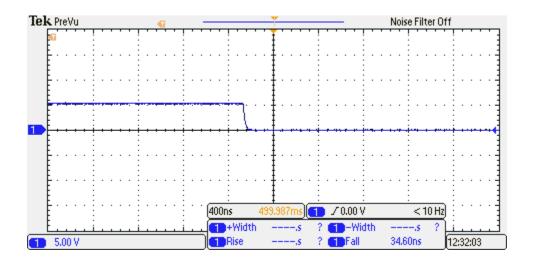
- ✓ Resistor Divider gives 40% of Serial Port output to A which becomes compatible for MAX 485.
- ✓ Receive output If A > B by 200mV, RO will be high; If A < B by 200mV, RO will be low.</p>
- ✓ Here we connected B to ground so that RO toggles with respect to A.



Results


Following results were observed on Tektronics DPO2024

1. PPS Signal


Period – 1 second Amplitude – High: 5.4 V and Low: 0 V Width – Positive: 500 ms and Negative: 500ms

2. Rise Time: 49.60 ns

3. Fall Time: 34.60 ns

4. Testing Result – Successful Triggering Of FPGA

ݢ Applications Places System 🙋 ? 💽	ৰ)) 📈 Wed Jul 11, 11:04 🙉 sandeep
x o o Terminal	🔕 📀 🔗 gmrt@rchpc3: ~
e Edit View Terminal Help	File Edit View Terminal Help
1341984759.500061035	Initial configuration:
1341984760.000005007	
1341984760.500051975	Clearing the FPGAs done.
1341984761.000006914	Programming the Fengines with r_128w_512_11_r370_mod3_16_2012_Jul_04_2019.bof a
1341984761.500066996	nd the Xengines with r_lf_2x_4a_r340c_2011_Feb_11_1454.bof done.
	Pausing 10GbE data exchange Pausing Xengs done.
	Fausting Todol uata exchange Fausting Aengs uone.
1341984762.500071049	
1341984763.000006914	For POCO functionality
1341984763.500051022	Setting POCO integration time 781184 FFT cycles => 0.999916
1341984764.000008106	
1341984764.500067949	Syncing the F engines Armed. Expect trigg at 11:01:16 local (05:31:16 UTC).
1341984765.000009060	SPEAD packet sent.
1341984765.500063896	Checking F engine clocks ok
1341984766.000005960	Setting the board indices done
1341984766.500066996	Setting the FFT shift schedule to 0x7FF done
1341984767.000005007	Configuring EQ done
1341984767.500061989	Configuring the 10GbE cores done
1341984768.000005007	Waiting 13.6 seconds for ARP to complete done Starting 10GbE data exchange X engines re-enabled.
1341984768.500061989	Flushing loopback muss done.
1341984769.006968975	
1341984769.507045031	
1341984770.000006914	Verifying correct data exchange
1341984770.500072002	
1341984771.000003099	Wait 2 seconds for system to stabalise done
1341984771.500046968	Resetting error counters done Checking that all XAUI links are working ok
	Checking that the same timestamp F engine data is arriving at all X boards with
1341984772.000009060	in a sync period ok
1341984772.500068903	Checking that FPGAs are sending 10GbE packets ok
1341984773.000008106	Checking that all X engine FPGAs are receiving 10GbE packets ok
1341984773.500051022	Waiting for loopback muxes to sync ok
1341984774.000006914	Checking that all X engines are receiving all their packets ok Setting the number of accumulations to 781184 (1.000 seconds) and syncing VACCs
1341984774.500061035	done
1341984775.000008106	Checking vector accumulators Waiting for an integration to finish done. C
1341984775.500066996	hecking ok
1341984776.000008106	Sending SPEAD metatdata and data descriptors to 127.0.0.1:7148 done
1341984776.500070095	Configuring output to 192.168.100.1:7148 skipped.
	Starting transmission of data done
ser stopped operation	Resetting error counters done Enabling KITT done
ndeep@sdippc:~\$	gmrt@rchpC3:~\$ ^C
	gmrt@rchpc3:~\$

References

- 1. <u>www.en.wikipedia.org</u>
- 2. <u>www.ubuntuforums.org</u>
- 3. <u>www.ntp.org/</u>
- 4. <u>www.docs.python.org/py3k/tutorial/index.html</u>
- 5. MAX 485 Datasheet
- 6. Network Time Protocol (NTP):Overview and Configuration Stanislav Shalunov <u>hshalunov@internet2.edui</u> Performance Workshop, Atlanta, 2005-04-22