
flagcal: A flagging and calibration pipeline for GMRT data

Jayaram N. Chengalur

1 Introduction

flagcal
1 is a flagging and calibration program meant for use with GMRT data. The input to flagcal is a raw

GMRT FITS file, and its output is a calibrated and flagged FITS file, which can be directly used for imaging and
further processing. The input FITS file is assumed to be a random group (either multi-source or single-source)
fits file. The output file has exactly the same structure as the input file (i.e. is multi-source if the input file is
multi-source, and single-source otherwise).

The broad underlying idea is to utilize the fact that true visibilities will vary smoothly with time and
frequency, while corruptions due to RFI and instrumental errors in general do not. This can be used to identify
corrupted data. This approach works best with calibrated data, where the variations due to the different (and
time variable) antenna gains has already been corrected for. However, the calibration algorithms cannot work
with the raw data, since any corruption in the visibilities input to the antenna gain computing routines will
result in incorrect gains. flagcal hence takes an iterative approach to this problem. A first round of data
flagging is done, after which the data is calibrated. The calibrated data can then re-examined, re-flagged using
more stringent criteria and finally re-calibrated.

Operationally, flagcal allows the user considerably flexibility in choice of algorithms to use for flagging,
order in which these algorithms are run, input parameters to these algorithms, the number of flagging-calibration
iterative loops to go through etc. These are detailed further below. The data flagging parameters are internally
normalized using robust statistics computed from the data itself. In general the parameters do not require
much fine tuning. The currently set default parameters have been spot tested on data sets at all of the GMRT
frequency bands, and appear to be working satisfactorily. However, more testing is in progress and the program
is expected to evolve. The code itself is also currently in pre-release testing - please do report any problems that
you encounter to me. Users should also be aware that the currently set default parameter values need not be
the best for their particular data set.

The program has been optimized for running on multi-core workstations, and the processing time is in general
a few minutes for a 10 hour GMRT observation. Reading and writing the file could take a significant fraction of
the total run time, so it helps a lot to be running on a machine with fast local disk.

2 Overview

2.1 Quick Start

This section is for those who really don’t want to know anything about flagcal’s innards but want to try it
out on some GMRT data that they have just taken. NOTE: flagcal has not been tested at all with polar
mode FITS files, its quite likely to do something funny with such files. Assuming that your observations are not
in the polar mode, follow the steps below.

1This writeup documents flagcal version 0.989 (Mar 2014). The first version of flagcal was developed by Jayanti Prasad &
Jayaram Chengalur, and is described in Prasad & Chengalur Exp. Astron., 33, 157, 2012). While this version of flagcal builds on
that experience, it uses different algorithms, and also has a completely different architecture and code base. If you have used this
version of flagcal for processing data that you are publishing, you could cite this technical document (Chengalur, J. N. NCRA
Technical Report,NCRA/COM/001 (April 2013)) and/or Prasad & Chengalur Exp. Astron., 33, 157, 2012), which describes a
broadly similar approach to the problem.

1



1. Use gvfits to convert your ltafile to fits.

2. Either set the FLAGCAL DIR environment variable to point to the system wide default, or copy all
of the required “rc” files to your current working directory (CWD). At the GMRT the FLAGCAL DIR
environment variable is likely to be already set for you.

3. If your program sources are not listed in the FLAGCAL DIR “src info.dat” file (which is likely to be the
case) create the file src info.dat in your CWD which has lines of the sort

SourceName code

where SourceName is the name of the source in your fits file, and CODE is F for flux calbirator, B for
bandpass calibrator P for phase calibrator and T for target source. A example src info.dat file would be

3C286 FB

0348+338 P

NGC1265 T

If a source is both the flux and the bandpass calibrator label it FB. If it is the flux, bandpass and phase
calibrator, or if it is a bandpass calibrator but not a flux calibrator you will need to edit the default
flagcal.rc file. Read on2

4. Run flagcal fits in = Y ourUV dataF ile.fits[flagfile = OnlineF lags.FLAG] where YourFile.fits is the
raw fits file created by gvfits. The optional parameter you can specify with the flagfile option is is the
flag file (if any) created by gvfits using the flags generated by ONLINE.

5. Load the output FITS file (called TMP.FITS by default) into AIPS/CASA and proceed to imaging.

Summary log information on what flagcal has done will be in the file fcs.log. A much more detailed log
can be found in fc.log. Options for printing out the gain and bandpass solutions, details on what data has been
flagged and why, etc. also exist. flagcal by default does a fairly “light” flagging on the target source. You may
wish to subtract out the bright continuum sources to create a UVSUB file, and then pass it through flagcal

again for a second, more stringent flagging round. Alternatively, you could try fitting a smooth function to the
visibilities on the target source and then flagging points which are highly discrepant from this fit (see the function
flag res()).

2.2 Some more stuff regarding running flagcal

The user has a great deal of control over how exactly how to process data. All actions that one would like
flagcal to take (i.e. the actual steps in the pipeline) can be specified either on the command line or in
command files, referred to as “rcfiles” in this document. By default, flagcal will look for commands in a file
called flagcal.rc in the the current working directory or if that is not found in the directory pointed to by the
FLAGCAL DIR environment variable. This can be overridden using the “-r” command line option to specify
the name of a different file to use (e.g. flagcal -r test.rc. Once again this file is looked for in the CWD first and
the FLAGCAL DIR directory second). If no rcfile is found, flagcal exits with an error message.

The “-r” option is accepted only on the command line, all other parameters/commands can be passed either
from the command line, or from inside rcfiles. Inputs to flagcal are processed in the order in which they are

2See the files flagcal2.rc, flagcal3.rc, flagcal4.rc for some commonly used processing pipelines.

2



encountered. The command line is processed first, and then the rcfiles. All parameters are global, later settings
overwrite the current ones. The list of commands and parameters understood by flagcal are listed in Sec. 3
and Tab. 2, 3, 4, 5.

An rcfile can include other files, a specification line “@include.rc” will interpolate the file “include.rc” at the
point at which the line is encountered. The rcfile can also contain comments, which are marked by the hash
(“#”) character. A hash character causes the program to ignore the rest of the input line. Words which end
with a parenthesis pair (“()”) are interpreted as commands, while words separated by an equal to sign (“=”)
are interpreted as (keyword, keyvalue) pairs. Parameters for the commands are passed as such (keyword, value)
pairs. Since all the parameters are global, once set they apply to all succeeding commands in the file, unless
they are reset in between. The rcfile can also contain for loops, which causes all the commands inside the loop
to be iterated over scans that match the loop test criteria. At present the loop test can be one of

• scan numbers (scanno=s1,s2,.., with -1 being interpreted as all scans).

• source qulaifier code (calcode=STR, where STR should consist of one or more letters from the set F,B,P,T.
This stands for Flux calibrator, Bandpass calibrator, Phase calibrator and Target source respectively. A
“*” will match all qualifier codes).

• source name (srcname=STR, which uses minimum match to match STR to the name of the source in the
current scan. Once again a “*” will match any source name).

Loops can be nested. As the loop is being iterated over, the scan parameter is automatically updated to the
scan number of the selected scan.

The other general parameters are listed below

• fits in The name of the input FITS file. This can be a single-source or multi-source random group UV data
file.

• fits out The name of the output FITS file. This file has exactly the same format as the input fits file.

• src info file The name of the file in which additional information about the sources in the input FITS file
can be found. This additional information tells the program whether the source is a calibrator or a target
source, etc. The available classifications are phase calibrator (P), flux calibrator (F), bandpass calibrator
(B) or target source (T)). The syntax of the src info file is

src name QUAL

where QUAL can be one or more of the single letter codes F,B,P,T, discussed above. For example, if the
source is both the flux and the bandpass calibrator, the code is FB. The spacing in the file is not critical.
By default flagcal looks for the file src info.dat

• dolog Setting dolog to an integer greater than 0 causes log information to be written to the specified
file. Larger integers produce more verbose information. The statistics of each baseline, antenna, the gain
solutions, the flags applied etc. can all be written out to the log file. While this is useful for understanding
what the program is doing and for debugging, it can also be quite voluminous. flagcal also can produce
a summary log file (fcs.log, see the command print summary()) which has a much more compact log. In
addition, the statistics of each scan, as well as the visibilities (and flags) for selected scans and baselines
can be written out into FITS data cubes (see the commands write base(), write stats()).

3



• logfile The name of the file in which to write the log output.

• dryrun Setting dryrun=1 causes the program to parse the rc file, but not actually execute any of the
commands. This is useful to check the syntax of the rc file.

• verbose If verbose=1 flagcal reports to stderr the command that is currently being executed. The run
time for that command as well as the total cumulative run time so far are also reported. Setting verbose=0
suppresses this output.

• num threads The number of threads to spawn when parallelizing computations. The appropriate number
to use depends on the number of available cores, as well as the number of records/channels in the scan.
Since the parallelization is over records and channels, one should not set num threads to a value that is
greater than the number of records or channels. flagcal internally does this cross check and temporarily
resets num threads as required. A value of num threads=16 is commonly used.

2.3 A typical flagcal processing run

In general, the sequence of steps required to process a file is as follows.

1. scan through the input fits file and make an index table.

2. read in the visibility data. This can be done scan by scan, allowing the user to read in data for just one
scan, process it completely, write it out, and then proceed to the next scan. Scan by scan processing is
useful in situations where the file size is large compared to the available RAM.

3. Process the scan data as desired

4. Write out the scan data. Generally a template output FITS file is first generated, after which the scan
data is written into it. This allows out of order processing and writing of scan data.

We now look at each of these steps in some more detail. For indexing the data, the program first reads in the
file header, source and antenna tables etc. (commands read hdu(), read an(), etc) and then reads the random
parameters associated with each visibility. The information in the random parameters and the associated tables
is used to create an index table. The index table consists of a series of scans, with each scan having visibilities
corresponding to a single source. These scans in general correspond to the scans made while recording the data.
The only exception is when the observer records two scans on the same source back to back. This scan break
is lost at the time that the FITS file is made and cannot be recovered. However, the user can also specify a
maximum time interval (scan maxbreak) between visibilities in a given scan. This is useful for single-source files,
where otherwise all of the data would by default be put into a single long scan. Setting scan maxbreak to a value
of about 5m generally causes the visibilities to be split into the same scans as were present during recording.
Since the statistics of baselines,antennas, channels etc. are examined for a scan at a time, one should break up
single source data into scans. The fits file header, associated tables and as well as the generated index can be
written out into the log file by using the print hdr(), print an(), etc. commands.

Note that while making the index table the visibility data itself is not read, only the random parameters
associated with each visibility record are. The next stage in the processing is to read in the visibility data
(command read scan()). This data once read in can be browed (command browse data()), the user can
browse through the data as desired. Data once read in can be processed, and written out. A listing of the
available processing steps are given in Sec. 3. To write out the data, one first makes a template output FITS
file (command make template()). This template is based on the input FITS file, and hence has exactly the

4



same structure as the input file. Once the template is created scan data can be written into it (command
write data()). Scan data can be written out of order, since for each scan, the location in the file to which the
data is to be written is known in advance. Once one has finished with the data for a given scan one can free
the memory used to hold the scan data (command free scan()). This is useful when processing files which are
large compared to the available computer memory. Note that it is the users responsibility to make sure that the
data for all scans is written out into the output file. If not the output file will contain blanks.

The typical processing for a file using flagcal would be as follows. First one process the data for the flux
and bandpass calibrators. Any flags that were provided by the ONLINE system can be applied (using the flagfile
generated during the observations, and the command usr flag()). The next step is to compute statistics of
the calibrator data. The main statistics that flagcal works with are the median, and the median absolute
deviation (mad). The mad of a data set is defined as the median of the absolute deviations from the median3.
These are “robust” statistics, in that they are less affected by outliers than the mean or the standard deviation.
Of course if a significant fraction of the data is corrupted, then these statiscs are not very usable. In this case
the user will need to provide some prior information (via the command usr flag()) as to what data is good.
The statistics are computed and stored separately for the real, imaginary, amplitude and phase for each record,
channel, baseline, and antenna in the scan. The phase statistics properly accounts for the fact that the phase is
a circular variable (i.e. wraps around after reaching 2π). The over all statistics of all of the data in the scan are
also computed. Most of the user settable flag parameters are in terms of these statistics. For example, the user
can chose to flag visibilities that deviate from the median visibility of the corresponding baseline by more than
n times the mad for that baseline.

It is assumed that calibrators are bright point sources at the phase centre4 The calibrator visibilities are hence
expected to be constant with time, apart from a slow variation due to drift of the amplifier gain/ionospheric phase.
One would also expect that for all “working” antennas, the visibility amplitudes would all be within a factor
of a few (typically ∼ 2). Based on these assumptions it is relatively straight forward to flag the pre-calibrated
visibilities for calibrator scans. Once the data has been flagged, a “continuum” channel is constructed. The user
has some control over the exact channels to be used for constructing the continuum channel, but flagcal also
tries to help in this choice. Generally the user specifies a large range of channels from which to make the choice,
as well as the number of channels to be averaged to make the continuum channel. flagcal then chooses the
first set of contiguous channels within this set for which none of the channels are flagged.

After this the flux for the calibrator source is set to the value appropriate to the frequency of the chosen
continuum channel. This is done using the flux scale given in Barrs et al. After this the continuum channel data
are used to solve for the antenna gains (command solve chan0()). The solution is a standard steepest gradient
minimization, and generally works well since the input data are already flagged. Since the data is already flagged,
it is also possible to have flagcal decide which antenna is best suited to be used as a reference5 This gain
is then applied to all the visibilities in the scan (command calibrate()). Next the bandpass for each antenna
is computed (command solve bpass()). A single bandpass is calculated using the average of the data over
the entire scan. This bandpass is then applied to the data. With this the processing of the flux and bandpass
calibrators is finished. The data can be written to the output file, and the corresponding memory freed.

The next step is to read in the data for the phase calibrators. These are flagged as before, and the continuum
channel (using the same channels as were used for the flux calibrator) constructed. The antenna gains for

3That is, if m is the median of a data set x, i.e. m =< x >med, then the mad is defined as mad =< x−m >med.
4In general, it would have been better to use model visibilities for the field instead. But the point source assumption works well

for most of the GMRT archival data, and provides a sufficiently good model for calibration and flagging. It is assumed that the user
will later improve on this by using self-calibration on the target field.

5
flagcal will pick the smallest numbered antenna (antenna numbering starts with C00) which is not flagged in either polarization

in any calibrator scan. Unless all central square antennas are flagged, this will result in a central square antenna being picked as
reference.

5



the phase calibrator are then computed. The flux of the phase calibrator is then obtained from by comparing
the gains on the flux calibrator and the phase calibrator, and the known flux of the flux calibrator (command
getjy()). This is used to set the scale for the gain tables. For observations in the 21cm band, it is also possible
to apply an elevation dependent gain curve while doing the calibration. The bandpass is then transferred from
the flux calibrator to the phase calibrator and the phase calibrator data is calibrated for using both the gain
and bandpass tables. If there are multiple bandpass calibrator scans, the simple average of the bandpass derived
from each scan is used to calibrate the phase calibrator and target visibilities6. With this the processing of the
phase calibrator data is finished, and the data can be written out to the output file and freed.

The last set of scans to be processed are those for the target source. The data are read in, the gain and band
pass tables transferred from the flux and phase calibrator to the target source, and then the target source is data
is calibrated. This calibrated data is then flagged, and the output is written to out.

For fields with significant flux and structure, the visibilities will vary with systematically with time. One
could try and fit the systematic variation either by polynomial fitting, or low pass filtering, before trying to
identify corrupted data. flagcal currently implements robust fitting to the visibilities and flagging based on
the residuals from this fit (see flag res() for details). For GMRT archival data, it is reasonably fast to make an
image using data that has been lightly flagged by flagcal. The source emission can then be modelled out, and
the residuals passed through flagcal for a second, more rigorous round of flagging.

The processing sequence detailed above is summarized in the pseudo rcfile below.

for FLUX, PHASE and BANDPASS calibrators

read data

compute statistics

flag data

compute channel0

endfor

select reference antenna

for FLUX and BANDPASS CALIBRATORS

set flux scale

solve for gains and bandpass

calibrate

write data

endfor

for PHASE calibrators

solve for gains

endfor

for PHASE calibrators

boot strap phase calibrator flux

transfer bandpass

calibrate

6The GMRT bandpass for some antennas sometimes varies with time (typically at the few percent level). This straightforward
calibration done by flagcal allows one to easily do a second, finer level correction for the varying part of the bandpass using the
scans on the phase calibrator. There are also bandpass calibration modes (see the explanation for calibrate() below) where one
constant bandpass curve is used to calibrate all the data in the file

6



write data

endfor

for TARGET sources

read data

transfer gain and bandpass

calibrate

compute statistics

flag

write data

free data

endfor

3 List of available commands

In this section has an alphabetical listing of available commands as well as details of what each command does
is given. A summary table giving the available commands and their parameters can be found at the end of this
section.

1. bpass transfer() (scan, calsrc) This command transfers the bandpass table from the calibration source
calsrc to the current scan. calsrc is the name of the calibration source. If there are multiple scans for
the source calsrc then the bandpass tables for all scans are averaged together and this average bandpass
is transferred to the target source. In case calsrc is not specified, then the bandpass tables from all the
bandpass calibrators in the file are averaged together and transferred to the target scan. Note that this
command only transferres the bandpass table, the table itself is applied to the data by the calibrate()
command.

2. browse data()(scan) Allows the user to browse through the data for the current scan. The program enters
an interactive loop where the user is allowed to specify the exact data (baseline/record/channel, etc) that
is to be shown. See also the command write base().

3. browse stats()(scan) Allows the user to browse through the data for the current scan. The program
enters an interactive loop where the user is allowed to specify the exact data (baseline/record/channel, etc)
that is to be shown. See also the command write stats().

4. calibrate()(scan, apply gain, apply bpass, bp mode, amp phase int) Command to apply the gain and
band pass tables associated with the selected scan to the visibilities in that scan. The gain table is applied
if apply gain=1, and the bandpass table if apply bass=1. Both tables can be applied simultaneously. When
applying the gain table a linear interpolation in time is done. The linear interpolation is done separately
for the (re,im) components of the gain if amp phase int=0. Otherwise, the interpolation is done separately
for the (amp,phs) components of the gain. In this case, it is assumed that the phase change between
available solutions is less than 180o. The bf mode sets the bandpass interpolation model. Mode 0 applies
a simple average bandpass computed from all bandpass calibrator scans to all scans other than bandpass
calibrator scans. The bandpass calibrator scans are calibrated using the bandpass computed from the each
scan individually. In Mode 1 all scans, including bandpass calibrator scans, are calibrated using the simple
average bandpass computed from all bandpass calibrator scans.

7



5. compute chan0()(scan, chan0 start, chan0 end, chan0 nchan) Command to construct a continuum chan-
nel (“channel0”). This is constructed by averaging together chan0 nchan channels and is used for computing
the antenna gains. The channels have to lie within the range chan0 start and chan0 end, which has to be
larger than chan0 nchan. The program picks the first set of contiguous channels in this range of which
none of the channels are flagged. Note: If all of these parameters are set to -1, then the program will use
some GMRT specific heuristics to set the above parameters.

6. compute tsys()(scan, calsrc) Command to compute the “system temperature”. This is computed only
for phase calibrators. The command returns an error if it is run for any other type of source. The “system
temperature” is defined as the MAD of the antenna amplitude computed after calibration has been done.
Strictly speaking this is a measure of Tsys/G, and the computed value can be treated as the system
temperature only to the extent that all the antennas have equal gains. This command fills the Tsys table
for all phase calibrator scans, and also normalizes the values to have a median of 1.0. Since only the relative
values are needed for the weighting, this is fine. The normalization is over all scans, antennas and channels.
The Tsys table has an entry per channel, and this is what is used to recompute the antenna weights. See
also tsys transfer() and reweight().

7. fake scan data()(scan,sim iflux,sim snr,sim seed, sim variable gain) Commad to replace the scan data
with simulated data. The simulated data is for a point source with flux sim ifux located at the phase
center. Noise is added so that the signal to noise ratio per visibility is sim snr. sim seed is the seed to
the pseudo-random sequence generator. If sim variable gain=1, then the antenna gains are allowed to vary
with time. Some of the baselines, records and channels and visibilities are filled with “bad” data. This
command is largely useful to check the effect of various flagging algorithms.

8. flag aggregate()(scan, ant min ok frac, base min ok frac, chan min ok frac,
rec min ok frac) Command to flag out the data aggregates. The basic idea is that often data corruption
affects the entire aggregate (e.g. an antenna, or a channel, or a baseline etc.). The other flagging routines
that flagcal uses may result in flagging out most of the data of a channel, or baseline, but there may
still be a small fraction that passes the flagging criteria. This command will check how much good data is
left in the aggregate (as a fraction of the total data associated with that aggregate) and will flag the entire
aggregate if the good data fraction is smaller than specified. So for example if ant min ok frac is set to
0.5, then if more than half of the antenna data has flagged (by some other flagging criteria) then the entire
antenna is flagged.

9. flag ant()(scan, ant min amp, ant max amp, ant outlier, ant re outlier, ant im outlier,
ant max nrms, ant max ph rms, ant min ph rms, ant max re rms, ant max im rms) Command to flag an-
tennas. If an antenna is flagged, then the data in the scan for all visibilities involving this antenna (loosely
called the visibilities for the antenna below) are treated as flagged. This routine flags antennas for which
any of the following criteria are met.

• If the median amplitude of the visibilities of the antenna is less than ant min amp times the median
amplitude of all the visibilities in the scan.

• If the median amplitude of the visibilities of the antenna is more than ant max amp times the median
amplitude of all the visibilities in the scan.

• If the median amplitude of the visibilities of the antenna differs from the median amplitude of all the
visibilities in the scan by more than ant outlier times the mad of the amplitude of all the visibilities
in the scan.

8



• If the median of the real part of the visibilities of the antenna differs from the median of the real part
of all the visibilities in the scan by more than ant re outlier times the mad of the real part of all the
visibilities in the scan.

• If the median of the imaginary part of the visibilities of the antenna differs from the median of the
imaginary part of all the visibilities in the scan by more than ant im outlier times the mad of the
imaginary part of all the visibilities in the scan.

• If the “normalized rms”, i.e. the ratio of mad of the visibility amplitude to the median of the visibility
amplitude for the antenna is greater than ant nrms times the value of the same ratio for all the
visibilities in the scan.

• If the mad of the phase of the visibilities of the antenna is greater than ant max ph rms times the
mad of the phase of all the visibilities for the scan.

• If the mad of the phase of the visibilities of the antenna is less than ant min ph rms times the mad
of the phase of all the visibilities for the scan. This is useful occasionally, when the visibility data is
stuck at a constant value because of a correlator fault.

• If the mad of the real part of visibilities of the antenna is greater than ant re rms times the mad of
the real part of all the visibilities in the scan.

• If the mad of the imaginary part of visibilities of the antenna is greater than ant im rms times the
mad of the imaginary part of all the visibilities in the scan.

Note that if any of these thresholds is zero (strictly speaking less than 10−8) the corresponding test is not
done. All these thresholds are also intialized to zero at the start of the program, and can be reinitialized
to zero using the command init thresh().

10. flag base()(scan, base min amp, base max amp, base outlier, base re outlier, base im outlier, base max nrms,
base max ph rms, base min ph rms, base max re rms, base max im rms) Command to flag out baselines.
If a baseline is flagged, then the data in the scan for all visibilities involving this baseline are flagged. This
routine flags baseline for which any of the following criteria are met.

• If the median amplitude of the visibilities of the baseline is less than base min amp times the median
amplitude of all the visibilities in the scan.

• If the median amplitude of the visibilities of the baseline is more than base max amp times the median
amplitude of all the visibilities in the scan.

• If the median amplitude of the visibilities of the baseline differs from the median amplitude of all the
visibilities in the scan by more than base outlier times the mad of the amplitude of all the visibilities
in the scan.

• If the median of the real part of the visibilities of the baseline differs from the median of the real part
of all the visibilities in the scan by more than base re outlier times the mad of the real part of all the
visibilities in the scan.

• If the median of the imaginary part of the visibilities of the baseline differs from the median of the
imaginary part of all the visibilities in the scan by more than base im outlier times the mad of the
imaginary part of all the visibilities in the scan.

• If the “normalized rms”, i.e. the ratio of mad of the visibility amplitude to the median of the visibility
amplitude for the baseline is greater than base nrms times the value of the same ratio for all the
visibilities in the scan.

9



• If the mad of the phase of the visibilities of the baseline is greater than base max ph rms times the
mad of the phase of all the visibilities for the scan.

• If the mad of the phase of the visibilities of the baseline is less than base min ph rms times the mad
of the phase of all the visibilities for the scan. This is useful occasionally, when the visibility data is
stuck at a constant value because of a correlator fault.

• If the mad of the real part of visibilities of the baseline is greater than base re rms times the mad of
the real part of all the visibilities in the scan.

• If the mad of the imaginary part of visibilities of the baseline is greater than base im rms times the
mad of the imaginary part of all the visibilities in the scan.

Note that if any of these thresholds is zero (strictly speaking less than 10−8) the corresponding test is not
done. All these thresholds are also intialized to zero in the program, and can be reinitialized using the
command init thresh().

11. flag block()(scan, smooth cwidth, smooth rwidth, smooth redo stats, smooth fudge fac and all param-
eters relevant to flag vis()). Command to flag out blocks of data at a time. It is useful to see the
description of flag vis() first. flag block() flags out visibilities that are marked out as being discrepant
in some way. It is meant to identify and flag persistent low level problem in part of a data set. Since the
problem is low level the individual visibilities are close to the expected value and are hence not flagged
as discrepant. However because this problem is persistent over time or frequency, it can be identified
when one smooths over time/frequency. This is what flag block() does. It smooths over time (i.e. over
smooth rwidth records) and/or over frequency (i.e. over smooth cwidth channels) to construct a new vis-
ibility set. This visibility set is then flagged using a call to flag vis(), and the flags are then transferred
back to the original unsmoothed data set. There are two options for flagging the smoothed data. The
first is to recompute the statistics of the smoothed data itself, and then use these for further flagging.
This is what is done if smooth redo stats=1. The other option is to use the statistics of the unsmoothed
data smooth redo stats=0, but scale all the variances by

√
smooth cwidth× smooth rwidth. If the user

does not want to assume that the noise will decrease exactly as
√
N , then a fudge factor which applies a

scaling to the variance over and above the
√
N scaling can be applied using smooth fudge fac7. See also

the command flag multi block()

12. flag chan()(scan, chan min amp, chan max amp, chan outlier, chan re outlier, chan im outlier, chan max nrms,
chan max re rms, chan max im rms). Command to flag out data for all the channel in a given scan. If
the channel is flagged, then the data in the scan for all visibilities involving this channel are flagged. The
channel is flagged if any of the following criteria are met.

• If the median amplitude of the visibilities of the channel is less than chan min amp times the median
amplitude of all the visibilities in the scan.

• If the median amplitude of the visibilities of the channel is more than chan max amp times the median
amplitude of all the visibilities in the scan.

• If the median amplitude of the visibilities of the channel differs from the median amplitude of all the
visibilities in the scan by more than chan outlier times the mad of the amplitude of all the visibilities
in the scan.

7i.e. the variances are scaled by smooth fudge fac/
√
smooth cwidth× smooth rwidth

10



• If the median of the real part of the visibilities of the channel differs from the median of the real part
of all the visibilities in the scan by more than chan re outlier times the mad of the real part of all the
visibilities in the scan.

• If the median of the imaginary part of the visibilities of the channel differs from the median of the
imaginary part of all the visibilities in the scan by more than chan im outlier times the mad of the
imaginary part of all the visibilities in the scan.

• If the “normalized rms”, i.e. the ratio of mad of the visibility amplitude to the median of the visibility
amplitude for the channel is greater than chan nrms times the value of the same ratio for all the
visibilities in the scan.

• If the mad of the phase of the visibilities of the channel is greater than chan max ph rms times the
mad of the phase of all the visibilities for the scan.

• If the mad of the phase of the visibilities of the channel is less than chan min ph rms times the mad
of the phase of all the visibilities for the scan. This is useful occasionally, when the visibility data is
stuck at a constant value because of a correlator fault.

• If the mad of the real part of visibilities of the channel is greater than chan re rms times the mad of
the real part of all the visibilities in the scan.

• If the mad of the imaginary part of visibilities of the channel is greater than chan im rms times the
mad of the imaginary part of all the visibilities in the scan.

Note that if any of these thresholds is zero (strictly speaking less than 10−8) the corresponding test is not
done. All these thresholds are also intialized to zero in the program, and can be reinitialized using the
command init thresh().

13. flag multi block()(scan, smooth width0, smooth maxwidth, smooth redo stats,
smooth fudge fac, and all parameters relevant for flag vis()). Command to iteratively smooth and flag
the data. This command is built on top of flag block(). The user specifies the starting width for the
smoothing block (smooth width0), and the maximum width of the smoothing block (smooth maxwidth).
The smoothing block is taken to be square in records and channels. The program will loop through calls of
flag block(), increasing the smoothing block size by a factor of 2 (in each dimension) between successive
calls. Note that the program will do some resizing of the smoothing block, in case the user specified choices
are not appropriate for the number of channels or records in the given scan.

14. flag rec()(scan, rec min amp, rec max amp, rec outlier, rec re outlier, rec im outlier,
rec max nrms, rec max re rms, rec max im rms). Command to flag out records. If a record is flagged,
then the data in the scan for all visibilities involving this record are flagged. The record is flagged if any
of the following criteria are met

• If the median amplitude of the visibilities of the record is less than rec min amp times the median
amplitude of all the visibilities in the scan.

• If the median amplitude of the visibilities of the record is more than rec max amp times the median
amplitude of all the visibilities in the scan.

• If the median amplitude of the visibilities of the record differs from the median amplitude of all the
visibilities in the scan by more than rec outlier times the mad of the amplitude of all the visibilities
in the scan.

11



• If the median of the real part of the visibilities of the record differs from the median of the real part
of all the visibilities in the scan by more than rec re outlier times the mad of the real part of all the
visibilities in the scan.

• If the median of the imaginary part of the visibilities of the record differs from the median of the
imaginary part of all the visibilities in the scan by more than rec im outlier times the mad of the
imaginary part of all the visibilities in the scan.

• If the “normalized rms”, i.e. the ratio of mad of the visibility amplitude to the median of the visibility
amplitude for the record is greater than rec nrms times the value of the same ratio for all the visibilities
in the scan.

• If the mad of the phase of the visibilities of the record is greater than rec max ph rms times the mad
of the phase of all the visibilities for the scan.

• If the mad of the phase of the visibilities of the record is less than rec min ph rms times the mad of
the phase of all the visibilities for the scan. This is useful occasionally, when the visibility data is
stuck at a constant value because of a correlator fault.

• If the mad of the real part of visibilities of the record is greater than rec re rms times the mad of the
real part of all the visibilities in the scan.

• If the mad of the imaginary part of visibilities of the record is greater than rec im rms times the mad
of the imaginary part of all the visibilities in the scan.

Note that if any of these thresholds is zero (strictly speaking less than 10−8) the corresponding test is not
done. All these thresholds are also intialized to zero in the program, and can be reinitialized to zero by
the command init thresh().

15. flag res()(scan, smooth cwidth,smooth rwidth,...) The visibilities for strong extended source could have
large (but smooth) variations with time and frequency. This makes it difficult to identify outliers using
robust statistics. One could identify outliers by first fitting out the smoothly varying part of visibility, and
then looking for outliers in the residuals. flag res() fits for the variation in the visibilities by first robustly
smoothing and decimating the data, and then doing a bi-linear fit to the decimated data. Residuals from
this bi-linear fit are then used to do the flagging. For each baseline, decimation is done by replacing every
smooth cwidth*smooth rwidth block of visibilities with the median value inside this block. The residuals
from a bi-linear fit to the decimated data are then computed (it is planned in future to make smoother fits
to the decimated data) and data with discrepantly large residuals are flagged. Specifically the functions
flag rec(),flag chan() and flag vis() are called. So all parameters that are relevant to those functions
are also relevant here.

16. flag transfer()(scan, calsrc) Command to transfer antenna, baseline, and channel flags from the calibrator
source calsrc to the target scan. If calsrc is not specified, then the nearest phase calibrator source on either
side of the specified scan is used. If the antenna, baseline or channel is flagged in either of the nearby scans,
then the corresponding flag is applied to the target scan.

17. flag vis()(scan, vis chan outlier, vis chan re outlier, vis chan im outlier, vis rec outlier,
vis rec re outlier, vis rec im outlier). Command to flag individual visibilities in a scan. A visibility is
flagged if any of the following conditions is met.

• If the amplitude of the visibility differs from the median amplitude of all the visibilities in same
channel by more than vis chan outlier times the mad of the amplitude of all the visibilities in the
same channel.

12



• If the real part of the visibility differs from the median of the real part of all the visibilities in same
channel by more than vis chan re outlier times the mad of the real part of all the visibilities in the
same channel.

• If the imaginary part of the visibility differs from the median of the imaginary part of all the visibilities
in same channel by more than vis chan re outlier times the mad of the imaginary part of all the
visibilities in the same channel.

• If the amplitude of the visibility differs from the median amplitude of all the visibilities in same record
by more than rec chan outlier times the mad of the amplitude of all the visibilities in the same record.

• If the real part of the visibility differs from the median of the real part of all the visibilities in same
record by more than vis rec re outlier times the mad of the real part of all the visibilities in the same
record.

• If the imaginary part of the visibility differs from the median of the imaginary part of all the visibilities
in same record by more than vis rec re outlier times the mad of the imaginary part of all the visibilities
in the same record.

Note that if any of these thresholds is zero (strictly speaking less than 10−8) the corresponding test is not
done. All these thresholds are also intialized to zero in the program, and can be reinitialized to zero by
the command init thresh().

18. flush log() Command to flush the output to the logfile. Inserting flush log() commands into the rcfile
alows one to examine the log while while flagcal is running. In the absence of the flush log() command,
the log output is buffered, and may be written out only when the program has finished running.

19. free gain table()(scan) Command to reinitialize the gain table associated with a scan. This allows one
to make a second calibration pass through the data, and not worry about having to apply incremental
calibration to all other scans for consistency.

20. free bpass table()(scan) Command to reinitialize the bandpass table associated with a scan. This allows
one to make a second calibration pass through the data, and not worry about having to apply incremental
calibration to all other scans for consistency.

21. free scan()(scan) Command to free the memory allocated for the scan data. The bandpass and gain
tables are not freed, so that they can still be transferred from one scan to another. The flag tables are
freed though!

22. gain transfer()(scan, calsrc) Transfers the gain table from the specified calsrc to the target scan. If no
calsrc is specified the nearest phase calibrator on either side of the target source is selected. For phase
calibrators, the gain tables have multiple entries, depending on the solution interval chosen at the time of
computing the solution. Gain transfer makes a new gain table with only two entries. In the first one it
copies over the last entry of the gain table for the phase calibrator observed just before the target scan.
In the second it copies over the first entry in the gain table for the phase calibrator observed just after
the target scan. This allows linear interpolation at the time of calibrating the data (see calibrate(). For
antennas that are flagged in one of the two phase calibrator scans, or in case there is only one available
phase calibrator scan, the available gain value is copied over to both entries in the target scan gain table.

23. get src info()(src info file) Command to read in the src info file in which additional information about
the sources in the input FITS file is to be found. By default flagcal looks for the file “src info.dat”.

13



This additional information tells the program whether the source is a calibrator or a target source, etc.
The available classifications are phase calibrator (P), flux calibrator (F), bandpass calibrator (B) or target
source (T)). The syntax of the src info file is

src name QUAL

where QUAL can be one or more of the single letter codes listed above. The spacing in the file is not
critical.

24. getjy()(scan, apply el corr). Command to bootstrap the flux of the phase calibrator. This is done by
comparing the gain values for the flux and phase calibrator scans, and using the known flux of the flux
calibrator (see the function setjy(). This bootstrapping is done separately for every possible combination
of phase calibrator scans and flux calibrator scans. This final value that is adopted is the average of all of
these different determinations. The value obtained from each combination, as well as the adopted mean
value and the standard deviation over all estimates is reported in the logfile. If apply el corr is set to 1,
then an elevation dependent gain correction is applied. At the moment this is non trivial (i.e. not unity at
all elevations) only for the 21cm band. Be warned that this is based on a technical report on the elevation
dependent gain correction at the GMRT which is currently in draft stage.

25. init thresh() Command to reset all the flagging thresholds to 0.0. A flagging threshold of 0.0 means that
no data is flagged. Since the threshold settings are global, this is a useful command to use because it
ensures that one is starting with a clean slate.

26. make index()scan maxbreakCommand to make an index table of the visibilities in the FITS file. For
indexing the data, flagcal first reads in the file header, source and antenna tables etc. and then reads
the random parameters associated with each visibility. The information in the random parameters and
the associated tables is used to create an index table. The index table consists of a series of scans, with
each scan having visibilities corresponding to a single source. These scans in general correspond to the
scans made while recording the data. The only exception is when the observer records two scans on the
same source back to back. This scan break is lost at the time that the FITS file is made and cannot
be recovered. However, the user can also specify a maximum time interval in minutes (scan maxbreak)
between visibilities in a given scan. A break larger than this value results in the start of a new scan. This
is useful for single-source files, where otherwise all of the data would by default be put into a single long
scan. Setting scan maxbreak to a value of about 5 minutes generally causes the visibilities to be split into
the same scans as were present during recording. Since baselines, antennas, channels etc. are processed for
a scan at a time, one should break up single source data into scans.

27. make template()Command to make a template output FITS file. The output file has the same structure
and header information as the input FITS file, however the data are blank. The scan data can then be
written out into this file in arbitrary order. It is the users responsibility to make sure that all of the scan
data is written, otherwise the output file will contain blanks. Files with blanks cannot be processed in
AIPS.

28. print an() Command to print out the antenna table to the logfile.

29. print an() Command to print out the scan index table to the logfile.

14



Name Val Name Val Name Val
FLG MIN AMP 1 FLG MAX AMP 2 FLG OUTLIER 4
FLG NRM RMS 8 FLG MIN OK 16 FLG NO DATA 32
FLG RE OUTLIER 64 FLG IM OUTLIER 128 FLG RE RMS 256
FLG IM RMS 512 FLG PH RMS 1024 FLG INTERPOLATE 2048
FLG BAD ANT 4096 FLG USR 8192

Table 1: Flag Values used by flagcal

30. print bpass() Prints out the bandpass table associated with all scans. The bandpass tables are printed
out to the file bpasstable.dat.

31. print finfo() Print items from the header of the input fits file. Currently this is a skeleton function, which
prints out very little information.

32. print fq() Command to print out the frequency table to the logfile.

33. print flag summary() Print out summary information about the applied flags to the logfile. The numeric
value of the flag is printed. See Table 1 for the numeric values of the different types of flags.

34. print gain() Prints out the gain table associated with all scans. The gain tables are printed out to the
file gaintable.dat.

35. print hdu() Command to print out the primary HDU (of the input FITS file) into the logfile.

36. print stats() Command to print out the statistics of the selected data subset into the logfile. This
command is meant to be invoked via browse stats() and not directly by the user.

37. print su() Command to print out the source table into the logfile.

38. print summary() Creates a summary log file. This file gives summary information on the input file, the
fluxes determined for the calibrators, the processing done, the fraction of data flagged etc. The summary
log file is called “fcs.log”.

39. read an() Command to read in the antenna table from the input FITS file.

40. read fq() Command to read in the frequency table from the input FITS file.

41. read hdu() Command to read in the primary HDU from the input FITS file.

42. read rgmf() Composite command to read in a random group FITS file. Reads in the tables, makes an
index and also reads in all the scan data. This would require enough memory to hold the entire FITS file
in RAM. Use of this function is generally discouraged. Users are encouraged instead to use the atomic
commands to read in the FITS headers and tables, and to read in the scan data as required.

43. read scan()(scan, fits in,scan min length). Command to read in the data of the selected scan from the ran-
dom group fits file fits in. It is assumed that the file already has been opened and indexed by make index().
If the scan has fewer than scan min length records, then the entire scan is flagged. If scan min length is
set to a value =< 0 this test is ignored.

15



44. read su() Command to read in the source table from the input FITS file.

45. restore data()(scan) Command to restore the scan data from the previously made using save data().
See save data() for some examples on when this might be useful.

46. restore par() Command to restore the control parameters back to the values they had at the last call to
save par().

47. reweight()(scan) Command to reweight the data as per the system temperature. The system temperature
is available per channel for the phase calibrator scans, and the value that is used is the average value
of the nearest phase calibrator scan on either side of the target scan. See also compute tsys() and
tsys transfer().

48. save data()(scan) Command to save a copy of the scan data. This is useful when one want to do some
temporary operation which alters the data (e.g. apply calibration followed by further flagging) but finally
want the original data written to file. In the case of calibration followed by flagging, pairs of save data()
and restore data() calls allow one to make multiple flagging passes through the data, but finally write
out a data set with a consistent (i.e. the final) calibration applied for all scans. The data flags accumulate
as one makes multiple passes, but not the calibration tables. For this to work properly one should also call
free gain table() and free bpass table() before the second calibration.

49. save par() Command to save the current control parameters. This is useful when one temporarily wants
to change the value of some parameter, but then later set it back to the old value. Please note that it
is not possible to save one parameter at a time. save par() saves all the parameters and restore par()
restores all of them to their last saved values.

50. setjy()(scan) Sets the flux of the source in the selected scan to the value determined by Baars et al. (1977).
If the source is not in the Baars et. al list, then flagcal issues a WARNING. If the source is in the list
for which flagcal has some (not very reliable, caveat emptor!) estimates of the flux, then the flux is set
to this estimate. If not the flux is set to 1.0.

51. scan stats()(scan) Compute the statistics for the selected scans. The main statistics that flagcal works
with are the median, and the median absolute deviation (mad). The statistics are computed and stored
separately for the real, imaginary, amplitude and phase for each record, channel, baseline, and antenna
in the scan. The phase statistics properly accounts for the fact that the phase is a circular variable (i.e.
wraps around after reaching 2π). The over all statistics of all of the data in the scan are also computed
and stored.

52. solve bpass()(scan, sol alpha, sol bp div by ch0,sol epsilon,sol uvmax,sol uvmin, sol ref ant, sol min ant,sol max iter,
sol max retry) Command to compute the bandpass using the visibility data in the selected scan. The pa-
rameters are essentially the same as that used in solve chan0() and are described in detail there. The
only differences are that solve bpass() does not use the sol solint() parameter. Instead only one solution
is obtained by averaging the bandpass solution over the entire scan. Also if the sol div by ch0 option is
selected, then the data is divided by the “channel 0” before computing the bandpass. Otherwise, no divi-
sion is done. In this case the data should have been calibrated (in time for the variation of the broadband
gain) before running solve bpass().

53. solve chan0()(scan, sol alpha,sol epsilon, sol uvmax,sol uvmin, sol solint, sol ref ant, sol min ant, sol max iter,
sol max retry, sol solint) Command to compute the antenna gains using the visibility data in the contin-
uum channel. See compute chan0() for information on how to construct the continuum channel. The

16



gains are solved for by assuming that the visibilities are for a point source at the phase centre, and using
a steepest descent least squares minimization . The parameters used are as follows

• sol solint solution interval (seconds). Data is averaged for solint seconds before computing the solution.
For solint¡=0 data is averaged over the entire scan. NB: the median is used as the average value.

• sol alpha Loop gain in the iterative least squares solution.

• sol epsilonWhen the fractional change in the solution is less than sol epsilon the solution is deemed
to have converged.

• sol uvmax UV max (kL) of baselines given as input to the solver.

• sol uvmin UV min (kL) of baselines given as input to the solver.

• sol ref ant Reference antenna number. The phases of the solutions are given with respect to that
of the reference antenna. If set to -1, flagcal will pick a reference antenna based on the available
flagging. The smallest numbered antenna (antenna numbering starts with C00) which is not flagged
in either polarization in any calibrator scan is picked. Hence, unless all central square antennas are
flagged, this will result in a central square antenna being picked as reference.

• sol min ant The minimum number of antennas needed for computing a solution. If less number of
antennas are available (or less number of baselines for a given antenna) no solution is attempted. The
output solution is flagged.

• sol max iter The maximum number of iterations to try before giving up in case there is no convergence.

• sol max retry The maximum number of retries after flagging antennas with bad solutions. After
sol max iter iterations, the antenna gains are examined and all those which have not converged (i.e.
for which the fractional change in the solution is greater than sol epsilon) are flagged. A least squares
solution is once again attempted, but this time without the flagged antennas. This is done a maximum
of sol max retry times.

54. tsys transfer()(scan, calsrc) Transfers the Tsys table from the specified calsrc to the target scan. If no
calsrc is specified the nearest phase calibrator on either side of the target source is selected. The target
source Tsys table has two rows. The first row is a copy of the Tsys table from the nearest phase calibrator
observed just before the target source, and the second is a copy of the table from the phase calibrator
observed just after the target source. If one of these is missing, then both rows have the same table, viz.
that of the nearest phase calibrator on either side. Note that phase calibrator Tsys tables have only one
row. The Tsys table can be used to reweight the visibilities (see reweight(). See compute tsys() for
some information on how the Tsys is computed.

55. usr flag()(scan, flagfile, usr vis maxamp, usr vis minamp). Command to apply user specified flags to the
data. These flags are independent of the statistics of the data, and can be regarded as a kind of pre-flagging,
or priors that the user can supply to flagcal. The flagfile is read, and the flags found there are applied
to the data. The flagfile is assumed to be in the AIPS flagfile format, however flagcal understands only
antenna and channel based flagging. So only lines of the sort

ANTENNAS=14 TIMERANGE=01,03,47,30,11,00,00,00 REASON=”XXX”/

or

CHANNELS=0,12

are understood. The actual details of the line content after the end of TIMERANGE or CHANNELS
specification are ignored. The idea is that the flag file generated by ONLINE can be pre applied to the data.

17



Additionally, the user could specify a range of bad channels to be flagged. This is useful for observations
where the IF bandwidth is smaller than the baseband bandwidth (e.g. in some dual freq or 230/150 MHz
observations). Further, the user can specify a range of values (usr vis maxamp, usr vis minamp) within
which the visibilities for the scan have to lie. Visibilities whose amplitudes lie outside this range will be
flagged. If the end time is 0, then all data from the start time to the end of the observations is flagged.

56. write base()(scan, print base num). Command to generate an FITS cube containing data for the selected
baselines. print base num is a comma separated list of baselines, and a separate FITS cube is written for
each baseline. The name of the cube is bsNscMdat.fits, where N is the baseline number, and M is the scan
number. The standalone functions lbase, nbase are useful to associate baseline numbers with antennas
and vice versa. For each stokes parameter there are multiple planes, each of which has channel number on
the horizontal axis and record number on the vertical axis. The are 5 planes for each stokes parameter,
viz. the real, imaginary, amplitude, phase, and flag for each visibility in the baseline.

57. write fits()(fits out). Function that bypasses the make template() step and instead writes out all the
data into the output random group FITS file at one go. Use of this function is discouraged. Users are
encouraged to use make template() and write scan() instead.

58. write chan0()(scan). Write out the “channel 0” (see compute chan0() into a separate FITS image
cube. The file has 4 dimensions (baselines,records, stokes,product). The product dimension is itself of
length 5, and the order is real, imaginary, amplitude, phase, and weight.

59. write scan()(scan, fits out). Command to write out the data of the selected scan to the random group
fits file fits out. It is assumed that the file itself has been created using make tempate().

60. write stats()(scan). Command to make a FITS image cube with the statistics of the selected scan. Two
FITS cubes are created for each selected scan. The file scanNchan stats.fits contains the channel statistics
for scan N. The file has 4 dimensions (baselines,channels, stokes, statistics). The statistics dimension is of
length 8, and the order is Median of real, imaginary, amplitude and phase, and MAD of the real, imaginary,
amplitude and phase. The file scanNchan stats.fits contains the records statistics for scan N. The file has
4 dimensions (baselines, records, stokes, statistics). The statistics dimension is of length 8, and the order
is Median of real, imaginary, amplitude and phase, and MAD of the real, imaginary, amplitude and phase.

61. write rgmf()(fits out). Composite function to write out all the data into the output random group FITS
file. Use of this function is discouraged. Users are encouraged to use make template() and write scan()
instead.

18



Command Name Command Description Command Pars

bpass transfer Transfer BP soln from cal to target scan, calsrc

browse data Browse through the data scan

browse stats Browse throwh the statistics scan

calibrate Calibrate using the gain table scan, apply gain, apply bpass,bp mode,
amp phase int

compute chan0 Compute the channel0 scan, chan0 start, chan0 end,
chan0 nchan

compute tsys Compute system temperature scan, calsrc

fake scan data Fill Scan with simulated data scan, sim iflux, sim snr, sim seed
sim variable gain

flag aggregates Aggregate flags scan,
ant min ok frac, base min ok frac,
chan min ok frac, rec min ok frac

flag ant Flag individual antennas scan, ant min amp,
ant max amp, ant outlier,
ant re outlier,ant im outlier,
ant max nrms, ant max ph rms,
ant min ph rms, ant max re rms,
ant max im rms

flag base Flag individual baselines scan, base min amp, base max amp,
base outlier, base re outlier,
base im outlier,base max nrms,
base max ph rms, base min ph rms,
base max re rms,base max im rms

flag block Flag blocks of data after smoothing scan, smooth cwidth, smooth rwidth,
smooth redo stats, smooth fudge fac

all pars relevant to flag vis

flag chan Flag individual channels scan, chan min amp, chan max amp,
chan outlier, chan re outlier,
chan im outlier, chan max nrms,
chan max re rms, chan max im rms

Table 2: Flag Commands available in flagcal flagcal

19



Command Name Command Description Command Pars

flag multi block iterative smoothing & flagging scan, smooth width0, smooth maxwidth,
smooth redo stats, smooth fudge fac

flag rec Flag individual records scan,rec min amp,
rec max amp, rec outlier,
rec re outlier, rec im outlier,
rec max nrms,rec max re rms,
rec max im rms

flag res Flag based on residuals scan,smooth cwidth,
smooth rwidth, and all parms for
flag rec(),flag chan(),flag vis().

flag transfer Transfer flags from adjacent PhsCal scan, calsrc

flag vis Flag individual visibilities scan, vis chan outlier, vis chan re outlier,
vis chan im outlier, vis rec outlier,
vis rec re outlier, vis rec im outlier

flush log Flush out the log file

free bpass table Free bandpass table associated with scan scan

free gain table Free gain table associated with scan scan

free scan Free memory allocated for scan data scan

gain transfer Transfer gains from cal to trgt scan,calsrc

get src info Read Src Info from user file

getjy Set the flux of the phs calibrator scan,apply el corr

make index Make Index of UVFITS file fits in, scan maxbreak

make template Make template output UVFITS file fits in, fits out

print an Print Antenna Table (AN)to LogFile

print bpass Print bandpass tables of all scans

print index Print index to LogFile

print finfo Print fits file header information

print fq Print Frequency Table (FQ) to LogFile

print flag summary Print Summary of data flags scan

print gain Print gain tables of all scans

Table 3: Flag Commands available in flagcal flagcal

20



Command Name Command Description Command Pars

print hdu Print primary HDU

print stats Print scan statistcs to LogFile scan

print su Print Source Table (SU) to LogFile

print summary Print summary log info to fcs.log

read an Read the AN table

read fq Read the FQ table

read hdu Read the primary HDU

read rgmf Read a Random Grp Fitsfile fits in

read scan Read the scan data scan,scan min length

read su Read the SU table

restore data Restore scan data from last scan

restore par Restore the control parameters cpar

save par Save the control parameters cpar

save data Save a copy of the scan data scan

setjy Set the flux of the flux calibrator scan

scan stats Compute Robust Scan Statistics scan

solve bpass Compute the bandpass solution scan, sol alpha,sol epsilon,
sol uvmax,sol uvmin, sol ref ant,
sol min ant, sol max iter,
sol max retry

solve chan0 Compute the channel0 gains scan, sol alpha, sol epsilon,
sol uvmax,sol uvmin, sol ref ant,
sol min ant, sol max iter,
sol max retry, sol solint

reweight reweight visibilities by Tsys scan

tsys transfer transfer tsys from PhsCal to trgt scan,calsrc

Table 4: Flag Commands available in flagcal flagcal 21



Command Name Command Description Command Pars

usr flag Apply user specified flags scan, flagfile usr vis maxamp,
usr vis minamp

write base Write baseline data to fits file scan, print base num

write fits Write out all data into a FITS file fits out

write chan0 Write channel 0 data to FITS file scan

write scan Write scan data to output UVFITS scan, fits out

write stats Write scan stats to FITS file scan

write rgmf Write entire Random Grp FITS file fits out

Table 5: Flag Commands available in flagcal flagcal

22


