
STUDENT TRAINING PROGRAM, 2016

A PROJECT REPORT ON

INTERFACE OF ADIS16362 INERTIAL SENSOR
WITH RASPBERRY PI

 BY :- ARUN C. SATHEESH

GUIDED BY :- B. THIYAGARAJAN

NATIONAL CENTRE FOR RADIO ASTROPHYSICS

TATA INSTITUTE OF FUNDAMENTAL RESEARCH

GIANT METREWAVE RADIO TELESCOPE

NATIONAL CENTRE FOR RADIO ASTROPHYSICS

TATA INSTITUTE OF FUNDAMENTAL RESEARCH

GIANT METREWAVE RADIO TELESCOPE
POST BAG NO. 6, NARAYANGAON, TAL-JUNNAR, PUNE - 410 504

CERTIFICATE

This is to certify that the project entitled “Interface Of Adis16362 Inertial Sensor
With Raspberry Pi” submitted by Arun C. Satheesh in the fulfillment of the
requirements for the successful completion of Student Training Program from 13 th

December 2016 to 12th June 2017 at Giant Metrewave Radio Telescope, is an autentic
work carried out by him under my supervision and guidance.

Place : GMRT, Pune

Date : 12th June, 2017

B. Thiyagarajan
(Supervisor)

ACKNOWLEDGEMENT

It has been a great honour and privilege to undergo my project training at
Giant Metrewave Radio Telescope. I show my gratitude to Mr. B.
Thiyagarajan for providing me this opportunity to work under his guidance
and providing me with the support and facilities regarding the project. I am
highly thankful to everyone who have hepled me at various point of my
time at the institute.

ARUN C. SATHEESH

ABSTRACT

Todays technology being everything about automation, accuration and use
of instruments with less size, the use of MEMS devices with the help of
microprocessor for measurement can be used to meet todays requirements.

The programming language used is C, which is the most common used
language in the embedded programming.

The use of Raspberry Pi micoprocessor gives the compactness and power
required by the system.

The BMC2835 library provides a connectivity between the the Sensor,
Controller and the Code.

The MEMS sensor provides the accuracy and precision for a perfect result.
With the help of micro-electronic technology the sensor can be stable and
compact at the same time.

The microprocessor can handle the sensor clock at both normal and burst
mode without any major adjustment, since the clock speed of the processor
is set through the C program.

INDEX

CONENTS PAGE NUMBER

1. INTRODUCTION 1

1.1 CONCEPT AND SPECIFICATION 1

1.2 REQUIREMENT 1

1.3 RASPBERRY PI 2

1.4 ADIS16362 4

1.5 SPI PROTOCOL 7

1.6 BCM2835 LIBRARY 9

2. INTERFACE 11

3. COMMUNICATION 12

4. PROGRAM 13

5. PROGRAM RESULT 15

6. FUTURE SCOPE 16

7. REFERENCES 17

1. INTRODUCTION

1.1 CONCEPT AND SPECIFICATION

The aim of interfacing a microprocessor and a sensor is the way

of getting the parameters of the sensor and desplaying those values to the

user in the human understanding language.

To recieve thoes values the code and controller should meet the

sensor’s requirements.

The parameters is in the form of hexadecimal values, so the

requesting way for the result is to ask the sensor in hexadecimal address.

The protocol SPI provides the communication between the controller

and the sensor.

The Raspberry Pi is a ARM controller with 900MHz clock speed and

a BCM2835 liberary that helps the user to interact with the protocol.

ADIS16362 is a sensor that maps the 6-degree inertia its movements

helpful of acceleration and gyroscope determination.

1.2 REQUIREMENT

• HARDWARE
◦ Operating power --> 4.75V to 5.25V

◦ Clock speed --> 0.01 Mhz to 2 Mhz

• SOFTWARE
◦ Processor --> ARM Cortex A7

◦ Operating System --> Raspbian JESSIE OS

◦ Kernel Version --> 4.4

◦ Library --> BCM2835

◦ Programming Language --> C

1.3 RASPBERRY PI

The RASPBERRY PI is a series of small single-board computers

developed in the united kingdom by the Raspberry Pi foundation to

promote the teaching of basic computer science in schools and in

developing countries.The original model became far more popular than

anticipated,selling outside of its target market for uses such as robotics.

Peripherals (including keyboards, mice and cases) are not included with the

Raspberry Pi. Some accessories however have been included in several

official and unofficial bundles.

All models feature a Broadcom system on a chip (SoC), which includes an

ARM compatible central processing unit (CPU) and an on-chip graphics

processing unit (GPU, a VideoCore IV). CPU speed ranges from 700 MHz

to 1.2 GHz for the Pi 3 and on board memory range from 256 MB to 1 GB

RAM. Secure Digital (SD) cards are used to store the operating system and

program memory in either the SDHC or MicroSDHC sizes. Most boards

have between one and four USB slots, HDMI and composite video output,

and a 3.5 mm phono jack for audio. Lower level output is provided by a

number of GPIO pins which support common protocols like I²C. The B-

models have an 8P8C Ethernet port and the Pi 3 and Pi Zero W have on

board Wi-Fi 802.11n and Bluetooth.

The Foundation provides Raspbian, a Debian-based Linux distribution for

download, as well as third party Ubuntu, Windows 10 IOT Core, RISC OS,

and specialised media center distributions. It promotes Python and Scratch

as the main programming language, with support for many other

languages.

https://en.wikipedia.org/wiki/United_Kingdom
https://en.wikipedia.org/wiki/Computer_case
https://en.wikipedia.org/wiki/Keyboard_(computing)
https://en.wikipedia.org/wiki/Robotics
https://en.wikipedia.org/wiki/Developing_countries

HARDWARE

The Raspberry Pi 2 uses a Broadcom BCM2836 SoC with a 900 MHz 32-

bit quad-core ARM Cortex-A7 processor, with 256 KB shared L2 cache.

Raspberry Pi 2 includes a quad-core Cortex-A7 CPU running at 900 MHz

and 1 GB RAM. It is described as 4–6 times more powerful than its

predecessor. The GPU is identical to the original. In parallelized

benchmarks, the Raspberry Pi 2 could be up to 14 times faster than a

Raspberry Pi 1 Model B+.

The Raspberry Pi 2 has a 1 GB of RAM.

1.4 ADIS16362

The ADIS16362 is a complete inertial system that includes

a triaxis gyroscope and triaxis accelerometer. Each sensor in the

ADIS16362 combines industry-leading MEMS technology

with signal conditioning that optimizes dynamic performance.

The factory calibration characterizes each sensor for sensitivity,

bias, alignment, and linear acceleration (gyro bias). As a result,

each sensor has its own dynamic compensation formulas that

provide accurate sensor measurements over a temperature

range of −20°C to +70°C.

The ADIS16362 provides a simple, cost-effective method for

integrating accurate, multiaxis, inertial sensing into industrial

systems, especially when compared with the complexity and

investment associated with discrete designs.

 All necessary motion testing and calibration are part of the production

process at the factory, greatly reducing system integration time. Tight

orthogonal alignment simplifies inertial frame alignment in

navigation systems.

An improved SPI interface and register structure provide faster data

collection and configuration control.

This compact module is approximately 23 mm × 23 mm × 23 mm

and provides a flexible connector interface that enables multiple

mounting orientation options.

HARDWARE
The sensor has 24 pins

THEORY OF OPERATION

The ADIS16362 is an autonomous sensor system that starts up after it has a

valid power supply voltage and begins producing inertial measurement data

at the factory default sample rate setting of 819.2 SPS. After each sample

cycle, the sensor data is loaded into the output registers, and DIO1 pulses

high, which provides a new data ready control signal for driving

systemlevel interrupt service routines. In a typical system, a master

processor accesses the output data registers through the SPI

interface.

MEMORY MAP

The address is a 16-bit value. The address of the lower byte is displayed.

The address of the upper byte is equal to the address of the lower byte plus

one.

1.5 SPI PROTOCOL

The Serial Peripheral Interface bus (SPI) is a synchronous serial

communication interface specification used for short distance

communication, primarily in embedded systems. The interface was

developed by Motorola in the late 1980s and has become a de facto

standard. Typical applications include Secure Digital cards and liquid

crystal displays.

SPI devices communicate in full duplex mode using a master-slave

architecture with a single master. The master device originates the frame

for reading and writing. Multiple slave devices are supported through

selection with individual slave select (SS) lines.

Sometimes SPI is called a four-wire serial bus, contrasting with three-,

two-, and one-wire serial buses. The SPI may be accurately described as a

synchronous serial interface, but it is different from the Synchronous Serial

Interface (SSI) protocol, which is also a four-wire synchronous serial

communication protocol. But SSI Protocol employs differential signaling

and provides only a single simplex communication channel.

Data transmission

To begin communication, the bus master configures the clock, using a

frequency supported by the slave device, typically up to a few MHz. The

master then selects the slave device with a logic level 0 on the select line. If

a waiting period is required, such as for an analog-to-digital conversion, the

master must wait for at least that period of time before issuing clock cycles.

Transmissions normally involve two shift registers of some given word

size, such as eight bits, one in the master and one in the slave; they are

connected in a virtual ring topology. Data is usually shifted out with the

most-significant bit first, while shifting a new least-significant bit into the

same register. At the same time, Data from the counterpart is shifted into

the least-significant bit register. After the register bits have been shifted out

and in, the master and slave have exchanged register values. If more data

needs to be exchanged, the shift registers are reloaded and the process

repeats. Transmission may continue for any number of clock cycles. When

complete, the master stops toggling the clock signal, and typically deselects

the slave.

1.6 BCM2835 LIBRARY

A C library for Broadcom BCM 2835 as used in Raspberry Pi.

This is a C library for Raspberry Pi (RPi). It provides access to GPIO and

other IO functions on the Broadcom BCM 2835 chip, as used in the

RaspberryPi, allowing access to the GPIO pins on the 26 pin IDE plug on

the RPi board so you can control and interface with various external

devices.

It provides functions for reading digital inputs and setting digital outputs,

using SPI and I2C, and for accessing the system timers. Pin event detection

is supported by polling.

LIBRARY FOR SPI PINS

The bcm2835_spi_* functions allow you to control the BCM 2835 SPI0

interface, allowing you to send and received data by SPI (Serial Peripheral

Interface).

When bcm2835_spi_begin() is called it changes the bahaviour of the SPI

interface pins from their default GPIO behaviour in order to support SPI.

While SPI is in use, you will not be able to control the state of the SPI pins

through the usual bcm2835_spi_gpio_write(). When bcm2835_spi_end()
is called, the SPI pins will all revert to inputs, and can then be configured

and controled with the usual bcm2835_gpio_* calls.

The Raspberry Pi GPIO pins used for SPI are:

•P1-19 (MOSI)

•P1-21 (MISO)

•P1-23 (CLK)

•P1-24 (CE0)

•P1-26 (CE1)

Although it is possible to select high speeds for the SPI interface, up to

125MHz (bcm2835_spi_setClockDivider()) you should not expect to

actually achieve those sorts of speeds with the RPi wiring. Our tests on RPi

2 show that the SPI CLK line when unloaded has a resonant frequency of

about 40MHz, and when loaded, the MOSI and MISO lines ring at an even

lower frequency. Measurements show that SPI waveforms are very poor

and unusable at 62 and 125MHz. Dont expect any speed faster than 31MHz

to work reliably.

API’s -->

• int bcm2835_spi_begin (void)

• void bcm2835_spi_end (void)

• void bcm2835_spi_setBitOrder (uint8_t order)

• void bcm2835_spi_setClockDivider (uint16_t divider)

• void bcm2835_spi_setDataMode (uint8_t mode)

• void bcm2835_spi_chipSelect (uint8_t cs)

• void bcm2835_spi_setChipSelectPolarity (uint8_t cs, uint8_t active)

• uint8_t bcm2835_spi_transfer (uint8_t value)

• void bcm2835_spi_transfernb (char *tbuf, char *rbuf, uint32_t len)

• void bcm2835_spi_transfern (char *buf, uint32_t len)

• void bcm2835_spi_writenb (char *buf, uint32_t len)

http://www.airspayce.com/mikem/bcm2835/group__spi.html#gad623657d9513faa89d22ae1dc87eec38

2. INTERFACE

The Microprocessor and the sensor has a physicsl interface using

jumper cables through which the communication takes place using SPI

protocol.

The ADIS16362 sensor is mounted over a ADIS16IMU1/PCBZ Breakout

Board for access to the sensors delicate pins.

THE Microprocessor communicates with the sensor with the help of the

lines through the pins on the breakout board.

3. COMMUNICATION

The communication is written in C programming language and uses

BCM2835 library for communication specific keywords termed APIs.

The RaspberryPi-BCM2835 APIs are used for access to the controllers

GPIO ports.

To start the communication the microcontroller has to send a ADDRESS to

the sensor through the MOSI line,this address contains or points to the

parameter that is required as the result.

The address is a 8-bit hex value which is unique for every axis.

After the sensor receives the address it checks for the corresponding data

and sends it back to the microcontroller on the MISO line.

4. PROGRAM

#include <stdio.h>

#include <bcm2835.h>

#include <time.h>

#include <unistd.h>

typedef union{

short int t2:14;

unsigned char t1[2];

}DATA;

int main(int argc, char **argv){

if (!bcm2835_init()){

return 1;

}

DATA xdata, ydata, zdata;

bcm2835_spi_begin();

bcm2835_spi_setDataMode(BCM2835_SPI_MODE0);

 bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_512);
bcm2835_spi_chipSelect(BCM2835_SPI_CS0);

 bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS0,LOW);

float MF = 0.000333;

float X,Y,Z,Gx,Gy,Gz;

int i;

for(i=0;i<30;i++){

unsigned char send_lx[2] = {0x0A,0x0B};

unsigned char readx[2];

bcm2835_spi_transfernb(send_lx,readx,sizeof(4));

xdata.t1[0] = readx[1];

xdata.t1[1] = readx[0];

X = xdata.t2 * MF;

Gx = X * 9.8;

printf("Gx::%f m/s2\t\t",Gx);

unsigned char send_ly[2] = {0x0C,0x0D};

unsigned char ready[2];

bcm2835_spi_transfernb(send_ly,ready,sizeof(4));

ydata.t1[0] = ready[1];

ydata.t1[1] = ready[0];

Y = ydata.t2 * MF;

Gy = Y * 9.8;

printf(" Gy::%f m/s2\t\t",Gy);

unsigned char send_lz[2] = {0x0E,0x0F};

unsigned char readz[2];

bcm2835_spi_transfernb(send_lz,readz,sizeof(4));

zdata.t1[0] = readz[1];

zdata.t1[1] = readz[0];

Z = zdata.t2 * MF;

Gz = Z * 9.8;

printf(" Gz::%f m/s2\n",Gz);

printf("-------------------\t\t----------------------\t\t----------------------\n");

bcm2835_delay(3000);

}

bcm2835_spi_end();

bcm2835_close();

return 0;

}

5. RESULT

Gx::7.343473 m/s2 Gy:: 6.758352 m/s2 Gz::7.564932 m/s2
-------------------------- -------------------------- --------------------------
Gx::7.846473 m/s2 Gy::-8.456399 m/s2 Gz::7.956743 m/s2
-------------------------- -------------------------- --------------------------
Gx::8.638264 m/s2 Gy::-7.937856 m/s2 Gz::6.776841 m/s2
-------------------------- -------------------------- --------------------------
Gx::-7.946583 m/s2 Gy::8.594536 m/s2 Gz::7.649632 m/s2
-------------------------- -------------------------- --------------------------
Gx::-6.735823 m/s2 Gy::6.327543 m/s2 Gz::8.453784 m/s2
-------------------------- -------------------------- --------------------------
Gx::7.740566 m/s2 Gy::8.611835 m/s2 Gz::-6.493643 m/s2
-------------------------- -------------------------- --------------------------
Gx::7.649376 m/s2 Gy::8.253499 m/s2 Gz::-6.493463 m/s2
-------------------------- -------------------------- --------------------------
Gx::8.437452 m/s2 Gy::7.645294 m/s2 Gz::8.364822 m/s2
-------------------------- -------------------------- --------------------------
Gx::8.437452 m/s2 Gy::7.645294 m/s2 Gz::8.364822 m/s2
-------------------------- -------------------------- --------------------------
Gx::8.437452 m/s2 Gy::7.645294 m/s2 Gz::8.364822 m/s2
-------------------------- -------------------------- --------------------------

6. FUTURE SCOPE

In my project I have interfaced for accelerometer only. But the

ADIS16361 sensor consists a gyroscope and a temperature sensor also

which are similarly communicated through SPI protocol.

The microprocessor can also handle some more sensors at the same

time, because of its high fanout capacity.

Wireless methords can be used to receive the data form a remort

location.

The setup can be used as a gadget for measuring the parameters and

desplay on a screen fixed on the microprocessor.

7. REFERENCES

1. http://www.analog.com/media/en/technical-documentation/data-

sheets/ADIS16362.pdf

2. https://cdn-learn.adafruit.com/downloads/pdf/introducing-the-

raspberry-pi-2-model-b.pdf

3. http://www.airspayce.com/mikem/bcm2835/group__spi.html#ga6f03

30a183f3c5765a36f1839e029a44

https://cdn-learn.adafruit.com/downloads/pdf/introducing-the-raspberry-pi-2-model-b.pdf
https://cdn-learn.adafruit.com/downloads/pdf/introducing-the-raspberry-pi-2-model-b.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADIS16362.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADIS16362.pdf

