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Synopsis

The 21-cm radiation from the hyperfine transition of neutral hydrogen

is an important cosmological probe over a wide range of redshifts. It has

been suggested as a tracer of the large scale structure before the formation

of the first stars (or the so called “cosmic dark ages”, z ∼ 200−40) through

21-cm absorption against the Cosmic Microwave Background (Bharadwaj

& Srikant, 2004). 21-cm observations of the “cosmic dawn” and the epoch

of reionisation (z ∼ 15 − 6) probe the era starting from the formation of

the first ionising sources through the time when the bulk of the hydrogen

is reionised (see e.g. Pritchard & Loeb, 2012). Finally, 21-cm tomography

of the “post-reionisation” era (z < 6), where the bulk of the neutral gas is

in collapsed objects can constrain a variety of cosmological parameters (see

e.g. Bharadwaj et al., 2009). The promise of 21-cm cosmology has led to a

renewed interest in low frequency radio astronomy, and several experiments

to probe these different regimes are being planned or even carried out.

Planned and ongoing experiments to probe the post-reionisation era include

CHIME (Bandura et al., 2014), BAOBAB (Pober et al., 2013b) and the

Tianlai CRT (Chen, 2011). In this thesis, I discuss experiments being

planned with the upgraded Ooty Radio Telescope, dubbed the Ooty Wide

Field Array (OWFA).

OWFA represents a comparatively modest upgrade (in terms of expense) to

an existing telescope (Prasad & Subrahmanya, 2011; Subrahmanya et al.,

2016a), which allows one to build a wide field of view interferometer well

suited to probing Hi during the post-reionisation era. The telescope works

at a frequency of ∼ 327 MHz or a redshift of ∼ 3.35 for the Hi 21-cm line.

The sensitivity is sufficient to allow detection of the Hi signal in integration

times of ∼ 150 hrs (Bharadwaj et al., 2015), allowing one to determine

the Hi bias at these redshifts. Longer integrations would allow for mea-

surements of the Hi power spectrum and hence constraints on cosmological

parameters (Ali & Bharadwaj, 2014; Bharadwaj et al., 2009).

Even though the telescope has the thermal sensitivity to fairly easily de-

tect the Hi 21-cm signal, in common with other such experiments, a major
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challenge is to understand and overcome systematics. Two major issues

that all such experiments need to address are regarding accurate calibra-

tion of the data and accurate subtraction of the foreground signals, which

are many orders of magnitude larger than the Hi signal itself. Since the

details of both of these depend critically on the telescope parameters, it

is important to fully understand and characterise the telescope in order to

be able to make progress. This thesis represents the first detailed effort

to characterise OWFA with sufficient depth to allow evaluation of different

strategies for calibration, as well as to understand the foregrounds as seen

by the telescope. This is done primarily by building a detailed model of the

telescope and the expected signals (both foregrounds and the Hi signal).

These would in turn allow us to run realistic simulations of the observations

themselves as well as study in depth the estimators constructed from the

observations.

The first chapter of the thesis is a broad introduction to the field of cos-

mology using the Hi 21-cm line. It sets the context for the study of the

post-reionisation Hi signal by defining the key questions we want to ad-

dress. We are specifically interested in measuring the power spectrum of

Hi at z ∼ 3.35, and in the first instance, measuring the bias factor “b”, and

whether bias shows a dependence on the angular scale. The nature of b has

important consequences for the growth of large scale structure. Chapter 2

describes the legacy Ooty Radio Telescope (ORT) and the ongoing upgrade

to the ORT to operate as the Ooty Wide Field Array (OWFA). The ORT

is a cylindrical paraboloid with a line feed composed of 1056 dipoles, each

followed by an LNA and phase shift module. The telescope is 530 m×30 m

in size, and is located on a N-S hillside whose slope is equal to the latitude

at that point. This makes the telescope effectively equatorially mounted.

The sky can hence be tracked by a rotation of the telescope along the long

axis of the cylinder. The telescope can also be steered electronically in

the N-S direction. In the legacy system the signals from these dipoles are

added together using an analog beamforming network. The beamforming

network is hierarchical; the second smallest unit in this hierarchy corre-

sponds to the combined output of 4 dipoles. The OWFA system digitises

the output of each of these 4-dipole units resulting in an array with 264

equi-spaced elements. These 264 signals are cross-correlated using a soft-

ware correlator to produce a 264 element interferometer with a field of view

∼ 27◦ × 2◦. The entire OWFA system is described in this chapter, and the
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suitability of OWFA for observations of the post-reionisation Hi signal is

also highlighted. In particular, since the telescope is equatorially mounted,

each baseline measures the same Fourier component as the sky is tracked

unlike in the case of earth rotation aperture synthesis arrays. Chapter 3

describes the software model that has been built in order to be able to fully

characterise the instrument. This model has been implemented in a soft-

ware package which allows end-to-end simulation of the observations, and

can also serve as a data analysis package once sky data is available.

Chapter 4 examines the issue of calibration, in the specific context of

OWFA. OWFA is a highly redundant array, and so redundancy calibration

algorithms are a natural choice. Moreover, this class of algorithms is model

independent, as one simultaneously solves for the sky and the antenna vis-

ibilities. I first review existing algorithms for redundancy calibration (e.g.

Wieringa, 1992; Liu et al., 2010; Noorishad et al., 2012). The parameters

that we examine particularly are bias (if any) of the solutions as well as

the computational expense. I show that most of the existing algorithms

are either biased or computationally expensive. I then describe a new fast

non-linear solver (Marthi & Chengalur, 2014). The solutions - both the

complex antenna gains as well as the complex sky visibilities - are obtained

iteratively as those that minimize an objective function. This algorithm is

both unbiased and also significantly faster than earlier algorithms that gave

unbiased solutions. I also show that the solutions achieve the Cramér-Rao

bound of minimum variance. The errors on the calibration solutions can

be obtained on the fly during the calibration process itself, by computing

the Hessian matrix of the objective function. The calibration algorithm is

demonstrated on both simulated data as well as real data from an earlier

prototype system for OWFA. We also discuss post-correlation beam forma-

tion in this chapter. While not of direct interest for the Hi experiment,

such beam formation is expected to be useful for other experiments being

planned with OWFA, especially studies of transient sources.

Chapter 5 discusses the dominant foregrounds as seen by OWFA. The fore-

ground emission at the OWFA frequency of ∼ 327 MHz is dominated by

the diffuse Galactic synchrotron emission and the emission from extragalac-

tic radio sources. The diffuse Galactic synchrotron foreground has been

studied extensively both within the context of redshifted Hi 21-cm cosmol-

ogy (see e.g. Jelić et al., 2014; Ghosh et al., 2012) and as a tracer of the

ionised component of the Galactic ISM (see e.g. Iacobelli et al., 2013b). We
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use the results of these studies to parametrize the synchrotron emission.

This parametrization is then used to generate random realisations of the

synchrotron foreground. The extragalactic radio source distribution has

also been extensively studied. In the context of OWFA, Ali & Bharadwaj

(2014) have made predictions for the expected extragalactic point source

foreground based on these earlier studies. Broadly, the extragalactic radio

source component of the foregrounds is expected to have both a clustered

part as well as a part with a Poisson distribution. I use the parametriza-

tion for both the clustered and the Poisson distributions as given by Ali &

Bharadwaj (2014) to generate random realisations of the extragalactic radio

sky. The simulation uses both these (i.e. diffuse synchrotron as well as ex-

tragalactic radio source) foregrounds along with the instrument parameters

to generate simulated visibilities. Various sanity checks are performed to

show that the simulated data is as would be expected from the parametriza-

tion of the foregrounds. A very brief description of an N-body simulation to

obtain the Hi signal is included. In the remaining chapters, the simulated

visibilities are used for further analysis.

The primary estimator that we use for both the foreground and the cosmo-

logical signal is the two visibility correlation, viz. ⟨V(Un, νi) V∗(Um, νj)⟩.
This is a useful estimator in situations like the current one, where the bulk

of the observed astrophysical signal, viz. the foregrounds, is not station-

ary, i.e. is a function of (νi, νj) and not |νi − νj | alone. The properties of

this estimator have been explored in detail in Choudhuri et al. (2014). For

a given baseline pair, the two visibility correlation ⟨V(Un, νi)V∗(Um, νj)⟩
can be described by the covariance matrix S2(νi, νj) with the number of

rows and columns equal to the number of spectral channels. I find that the

estimator completely recovers the input power spectrum. The matrix repre-

sentation of the estimator allows us to recover the angular power spectrum

at any pair of frequencies. I find that even after putting in all the chromatic

effects, such as the chromaticity of the source, the primary beam, and the

length of the baseline vector, the dominant foreground contribution is still

very smooth. The properties of the smooth galactic synchrotron emission

probe the magneto-ionic Galactic ISM and are of interest in themselves.

I show that at the OWFA baselines one can achieve quite high signal-to-

noise ratio measurements of the power spectrum of the diffuse Galactic

emission in extremely short integration times. This would allow for a rapid

characterisation of the galactic ISM over wide fields of view.
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I also apply the two visibility estimator to the foreground-free Hi sig-

nal, obtained by assigning Hi to dark matter halos according to a scale-

independent bias prescription (Bagla et al., 2010). The dark-matter distri-

bution itself is obtained through an N-body simulation (Chatterjee et al.,

2016). I find from simulations that the Hi signal is confined to ∆ν < 1 MHz

in almost all the baselines, in line with our understanding of the proper-

ties of the Hi signal. The S2(νi, νj) matrix corresponding to the wanted

Hi signal is hence diagonally dominant, with the diagonal dominance in-

creasing with baseline length. We can use this fact to try and separate

the foreground from the signal. I show that fitting and subtracting smooth

functions to the foreground allows one to suppress its contribution by ∼ 7

orders of magnitude. The residual foreground however is still stronger than

the Hi signal, and is dominated by chromatic effects. I show that, as ex-

pected, these chromatic effects come primarily from the chromaticity of the

primary beam and the chromatic baseline length, and that the instrinsic sky

chromaticity itself has very little role to play (Marthi et al., 2016). Sources

further from the phase centre arrive at the two antennas of the baseline

with a larger time delay, that translates into higher frequencies for the os-

cillatory patterns in the S2(∆ν) space. This corresponds to the so-called

“foreground wedge” in the 3D cylindrical power spectrum (see e.g. Seo &

Hirata, 2016, and references therein). I show that, although the chromatic

effects can indeed be seen, the large number of short baselines of OWFA

means that there is a significant portion of the k-space that could be used

for foreground isolation based Hi signal estimation.

The visibility covariance matrix S2(U, νi, νj) can be expanded in an eigen

basis. For the foreground signal, this results in a very small rank (two to be

precise) for the covariance matrix. The diagonalised representation can be

used to estimate the band-averaged angular power spectrum. In contrast

the expected Hi signal is stationary in ν, which results in a full-rank ex-

pansion of its covariance matrix. This has led to an interesting application:

simulated Hi visibilities can be obtained from random realisations of the

diagonalised covariance matrix (Sarkar et al., 2016b). These discussions

comprise Chapter 6.

This thesis is organized as follows. Chapter 1 introduces 21-cm cosmology

and sets the context for the thesis. Chapter 2 describes the Ooty Radio

Telescope and the Ooty Wide Field Array. It also motivates the suitability

of OWFA to doing this particular redshifted Hi 21-cm experiment. Chap-
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ter 3 describes the software model I have developed, outlining the broad

philosophy of the programming style and the elements that go on to make

it suitable as an observatory data reduction pipeline. Chapter 4 discusses

one of the two main topics this thesis is concerned with: calibration. It

describes two earlier calibration schemes and their implementation and re-

sults for OWFA. A third algorithm we have developed for OWFA, the fast

solver, is described in detail and its performance is studied. In Chapter 5,

I discuss simulating the two main foreground components based on their

parametrization. Simulated maps thus obtained are used to provide a re-

alistic sky model for computing model visibilities and for power spectrum

estimation. I briefly describe the Hi signal and the simulated Hi map.

Chapter 6 deals with the topic of power spectrum estimation, the algo-

rithm tuned for OWFA and the various systematics we expect to see in the

estimator. The power spectrum of the simulated Hi signal is also discussed.

It also discusses the important results of the power spectrum estimation

exercise. Chapter 7 summarises the work presented in the thesis, and pro-

poses possible extensions to them in the near future.
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Chapter 1

Introduction

1.1 Overview of Cosmic Evolution

Observations of the Cosmic Microwave Background (Smoot et al., 1992; Bennett et al.,

2013) in combination with observations of high redshift Type Ia supernovae (Riess et al.,

1998; Schmidt et al., 1998) have shaped our current understanding of the constituents

and evolution of the universe. In the so called concordance model, or ΛCDM model,

the major constituents of the universe are believed to be dark energy, dark matter,

baryonic matter, photons and neutrinos. In the local universe the most easily observed

component are galaxies, which themselves are assembled in groups, clusters, filaments

and other elements of the large scale structure (LSS). According to the Big Bang model,

the universe evolved to the current state from an initial extremely dense and hot state

called the Big Bang. It is further believed that shortly after the Big Bang the universe

went through a short period of exponential expansion, called inflation. Inflation is

believed to have been driven by the energy density in some (as of yet unidentified) field

called the “inflaton”, whose energy density remains constant as the universe expands.

However, the energy density in all other fields, including the standard model particles,

curvature, inhomogeneities, etc. falls during inflation, leaving the current observable

universe flat and isotropic on large scales. The quantum fluctuations in the inflaton

also provide the primordial inhomogeneities from which the observed structure in the

current universe evolved.

The plasma that filled the early universe was opaque to electromagnetic radiation

due to Thomson scattering by free electrons. As the universe expands this plasma cools,

finally sufficiently enough for the electrons and protons to combine to form hydrogen

atoms. At this point - which occurs at a redshift ∼ 1100, and which is called the

recombination era - the photon scattering cross-section decreases dramatically, and

the photons are effectively able to free stream through the universe. It is this relic
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radiation from the so called “last scattering surface” that is observed today as the

Cosmic Microwave Background Radiation (CMB). The CMB, as detailed below, is

an important probe of the early universe, and its study has significantly enhanced

our understanding of cosmology. Existing studies of the CMB observe the continuum

emission from the last scattering surface. However, as the electrons combine with the

protons to form hydrogen atoms, they cascade down the energy levels of the hydrogen

atom, producing spectral features (Chluba & Sunyaev, 2006; Rubiño-Mart́ın et al.,

2006; Chluba et al., 2007; Chluba & Sunyaev, 2007). These spectral features are in

principle accessible at the current epoch as spectral ripples riding on the redshifted

signal from the last scattering surface and form a potentially important probe of the

Universe near the last scattering surface.

Following recombination, the universe continues to expand and cool. During this

era there are no sources of electromagnetic radiation, and it has hence been dubbed the

“dark ages”. The inhomogeneities seeded during the inflation era are however growing

via the process of gravitational instability (discussed in the next section). Eventually

this leads to the formation of the first generation of stars, the so called Population-III

stars. Pop-III stars have extremely low metallicity and are very massive (Rees, 1978;

White & Rees, 1978; Puget & Heyvaerts, 1980; Abel et al., 2002). The formation

of the first luminous objects in the Universe is referred to as the cosmic dawn. The

ultraviolet photons from these stars and the X-ray from environs of the first black

holes formed either from these stars, or by some other process such as direct collapse

(Eisenstein & Loeb, 1995), begin to heat and reionise the medium. Eventually the

energy released from these first stars and galaxies causes the universe to go through

the so called “Epoch of Reionisation” (EoR) after which the intergalactic medium

(IGM) is essentially completely ionised.

The ionisation state of the IGM can be probed by spectral observations of distant

quasars. Since the cross-section for Lyα absorption by hydrogen is extremely large, even

trace amounts of atomic hydrogen in the IGM lead to an observable spectral signature.

Distributed atomic hydrogen in the IGM would lead to an absorption trough bluewards

of the Lyα emission of the quasar itself, the “Gunn-Peterson” trough (Gunn & Peterson,

1965). At low redshift, one observes only discrete absorption lines - the so called Lyα

forest lines, as well as lines from higher column density systems - consistent with the

expectation that at these redshifts the bulk of the IGM is ionised (e.g. Weymann et al.,

1981). As one approaches z ≥ 6 however, the density of the absorption lines increases

rapidly, and they blend to produce a broad absorption trough (e.g. Becker et al., 2001;

Fan et al., 2006; Mortlock et al., 2011), such as those seen in the spectra shown in

Figure 1.1. The presence of the absorption trough however does not imply that the
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IGM has become neutral, since, as mentioned above, even trace amounts of atomic

hydrogen can lead to a large optical depth in Lyα. It does however indicate that one

is beginning to see the last phases of the EoR.

Observations of the anisotropy of the polarized CMB also provide an independent

constraint on reionisation. Thomson scattering due to the free electrons produced

during reionsation greatly enhance the CMB polarisation anisotropy at large angu-

lar scales. Observations of this anisotropy hence allows one to determine the total

Thomson scattering optical depth τe, and via this the epoch of reionsation (Hu, 1995;

Hu & Sugiyama, 1995; Zaldarriaga, 1997; Kaplinghat et al., 2003). Current measure-

ments based on the WMAP 9-year data (Bennett et al., 2013) give an optical depth

τe = 0.0851 and the redshift of the EoR as z = 10.36, assuming the width of reion-

isation to be ∆z = 0.5. Figure 1.2 shows a model for the evolution of the Thomson

scattering optical depth (Page et al., 2007), consistent with reionisation completing

around z ∼ 6− 7 as indicated by the observations of high-z QSOs described above.

Following the EoR, the bulk of the neutral gas is confined to collapsed objects

(Carilli & Walter, 2013). The total neutral hydrogen content of the Universe at these

redshifts can be inferred via counts of the incidence rates of high Hi column density

absorbers - the so called “Damped Lyα” systems - seen in the spectra of quasars.

Observations show a nearly constant neutral gas density ΩHI ∼ 0.001 at 2 " z "

5 (see e.g. Noterdaeme et al., 2012; Crighton et al., 2015; Neeleman et al., 2016).

The details of the amount and distribution of the gas inside these objects depends

on complex astrophysical processes. The large scale distribution of these objects is

however largely dependent on cosmological parameters and the growth of large scale

structure. Observations of the large scale distribution of the collapsed objects in the

so called “post-reionisation” era can constrain both cosmological parameters as well

as the evolution of structure in the universe. This thesis is largely concerned with

making a detailed study of one such experiment, to be conducted with the Ooty Wide

Field Array (OWFA; Subrahmanya et al. 2016a). In the next section we give a brief

introduction to structure formation in the expanding universe.

1.2 Structure formation

As mentioned above, the small inhomogeneities seeded by the quantum fluctuations

in the inflation era grow via gravitational instability to produce the rich range of

structures seen in the local universe. Essentially, regions with higher density accrete the

ambient matter via gravity, thus further enhancing the density contrast between this

region and its surroundings. The background expansion of the universe, the coupling

3
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Figure 1.1: The spectra of a sample of quasars with redshifts 5.74 < z < 6.43. The
X-axis gives the observed wavelength while the Y-axis gives flux. As can be seen, there
is a sharp cut off of the flux bluewards of the Lyα emission line of the quasar, arising
due to absorption from the residual neutral gas in the IGM. Reproduced from Fan
et al. 2006.
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1.2 Structure formation

Figure 1.2: A model of net Thomson scattering optical depth τe and the fractional
ionisation x (from Page et al. 2007). The model produces a net optical depth consistent
with the WMAP observations, and also has the bulk of reionisation completed by z ! 6,
as indicated by observations of high redshift quasars.
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between the hot photon bath and the baryons, the nature of dark matter as well as

the equation of state of dark energy are all factors that affect the growth of structure

and the distribution of the collapsed objects at late times. Conversely, as described

below, observations of large scale structure can hence help constrain these cosmological

parameters.

The quantum fluctuations produced during inflation are expected to form a Gaus-

sian random field with a scale invariant power spectrum. By the recombination era

at z ∼ 1100, these fluctuations are observed to have grown to the order of 10−5 with

a power spectrum close to what is predicted by inflation (Smoot et al., 1992; Ben-

nett et al., 2013). While on large scales the growth of perturbations is still in the

linear regime, a number of processes cause the spectrum to deviate from the simple

scale invariant initial spectrum at small scales. An important feature in the angular

power spectrum in this context is the so called Baryon Acoustic Oscillations, or BAO.

Prior to recombination, the baryons are tightly coupled to the photons: the protons

couple to the electrons via Coulomb forces while the electrons couple to the photons

via Thomson scattering. This baryon-photon fluid has significant pressure support.

Gravitational collapse around dense regions hence leads to acoustic oscillations. At the

time of recombination, the photons decouple, removing the pressure support, and these

oscillations are then frozen in the baryon distribution leading to a distinct feature in

the distribution of the baryons at a comoving scale of 150h−1 Mpc. This feature has

been observed both in the CMB (Miller et al., 1999; Bennett et al., 2013) as well as

in the galaxy distribution as measured using SDSS data (Eisenstein et al., 2005). The

BAO feature both confirms the growth of inhomogeneities via gravitational instability

as well as the ΛCDM model.

Following the recombination era, structure continues to grow via gravitational col-

lapse. The baryons collect in the centres of the potential wells formed by the overdense

regions of dark matter. Since the baryons can cool, they collapse to high densities. The

growth of these collapsed objects happens hierarchically, with small objects forming

first and then merging to form larger and larger systems. Star formation in these sys-

tems marks the end of the dark ages and the start of the cosmic dawn. The detection

of these objects is one of the key science goals of next generation telescopes like the

James Webb Space Telescope (JWST; Gardner et al. 2006). Emission in the 21-cm line

of neutral hydrogen is another promising probe, which has the potential to be useful

from the dark ages through to the post-reionisation era. This probe is discussed in the

next section.
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Figure 1.3: The two spin states in the ground state of the hydrogen atom. The tran-
sition from the parallel and anti-parallel spin states leads to the emission of a photon
with λ ∼ 21 cm.

1.3 21-cm cosmology

The hyperfine (“spin-flip”) transition of hydrogen has emerged as an important probe

of both cosmology as well as structure formation. The energy difference between the

parallel and anti-parallel spin states of the proton and the electron in the ground

state of the hydrogen atom is 5.9 µeV (Ewen & Purcell, 1951; Muller & Oort, 1951).

A transition between these states hence gives rise to a photon with a wavelength of

λ = 21.1 cm, as depicted in Figure 1.3. The Einstein A coefficient for this transition is

extremely small: A21 = 2.9 × 10−15 s−1. However the very high cosmic abundance of

hydrogen makes the net signal quite easily measurable from the Inter Stellar Medium

(ISM) of galaxies at low redshifts.

Because of the expansion of the universe, the Hi 21-cm line from an emitter situated

at a cosmological distance from the observer is stretched to longer wavelengths. This

is quantified by the redshift z, given by

1 + z =
λo
λe

=
νe
νo

(1.1)

where λe = 21.1 cm is the wavelength at the emitter and λo is the observed wavelength.

The detectability of this emission at high redshifts depends on the contrast between the

excitation temperature (the “spin temperature”) of this transition and the temperature

of the CMB.

The cosmic evolution of the spin temperature of neutral hydrogen has been the

subject of several studies (see e.g. Pritchard & Loeb, 2012, for a review). Through

the dark ages, the adiabatic cooling of the neutral hydrogen due to the expansion of

the universe causes the gas kinetic temperature to decline as (1 + z)2, whereas the

CMB temperature declines only as (1 + z). This results in the gas cooling faster

than the CMB. However, the spin temperature is only weakly coupled to the kinetic

temperature. Nonetheless in at least part of this era one could expect to see the

7
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hydrogen in absorption against the CMB. During the cosmic dawn, the scattering of

Lyα photons produced by the first stars couples the spin temperature to the kinetic

temperature, i.e. via the Wouthuysen-Field effect (Wouthuysen, 1952; Field, 1958,

1959; Madau et al., 1997; Loeb & Barkana, 2001), resulting in the spin temperature

falling below the CMB temperature. At these epochs, the spin temperature Ts has

been predicted to be about 100 mK lower than the CMB temperature TCMB, giving

rise to a 21-cm absorption signal against the CMB (e.g. Bharadwaj & Ali, 2004; Chen

& Miralda-Escudé, 2004; Loeb & Zaldarriaga, 2004). As structure formation proceeds

the gas also begins to get heated up, via X-ray and ionising emission from the early type

stars and blackholes. The spin temperature eventually exceeds the CMB temperature,

and the gas would be seen in emission. Finally the gas ionises. The ionising regions are

at first confined to regions around the ionising sources, but gradually grow and merge

until the entire IGM is ionised. The universe is now in the post-reionisation era where,

as discussed above, neutral gas is confined to collapsed objects. The emission from

the individual objects is too faint to be detected by the current generation of radio

telescopes. However, low angular resolution observations are sensitive to the total

emission from all the objects within the resolution element, which allows one to make

measurements of the auto-correlation function of the hydrogen emission, or its cross-

correlation with other tracers of the large scale structure (see e.g. Bharadwaj & Sethi,

2001; Chang et al., 2008; Wyithe & Loeb, 2009). The angular two-point correlation

function is given by

ζ(θ) = ⟨I(x)I(x+ θ)⟩ (1.2)

where I(x) is the intensity of the 21-cm emission arising from the point x. This is

related to the power spectrum P (k) through a Fourier transform. We discuss next

the expected power spectrum of the Hi 21-cm brightness fluctuations. The global

mean post-EoR Hi brightness temperature T̄ (see e.g. Bharadwaj & Ali, 2005; Ali &

Bharadwaj, 2014) can be expressed as

T̄ (z) = 4.0 (1 + z)2
(
Ωbh2

0.024

)(
0.7

h

)(
H0

H(z)

)
mK (1.3)

where z is the redshift of observation, Ωb is the baryon density. Most of the experiments

discussed below aim at detecting not the global signal, but the fluctuations about the

mean as characterised either by (a) the angular two-point correlation function ζ(θ), or

8
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(b) the power spectrum PHI(k). The Hi power spectrum PHI(k) is given by

PHI(k, µ) = b2HI x̄
2
HI T̄

2 [1 + βµ2]2 P (k) (1.4)

where P (k) is the dark matter power spectrum at redshift z, bHI is the bias, β is the

linear redshift-space distortion parameter, and µ is the correction term to account for

the line-of-sight contribution of the peculiar velocities and x̄HI is the fraction of neutral

gas (see e.g. Bharadwaj & Srikant, 2004). If a linear, scale-independent bias bHI is

assumed, the shape of PHI(k, µ) is unaltered from the dark matter power spectrum

P (k). The evolution of the amplitude and the slope of the power spectrum with

redshift can constrain the evolution of the bias bHI with redshift, which is an important

input to understanding galaxy evolution.

Observations of the redshifted large-scale Hi 21-cm signal holds the potential of

allowing us to study large scale structures (LSS) across the entire post-reionisation

era at z " 6 (Bharadwaj & Pandey, 2003; Bharadwaj & Srikant, 2004; Bagla et al.,

2010). In turn these can also constrain cosmological parameters (see e.g. Loeb &

Wyithe, 2008; Bharadwaj et al., 2009; Villaescusa-Navarro et al., 2015). For example,

as discussed above, observations of the BAO signal at different redshifts constrain the

dark energy content of the universe (see e.g. Eisenstein et al., 2007; Chang et al., 2008;

Bharadwaj et al., 2009; Visbal et al., 2009; Masui et al., 2010; Seo & Hirata, 2016).

Not surprisingly, there are a large number of ongoing efforts to observe the redshifted

21-cm signal.

1.4 21-cm cosmology experiments

1.4.1 Epoch of reionisation

A significant fraction of the effort in 21-cm cosmology today is focused on detecting the

redshifted Hi 21-cm signal from the Epoch of Reionisation (EoR). The redshifted 21-cm

radiation from the EoR probes the distribution of the first luminous sources at cosmic

dawn (Madau et al., 1997; Shaver et al., 1999; Barkana & Loeb, 2001; Pritchard & Loeb,

2011; Zaroubi et al., 2012). Although this thesis is focussed on the post-reionisation

signal, there is considerable overlap in the techniques used to detect the signal from

the EoR and the post-reionsation era. The nature of the signal, the challenges in its

detection and the methods required for signal and parameter extraction are all very

similar. The discussion of the ongoing EoR experiments below is brief and is mainly to

give a fuller prespective of 21-cm cosmology. Dedicated experiments to detect Hi from

the EoR or post-EoR include the Experiment toDetect theGlobal EoR Step (EDGES;

9
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Bowman & Rogers 2010b), Donald C. Backer Precision Array for Probing the Epoch

of Reionisation (PAPER; Parsons et al. 2010), Murchison Widefield Array (MWA;

Bowman et al. 2013; Tingay et al. 2013) and the Low Frequency Array (LOFAR; van

Haarlem et al. 2013, Yatawatta et al. 2013). EDGES (Bowman et al., 2008; Bowman

& Rogers, 2010a) has placed a lower limit of ∆z ! 0.06 for the interval over which

reionisation proceeded. The first generation interferometric experiments, such as with

the GMRT (Paciga et al., 2011, 2013) and PAPER (Parsons et al., 2010, 2014) have

yielded upper limits to the EoR power spectrum. A second generation of efforts to

detect the global all sky signal (Sathyanarayana Rao et al., 2015; Singh et al., 2015) as

well as the 21-cm power spectrum, e.g. the Hydrogen Epoch of Reionization Array

(HERA; Pober et al. 2014), are also in progress. We next look at the ongoing efforts

to observe the post-reionisation 21-cm signal.

1.4.2 Post-reionisation redshifted 21-cm

As discussed above, the post-EoR redshifted Hi 21-cm signal can provide important

constraints on cosmological parameters, as well as inputs to understanding galaxy

evolution (Loeb & Wyithe, 2008; Wyithe et al., 2008; Bharadwaj et al., 2009; Visbal

et al., 2009; Villaescusa-Navarro et al., 2015; Padmanabhan et al., 2016).

Chang et al. (2010) have measured the neutral hydrogen content at redshifts 0.53 <

z < 1.12, and provide a lower limit to the gas density ΩHI = 5.5±1.5×10−4×(1/rb) at

a mean effective redshift of z ∼ 0.8, where r is the stochasticity and b is the bias factor.

Several efforts to detect the post-EoR redshifted Hi 21-cm signal are also ongoing. The

Canadian Hydrogen Intensity Mapping Experiment (CHIME; Peterson et al. 2006;

Bandura et al. 2014) is aimed at mapping the distribution of neutral hydrogen over a

wide range of redshifts, viz. z ∼ 0.8−2.5, corresponding to 400-800 MHz. The Tianlai

Cylinder Radio Telescope (CRT; Chen 2011, 2012, 2015; Xu et al. 2015) pathfinder

is expected to be identical to CHIME in its frequency coverage, but will eventually

probe the full redshift range z ∼ 0 − 2.55 in the frequencies 400-1420 MHz. The

Baryon Acoustic Oscillation Broadband And Broad-Beam Array (BAOBAB; Pober

et al. 2013b) will probe the frequency range 600-900 MHz, or the redshift interval

z ∼ 0.5− 1.5.

This thesis describes a large field-of-view experiment to detect the large-scale red-

shifted Hi 21-cm using an upgrade to the Ooty Radio Telescope (ORT; Swarup et al.

1971). The upgraded telescope is dubbed the Ooty Wide Field Array (OWFA, Prasad

& Subrahmanya 2011; Subrahmanya et al. 2016a). The initial aim of the OWFA

z = 3.35 post-EoR experiment (Subrahmanya et al., 2016a), introduced in the next
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section, is to detect the post-EoR Hi power spectrum. We note that the OWFA exper-

iment does not overlap in redshift with the other post-reionisation experiments. These

experiments are therefore complementary to each other.

1.5 The Ooty Wide Field Array redshifted 21-cm

experiment

A statistical detection of the extremely faint cosmological Hi signal entails the following

requirements, that directly translate into desirable features of the radio telescope in

question. Firstly, it is desirable to observe a very large volume of the universe to boost

the contribution of the Hi signal: this means a telescope with a large instantaneous field

of view and a large instantaneous bandwidth is required. For a robust measurement of

the power spectrum, a large number of Fourier modes on the sky have to be measured:

this translates into observing with an interferomter with a large number of baselines.

Accurate and sensitive measurements are called for so as to minimise the errors on the

measured power spectrum: a telescope with a large collecting area is hence desirable

which, in addition should be accurately calibratable. Given the faint nature of the

signal, it is absolutely essential to build signal-to-noise ratio by integrating sufficiently

long: this aspect would benefit significantly from being able to run a dedicated observ-

ing campaign with as little demands for time on the telescope for other observations.

In the next few pages and particularly in Chapter 2, it will be shown that OWFA does

indeed satisfy many of the above requirements.

Having motivated and set the context for observing the post-reionisation redshifted

Hi 21-cm emission at large scales, I now set out to introduce the OWFA redshifted

Hi 21-cm experiment. The ORT is being upgraded to operate as an interferometer,

with two concurrent modes of operation: a large field-of-view 4.5◦ × 2◦ mode and a

wide field-of-view 28◦ × 2◦ mode. I shall describe the upgrade itself in greater detail

in Chapter 2. One of the key science drivers behind the upgrade is to detect the

redshifted Hi 21-cm emission from the large scale structure. The ORT is well-suited

to such an experiment because its frequency of operation, 327 MHz, corresponds to

a redshift z ∼ 3.35 for the neutral atomic hydrogen 21-cm line, where, as described

above, OWFA would complement other similar experiments. This redshift corresponds

to an epoch in the history of the universe where a transition is taking place (at a scale

which falls within the observable k-space of the OWFA) from the linear growth of

structure to the non-linear. Figure 1.4 shows the departure of the dark matter power

spectrum from the analytically computed linear dark matter power spectrum, obtained
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Figure 1.4: The excess power in the dark matter in a 10-realisation average from an
N-body code, shown here with respect to the analytically computed DM linear power
spectrum. We can see that non-linearity has manifested at z = 3.35 in the small scales
k > 0.1Mpc−1. The range of wavenumbers probed by OWFA is bounded by the solid
vertical lines. Figure adapted from Chatterjee et al. 2016.

by averaging ten DM distribution realisations from an N-body code. PNL(k)/PL(k), a

dimensionless quantity, is shown for the range of k accessible to OWFA.

The legacy ORT is being converted into an interferometer by digitising the signals

from the dipoles along the feed line and cross-correlating them. The signals from a

group of dipoles are combined together using an analog beam former and then digitised

to form the elements of OWFA. This produces a compact set of highly redundant

baselines. At 327 MHz, the longest baseline thus obtained would be ∼ 500 λ, enabling

access to angular scales ∼ 0.1◦ on the sky. Two interferometric modes are envisaged for

OWFA. In the first mode every 12.5 m section of the aperture would be digitised, giving

a north-south field of view (FoV) of 4.5◦, while in the second mode every or 2 m section

would be digitised giving a north-south FoV of 27.5◦ respectively at 0◦ declination. The

east-west FoV is set by the diameter of the ORT, and is 1.75◦ for both modes. The

upgraded RF electronics would allow access to ∼ 39 MHz instantaneous bandwidth.

As we would see in Chapter 2, these numbers translate into a very large volume of
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Figure 1.5: The expected Hi power spectrum at z ∼ 3.35 that ORT will have access
to. The dashed and solid vertical lines indicate the range of k values for the two
interferometer modes with 27◦ × 2◦ and 4.5◦ × 2◦ fields of view respectively. Only the
k⊥ range is shown in this figure. Figure reproduced from Ali & Bharadwaj 2014.

the universe that can be instantaneously sampled, a setup ideally suited to observing

the large scale structure. At the conclusion of the upgrade, the two concurrent modes

will provide an overlapping range of angular scales with different sampling densities.

However, the Wide Field mode provides exclusive access to angular scales between

4.5◦ and 27.5◦. Observations are proposed in campaign mode for measuring the power

spectrum of the post-reionisation signal. Figure 1.5 shows the expected Hi power

spectrum at z ∼ 3.35, the redshift of operation of OWFA. Estimates tuned to OWFA

indicate that the telescope sensitivity is sufficient to make a ∼ 5σ measurement of the

amplitude of the power spectrum (assuming that the shape is known) in integration

times as short as ∼ 150hr (Ali & Bharadwaj, 2014) assuming that the foregrounds have

been fully subtracted. Integration times of ∼ 2000hr would allow one to constrain the

shape of the power spectrum (Bharadwaj et al., 2015). Gehlot & Bagla (2016) have

compared OWFA with other telescopes operating in the same frequency range, and

show that OWFA has an edge compared to other existing telescopes.

This thesis takes a detailed look at several aspects of the proposed experiment. In
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1. INTRODUCTION

particular, the fundamental requirement of robust calibration is addressed. Besides,

simulations are used to study power spectrum estimation. A comprehensive software

model is built for both the instrument and the sky signal to numerically simulate the

observed interferometric visibilities. The cosmological Hi signal is to be extracted in

the presence of foregrounds and other systematics introduced by the foregrounds, as it

interacts with the instrument in complex ways. One of the principal aims of this thesis

is hence to develop an understanding of the systematics introduced by the interaction

of the bright foregrounds with the instrument response. Since this thesis represents

the efforts toward detecting the power spectrum, the discussion is restricted to aspects

of calibration and power spectrum estimation. Interpretation of the detected power

spectrum is largely out of scope of this work. Below is a brief overview of the issues

involved in calibration and estimating the Hi signal in the presence of foregrounds.

1.5.1 Calibration

Calibration is the process of converting the observed visibilities to the true visibilities

corresponding to the total signal from the sky. Since the signal of interest is weak

and is further buried in a much brighter foreground (see below), accurate calibration

is critical. Almost all first-generation experiments and upcoming next generation ex-

periments have designed interferometers with in-built redundancy, in order to allow

for good calibration. By redundancy is meant that one makes multiple simultaneous

measurements of the same visibility. These observed visibilities hence differ only by

the instrumental gains, and if there is sufficient redundancy, one can simultaneously

make model-independent measurements of both the instrumental gains as well as the

true sky visibilities. The issue of redundancy calibration is discussed in Chapter 4

(based on Marthi & Chengalur 2014), where a new, efficient algorithm for redundancy

calibration is proposed and characterized.

1.5.2 Foregrounds

Foregrounds are astrophysical signals apart from the one of interest that arise from

the same region of the sky we observe. Tegmark et al. (1999) give an “operational

definition” for foregrounds, but in the context of the CMB:

• A foreground is an effect whose dependence on cosmological parameters we cannot

compute accurately from first principles at the present time.

For our purpose, any unwanted astrophysical signal that the telescope is sensitive to,

but is chiefly of nuisance value, can be termed foregrounds. In the post-reionisation

14



1.5 The Ooty Wide Field Array redshifted 21-cm experiment

experiment, the principal foregrounds are the synchrotron emission from the diffuse

warm ionised medium within the Milky Way and the extragalactic radio sources. These

foregrounds are not only significantly brigher (typically 104−5 times) than the Hi signal,

but they also interact with the instrument response in ways that cause the net observed

foreground to contaminate the Hi signal. This makes disentangling one from the other

an extremely delicate exercise. In Chapter 5 I describe simulations of the expected

foreground at OWFA.

1.5.3 Foreground removal and foreground isolation

Given that foregrounds are orders of magnitude brighter than the signal of interest, two

classes of techniques have been suggested to deal with it, viz. foreground removal and

foreground isolation. The foreground removal technique attempts to first characterise

the foregrounds accurately, and then subtract it from the observed signal. Understand-

ably, the extent to which this works depends on how accurately the foregrounds have

been characterised. Proposed techniques for foreground subtraction include fitting and

subtracting out spectral functions to the foregrounds in the image cube (Morales et al.,

2006; Jelić et al., 2008; Bowman et al., 2009; Chapman et al., 2012; Liu et al., 2009b)

or the visibility data (McQuinn et al., 2006; Gleser et al., 2008; Petrovic & Oh, 2011;

Liu et al., 2009a). Ghosh et al. (2011a,b, 2012) have attempted a model-free character-

isation of the foregrounds by fitting low-order polynomials as a function of frequency

separation ∆ν to the observed angular power spectrum Cℓ(∆ν) at different multipole

moments ℓ.
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1. INTRODUCTION

Figure 1.6: This schematic of the cylindrical power spectrum shows the foreground
wedge and the EoR window. Reproduced from Liu et al. 2014.
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1.6 Outline of the thesis

The alternative approach is foreground isolation. One of the principal difficulties

in foreground subtraction is that the instrument response is chromatic. As a result,

even smooth featureless foreground spectra interact with the instrument in very com-

plex ways to produce spectral features. One of the well-understood manifestations of

instrument chromaticity is the “foreground wedge” (Datta et al., 2010; Thyagarajan

et al., 2013; Vedantham et al., 2012; Liu et al., 2014) in the instrumental k-space. This

is shown schematically in Figure 1.6. The wedge indicates the region where spectral

features from the foreground are confined. This leaves a complementary foreground-

free region in the k-space, which can be used to estimate the Hi signal. Although I

don’t discuss foreground subtraction in detail in this thesis, I shall touch upon poly-

nomial fitting as well as the foreground wedge in the cylindrical power spectrum while

discussing foreground estimation.

1.6 Outline of the thesis

This thesis is chiefly a work that aims to develop an understanding of the OWFA in-

strument and the systematics we would confront in the redshifted Hi 21-cm experiment.

However, many elements of research have come together to provide a comprehensive

and coherent body of work: mathematical modelling and simulation, measurement of

instrument responses, numerical simulations and computing algorithms, astronomical

test observations and cosmology. This chapter has motivated the OWFA redshifted

Hi 21-cm experiment, especially in the context of post-reionisation cosmology. The

rest of the thesis is organised as follows.

In Chapter 2, I introduce the Ooty Wide Field Array (OWFA) as a programmable

interferometer, which is the foundation for the 21-cm experiment. In particular, I shall

list out and briefly describe the geographical and geometrical advantage of upgrading

the ORT to operate as an interferometer. I shall then discuss the antenna and inter-

ferometric sensitivity, antenna and system temperature, and the two interferometric

modes and report the sensitivity measurements carried out in the field to measure the

antenna temperature and electromagnetic coupling between the dipoles.. I will also

calculate the relevant cosmological numbers for the two modes.

Chapter 3 details the software model I have developed for end-to-end simulations of

the 21-cm experiment, starting with the geometric description of the instrument, simu-

lating a realistic sky, and finally obtaining the visibilities. I also introduce a co-ordinate

system that allows a simplified form for the van Cittert-Zernike theorem for comput-

ing the visibilities. I then detail the emulator software pipeline and walk the reader

through the steps going from the instrument through the sky to the observed visibili-
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1. INTRODUCTION

ties. The systematics are built in naturally through a frequency-dependent description

of the instrument and the sky signal. This is useful at a later stage to understand the

interaction between the sky and the instrument.

Chapter 4 exclusively discusses calibration for the OWFA. The highly redundant

geometry of the two interferometric modes is a great advantage for cosmological exper-

iments. I will describe “redundancy calibration” and show examples of implementation

of two such algorithms based on linear least-squares (LLS) fitting. I will then present a

fast and efficient calibration algorithm based on non-linear least-squares (NLS) fitting

and justify its implementation as the algorithm of choice for the OWFA experiment.

Specifically, the NLS algorithm gives an edge over the earlier LLS algorithms in terms

of unbiasedness and computational complexity. I shall show results from simulated

data as well as real data recorded with OWFA on astronomical sources. Other planned

experiments at OWFA require the formation of phased array beams, and I discuss this

briefly as well.

In Chapter 5, I detail the methods used to simulate the two dominant foreground

components: (a) the Galactic synchrotron emission which is diffuse in nature, and

(b) the extragalactic radio source population which is discrete. These two compo-

nents have very different statistical descriptions. The diffuse component is simulated

as a Gaussian realisation of an input power spectrum. Simulating a population of

extragalactic radio sources is more involved, although at its heart it follows a power

spectrum prescription. However, it is not as straightforward as the diffuse foreground.

I will explain how the discrete source population is simulated. I will validate the two

simulated foreground components against the input power spectrum. Very briefly, I

will also describe how the Hi signal can be obtained from N-body simulations, and

compare the signal of interest with the foregrounds.

Once the foregrounds have been successfully simulated and the model visibilities

have been obtained, we have the simulated astrophysical signal in hand. Our final

aim however is to measure the power spectrum of the Hi fluctuations. I present a for-

malism to estimate the power spectrum directly from the visibilities. A differentiating

feature of the estimator, called the Multi-frequency Angular Power Spectrum (MAPS)

estimator, is that its statistics are well understood, and in the manner in which it has

been cast for OWFA, it is a full representation in d− ν− ν space. Various other esti-

mators, like the cylindrical power spectrum, or the correlation coefficient as a function

of frequency separation can be easily derived from it. I apply the estimator to the

simulated foregrounds and draw important conclusions about the systematics resulting

from the sky-instrument interaction and its implications for foreground separation. I

also apply the estimator separately to the simulated Hi signal to bring out the distin-
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1.6 Outline of the thesis

guishing spectral features in contrast with the foregrounds. These discussions comprise

Chapter 6.

I summarise the work in all the earlier chapters, conclude with the results and

indicate possible avenues where more work is called for in the near future, in Chapter 7.

19



1. INTRODUCTION

20



Chapter 2

The Ooty Wide Field Array

This chapter introduces the pre-upgrade Ooty Radio Telescope (ORT) as well as its

upgrade to the Ooty Wide Field Array (OWFA). The system architecture is described

for the two interferometer modes - Mode-I and Mode-II. A historically relevant Phase-

I in an early prototype system is briefly described, drawing largely on previous work

by Prasad & Subrahmanya (2011). Certain advantages accrue when the telescope is

operated as an interferometer. Some system measurements that are relevant to the

particular Hi experiment, but also useful in general, are described. For the system

parameters of the two modes, numbers for the parameter space that they correspond

to for the redshifted Hi observations are provided.

2.1 The Ooty Radio Telescope

The Ooty Radio Telescope was built in the late 1960s and commissioned in 1970

(Swarup et al., 1971). It is situated in the hill station of Udhagamandalam (Ooty,

colloquially) in the Nilgiris in the Indian peninsula. Its geographical coordinates are:

latitude 11◦ 22′ 50′′ N, longitude 76◦ 40′ E and altitude 2,154 m. The ORT is a steer-

able telescope with an offset parabolic cylindrical reflector. It is 529 m long and 30 m

wide, having an effective collecting area of 8700 m2. This is equivalent to a parabolic

dish of diameter 138 m with an aperture efficiency of η = 0.6. The axis of rotation of

the 529 m long parabolic cylinder has been made parallel to that of Earth by locating

the telescope on a hill whose slope equals the local latitude. This makes the telescope

equatorially mounted. In the tracking mode, the telescope can track a radio source in

hour angle for 91
2 hours by mechanical rotation of the reflector. In its earliest config-

uration, the beam could be steered electronically from declination +36◦ to −36◦ using

phase shifters and delay lines. Subsequently, this declination range has been improved

to ±55◦ (Selvanayagam et al., 1993).

21



2. THE OOTY WIDE FIELD ARRAY

30m

CORNER REFLECTOR

DIPOLE

S. S. WIRES

Figure 2.1: A section of one of the 24 frames of the Ooty Radio Telescope. Courtesy:
S. G. Meshram.

The ORT consists of 24 parabolic frames, each 30 m wide, supported on 12 to 18 m

high towers to account for the local terrain about the mean slope of the hill. Figure 2.1

shows a frame in section. It must be appreciated that, without the hill the same design

would entail progressively taller towers northwards: the northernmost tower would be

∼ 96 m taller than the southernmost tower. The telescope is logically divided into

two halves - the North array and the South array. Each half has 11 frames that are

numbered outward from the mid-point. The northern half has frames numbered N01,

N02, . . . N11, and similarly the southern half S01, S02, . . . S11. Each frame supports

48 dipoles, divided logically into two half-modules. Each half-module has 24 dipoles.

Besides, there are two extremal half-frames, N12 and S12. They have been provided to

avoid vignetting when steering the beam to the extreme declinations. The parabolic

surface has a focal length of 16.5 m. The frames are spaced 23 m in the north-south

direction. The reflecting surface is formed by 1100 stretched stainless steel wires, each

0.38 mm in diameter. The 24 frames are rotated in unison through a common driveshaft

with a gear reduction of 4320:1. In hour angle, the telescope can track from 4h 05m

east to 5h 30m west. The asymmetric design of the parabolic frame allows for easy

access to the focal line feed when it is brought down to the west limit for servicing

and maintenance. The other advantage of the offset reflector is that it avoids aperture

blockage and the associated loss in efficiency and increase in sidelobe levels.
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2.1 The Ooty Radio Telescope

2.1.1 Antenna system

The feed system consists of 1056 dipoles, each spaced 0.57λ apart. The dipoles have a

centre frequency of 326.5 MHz and are λ/2 long each. The feed line is placed within a

90◦ corner reflector in order to reduce the illumination spillover. The dipoles are com-

bined in a passive, christmas-tree combiner network (Joshi et al., 1988; Subrahmanya

et al., 2016a) shown in Figure 2.2. Every set of four adjacent dipoles is combined in a

four-way combiner. The outputs from two such neighbouring four-way combiners are

added in a two-way combiner. Three two-way combiner outputs are again combined in

a three-way combiner to give one half-module consisting of a total of 24 dipoles. The

other half-module, which is obtained identically, is added again in a two-way combiner

to produce the output from a full 48-dipole module. The entire passive combiner net-

work and the low noise amplifiers are all placed in a weather-proof aluminum channel

that runs through the length of the telescope. Figure 2.3(a) shows a photograph of

the aluminium channel and the dipoles supported by the channel. We shall see in

Section 2.2 that this christmas-tree arrangement of the combiner network enables early

digitisation of the signals.

2.1.2 Electronic receiver

The signal at the dipole is very weak - its power is -110 dBm. It goes through a Low

Noise Amplifier (LNA) which boosts the power by 15 dB. The broadband phase shifter

that immediately follows the LNA is called the LNA phase shifter. This phase shifter

is used to steer the directional response of the dipole array. The observing declination

is set by the effective phase shift imparted by this phase shifter to the signal from the

dipole. The signals from four dipoles are combined in the passive four-way combiner,

that also introduces a 6 dB loss to the signal. The next two-way combiner introduces

an additional 3 dB loss, followed by the three-way combiner that introduces a loss of

5dB to the signal. At the output of the three-way combiner, the strength of the signal

is -109 dBm, with a bandwidth of 50 MHz (Selvanayagam et al., 1993). This signal

goes into the RF analog box, one for each module, that is located in the aluminium

channel. The arrangement upto this point is shown in Figure 2.4

The analog box has a two-way combiner: it takes one input from each of the two

half-modules, that corresponds to the signal from 24 dipoles. The two-way combiner

introduces a 3 dB loss to the signal. The -112 dBm signal is amplified by the first

high-gain, 30 dB amplifier, to -82 dBm. A bandpass filter with a bandwidth of 16 MHz

centered on 327 MHz introduces a 2 dB loss to the signal before it is passed on to the

mixer. The local oscillator (LO) signal, with a frequency of 297 MHz, is amplified and
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Figure 2.2: The passive christmas-tree combiner network of the ORT.
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(a) Aluminium channel and dipoles (b) Analog box

Figure 2.3: (a) The aluminium channel houses the passive combiner network and supports the dipoles. (b) The analog box that
houses some active electronics and the mixer stage.

25

Chapter2/Chapter2Figs/Channel.eps
Chapter2/Chapter2Figs/analog-box-and-channel.eps
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Dipole

−110 dBm

G = 15 dB −95 dBm
Broadband
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−101  dB

−104 dB

−109 dB

50 MHz bandwidth

To RF box on the tower
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   4−w
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Figure 2.4: The passive combiner network with the associated losses and the typical
signal strength at each point.
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2.1 The Ooty Radio Telescope
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circuit
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Figure 2.5: The analog box adjacent to the aluminium channel and the active electron-
ics housed in it.

passed through a phase-shifter before the mixer. The mixer takes the RF signal from

the bandpass filter, and the local oscillator, to produce an intermediate frequency (IF)

of 30 MHz: at this point the signal power is -90 dBm, since the mixer introduces a 6

dB loss. The IF signal undergoes a 30 dB amplification through the second high-gain

amplifier. The output -60 dBm signal from the analog box is transported to the receiver

room on a 300 m co-axial cable that introduces ∼16 dB of loss. Figure 2.3(b) shows

a photograph of the analog box adjacent to the aluminium channel in the telescope.

The schematic is shown in Figure 2.5.

2.1.3 Beamformer

The output from the analog box corresponds to a full module of the ORT. In the re-

ceiver room, the outputs from all the modules are collated. The phased outputs from

the analog boxes are added to produce twelve beams on the sky. This beamform-
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ing operation happens independently for the outputs from the northern half and the

southern half of the telescope. Historically, these twelve beams were used to track the

moon, by covering the full disc during lunar occulation observations (Swarup et al.,

1971). One of the beams is obtained by adding the outputs from the eleven modules.

The other eleven beams are obtained by adding the outputs through a phase-switched

network (Swarup et al., 1971). The two sets of twelve beams are then correlated with

each other, thereby greatly reducing any systematics. Each beam has a half-power

beamwidth (FWHM) of ∼ 2◦ in hour angle. In declination, the phase-switched beam

FWHM is 3.6 sec(δ) and the total power beam is 5.6 sec(δ) minutes of arc.

2.2 From a beamformer to a wide field

interferometer

The upgrade to the ORT exploits the christmas-tree passive combiner network to tap

the RF signal at the four-way combiner output while allowing the working of the legacy

system to be unaffected. Since each dipole is λ/2 long, the four-way combiner output

is equivalent to a 2λ aperture. Its field-of-view is therefore 1/2 radian. Since there are

a total of 1056 dipoles, tapping the four-way combiner output produces 264 RF signals,

or equivalently 264 “antennas”. The christmas-tree network in principle enables the

signal to be tapped at any of the combiner outputs, according to the required field-of-

view. However, the real limitation is imposed by the practicality of the downstream

digital electronics required to handle the volume of the signal. Eventually, it is a

trade-off between the field of view and data volume that sets the limit to where in the

christmas-tree the signals can be comfortably tapped from. This is the advantage that

was suggested in Section 2.1.1. The architecture of OWFA is now described briefly.

2.2.1 Architecture of the programmable receiver

The complete architecture of OWFA is described in Subrahmanya et al. (2016a), where

they also spell out the chief scientific goals of the upgrade. The details of the OWFA

Receiver System can be found in Subrahmanya et al. (2016b). A brief summary of the

architecture of OWFA now follows. The RF signal from the four-way combiner goes

through a primary stage of amplification within the Dual Stage-I signal conditioner

unit, placed within the aluminium channel. This first stage of amplification gives

the signal a boost of 26 dB. Figure 2.6 shows the Dual Stage-I amplifier housed in the

aluminium channel. A surface acoustic wave (SAW) filter, followed by an RF amplifier,

conditions the signal fed to a directional coupler. The coupled port output of the
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interferometer

Figure 2.6: The Dual Stage-I signal conditioner is housed in the aluminium channel.
The through port outputs proceed to the next Stage-II amplifier before digitisation.
The coupled port outputs are internally combined and the output is given to a three-
way combiner, effectively replacing the legacy two-way combiner.
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Figure 2.7: A schematic of the Dual Stage-I signal conditioner, adapted from Subrah-
manya et al. 2016b.
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2. THE OOTY WIDE FIELD ARRAY

directional coupler is fed to a two-way combiner within the Dual Stage-I conditioner,

that effectively replaces the legacy two-way combiner. The output power of the coupled

port is commensurate with the input of the first two-way combiner in the christmas

tree of the ORT legacy system, so that the power level of the signal in the legacy

system is unchanged. This output from the Dual Stage-I signal conditioner is then

passed on to the three-way combiner of the legacy system. Figure 2.7, reproduced from

Subrahmanya et al. (2016b), shows the details of the signal flow described above. The

through port output of the directional coupler is passed on to an 18 dB RF amplifier

before being fed to the Stage-II signal conditioner.

The Dual Stage-II conditioner and the digitiser are situated in the shielded structure

near the tower at each frame, called a “pillar”. The pillar is a weather-proof, steel

enclosure to house the in-field electronics and provides controlled access and ventilation

at the same time. The Stage-II conditioner is similar to the Stage-I conditioner, but

the amplifier has a slightly higher gain and includes a SAW filter identical to that in

Stage-I. It can take two RF inputs and gives two RF outputs. Since a frame caters

to a total of 48 dipoles, there are twelve four-dipole RF signals that reach the pillar

on equal length (60 m) coaxial cables. The conditioned RF signals from the output of

the Stage-II are then fed into a 12-channel analog-to-digital converter (ADC). The net

gain imparted to the signal by the Stage-I and Stage-II amplifiers before digitisation

is ∼ 70 dB (Subrahmanya et al., 2016b).

The sampled signals are multiplexed and sent on two optical fiber links using the

Xilinx Aurora protocol. Each fiber carries a 2.5 Gbps Aurora link all the way to the

receiver room, where it is terminated in a data pooler card. The data pooler cards take

all such Aurora links from all the other frames. The data pooler is at the heart of this

architecture, and it is critical for downstream processing. The pooler and the bridge

cards together collate all the data in a time synchronised fashion but apportion them

in time-sliced chunks. Each such chunk has data from all the antennas. The pooler

and the bridge cards essentially share the load of data pooling in two stages.

In addition, the bridge card converts the time-sliced data in the native Aurora for-

mat to the standard Internet Protocol (IP). The IP packets are shipped onward on

copper CAT6 cables to an eight-node high-performance cluster. The bridge produces

a total of 88 individual IP outputs. A group of eleven cables terminates in each node

of the cluster. Figure 2.8 shows the block-level architecture of OWFA. Together, these

eleven cables carry a one-eighth time-slice of all the data. All the 264 antennas are

available at each node, but for one-eighth of the time. Therefore, cross-correlations be-

tween all antenna pairs can happen within a single compute-node of the cluster. These

independent time-sliced cross-correlations are then written into disks with their sam-

30



2.2 From a beamformer to a wide field
interferometer

From 4−way
combiner

amp
RF

From 4−way
combiner

amp
RF

Dual−channel
bandpass amp

Dual−channel
bandpass amp

. . .

. . .
Aurora−to−IP  bridge

FPGA data pooler

88 IP copper links

Aurora fiber links
from other ADCs

Aurora fiber links
from other poolers. . .

. . .

12−channel ADC

Figure 2.8: The block-level architecture of the OWFA system.
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pling timestamps so that they can be sorted before final processing. Equivalently, they

can be held in a buffer large enough to enable writing time-ordered cross-correlation

data into the disks.

Historically, the upgraded ORT was envisaged to function as two independent in-

terferometers with different fields of view and bandwidhts. These were to be called

Phase-I and Phase-II, with a north-south FoV of 4.5◦ and ∼ 28◦ respectively. Be-

ing independent systems, they were to have a bandwidth of 16 MHz and 39 MHz

respectively. The Phase-I system is currently not in use; however it is described here

briefly for historical completeness and for setting the context for certain measurements

presented in the following pages. In Phase-I, the signal from each half-module was

digitised and correlated with other half-module signals. The anti-aliasing filter before

sampling had a 16 MHz bandwidth. The measurements presented here were made

for the Phase-I system. However, various improvements to the design have made the

Phase-I system obsolete now. In a setup that we now call Mode-II, the signal from

the four-way combiner is digitised. The pooler and bridge cards then collate the data

as described above, and ship the IP packets to a high-performance cluster. But the

functionality of Phase-I is not lost, as the data from Mode-II can be pooled once again

to imitate a Phase-I-like system, which we now call Mode-I. A group of six contiguous

Mode-II antenna (each of which is four dipoles) outputs can be summed coherently

to imitate a Phase-I antenna, which we may recollect is the signal from 24 dipoles.

This operation can happen entirely in software, thereby completely dispensing with

the erstwhile Phase-I hardware. The advantage of the new arrangement is that, unlike

Phase-I which gave a 16 MHz bandwidth, Mode-I retains the full 39 MHz bandwidth

of the Mode-II system.

The Mode-I system, by virtue of having fewer “equivalent” antennas than the 264-

antenna Mode-II system, produces ∼ 50 times fewer correlations in the same time.

Besides, it gives a smaller field of view (FoV): about one-sixth of that of the Mode-

II system. The Mode-I system can hence be used as a pilot system to explore data

handling methods, calibration, interference excision algorithms, foreground estimation

and data characterisation. Experience with these aspects on the smaller-scale Mode-I

will hopefully prepare us for the much larger data volumes expected from the Mode-II

system.
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interferometer

2.2.2 Motivation for the upgrade

2.2.2.1 Large instantaneous field of view

Having briefly described the architecture of the programmable receiver, it is important

to justify the effort. The scientific and technical motivation for the upgrade will now be

set out. The ORT operates at 327 MHz, which corresponds to z ∼ 3.35 for the 21-cm

Hi line. At such large redshifts, it is impossible to detect the 21-cm Hi emission from

individual galaxies. The only recourse is hence to observe Hi emission from a very large

volume. Statistical detection therefore works through techniques like intensity mapping

(Chang et al., 2008, 2010), wide field imaging (Zaroubi et al., 2012) or power spectrum

estimation (see e.g. Bharadwaj & Sethi, 2001; Zaldarriaga et al., 2004; Bharadwaj &

Ali, 2005). One of the fundamental requirements for statistical detection is a large field

of view. This leads us to exploit the christmas-tree structure of the passive combiner

network at the ORT: it is possible to obtain a large FoV - ∼ 28◦ - by tapping the RF

signal higher up in the tree. We will return to the rationale of tapping at the output

of the four-way combiner shortly, but after a brief digression.

2.2.2.2 Instantaneously redundant baselines

We saw in Section 2.2 that 264 RF signals would be available in the Mode-II system.

These antennas are regularly spaced at 1.92 m. If the antennas are counted pairwise,

it results in ∼ 34, 000 baselines. But most of these measurements are highly redun-

dant, because there arise multiple instances of the same antenna pair separation that

identically sample the same Fourier mode in the plane of the sky. Infact, only 263

unique measurements of the sky are possible. This enormous redundancy allows us to

coherently sum the visibilities from all the instances of a baseline, leading to increased

signal-to-noise ratio (SNR). Besides, redundancy is a great advantage for precision

calibration, a topic that will be detailed in Chapter 4.

Now, to return to the rationale of tapping the output of the four-way combiner:

if we were to correlate the signals from every dipole pair, it would result in half a

million baselines. Although the higher degree of redundancy is tempting, process-

ing the humongous amounts of data is a computational nightmare: it is both time-

and power-consuming, to say the least about the requisite computing infrastructure.

Being sensitive to all the radiation from horizon to horizon is indeed an incentive,

but practical considerations must necessarily outweigh these attractions. The four-

way combiner provides a 0.5 radian FoV, and still keeps the data volumes sufficiently

tractable. Tapping the signals further downstream of course takes a huge stress off the

computing system, but results in a smaller redundancy and a smaller FoV. Current
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high-performance computing technology allows the data volumes expected from the

264-antenna configuration to be handled within a reasonable cost. A future upgrade

could perhaps consider tapping the signals at each dipole. The flexibility required to

obtain smaller FoVs and data rates could then be part of an intelligent programmable

receiver that allows collating the signals at a later stage to a comfortable level. This is

now indeed the case, and the architecture is described in much greater detail in Prasad

& Subrahmanya (2011). Therefore, the 264-antenna system is a trade-off between

feasibility and scientific returns.

2.2.2.3 Instantaneously coherent visibilities

An aperture synthesis interferometer simulates a large telescope as the earth rotates,

tracing loci on the uv plane. It is easy to see that to achieve better uv coverage through

earth rotation synthesis, east-west antenna separations are needed. In addition north-

south baselines allow imaging of sources near δ = 0◦. Since OWFA is a north-south

array and equatorially mounted, it samples the Fourier modes on the sky at fixed

“points” on the uv plane. The visibilities can therefore be summed coherently. This

is not possible in an earth rotation synthesis telescope, where each baseline’s (u, v) co-

ordinates change with time. Normally, the data are gridded on the uv plane, and the

visibilities from within annuli of width ∆u =
√
∆u2 +∆v2 are summed incoherently.

Coherent summation is an advantage as it results in higher SNR for the same quantity

of data. Since the gradual changes in the visibility amplitude associated with earth

rotation are absent, it is easier to identify time-variable radio frequency intereference

(RFI), for example. A similar argument can be applied to radio transients in the sky.

However, the price paid is the highly diminished number of Fourier modes otherwise

possible through earth rotation aperture synthesis.

2.3 Sensitivity measurements

In this section, some important terms that are useful in a general radio astronomical

context, like antenna and system temperature, sensitivity and gain shall be introduced.

An exercise that allowed us to measure the bandshapes and sensitivity of the system

is described and the results are presented.

2.3.1 Antenna and system temperature

Radio signals from celestial sources are extremely weak. To collect as much power

as possible from these sources in a short time, a radio telescope must have a large
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collecting area and bandwidth. The electromagnetic field at the focus of the telescope

excites electrical voltage fluctuations in the dipoles placed there. This input power

to the telescope can be replaced by an equivalent resistor at the terminals kept at a

particular temperature Ta. This temperature Ta, called the antenna temperature, is

the physical temperature of the resistor that would feed the same amount of power at

the input terminals of the antenna as the celestial radio source. Mathematically, we

would write it as

1

2
S Aeff ∆ν = kB Ta ∆ν (2.1)

per polarisation, where S is the flux density of the source, Aeff is the effective collecting

area of the radio telescope, Ta is the antenna temperature, kB is the Boltzmann constant

and ∆ν is any frequency interval over which the measurement is made. The factor 1
2

accounts for the single polarisation being considered here. A higher value for Ta means

larger input power at the terminals of the telescope. This is the reason why radio

telescopes are designed and built with ever increasing collecting areas. Even in the

absence of radiation from a celestial source reaching the radio telescope, some power is

available from the telescope. This is due to the thermal noise produced by the active

and passive electronics, including the dipoles, cables, amplifiers and filters. This power

can also be represented as an equivalent temperature called the system temperature,

denoted by Tsys. The true equivalent temperature when looking at a celestial radio

source is therefore Ta + Tsys.

The physical dimensions of ORT are 529 m in the north-south direction and 30 m

east-west. The physical area is therefore 529m × 30 m. However, only a fraction η

of the incident power is available at the focus. This is equivalent to having a smaller

reflecting surface of area ηA in which all the incident power is available at the focus.

This quantity ηA is called the effective area, denoted by Aeff , where η is the aperture

efficiency. The ORT has an effective area of 8700 m2 (Swarup et al., 1971), giving an

aperture efficiency of 55%. We can now compute the expected antenna temperature

when looking at a radio source of known flux density, and hence the system gain.

Consider a radio source in the beam of the telescope with a flux density of 1.0 Jy.

Recalling equation 2.1, we have

1

2
× 1.0 × 10−26 × 8700 = 1.38 × 10−23 × Ta (2.2)

which gives Ta = 3.15 K. The gain of the system is therefore 3.15 K/Jy. We must

bear in mind that ORT is single polarised. Since this is the output of all 1056 dipoles

phased together, the gain per dipole is Ta ∼ 3 mK/Jy. The signal-to-noise ratio
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determines the quality of a radio telescope. Therefore, certainly a more meaningful

metric for radio telescopes is the quantity g/Tsys.

2.3.2 Measurements of the antenna parameters

Observations were made on 16th and 17th October 2011 to measure the sensitivity

of a group 24 dipoles and to measure their usable 3-dB bandwidth. The specifics of

the observations are outlined in this section. Details of the observations are given in

Table 2.1.

Table 2.1: Details of the observations

S. No. Date of observation Target Off-target System
1 16-10-2011 Cygnus A -2 h away in RA Phase I - 24 dipoles - S03
2 17-10-2011 Sun -2 h away in RA Phase I - 24 dipoles - S03

The Phase-I system (now not is use) of the ORT programmable receiver employs

direct bandpass sampling of the RF signal. A group of 24 phased dipoles comprises one

input channel to the Phase-I digitiser (Prasad & Subrahmanya, 2011). Therefore, each

RF channel corresponds to one half-module. Each Phase-I pillar takes 10 half-modules.

There are four pillars for the Phase-I system, spaced five modules apart. These pillars

are located under S08, S03, N03 and N08. The measurements of 16th and 17th Oct 2011

were made at the pillar under module S03. For each measurement shown in Table 2.1,

the telescope was pointed at the target CygnusA and allowed to track. The power

levels on the target and off-target (2h away in hour angle) were recorded for each RF

channel by disconnecting the input to the digitiser and connecting the same to the RF

input of the spectrum analyser.

2.3.3 Results from the measurements

The ratio of on-source to off-source RF power is

a =
Ta + Tsys

Tsys
(2.3)

This ratio can be obtained from the deflection measurements by inverting

D = 10 log10(a). (2.4)
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Figure 2.9: An example plot of the sensitivity of the two half-modules of the Phase-I
S04 antennas
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Figure 2.10: Mean sensitivity across the band for the Phase-I RF system for all the
half-modules from S01 to S05 measured in the pillar S03.
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where

D = Pon − Poff (2.5)

If the flux of the source is known, the sensitivity of the system per polarisation is

g =
(a− 1)Tsys

1
2S

K/Jy (2.6)

where Tsys = 150 K, measured independently (Joshi et al., 1988). As an example, the

sensitivity as a function of bandwidth is shown for the two half-modules of S04 is in

Figure 2.9.

Table 2.2: Peak sensitivity of the Phase-I half-modules in S03

S. No. Dipole group Peak sensitivity - K/Jy
1 S1 North 4.83× 10−2

2 S1 South 1.07× 10−2

3 S2 North 6.77× 10−2

4 S2 South 9.42× 10−2

5 S3 North 4.32× 10−2

6 S3 South 2.53× 10−2

7 S4 North 8.21× 10−2

8 S4 South 8.54× 10−2

9 S5 North 9.82× 10−2

10 S5 South 8.30× 10−2

The Phase-I mean peak sensitivity of 75 mK/Jy is close to the expected sensitivity of

72 mK/Jy (24 dipoles of 3 mK/Jy each). The mean sensitivity of the Phase-I system

measured at the pillar under S03 is shown in Figure 2.10. Their 3-dB bandwidths

are also shown in the figure: for the Phase-I system it is approximately 314 MHz to

343 MHz.

The deflection measurements for the Phase-I system were subsequently repeated for

the Sun. Since the flux density of the Sun is not known reasonably well at any given

time, these observations were not used for measuring the sensitivities. However, by

using arbitrary flux units, the shape of the sensitive RF band can be ascertained. The

observing procedure is identical to that followed earlier for Cygnus A. The recorded
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spectra were analysed to obtain the deflection band shapes. The deflection and the

bandshapes recorded on the observations on Sun are shown in Figures 2.11 and 2.12.

2.3.4 Television Interference Lines

Television transmission lines appear in the RF band of Phase I because of the increased

bandwidth. These lines appear at 311 MHz and 343.25 MHz. The strength of these

lines varies with the time of the day and telescope pointing. Shown below in Figure 2.13

are plots of these lines. These lines are often pronounced during evening hours and

persistent throughout the day. However, we expect to be able to negotiate with the

district officials for moving the TV carrier frequencies to some other sub-band.

2.4 Electromagnetic coupling between the dipoles

This section describes an experiment to measure the coupling between dipoles.

Consider a linear array of dipoles, without regard to their polarisation alignment.

Consider two dipoles p and q, separated by a distance d. The array is observing the

sky. Coupling could manifest in two ways:

• A fraction of the response of dipole p to the radiation from the sky is re-radiated

to the surroundings, which dipole q picks up.

• A fraction of the self-generated noise from the front-end electronics (such as the

low-noise amplifier) of dipole p is radiated, which is picked up by dipole q.

2.4.1 Coupling measurements

All measurements were done at the Phase-I pillar at S03. The Phase-I RF setup at

the four pillars is as follows: each half-module RF output is tapped just before the last

two-way combiner. Each pillar has ten RF inputs to the analog-to-digital converter,

one from each half module and five on each side of the pillar. For S03, the half-modules

are labelled S01N, S01S, S02N, S02S and so on upto S05S. Each half-module combines

24 dipoles through a combiner network.

The most direct method of measuring coupling is by measuring the output power

at dipole q when dipole p is supplied with a known input power. Dipole-30 was discon-

nected from the downstream RF electronics and injected with a CW signal. Output

power was measured at succesively further dipoles. Table 2.3 gives the numbers. Cou-

pling as a function of distance is also given as a plot in Figure 2.15.
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Dipole distance Power - dBm
0 0
1 -19
2 -21
3 -24.7
4 -33.7

Table 2.3: Raw isolation between dipoles as a function of distance between the dipoles,
also shown in Figure 2.15.

2.4.2 Results

The numbers in Table 2.3 reflect the low level of coupling between the dipoles in the

ORT. The coupling between the nearest neighbours, which is of interest to us, is about

−20 dB, or at the level of about 1%. At the fourth dipole away from the transmitter,

it is already down to 0.05 %.

2.5 OWFA parameters for the Hi experiment

Some numbers relevant to the OWFA Hi experiment will be derived in this section

and these will be used in several instances throughout the thesis. These numbers are

derived for the ΛCDM model of cosmology, using the cosmological parameters from

Planck results (Planck Collaboration et al., 2014). OWFA will operate in two modes

- as a 40-element interferometer in Mode-I and as a 264-element interferometer in

Mode-II. The bandwidth of operation in both modes is 39 MHz. As the first step, let

us compute the transverse and line-of-sight comoving scales. The redshift of access for

OWFA, at 326.5 MHz, is

z =
λe
λobs

− 1 =
1420.405

326.5
− 1 = 3.35 (2.7)

λe and λobs are respectively the rest frame and observed wavelength of the Hi 21-cm

emission. The transverse comoving scale at this redshift can be computed as

D(z) =
c

H0

∫ z

0

1√
ΩΛ + Ω0(1 + z)3

≃ 6700 Mpc (2.8)

where the curvature term Ωk has been omitted by setting it to zero. Ω0 is the matter

fraction, set here by taking Ω0 = 1− ΩΛ. H0 is the Hubble parameter given by

H0 =

√
8πρcG

3
(2.9)
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whose value from Planck Collaboration et al. (2014) is 67.9 km s−1 Mpc−1. The dark

energy fraction ΩΛ = 0.7 and therefore the matter fraction Ω0 = 0.3. The redshift

space scale r′ν can be easily derived by computing the line of sight comoving scale

corresponding to a unit bandwidth:

r′ν = 11.34 MpcMHz−1 (2.10)

The wavenumber interval k can be computed separately for the transverse and the

line-of-sight components. The transverse wavenumber k⊥ is given by

k⊥ =
2πU

D(z)
(2.11)

and the line-of-sight wavenumber k∥ is given by

k∥ =
2πηH(z)

(1 + z)λobs
(2.12)

where η is the lag between two frequencies νi and νj separated by ∆ν, given by

η =
1

∆ν
=

1

|νi − νj |
(2.13)

For Mode-I, the shortest baseline is Umin = 12.5λ and the longest is Umax = 487.5λ.

For Mode-II, these numbers are Umin = 2.1λ and Umax = 548.9λ respectively. The

wavenumber range for the two modes can be computed by plugging in these numbers,

and a bandwidth of 39 MHz, which produces the smallest lag and consequently the

smallest wavenumber k∥. The largest k∥ that represents the highest frequency mode is

set by the largest lag produced by the smallest separation of two frequencies between

two adjacent channels. Therefore, there is some choice in the maximum LOS wavenum-

ber k∥ through the number of channels within the band. The interferometric sensitivity

can be computed for OWFA for the 39-MHz bandwidth split into N channels. The

measured system temperature Tsys = 150 K. The real (or imaginary) part of the rms

noise fluctuation is

σab =

√
2kBTsys

ηA
√
∆ν∆t

(2.14)

per channel, where kB is the Boltzmann constant, η is the aperture efficiency, A = b×d

is the aperture area, ∆ν = B/N the channel width and ∆t the integration time. The

numbers are summarised in Table 2.4.
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Parameter Notation Mode-I Mode-II
Antennas NA 40 264
Transverse comoving dimension D(z) 6.67 Gpc 6.67 Gpc
Shortest baseline Umin 12.5λ 2.1λ
Longest baseline Umax 487.5λ 548.9λ
Minimum transverse wavenumber kmin

⊥ 1.1× 10−2 Mpc−1 2.0× 10−3 Mpc−1

Maximum transverse wavenumber kmax
⊥ 4.6× 10−1 Mpc−1 5.2× 10−1 Mpc−1

Minimum LOS wavenumber kmin
∥ 1.4× 10−2 Mpc−1 1.4× 10−2 Mpc−1

Maximum LOS wavenumber kmax
∥ 11.2 Mpc−1 11.2 Mpc−1

(768-channel)
Maximum LOS wavenumber kmax

∥ 4.6 Mpc−1 4.6 Mpc−1

(312-channel)
Single visibility noise rms σab 6.3 Jy 37.6 Jy

Table 2.4: OWFA parameters pertinent to the cosmology experiment. The maximum
value for k∥ depends on the number of channels.

2.6 Summary

The ORT is being upgraded to operate as an interferometer. Being an equatorial

mounted, north-south telescope, it gives no east-west baselines. An earlier 16-MHz,

40-antenna version of the interferometer, called Phase-I, is currently not in use. Instead,

the 39-MHz 264-antenna Mode-II interferometer can provide the same functionality of

the 40-antenna Phase-I system but with an improved bandwidth. This functionality

is to be achieved in software, and it is called Mode-I. The Mode-I system will serve as

a proof-of-concept design of the larger and more demanding Mode-II. The enormous

number of redundant baselines is advantageous for the cosmology experiment as it

enables coherent summation of visibilities and robust redundancy calibration. The

wide FoV offers a crucial advantage for studying the large-scale structure, but brings

with it its own challenges, which will be addressed in Chapter 6. This thesis restricts

its study entirely to the 40-antenna Mode-I system.

2.7 Acknowledgements

I gratefully acknowledge the help received from D. Nandagopal, E. Elamathi, P .K.

Manoharan and Jayaram Chengalur for the measurements made on 16 and 17 October

2011. The coupling measurements were made on 13 and 14 October 2014. Help from

Amit Mittal, Kalyanasundaram, Arun Varghese and Magesh is acknowledged. I thank

the telescope operators who helped with all of these observations.

42



2.7 Acknowledgements

-60

-40

-20

 0

 20

 40

 300  310  320  330  340  350  360

dB

MHz

off Sun
on Sun

Deflection

-60

-40

-20

 0

 20

 40

 300  310  320  330  340  350  360
dB

MHz

off Sun
on Sun

Deflection

-60

-40

-20

 0

 20

 40

 300  310  320  330  340  350  360

dB

MHz

off Sun
on Sun

Deflection

-60

-40

-20

 0

 20

 40

 300  310  320  330  340  350  360

dB

MHz

off Sun
on Sun

Deflection

-60

-40

-20

 0

 20

 40

 300  310  320  330  340  350  360

dB

MHz

off Sun
on Sun

Deflection

-60

-40

-20

 0

 20

 40

 300  310  320  330  340  350  360

dB

MHz

off Sun
on Sun

Deflection

Figure 2.11: Deflections of Phase-I half-modules at S03 pillar measured on Sun: half
modules in S1, S2 and S3.
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Figure 2.12: Deflections of Phase-I half-modules at S03 pillar measured on Sun: half
modules in S4 and S5.
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Figure 2.13: Magnified views of the television interference lines at 311 MHz and 343.25
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Figure 2.14: A schematic of the experimental setup for measuring the electromagnetic
coupling.
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Chapter 3

A software model for OWFA

One of the principal aims of the upgrade of the ORT to OWFA (Prasad & Subrah-

manya, 2011; Subrahmanya et al., 2016a,b) is to enable the detection of Hi emission

from large scale structures in the early universe, i.e. at redshifts ∼ 3. Theoretical

calculations of the expected emission tuned to the projected parameters of OWFA

indicate that the telescope should have sufficient sensitivity to detect the power spec-

trum of the redshifted Hi 21-cm emission, in integration times of a few hundred hours

(Ali & Bharadwaj, 2014; Bharadwaj et al., 2015; Sarkar et al., 2016a). Currently, a

number of experiments are in various stages of progress that aim to directly detect

the brightness temperature fluctuations δTb of the 21-cm post-reionisation cosmolog-

ical signal, like CHIME (Bandura et al., 2014), BAOBAB (Pober et al., 2013b) and

the Tianlai CRT (Chen, 2011; Xu et al., 2015). These experiments would each operate

at different frequency ranges; BAOBAB has been proposed to specifically detect the

BAO feature in the redshifted Hi 21-cm line in the 600-900 MHz band. The Tianlai

CRT also is gearing up to detect the BAO features and constrain dark energy through

redshifted Hi 21-cm observations in the 700-1400 MHz band (Chen, 2011; Xu et al.,

2015). CHIME would overlap with both these experiments in the range ∼ 400 − 800

MHz. The OWFA cosmology experiment is expected to fill a significant gap in un-

derstanding the evolution of post-reionisation neutral hydrogen at large scales in an

important redshift interval of z ∼ 3.35.

While the raw sensitivity of the telescope would be sufficient to detect the Hi emis-

sion from redshifts z ∼ 3.35 (Ali & Bharadwaj, 2014; Bharadwaj et al., 2015), the ex-

pected signal is many orders of magnitude fainter than the other astrophysical signals,

i.e. the “foregrounds” (see e.g. Di Matteo et al., 2002; Santos et al., 2005; Ali et al.,

2008). These include emission from the diffuse ionised galactic interstellar medium

(“diffuse Galactic synchrotron emission” and “galactic free-free emission”) and emis-

sion from the extragalactic radio sources (called “the extragalactic foreground”) that
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the telescope is sensitive to. Many instrumental effects come into play when the signal

of interest is buried in several orders of magnitude brighter foregrounds: systematics

introduced by uncalibrated antenna gains, interference from terrestrial sources and ef-

fects of the complex intrinsic interaction between the instrument and the foregrounds,

due to the chromatic response of the telescope, are thought to be the dominant con-

tributors. A good understanding of all of these issues is required to enable a robust

prediction of the cosmological signal that could be detected through observations with

OWFA.

The first step to understanding the instrumental systematics is to develop a thor-

ough understanding of the instrument itself, and capture it in a software model that

would include all the expected instrumental effects. All of the astrophysical signals

(e.g. the diffuse Galactic and the extragalactic point source foregrounds) can then be

suitably parametrized and included in the model. One of the expected by-products of

the exercise to detect the cosmological HI signal is a better understanding of some of

the foregrounds, particularly of the diffuse Galactic foreground, which is the dominant

foreground from within the Galaxy. The diffuse Galactic foreground emission is of

interest in itself (see e.g. Iacobelli et al., 2013a,b, 2014). The ability to characterise the

foregrounds and the fundamental limitations set by the instrument are both crucial to

enable realistic predictions for the redshifted Hi 21-cm detection. The software model

described in this chapter was developed in order to help better understand the system-

atics, as well as devise methods to devise foreground characterisation and subtraction

methods.

3.1 The rationale for a software model

The OWFA Hi experiment is a challenging one in terms of both the special hardware

requirements as well as the methods and algorithms that would eventually enable us

to measure the Hi power spectrum. A significant component of the design of an exper-

iment, especially in modern low frequency radio cosmology, has been the investment in

simulating the instrument and the experiment itself based purely on a software model.

The results from simulations can often influence the course of the experiment through

valuable insight. This has been the driving philosophy for a simulator based on a

software model for the OWFA Hi experiment.

For OWFA, traditional interferometric data analysis software packages are not use-

ful as they do not provide sufficient functionality for redundancy calibration, or for

the final processing which, in this case, is not imaging. A complete software suite has

been developed consisting of several standalone programs that serve two simultaneous
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purposes:

• to simulate visibilities as obtained from OWFA, based on the instrument and sky

description. The instrument description should naturally lead to all the effects

and systematics that are expected to be present in an actual interferometric

observation. Simulated data can provide a test bed for devising and refining RFI

mitigation algorithms, calibration algorithms and statistical estimators for signal

characterisation, etc.

• to function as the observatory software pipeline that is used to process real data

from the telescope, so that the simulations above inform us to refine and adopt

optimal strategies for working with real data.

Given that a software model for the telescope and the sky would serve as a very

useful guide to the experiment, the preliminaries needed for describing the emulator in

some detail are set out, and its various features listed with examples.

3.2 The programming philosophy

The software suite that has been developed for OWFA simulations is a C-based col-

lection of utilities and algorithm implementations. Visualisation of data is almost the

first step in data handling and a standard format definition should therefore be the

first choice. The suite was conceived from the early days as one that would grow organ-

ically to accommodate observatory needs. Therefore, the choice was to adhere to an

international standard for the visibility data, so that a team of astronomers stationed

in widely separated geographical locations can handle these data using this software

suite. The following considerations were kept in mind during the development of the

emulator.

• The Flexible Image Transport System (FITS; Wells et al. 1981) or the Measure-

ment Set (MS; Kemball & Wieringa 2000) format definition were the obvious

formats to choose from. A FITS file can be converted to MS using readily avail-

able tools. Given the popularity that FITS enjoys and the number of FITS tools

available, like cfitsio, ds9 and fv (to name a few), it was but natural to choose it.

Therefore the programs were developed around the FITS format for easy data

portability. Besides, the fact that it is the data format at the GMRT and hence

is familiar to astronomers both within NCRA and users of the GMRT played a

significant role in the decision to adopt FITS.
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Start

Stop

Initialize program
variables

Main function call

Global structure
{ struct s1, s2. s3...sn;
var v1, v2, v3... vn; }

Initalize global structure

Subroutine 1 Subroutine 2

Subroutine 3 Subroutine 4

Subroutine n

Subroutine 5 Subroutine 6

Subroutine k

User call

Figure 3.1: The general model for each program in the OWFA simulator suite

• The second major factor was the ability to add new utilities to the suite by anyone

familiar with the FITS definition. Therefore, the suite comes with a very rich set

of subroutine functions that do standard operations in a transparent manner. A

new utility that has to operate on the FITS data at the level of individual records

can hence draw on this library of subroutines.

• Finally, a high level of ease with which utilities can be added to the suite is

achieved by making the chore of passing arguments to function calls a trivial

operation. Instead of passing specific arguments to functions, the pointer to a

global superstructure is passed uniformly to all function calls. The superstructure

itself is a structure of many structures, which are defined in different header files

depending on their functionality. Therefore, a new user would be able to add

his or her own function definition to the existing subroutines without fussing too

much about passing the right argument.

Figure 3.1 captures the spirit of the programming philosophy. The main call merely

initialises a few variables specific to the program. Subroutines, variables and structures

are segregated according to their functionality and defined in appropriate header files.

Similarly, subroutine functions are defined in functionally separable C program files.

For example, all function definitions related to the instrument are available in the
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inc/sysdefs.h and src/syssubs.c files. FITS-related definitions and structures are to

be found in inc/fitsdefs.h and src/fitssubs.c files. Sky simulations are grouped under

inc/skydefs.h and src/skysubs.c. Mathematical function definitions and structures

are grouped under inc/matdefs.h and src/matsubs.c. The global superstructure,

which holds all the variables and structures, is defined to be of type ProjParType in

inc/sysdefs.h.

3.3 Prowess - a Programmable OWFA Emulator

System

The software suite is given the name “Programmable OWFA Emulator System” (Prowess),

and it is self-explanatory. Programmable, because adding new utilities or functional-

ity is made easy as described in the previous section, and the emulator is specific to

OWFA. The preliminaries required to capture the instrument in a software model are

now described.

3.3.1 Antennas and baselines

OWFA (Subrahmanya et al., 2016a,b) would operate in two concurrent modes - Mode-

I and Mode-II. Mode-I is a 40-antenna interferometer and Mode-II is a 264-antenna

interferometer. The aperture is a ∼ 530 m long cylinder that is 30 m wide. Given the

christmas-tree network, this long aperture would function as a multi-element system.

The signal at the output of every four dipoles is digitised. The two interferometer

modes provide two different aperture settings:

• Every group of 4 dipoles, or a sixth of a half-module, would operate as a single

element in Mode-II. This corresponds to 1.92 m of the 530 m long cylinder,

equivalent to 2λ. This results in 264 apertures throughout the length of the

telescope.

• A software system coherently sums the signal from every group of six Mode-II

elements to provide a second 40-antenna interferometer mode. This is equivalent

to digitising every group of 24 dipoles, or a half-module, which constitutes a

single element in Mode-I. This corresponds to 11.5 m of the 530 m long cylinder,

equivalent to 12.5λ. This results in 44 apertures throughout the length of the

telescope, but the peripheral 2 elements on each end of the telescope are ignored,

giving a total of 40 elements.
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#AntId Ant bx by bz ddly fdly
#------------------------------------------------------------
ANT00 N10N 0.0 0.0 10.0 0.0 0.0
ANT01 N10S 0.0 0.0 21.5 0.0 0.0
ANT02 N09N 0.0 0.0 33.0 0.0 0.0
ANT03 N09S 0.0 0.0 44.5 0.0 0.0
ANT04 N08N 0.0 0.0 56.0 0.0 0.0
ANT05 N08S 0.0 0.0 67.5 0.0 0.0
ANT06 N07N 0.0 0.0 79.0 0.0 0.0
ANT07 N07S 0.0 0.0 90.5 0.0 0.0
ANT08 N06N 0.0 0.0 102.0 0.0 0.0
ANT09 N06S 0.0 0.0 113.5 0.0 0.0
ANT10 N05N 0.0 0.0 125.0 0.0 0.0
ANT11 N05S 0.0 0.0 136.5 0.0 0.0
ANT12 N04N 0.0 0.0 148.0 0.0 0.0
ANT13 N04S 0.0 0.0 159.5 0.0 0.0
ANT14 N03N 0.0 0.0 171.0 0.0 0.0
ANT15 N03S 0.0 0.0 182.5 0.0 0.0
ANT16 N02N 0.0 0.0 194.0 0.0 0.0
ANT17 N02S 0.0 0.0 205.5 0.0 0.0
ANT18 N01N 0.0 0.0 217.0 0.0 0.0
ANT19 N01S 0.0 0.0 228.5 0.0 0.0
ANT20 S01N 0.0 0.0 240.0 0.0 0.0
ANT21 S01S 0.0 0.0 251.5 0.0 0.0
ANT22 S02N 0.0 0.0 263.0 0.0 0.0
ANT23 S02S 0.0 0.0 274.5 0.0 0.0
ANT24 S03N 0.0 0.0 286.0 0.0 0.0
ANT25 S03S 0.0 0.0 297.5 0.0 0.0
ANT26 S04N 0.0 0.0 309.0 0.0 0.0
ANT27 S04S 0.0 0.0 320.5 0.0 0.0
ANT28 S05N 0.0 0.0 332.0 0.0 0.0
ANT29 S05S 0.0 0.0 343.5 0.0 0.0
ANT30 S06N 0.0 0.0 355.0 0.0 0.0
ANT31 S06S 0.0 0.0 366.5 0.0 0.0
ANT32 S07N 0.0 0.0 380.0 0.0 0.0
ANT33 S07S 0.0 0.0 389.5 0.0 0.0
ANT34 S08N 0.0 0.0 401.0 0.0 0.0
ANT35 S08S 0.0 0.0 412.5 0.0 0.0
ANT36 S09N 0.0 0.0 424.0 0.0 0.0
ANT37 S09S 0.0 0.0 435.5 0.0 0.0
ANT38 S10N 0.0 0.0 447.0 0.0 0.0
ANT39 S10S 0.0 0.0 458.5 0.0 0.0
#END

Figure 3.2: The antenna definition file Antenna.Def.40 for Mode-I of the OWFA inter-
ferometer.
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To begin with, the emulator has to be initialised with the antenna positions. This is

done through an input Antenna Definition file, “Antenna.Def.40” for Mode-I and “An-

tenna.Def.264” for Mode-II. The parsing section of the code then figures out which of

the two modes the telescope is being operated in. Accordingly, it sets the aperture di-

mensions. The user has the option to switch off certain antennas in the “Antenna.Def”

file to simulate a situation when some antennas are not available. These are then omit-

ted from the simulations as well as the output visibility data. This not only obviates

the need to maintain a running log of the invalid antennas, but also eases memory and

storage requirements. Figure 3.2 shows the antenna definition for Mode-I. The file has

seven columns:

1. Column 1 shows the antenna identifier used by the FITS standard.

2. Column 2 is the antenna name; the name of each antenna is tied to its identifier.

This helps in unambiguous bookkeeping even when switching off certain antennas.

3. Columns 3, 4 and 5 respectively give the antenna x, y and z co-ordinates in a

right-handed co-ordinate system, which shall be described shortly.

4. Columns 6 and 7 respectively denote the delay in seconds, corresponding to the

number of integer and fractional clock cycles offset with respect to a reference

antenna. At the moment, these fields are not being used, hence their values are

all set to zero. In practice, these would represent the fixed delays arising from

differences in cable and optical path lengths. Therefore they can be measured

reasonably accurately.

Since the dipoles are regularly spaced, the equivalent apertures in Mode-I and Mode-

II are also regularly spaced. This results in an interferometer in which the separation

between any pair of apertures is an integral multiple of the shortest separation between

adjacent apertures,

dn = nd (3.1)

where d is the both the size of the aperture as well as the shortest spacing. The

40-antenna Mode-I has twenty half-modules in the northern half and twenty in the

southern half. The northern modules are named N01 to N10 outwards from the mid-

point of the telescope, and similarly the southern modules. The two half-modules

within each module are given a “N” or “S” identifier. The antenna definition file is

parsed and the values are stored in the antenna structure within the superstructure

(ProjParType).
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In the co-ordinate system chosen for OWFA, the antennas are placed along the

z-axis. Each antenna i is assigned a complex, frequency-dependent, electronic gain gi,

obtained as a random complex number distributed around a mean gain |g|, referred to

the central frequency ν0. The observing band is split into N channels. The antenna

structure initialization information is written out in a log called “ant-init.info”. The

real and imaginary parts of the complex gains, as well as its amplitude and phase (in

degrees) at ν0 are written out in the file. An example is shown in Figure 3.3.

Baselines are then obtained as antenna pairs, and each baseline is written into a

structure that holds the baseline number, the participating antenna pair, the projected

lengths of the baseline in three dimensions and its length in wavelength units at the

reference frequency. A log of the baselines is written out to “baseline.info”, part of

which is shown in Figure 3.4. An NA antenna interferometer results in NAC2 baselines,

giving 780 for Mode-I and 34716 for Mode-II. The baseline vectors are obtained from the

physical antenna separations, defined at the central frequency ν0 but at each channel

it is appropriately scaled when computing the visibilities.

d|a−b| = xa − xb (3.2)

U|a−b| = d|a−b|
ν

c
(3.3)

Equation 3.2 shows the physical separation between antenna pairs, whereas equa-

tion 3.3 shows the baseline in wavelength units at any given frequency ν. The regular

spacing of the antennas results in baselines with redundant spacings. As a result, we

obtain NA − n copies of the baseline with a separation of n units. In this case of

an NA-antenna linear array, only NA − 1 baselines out of NAC2 are unique and non-

redundant. All of these NA − 1 baselines have redundant copies, except the longest

one.

3.3.2 A co-ordinate system suitable for OWFA

A generalised framework for computing the visibilities is presented here. Consider a

right-handed Cartesian coordinate system, shown in Figure 3.5, tied to the telescope, in

which the z-axis is along the N-S direction, parallel to the axis of the parabolic cylinder,

the x-axis is aligned with the normal to the telescope aperture which is directed towards

(α0, 0) on the celestial equator, and the y axis is in the plane of the telescope’s aperture,

perpendicular to both the x and z axes. î, ĵ and k̂ denote the unit vectors along x, y
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### Antenna Re(gain) Im(gain) abs(gain) arg(gain)
###
0 N10N 2.111527 -1.651020 2.680375 -38.022146
1 N10S -0.769040 2.448255 2.566198 107.438412
2 N09N -0.913652 -2.671373 2.823295 -108.881507
3 N09S -0.190915 1.659500 1.670446 96.562654
4 N08N 1.466966 0.517440 1.555549 19.429184
5 N08S 1.348224 1.415455 1.954794 46.393533
6 N07N 1.723441 0.145458 1.729569 4.824328
7 N07S -2.511021 1.459677 2.904459 149.830224
8 N06N 0.463453 2.223640 2.271423 78.226895
9 N06S 1.004124 0.798968 1.283205 38.508795

10 N05N -0.046135 -1.031570 1.032601 -92.560763
11 N05S -0.425501 1.201335 1.274463 109.503632
12 N04N 1.067091 -0.765654 1.313358 -35.660018
13 N04S -0.976506 -0.795601 1.259581 -140.828831
14 N03N -0.593958 -2.938420 2.997849 -101.427514
15 N03S -1.075955 1.716523 2.025865 122.080404
16 N02N 0.634671 -2.132853 2.225280 -73.428618
17 N02S 2.248666 0.345837 2.275105 8.743388
18 N01N -1.958163 0.338268 1.987166 170.199009
19 N01S -0.212065 1.570783 1.585034 97.688771
20 S01N -0.256268 2.037437 2.053490 97.168981
21 S01S -1.398241 1.134270 1.800457 140.950603
22 S02N 0.940308 -1.253056 1.566629 -53.114995
23 S02S -2.284185 1.273998 2.615449 150.849531
24 S03N -1.082240 0.356707 1.139511 161.757747
25 S03S -1.759266 -1.056243 2.051991 -149.019895
26 S04N 0.717962 1.183710 1.384428 58.761694
27 S04S 1.618630 -2.260757 2.780465 -54.398543
28 S05N -1.119425 -0.141581 1.128343 -172.791702
29 S05S -1.766846 -0.739613 1.915403 -157.285498
30 S06N -1.451497 0.270899 1.476560 169.428287
31 S06S -1.661479 2.259256 2.804416 126.331123
32 S07N 1.485732 0.379087 1.533331 14.313723
33 S07S -0.112640 1.746786 1.750414 93.689545
34 S08N 1.000865 1.760449 2.025071 60.380554
35 S08S -2.000693 -0.504059 2.063213 -165.859076
36 S09N -1.705893 0.778837 1.875275 155.460620
37 S09S 0.519385 2.814091 2.861620 79.542844
38 S10N 0.112905 1.564518 1.568587 85.872353
39 S10S 1.386609 -1.809840 2.279958 -52.542475

Figure 3.3: The antenna initialiser log, with the complex gain assigned to each antenna.
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### Ant1 Ant2 FITSbl Ant1 Ant2
###
1 0 1 257 N10N N10S
2 0 2 258 N10N N09N
3 0 3 259 N10N N09S
4 0 4 260 N10N N08N
5 0 5 261 N10N N08S
6 0 6 262 N10N N07N
7 0 7 263 N10N N07S
8 0 8 264 N10N N06N
9 0 9 265 N10N N06S
10 0 10 266 N10N N05N
11 0 11 267 N10N N05S
12 0 12 268 N10N N04N
13 0 13 269 N10N N04S
14 0 14 270 N10N N03N
15 0 15 271 N10N N03S
16 0 16 272 N10N N02N
17 0 17 273 N10N N02S
18 0 18 274 N10N N01N
19 0 19 275 N10N N01S
20 0 20 276 N10N S01N
21 0 21 277 N10N S01S
22 0 22 278 N10N S02N
23 0 23 279 N10N S02S
24 0 24 280 N10N S03N
25 0 25 281 N10N S03S
26 0 26 282 N10N S04N
27 0 27 283 N10N S04S
28 0 28 284 N10N S05N
29 0 29 285 N10N S05S
30 0 30 286 N10N S06N
31 0 31 287 N10N S06S
32 0 32 288 N10N S07N
33 0 33 289 N10N S07S
34 0 34 290 N10N S08N
35 0 35 291 N10N S08S
36 0 36 292 N10N S09N
37 0 37 293 N10N S09S
38 0 38 294 N10N S10N
39 0 39 295 N10N S10S

Figure 3.4: The log “baselines.info” that lists the baselines counted as pairs of the
available antennas. Only the first 39 baselines of Mode-I are shown as an example.
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Figure 3.5: A schematic of the co-ordinate system for computing the visibilities, in
which n is an arbitrary direction and m is the direction of pointing. The visibilities
are computed over the entire solid angle of the celestial hemisphere.
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and z respectively. In this coordinate system, we have

U = vk̂ (3.4)

Observations are centered on a position (α0, δ0) on the celestial sphere: let the unit

vector m̂ denote this position on the celestial sphere. m̂ always lives on the x−z plane,

and is given by

m̂ = sin(δo) k̂+ cos(δ0) î (3.5)

The measured visibility for a baseline U at a frequency ν can be written as

M(U, ν) =

∫
dΩn̂ I(n, ν)A(∆n, ν) e2πiU·∆n (3.6)

where n̂ refers to an arbitrary direction in the celestial sphere, given by

n̂ = sin(δ) k̂+ cos(δ)
[
cos(α− α0) î+ sin(α− α0)̂j

]
(3.7)

The solid angle integral here is over the entire celestial sphere, and

∆n = n̂− m̂ (3.8)

We finally have

M(U, ν) =

∫
[d sin(δ) dα] I(α, δ) e2πiv[sin(δ−δ0)]A(∆ny,∆nz) (3.9)

where ∆ny = cos(δ) sin(α− α0) and ∆nz = sin(δ − δ0). Note that in this co-ordinate

system the argument of the exponent depends only on the baseline length and the

declination, reflecting the 1D geometry of OWFA.

3.3.3 Aperture and the primary beam

We may write the general beam pattern for a rectangular aperture as A(∆n) ≡
A(∆ny,∆nz) where (∆ny,∆nz) are respectively the y and z components of ∆n. The

Mode-I aperture is 11.5m × 30m and the Mode-II aperture is 1.92m × 30m in d × b.

Figure 3.6 shows the aperture arrangement for OWFA. For the rectangular aperture

we have in the case of OWFA, if we assume for the moment uniform illumination,
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Figure 3.6: The aperture arrangement for OWFA.

A(∆ny,∆nz) can be modelled as a product of sinc2 functions:

A(∆ny,∆nz) = sinc2
(
πb∆ny

λ

)
sinc2

(
πd∆nz

λ

)
(3.10)

However, the primary beam should infact be written as

A(θ, ν) =

(
sin
(
π dν

c (δ − δ0) cos δ0
)

π dν
c (δ − δ0) cos δ0

)2(
sin
((
π bν

c

)
(α− α0)

)

π bν
c (α− α0)

)2

(3.11)

The cos δ0 factor in the primary beam function arises from the fact that the aperture is

foreshortened in the d direction as seen from the source at δ0. This effective reduction

in the aperture size results in a broader primary beam as the declination increases, as

well as reduced sensitivity. In Prowess, by default for Mode-I, the beam is computed

out upto ∼ 18◦ from the phase centre in each direction. This corresponds to three

sidelobes north-south, and 10 sidelobes east-west at δ0 = 0◦. The beam is computed

and stored as an array, with a pixel resolution ∼ 1.0′ × 1.0′ and 2048 × 2048 pixels

across. The simulated foreground maps, discussed in Chapter 5, are also computed

and stored in an identical sized array. The sinc2 beam used here is considered only

as a worst-case scenario, i.e., as having the most pronounced sidelobes. In practice,

the beam is a Gaussian in the east-west dimension as confirmed independently from

slew-scan measurements. The full extent of the simulated primary beam power pattern

is shown in Figure 3.7 at four different declinations. Having said that, Prowess can

accommodate any definition for the primary beam power pattern, and it need not be

constrained to the two-dimensional sinc2 pattern.
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(a) δ0 = 0◦ (b) δ0 = 20◦

(c) δ0 = 40◦ (d) δ0 = 60◦

Figure 3.7: The primary beam power pattern at declinations (a) δ0 = 0◦, (b) 20◦, (c)
40◦ and (d) 60◦. The beam widens noticeably in declination extent at higher declination
as the projected aperture size shrinks as cos δ0.
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Figure 3.8: This flowchart gives an overall picture of the part of the simulator that
produces the model and observed visibilities.

3.3.4 Sky and model visibilities

The computation of the model visibilities is now described below. In the model for the

foregrounds, only two components are considered here as they are the most dominant

at ∼ 325 MHz. The diffuse Galactic synchrotron foreground dominates the emission

from within the Galaxy at very large scales (! 2◦), while the extragalactic sources

dominate at scales typically smaller than a degree (Ali & Bharadwaj, 2014). Random

realisations of the foreground emission are obtained from the assumed power spectrum

of the emission: the details of how they are generated are explained in Chapter 5.

Once the maps are available, their individual components are superimposed in sky-

coordinates to obtain the total emission from the sky. The specific intensity function
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is then given by

I(α, δ, ν) = ∆ID(α, δ, ν) +
L∑

k=1

Ik(αk, δk, ν) (3.12)

where ∆ID(α, δ, ν) is the fluctuation in the specific intensity of the diffuse foreground

emission, and the L distinct extragalactic radio sources are identified by their co-

ordinates (αk, δk) and specific intensities Ik. The discrete sources are each confined to

a pixel, so that the specific intensity of each source is equal to its flux density. For the

diffuse foregrounds, the simulated maps are already pixelised, and the specific intensity

in each pixel has already been scaled by the solid angle of the pixel. The flux density

of the sky is

S(α, δ, ν) = ∆SD(α, δ, ν) +
L∑

k=1

Sk(αk, δk, ν) (3.13)

Since the model visibilities M(U, ν) for the non-redundant set of baselines are ob-

tained as a pixel-by-pixel Fourier sum of the primary-beam weighted specific intensity

distribution, we finally have

M(U, ν) =
∑

α,δ

S(α, δ, ν) A(α, δ, ν) e−i2πU.n̂ (3.14)

which is the discretised version of equation 3.6.

The observing band is centered at 326.5 MHz with a bandwidth of ∼ 39 MHz

split into 312 channels in the simulations. The frequency resolution in this case is 125

kHz per channel. Based on our understanding of the distribution of the neutral gas

around the redshift of z ∼ 3.35, it is expected that the Hi signal at two redshifted

frequencies, separated by more than ∆ν ∼ 1 MHz, decorrelates rapidly (Bharadwaj

& Ali, 2005; Bharadwaj et al., 2009). This means that with a channel resolution of

125 kHz, the Hi signal correlation is adequately sampled over the 1-MHz correlation

interval. In reality, the channel resolution is likely to be much finer (∼ 50kHz), with

about 800 channels across the 39-MHz band. This is useful for the identification and

excision of narrow line radio frequency interference. Beyond the need to handle RFI,

there is no real incentive to retain the visibility data at this resolution at the cost

of downstream computing and storage requirements. Eventually, we may smooth the

data to a resolution of 125 kHz, keeping in mind the decorrelation bandwidth of the

Hi signal. The emulator itself is indeed capable of running at any frequency resolution,

including the actual final configuration of the Mode-I and Mode-II systems. But the
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3.3 Prowess - OWFA emulator

125-kHz resolution used in the simulations allows for rapid processing, especially if

they are to be run repetitively for a wide range of different parameters.

The model visibilities M(U) need be obtained only for the set of distinct non-

redundant baselines, denoted by U|i−j|. The observed visibility Vij for a baseline with

antennas i and j depends on the model visibility for that particular spacing M|i−j|, as

well the gains of the individual antennas:

Vij = gi g
∗
j M|i−j| +Nij(ν) (3.15)

where M is the model visibility including the primary beam as described above, gi

and gj are the complex antenna gains and Nij is the complex Gaussian random noise

equivalent to the system temperature Tsys. The real and imaginary parts of the noise

Nij in equation 3.15 have a RMS fluctuation

σij =

√
2kBTsys

ηA
√
∆ν∆t

(3.16)

per channel, where kB is the Boltzmann constant, η is the aperture efficiency, A =

b × d is the aperture area, ∆ν the channel width and ∆t the integration time. The

foreground maps give the flux in Jy units at every pixel, therefore the Fourier sum

directly produces the model visibilities in Jy units as well. The flowchart in Figure 3.8

gives a bird’s eye view of the part of the simulator pipeline used to obtain the visibilities,

and summarises the emulator part of Prowess. The dashed box in the flowchart

represents the functionality that simulates the foreground maps. The emulator also

has the functionality to accept an external FITS image (e.g. via observations from

some other telescope) of the foreground.

3.3.5 Data visualisation

The simulated visibilities are written into a FITS file in the UVFITS data format.

This is a standard format for reading and writing the radio interferometric visibility

data, and is the format being used at the GMRT. However, Prowess has its own in-

terface that helps in visualising the visibility data, which is explained here. The data

are available in time-baseline-frequency order. That is, the coarsest data identifier is

the record number, which is tagged to the timestamp. At each timestamp, all the
NAC2 baselines are sorted in a specific order, indexed by the FITSbl number shown in

Figure 3.4. Each baseline has N channels, and each channel has a real and imaginary

number for the visibility, and an associated weight. The visibility data therefore re-

side in a gridded three-dimensional co-ordinate system where the three axes are time,
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Time

Baseline

Frequency

Figure 3.9: The display buffer with gridded Time, Frequency and Baseline axes, where
the complex visibility resides.
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Figure 3.10: A time-frequency view of the visibility data on the T −N plane for B = 1.
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Figure 3.11: A time-baseline view of the visibility data on the T − B plane for N = 156.
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Figure 3.12: A frequency-baseline view of the visibility data on the N −B plane for T = 30.

67

Chapter3/Chapter3Figs/imagfrbl.eps
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baseline and frequency. There are T × B × N grid cells, where T is the number of

records, B is the number of baselines and N is the number of channels, shown in Fig-

ure 3.9. This arrangement is very convenient; therefore the native structure that holds

these visibility data in a display buffer is similarly defined. For visualising the data,

they are therefore read from the FITS record into the display buffer. The visualisation

programs hence access one of the planes parallel to the T −B, B−N or T −N planes.

Figures 3.10, 3.11 and 3.12 show the simulated visibility accessed from the display

buffer for an example run with a particular realisation for the diffuse Galactic fore-

ground, with the 312-channel, 40-antenna, 780-baseline Mode-I configuration observed

for 60 seconds with a record being written to disk every second. There is an option

to dynamically switch between a real/imaginary or an amplitude/phase view, and dy-

namically switch between linear, square-root and logarithmic image transfer functions.

A dynamic zooming feature is available in these interfaces as well. Besides the colour-

coded plan view, these plane data from the display buffer can also be viewed in a

conventional viewscope format, again, with the option to dynamically switch between

real/imaginary and amplitude/phase view formats.

3.4 The observatory data processing pipeline

Prowess is not an emulator alone, as the name may suggest. It was described in

Section 3.1 why the emulator was conceived: it serves the dual purpose of an emulator

and would potentially become the standard post-correlation data processing pipeline

at the observatory. It would be useful now to dwell a little on the data processing

pipeline aspect of Prowess and state what functionality it is meant to provide.

The data pooled from the antennas would terminate in the eight high-performance

compute nodes through eleven copper ethernet links each. These nodes correlate the

signal from every pair of antennas and accumulate the products upto an interval of

time, usually programmable. The typical integration time, called the Long Term Ac-

cumulation (LTA), is of the order of 1 − 10 seconds. Once the data are available in

FITS format, Prowess can completely take over downstream processing, which in-

clude calibration and power spectrum estimation. The uncalibrated FITS data can as

well be stored in the disks for offline calibration. The enormous redundancy of the

measurements and the structure of OWFA are best exploited by calibrating the visibil-

ities using a non-linear least squares redundancy calibration algorithm (see Chapter 4).

This is a fast N2
A algorithm that is capable of running in real time. The calibrated

visibilities are later processed to obtain the power spectrum of the observed sky (see

Chapter 6). A list of most useful programs that can be run standalone or be pipelined
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is given in Appendix A.

3.5 Summary

A software model that captures the instrumental and geometric details of OWFA has

been described. This detailed model is an important aid to understanding the system-

atics introduced by the instrument and to make robust and meaningful predictions for

the foregrounds and the Hi signal. The programming philosophy allows for modular

function definitions and easy addition of new functionality. The suite features a rich

and interactive visual environment to play back the visibility data. These programs

comprise not just an emulator for OWFA, but they are also designed to serve as ob-

servatory data analysis software. Prowess has greatly aided our understanding of the

instrument and the systematics expected in the OWFA cosmology experiment; these

will be described in the following chapters.
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Chapter 4

Redundancy calibration

The visibilities obtained by a radio interferometer have to be corrected for the unknown

gains of the antennas before they can be used for further processing. This is a well

known problem (viz. “calibration”) and calibration routines are available in several

different interferometric data reduction packages. A special case of calibration arises

when the array is such that a given antenna spacing is present multiple times. Each

instance in such a “redundant” baseline set measures the same Fourier component of

the sky brightness distribution. The only differences between the copies are due to the

different multiplicative gains and additive noise along the different signal paths. For

a sufficiently redundant array, this multiplicity of measurements of the same physical

quantity allows simultaneous estimation of both the antenna gains as well as the true

sky visibilities. Some of the earliest work on “redundancy calibration” was done at the

Westerbork Synthesis Radio Telescope (WSRT; Noordam & de Bruyn 1982; Wieringa

1991, 1992). Interest in redundancy calibration has seen a revival in the recent past

because a number of new instruments (e.g. LOFAR: Falcke 2006; van Haarlem et al.

2013, PAPER: Parsons et al. 2010 and MWA: Lonsdale et al. 2009; Tingay et al.

2013) have been designed with some degree of redundancy. The LOFAR stations,

for instance, have a redundant NA × NA geometry that allows accurate calibration

of each of the antennas within the station (Noorishad et al., 2012). Further, certain

astrophysics and cosmology experiments would benefit from redundant configurations

for the telescope geometry: CHIME (Peterson et al., 2006; Bandura et al., 2014),

the Tianlai CRT (Chen, 2011; Xu et al., 2015) and BAOBAB (Pober et al., 2013b)

are specific examples, while Parsons et al. (2012) discuss redundant configurations for

redshifted Hi 21 cm studies such as the Epoch of Reionisation (EoR).

Many of the algorithms in previous work on redundancy calibration largely used

linear least squares (LLS) methods to solve for the antenna gains and sky visibilities.

A popular LLS redundancy calibration algorithm by Wieringa (1991, 1992), and its
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4. REDUNDANCY CALIBRATION

recent modification by Liu et al. (2010) are described briefly. A fast, non-linear least

squares (NLS) algorithm is then derived and its performance is compared with the

two earlier algorithms. In the course of doing so, results are presented for simulated

data, comparing the error estimates with ensemble average errors from a Monte-Carlo

simulation. It will also be established that this new NLS solver is statistically optimal.

A large part of the work presented in this chapter is based on Marthi & Chengalur

(2014).

4.1 Algorithms for redundancy calibration

At any instant of time, a two-element interferometer measures a single Fourier mode

(called the visibility) of the incident radiation field. The complex gains along each of

the signal paths and the additive thermal noise cause the measured visibility to differ

from the true visibility. Mathematically:

Vij = gig
∗
jMij +Nij (4.1)

where gi and gj are the complex gains associated with the antennas i and j respectively,

Mij is the true visibility of the sky corresponding to the baseline between antennas i

and j, and Nij is the complex-valued additive noise.

The model visibility in equation 4.1 is assumed to already include the primary beam.

We also assume that phase variations arising from the ionosphere can be lumped to-

gether with the complex gain of the receiver chain, and that the correlator does not

introduce any baseline based gains or errors. We return to a discussion of these as-

sumptions in Section 4.3. In order to recover the true visibility, the gains gi would have

to be known, i.e. the interferometer would have to be calibrated. For a multi-element

interferometer with NA elements, the number of instantaneous visibility measurements

goes like ∼ N2
A, while the number of unknown gains is only NA. In addition the

measured visibilities must obey the amplitude and phase closure constraints,

|Vij| |Vkl|
|Vik| |Vjl|

=
|Mij | |Mkl|
|Mik| |Mjl|

(4.2)

φij + φjk + φki = θij + θjk + θki (4.3)

which relate the measured visibilities to the true visibilities. Because of these con-

straints, fixed point methods can be used to iteratively refine both the gains and the

visibilities, (viz. do self calibration) provided some reasonable initial guess for the gains
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and the structure of the source is available (see e.g. Thompson et al., 2008). Concep-

tually, the simplest way to do this would be to observe a region of the sky where the

true visibilities Mij are known, to solve for the unknown gains gi using the observed

visibilities Vij. Such regions are called calibrator fields, and one would need to know

their visibilities over the entire range of Fourier scales that the interferometer probes. If

the gain variation timescale is long compared to the time interval between observations

of calibrator sources, the solutions can be interpolated in time to obtain the gains at

some intermediate time, for example when the target source, whose true visibilities one

would like to estimate, is being observed.

An interesting case arises when the array is redundant, i.e. there are multiple

instances of the same antenna separation. The measurement equation is modified

accordingly to reflect the fact that the set of distinct model visibilities repeat on the

redundant baselines. We then have

Vij = gig
∗
jM|i−j| +Nij (4.4)

The observed visibilities on these redundant baselines would differ only by the instru-

mental gains and the additive thermal noise. If there is sufficient redundancy this would

allow solving for the unknown antenna gains, as well as the true visibilities, essentially

independent of any assumed model for the sky (see e.g. Cornwell & Fomalont, 1999).

This special class of calibration is called “redundancy calibration”. Redundancy cali-

bration algorithms discussed in the literature are broadly based on linear least squares

(LLS) methods. One such example is the LLS algorithm proposed by Noordam & de

Bruyn (1982). A brief description is given below, and the interested reader is directed

to the longer discussion in Noordam & de Bruyn (1982) and those of Wieringa (1991,

1992) and Liu et al. (2010). In recent times, a number of new arrays with redundant

spacings are being or have been built for doing low frequency cosmology experiments.

This has spawned a revival of interest in redundancy calibration (see e.g. Newburgh

et al. 2014; Zheng et al. 2014; Ali et al. 2015; Dillon 2015).

4.1.1 Linear Least Squares algorithms

In the linear least squares (LLS) approach to redundancy calibration, the nonlinear

equation 4.4 is linearised. The antenna gains and visibilities are estimated together

as complex numbers with an amplitude and phase. Two different methods, viz. those

proposed by Wieringa (1992) and by Liu et al. (2010) are reviewed here. Results

from their implementation in Prowess (Marthi, 2016), in comparison with the NLS

algorithm described in Section 4.1.2 willl be presented.
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Ignoring the noise term Nij and taking the logarithm of equation 4.4 we get:

ln |Vij| = ln |gi|+ ln |gj|+ ln |M|i−j|| (4.5)

∠Vij = ∠gi − ∠gj + ∠M|i−j| (4.6)

which is now a system of linear equations. Therefore, they can be written in matrix

form:

y = A x (4.7)

separately for the amplitude and the phase equations, where y is a column vector

containing the amplitudes (or phases) of the observed visibilities on all the redundant

baselines, x is a column vector containing the amplitudes (or phases) of the antenna

gains and the true visibilities, with the dimension of x being significantly smaller

than the dimension of y. A is a matrix depending only on the array geometry. For

example, in the case of a uniformly-spaced linear NA-element array like OWFA, y is

of length NAC2 while the length of x is NA + (NA − 1). Therefore A has dimensions

(NAC2)× (2NA − 1). For OWFA Mode-I, A is 780× 39. Specifically, for the amplitude

equation 4.5:

y =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ln |V1,2|
ln |V1,3|
ln |V1,4|

...

ln |Vn−1,n|

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, x =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ln |g1|
ln |g2|
ln |g3|

...

ln |gn|
lnM|1|

...

lnM|n−1|

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.8)
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and

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 · · · 1 0 · · · 0 0

1 0 1 · · · 0 1 · · · 0 0

1 0 0 1 · · · 0 · · · 0 0
...

. . .
...

0 0 · · · 1 1 0 0 0 0

0 0 · · · 1 0 1 0 0 0

0 0 · · · 1 1 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.9)

For the phase part of the solution, some elements of the matrixA undergo a sign change

corresponding to the complex conjugation of one of the gains, without the structure of

the matrix itself being altered.

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 1 0 · · · 0 0

1 0 −1 · · · 0 1 · · · 0 0

1 0 0 −1 · · · 0 · · · 0 0
...

. . .
...

0 0 · · · −1 1 0 0 0 0

0 0 · · · −1 0 1 0 0 0

0 0 · · · −1 1 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.10)

It can be seen that the matrix A is highly sparse, leading to fast computation of the

solution

x = A−1 y (4.11)

in a single step, separately for the amplitudes and the phases. It must be clarified that

by A−1 is meant the generalised inverse (ATA)−1AT . Further, since the matrix A is

static, its inverse has to be computed only once, after which it can be used for all time

instants at which the redundancy calibration needs to be done.

While this algorithm is fast and straightforward to implement, it ignores the ad-

ditive noise, and hence is suitable only in high signal-to-noise ratio (SNR) situations.

Ignoring the noise term in situations where the SNR is low leads to a significant bias in

the solutions. This is a well-known limitation of this algorithm. Liu et al. (2010) dis-

cuss the problems that arise if the Wieringa (1992) algorithm is used in the low-SNR

regime, and suggest an alternative algorithm. Their method is based on linearising

the equations by considering a Taylor series expansion of the complex exponentials in
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equation 4.4, instead of the logarithm.

Following a Taylor series expansion and approximation to the linear term, the

complex gains and visibilities can be rewritten as

gi = g0i [1 +∆ηi + i∆φi] (4.12)

gj = g0j [1 +∆ηj + i∆φj ] (4.13)

M|i−j| = M0
|i−j|[1 +∆ζ|i−j| + i∆θ|i−j|] (4.14)

Vij = V 0
ij [1 +∆ρij + i∆ψij ] (4.15)

δij = Vij − V 0
ij (4.16)

where

V 0
ij = g0∗i g0jM

0
|i−j| (4.17)

The superscript denotes the initial guess for the various quantities that has to be

provided at the start of the algorithm. Recognising that

Vij = gig
∗
jM|i−j| (4.18)

we can rewrite equation 4.16 in the expanded terms of V 0
ij and Vij as

δij = g0i g
0∗
j M0

|i−j|

[
(1 +∆ηi + i∆φi)(1 +∆ηj − i∆φj)(1 +∆ζ|i−j| + i∆θ|i−j|) − 1

]

(4.19)

Finally, the reduced expression for the correction term to the measured visibility, after

dropping the terms of order greater than one, reads

δij = V 0
ij

[
∆ηi + i∆φi +∆ηj − i∆φj +∆ζ|i−j| + i∆θ|i−j|

]
(4.20)
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If x is defined as

x =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆η1

∆η2
...

∆φ2

∆φ2

...

∆ζ|1|

∆θ|1|
...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.21)

then equation 4.20 can be written in matrix form as

y = B x (4.22)

This equation can be inverted to obtain the corrections to the gains and the visibilities,

contained in the vector x: the negative signs and the complex number i of the phase

correction terms are absorbed into the matrix B appropriately. Unlike the earlier case,

here the amplitude and phase equations are coupled. Further, unlike the matrix A,

which depends only on the geometry of the array, the matrix B depends on both the

geometry of the array and the current estimate of the gains and true visibilities. It

hence has to be updated and a fresh pseudo-inverse computed for each iteration. Note

also that one has to supply the fiducial solutions g0i and M0
|i−j| at the start. Both the

methods outlined above lend themselves to straightforward implementation using any

one of the several available linear algebra libraries.

Another recent algorithm of interest is the Weighted Alternating Least Squares

(WALS) algorithm proposed by Wijnholds (2010) and Noorishad et al. (2012). The

antenna gains and phases are obtained as the solutions that minimise the covariance

matched weighted differences between the measured and the estimated visibilities:

{
ĝ, M̂0, σ̂n

}
=arg min

ĝ,M̂0,σ̂n

∥Wc

(
V̂ −GM0G

H −Σn

)
Wc∥2 (4.23)

where ĝ is the vector of the antenna gains to be estimated and G is the diagonal

matrix of the gains. M̂0 is the Toeplitz matrix of the true visibilities (to be estimated)

of all baselines obtained from the compact set of visibilities M from the non-redundant

baselines. σ̂n is the noise power vector to be estimated and Σn is the diagonal noise

covariance matrix. The weighting factor is chosen as Wc = V−1/2, where V is the
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matrix of the measured visibilities. A model is assumed initially to estimate the gains

g from an eigenvalue decomposition. In the next step, these gains are used to estimate

the visibilities M0. The procedure is repeated iteratively until a suitable convergence

criterion is satisfied to obtain the estimates ĝ and M̂0. Unlike the logarithmic least

squares method which biases the solutions at low SNRs, the WALS method is sta-

tistically efficient in the sense that it provides minimum variance unbiased estimates

(MVUEs).

The first two methods outlined above estimate the amplitudes and phases of the

gains and the visibilities. Instead, the steepest descent algorithm based on non-linear

least squares minimisation described below estimates the gains and the visibilities di-

rectly as complex numbers of the form z = a + ib on the Argand plane, instead of

z = |z|ei∠z. The phases estimated from the complex numbers in the Argand plane are

free from the errors inherent in the logarithmic method or the linearised method of Liu

et al. (2010), where they are found to be unreliable when large due to the 2πn phase

wrap ambiguities. Nevertheless, alignment of the amplitudes and phases would still

require external calibration as explained below. Besides, all the above three methods

use matrix inversion, resulting in N4 operations. As an exception, the WALS method

is capable of exploiting the redundant structure of the problem thereby achieving N2

complexity, putting it on par with the steepest descent method described below. A sim-

ilar algorithm called Alternating Direction Implicit (ADI; Salvini & Wijnholds 2014)

calibration is found to be of complexity N2 and statistically efficient.

4.1.2 A Non-linear Least Squares steepest descent algorithm

In the general case of arrays with arbitrary geometry, equation 4.4 is routinely solved

for the unknown antenna gains using non-linear least squares (NLS) minimisation algo-

rithms. It seems reasonable hence to try a similar method in the redundancy calibration

case, with the difference being that one would solve not only for the unknown antenna

gains, but also for the unknown true visibilities. The algorithm described below, the

results and the accompanying diagnostics are based on Marthi & Chengalur 2014.

We begin by defining a real-valued objective function

Λ =
∑

i

∑

j>i

wij∥
(
Vij − gig

∗
jM|i−j|

)(
V ∗
ij − g∗i gjM

∗
|i−j|

)
∥ (4.24)

summed over all baselines, where wij is a real-valued weight. We aim to minimise

the objective function Λ with respect to the complex valued gains g and the true sky

visibilities M . At this juncture, it is worth pointing out that the difference between
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equation 4.24 and formulation of the WALS method in equation 4.23 is the following:

in the WALS method, the additive noise power is also a quantity to be estimated. In

the non-linear minimisation, the mean squared error between the measured and the

estimated visibilities is sought to be matched to the additive noise, similar to the chi-

squared fitting of a model to a set of measurements. For brevity, henceforth let us call

the vector [ g M ] the parameter vector Θ.

Θ = [ g M ] =
[
g1, g2, . . . gNA

, M|1|, M|2|, . . . M|L|

]
(4.25)

corresponding to a redundant array consisting of NA antennas and L redundant base-

lines. The solutions Θ̂, being the estimates of Θ that minimise Λ, are those at which

the derivatives of Λ with respect to the elements of Θ vanish uniformly, i.e.

∂Λ

∂gk
= 0 ∀ k ∈ { 1, 2, . . . , NA } (4.26)

and

∂Λ

∂M|k−j|
= 0 ∀ k−j ∈ { 1, 2, . . . , L } (4.27)

It is worth going through the full algebra. Equation 4.26 becomes

∂Λ

∂gk
=

∂

∂gk

∑

i

∑

j>i

wij

(
gi g

∗
j M|i−j| − Vij

) (
g∗i gj M

∗
|i−j| − V ∗

ij

)
(4.28)

=
∑

j>k

wkj

(
g∗j M|k−j|

) (
g∗k gj M

∗
|k−j| − V ∗

kj

)
+
∑

j<k

wjk

(
gj g

∗
k M|j−k| − Vjk

) (
g∗j M

∗
|j−k|

)

=
∑

j>k

wkj |gj|2 g∗k |M|k−j||2 − wkj g
∗
j M|k−j| V

∗
kj

)
+

∑

j<k

(
wjk g

∗
k |gj|2 |M|j−k||2 − wjk g

∗
j Vjk M

∗
|j−k|

)

=
∑

j ̸=k

(
wkj g

∗
k |gj|2 |M|k−j||2 − wkj g

∗
j M|k−j| V

∗
kj

)
= 0

Rearranging the last line yields

g∗k =

∑
j ̸=k

wkj g∗j M|k−j| V ∗
kj

∑
j ̸=k

wkj |gj|2 |M|k−j||2
(4.29)
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which, upon conjugating becomes

gk =

∑
j ̸=k

wkj gj M∗
|k−j| Vkj

∑
j ̸=k

wkj |gj|2 |M|k−j||2
(4.30)

Likewise, equation 4.27 becomes

∂Λ

∂M|i−j|
=

∂

∂M|i−j|

∑

i

∑

j>i

(
gi g

∗
j M|i−j| − Vij

) (
g∗i gj M

∗
|i−j| − V ∗

ij

)
(4.31)

=
∑

j>i

wij gi g
∗
j

(
g∗i gj M

∗
|i−j| − V ∗

ij

)

=
∑

j>i

wij |gi|2 |gj|2M∗
|i−j| −

∑

j>i

wij gi g
∗
j V

∗
ij = 0

which yields

M∗
|i−j| =

∑
j>i

wij gi g∗j V
∗
ij

∑
j>i

wij |gi|2 |gj|2
(4.32)

which, upon conjugating, becomes

M|i−j| =

∑
j>i

wij g∗i gj Vij

∑
j>i

wij |gi|2 |gj|2
(4.33)

where the sum is taken over the appropriate redundant baseline sets.

Note that equations 4.30 and 4.33 involve the unknown true gains and visibilities.

This circularity can be circumvented by taking an iterative approach to the solution:

one takes small steps in the direction of the true solutions, starting from an arbitrary

initial guess. The corrective steps have to be taken in the direction of the negative

gradient for the most rapid convergence. We can redefine the quantities in equations

4.30 and 4.33 as Qk and Rkj respectively:

Qk =

∑
j ̸=k

wkjgjM∗
|k−j|Vkj

∑
j ̸=k

wkj|gj|2 |M|k−j||2
(4.34)
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Rkj =

∑
j>k

g∗kgjVkj

∑
j>k

wkj|gk|2|gj|2
(4.35)

If we additionally define a step size 0 < α < 1, then the solutions can be obtained

iteratively as

gn+1
k = (1− α)gnk + αQk

n (4.36)

Mn+1
|k−j| = (1− α)Mn

|k−j| + αRkj
n (4.37)

The instantaneous solution vector is a small correction to the solution vector obtained

at the previous instant, the correction terms being given by Qk and Rkj, computed

as equations 4.34 and 4.35. α can be interpreted to function as a “forgetting factor”

that weights the past and the instantaneous measurements appropriately. Of course,

the rate of convergence will depend upon the value chosen for α: if it is too small (i.e.

α << 1), convergence will be slow, on the other hand a large value (i.e. α ∼ 1), could

lead to situations where the algorithm fails to converge. There are well known methods

such as, for example, the Levenberg-Marquardt method (see e.g. Press et al., 1992) for

determining the optimal value for α; however these require computation of the Hessian

matrix at each iteration, and are computationally more expensive. In our simulations

below we use a fixed value of α (i.e. ∼ 0.3). While a fixed value for α may not be

optimal, it compensates adequately for the expense of computing the Hessian, even if

consuming a few more iterations.

The steps involved in steepest descent method for estimating the antenna gains and

the sky visibilities, using the non-linear least squares algorithm given above, are now

enumerated:

1. If this is the first time step being solved for, initialise the gains and model visi-

bilities to Θ = [ g M ] = [(1, 0), (1, 0), (1, 0), . . . (1, 0)]. Otherwise set them to

the solutions obtained for the last time step. Set the weights w appropriately

based on the system temperature1. Choose an ϵ for the convergence criterion (set

to ϵ = 0.005 in our simulations).

2. Integrate the correlated signal from each antenna pair, i.e. the visibility from

each baseline Vij ∀ i, j ∈ 1, 2, . . .NA, j >i, for the specified time interval.

1In the simulations described in this chapter, we set them all uniformly to unity.
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3. Using the available Θ = [ g M ] and w, compute each Qk and Rkj using expres-

sions 4.34 and 4.35.

4. Update the gains g and the visibilities M using equations 4.36 and 4.37.

5. Compute the fractional change in each element of g and M. If the largest frac-

tional change is > ϵ go to step 3 else stop.

In the case of routine interferometric calibration, the visibilities M|k−j| are known,

and hence there is only one equation to work with, viz. equation 4.36. We point out

in passing a further similarity with the calibration of non-redundant arrays. Consider

the fundamental equation 4.4 which we rewrite here for the redundant array, ignoring

the additive noise term for the moment.

Vij = gi g
∗
j M|i−j| (4.38)

Scaling gig∗j by some complex constant zk while simultaneously scaling M|i−j| by 1/zk

leaves the equation unchanged. This is the well-known ambiguity problem of selfcal

(see e.g. Hamaker, 2000a,b). Equivalently, in the redundant calibration solution, the

gain amplitudes are determinable only up to an overall scale factor, and the visibility

amplitudes to the inverse square of this scale factor. Similarly the gain phases are

determinable only up to a linear gradient and the visibility phases to the negative of

this gradient. In this respect, redundancy calibration is analogous to self-calibration.

In the simulations described below, we use the known input source positions and the

known input source fluxes to determine the scale factor and phase gradient. In practice

these factors would have to be determined by some external calibration. In other words,

external calibration takes the solutions from a local minimum in the objective function

to its global minimum. One of the ways proposed to resolve these ambiguities (see

discussion in Wieringa, 1991, 1992; Noorishad et al., 2012, for example) is to apply the

following constraints to the solutions

NA∑

i=1

|gi| = NA |gc| ;
NA∑

i=1

φi = 0 ;
NA∑

i=1

→
riφi = 0 (4.39)

where |gc| is some mean gain known apriori, |gi| and φi are the antenna gain and

phase respectively, and
→
ri is the position vector of the ith element in the array. In the

case of OWFA, where the telescope is equatorially mounted, and the baseline lengths

do not change with time, resolving these ambiguities by external calibration and the

requirement that the gain solutions vary slowly but that the visibility solutions are

constant with time may be a viable option.
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4.1 Algorithms for redundancy calibration

4.1.3 The error covariance matrix

The error covariance matrix for the estimator just described above can be derived

rigorously, but it may be useful to begin with a few preliminaries. Let l(Θ) be a log-

likelihood function corresponding to an exponential family of distribution functions.

The real and imaginary parts of the visibilities are distributed normally. The Fisher

Information matrix I(Θ) is a symmetrical p× p matrix containing the entries

I(Θ) = −
∂2

∂θi ∂θj
l(Θ), 1 ≤ i, j ≤ p (4.40)

The observed Fisher Information matrix is simply I(Θ̂ML), the information matrix

evaluated at the maximum likelihood estimate(MLE):

I(Θ̂ML) = −
∂2

∂θi ∂θj
l(Θ̂ML), 1 ≤ i, j ≤ p (4.41)

The Hessian is defined as

H(Θ) =
∂2

∂θi ∂θj
l(Θ), 1 ≤ i, j ≤ p (4.42)

which are merely the second derivatives of the log-likelihood function with respect to

the parameters. Clearly,

H(Θ̂ML) = − I(Θ̂ML) (4.43)

Further, the inverse of the Fisher Information matrix is an estimator of the asymptotic

covariance matrix:

ΣΘ̂ML
≥
[
I(Θ̂ML)

]−1
(4.44)

The standard errors are then the square roots of the diagonal elements of the covariance

matrix ΣΘ̂ML
. For the asymptotic behaviour of a Maximum Likelihood Parameter

(MLP) distributed normally, one can write

Θ̂ML ∼ N

(
Θ̂0,

[
I(Θ̂ML)

]− 1
2

)
(4.45)

83
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where Θ̂0 is the true parameter value. Hence the estimated standard error of the MLE

is given by

σ
(
Θ̂ML

)
≥

1√
I(Θ̂ML)

(4.46)

Equation 4.44 is called the “Information Inequality” or “Cramér-Rao Inequality” in

statistical signal processing (see e.g. Poor, 1994). The lowest error that can be achieved

in equation 4.44 is called the Cramér-Rao bound (CRB), defined as

CRB =
[
I(Θ̂ML)

]−1
(4.47)

An estimator that achieves the CRB is called aMinimum VarianceUnbiased Estimate

(MVUE) and the estimator is said to be efficient.

Consider a normally distributed complex measurement y whose model is Y. The

measurement equation is

y = Y + n (4.48)

where n is the complex measurement noise vector with a covariance matrix Σ. The

multivariate probability density function for the measurement vector y can be written

as

fy(y1, y2, . . . , yN) =
N∏

i=1

1√
2πσ2

i

e
−

(yi−Yi)(yi−Yi)
∗

2σ2
i (4.49)

The likelihood function is defined as

l(y) = log fy(y) (4.50)

Ignoring the sum of constants resulting from taking the logarithm, we get a χ2-like

function

χ2 =
N∑

i=1

1

σ2
i

(yi − Yi)(y
∗
i − Y ∗

i ) (4.51)

For the moment, let us consider general variables a and b, with respect which to
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differentiate equation 4.51. Then,

∂χ2

∂a
=

N∑

i=1

1

σ2
i

[
(y∗i − Y ∗

i )
∂yi
∂a

+ (yi − Yi)
∂y∗i
∂a

]
(4.52)

Differentiating again with respect to b, we get

∂χ2

∂a∂b
=

N∑

i=1

1

σ2
i

[
(yi − Yi)

∂2y∗i
∂a∂b

+
∂y∗i
∂a

∂yi
∂b

+ (y∗I − Y ∗
i )
∂2yi
∂a∂b

+
∂yi
∂a

∂y∗i
∂b

]
(4.53)

The terms on the right-hand side of the general second-order partial derivative in

equation 4.53 can be computed for the specific case we are interested in, namely for

a parameter vector Θ = [ g M ] where g is the vector of antenna-wise complex

electronic gains and M is the vector of the model visibilities. The general index i can

be substituted by a more intuitive one like ij to indicate the baseline. We then have

∂Vij

∂gk
=

g∗jM|k−j| when k = i

0 when k ̸= i
(4.54)

∂V ∗
ij

∂gk
=

g∗iM
∗
|k−j| when k = j

0 when k ̸= j
(4.55)

∂Vij

∂M|i−j|
=

gig∗j when ij ∈ {i, j}
0 when ij /∈ {i, j}

(4.56)

∂V ∗
ij

∂M|i−j|
= 0 always (4.57)

∂2Vij

∂gi∂gj
=

∂2
[
gig∗jM|i−j|

]

∂gi∂g∗j
= 0 (4.58)

∂2Vij

∂M|k|∂M|l|
=

∂2
[
gig∗jM|k|

]

∂M|k|∂M|l|
= 0 (4.59)

∂2V ∗
ij

∂gi∂gj
=

∂2V ∗
ij

∂M|k|∂M|l|
= 0 similarly (4.60)

∂2Vij

∂gk∂M|l|
=

∂2
[
gkg∗mM|l|

]

∂gk∂M|l|
= g∗m (4.61)

∂2V ∗
ij

∂gk∂M|l|
=

∂2
[
g∗kgmM

∗
|l|

]

∂gk∂M|l|
= 0 (4.62)
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These terms comprise the elements of the Hessian matrix ∂χ2

∂a∂b . The error covariance

matrix can then be obtained as

ΣΘ̂ML
= − [H(Θ̂ML)]

−1 (4.63)

4.2 Simulations

The redundancy calibration algorithms were checked against simulated data, as well as

with pilot data from one quarter of the early prototype Phase-I system. For the purpose

of establishing the performance of the solver algorithm and to obtain diagnostics, we

find it useful to apply it to simulated data, where it can be compared against input

data.

The visibilities were simulated as described in Section 3.3.4. Thermal noise equiva-

lent to Tsys = 150 K was added to the model visibilities. It is to be noted that although

the simulations have been done in the specific context of OWFA, the NLS steepest de-

scent algorithm is generic and applicable to any redundant array. The figures and

results presented below are for a redundant configuration with upto 40 stations, as

appropriate for Phase I of OWFA. However, the NLS algorithm is found to work well

even for arrays with as few as 5 stations.

The matrices A and B in the Wieringa (1992) and Liu et al. (2010) algorithms

are sparse and often singular: techniques like QR decomposition or singular value

decomposition (SVD) would hence have to be employed to solve the corresponding

matrix equations. In our implementation we have used matrix calls from the GNU

Scientific Library (GSL). In the NLS steepest descent method, as described above,

equations (4.36) and (4.37) are directly coded and iterated.

4.3 Results

Figure 4.1(a) shows the trajectory of the complex gain vector for a simulation of Mode-

I of OWFA. The initial estimate for the gains has come from a run of the linearised

Gauss-Newton algorithm of Liu et al. (2010) described in Section 4.1.1. This ensures

rapid convergence and locking of the solutions to the desired solutions. Figure 4.1(b)

shows the estimated gains against the true input gains on the Argand plane. The

offset between the true and the estimated gains is not random as it might appear;

there is a linear phase gradient as a function of antenna. Figure 4.2 similarly shows

the convergence trajectory of the estimated complex visibility vector and the true and

estimated visibilities on the Argand plane.
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(a) Trajectory of the gain vector (b) True and estimated gains

Figure 4.1: (a) The trajectory of the complex gain vector is shown from an initial value to its final converged value. (b) The
estimated complex gains are shown against the true gains.
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(a) Trajectory of the visibility vector (b) True and estimated visibilities

Figure 4.2: (a) The trajectory of the complex visibility vector is shown from an initial value to its final converged value. (b) The
estimated complex visibilities are shown against the true visibilities.
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4.3 Results

Figure 4.3 shows the antenna gains and phases estimated from a run of the log-

arithmic redundancy calibration algorithm of Wieringa (1992), compared against the

same numbers estimated from a run of the NLS algorithm. Here, the model used is

a single point source at the phase centre of the primary beam. The signal-to-noise

ratio per visibility is 10. Although the NLS algorithm works well and provides unbi-

ased solutions for a realistic sky model, this figure is shown here for the simplest input

model, i.e. a point source at the phase centre, so as to illustrate the bias on the gains

and phases at uniform SNR on all baselines. It can be seen that despite a reasonable

signal-to-noise ratio and a simple sky model, the logarithmic method still gives biased

estimates. The principal aim of the Liu et al. (2010) method was to eliminate this bias

and, in their paper, they show results to establish the efficacy of their method. In our

implementation of the same, we find that the Liu et al. (2010) method does indeed

give unbiased results; however for clarity only results from the NLS method and the

Wieringa (1992) method in Figure 4.3 have been shown, since the intention here is to

establish that the NLS estimator is unbiased.

To further illustrate the quality of the NLS solutions we show in Figure 4.4 the

results from a different simulation in which the antenna gains and sky visibilities were

kept fixed from run to run, but each run had independent noise added to the simulated

visibilities. The visibilities themselves correspond to a model sky with a source pop-

ulation that matches that expected from the source counts (Wieringa, 1991; Sirothia

et al., 2009) at 325 MHz, but ignoring the clustering behaviour of radio sources. Essen-

tially, this strictly corresponds to a Poisson-only power spectrum since the sources are

distributed with a uniform 2D distribution. The objective is to establish the efficacy of

the NLS algorithm, since redundancy calibration is essentially “model-free”, inasmuch

as it neither needs nor makes any assumption for the model of the sky. The figure shows

the known input parameters to the simulation as well as the mean and 1σ error bars

(computed over the different runs, i.e. the ensemble rms) of the estimated parameters.

The input gains and visibilities are connected by the straight line segments, whereas

the recovered gains and visibilities (in both cases, amplitudes only) are shown by the

triangles with the error bars. The error bars have been scaled by a factor of 10 for the

gains and 5 for the visibilities so that they can be seen clearly in the plot. The error

bars on the gains are also seen to scale with the degree of redundancy. Recently, Patil

et al. (2016) have found that calibration based on an incomplete sky model leads to a

suppression of the diffuse foregrounds as well as excess noise. Model-free redundancy

calibration poses no risk of loss to any component of the sky visibilities, since the gains

and the visibilities are simultaneously solved for.

Although the linearised method described in Liu et al. (2010) avoids the bias inher-
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Figure 4.3: The comparison between the antenna gain amplitudes and phases as estimated by the logarithmic method of Wieringa
(1992) and the NLS method is described here. The SNR per visibility is 10, and the input model is the simplest possible, viz. a
single source at the phase centre. The solid line represents the ideal situation where the estimated values are equal to the input
values. As can be seen, even for this simple model and at this relatively good SNR, the logarithmic method gives biased estimates,
shown here as the open circles. In contrast, the NLS estimates, shown by the filled triangles, are not biased. Liu et al. (2010)
discuss a linearised logarithmic method which removes this bias, but which is computationally significantly more expensive.
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4.4 Discussion

ent in the logarithmic methods, it is computationally significantly more expensive than

the Wieringa (1992) method. Figure 4.5 shows the time taken by the Liu et al. (2010)

and NLS algorithms as a function of the total number of antennas. The run times

exclude the time taken for data I/O from the disk. The linearised algorithm of Liu

et al. (2010) clearly shows a N4
A dependence, whereas the NLS1 algorithm behaves as

N2
A: this means that the time taken by the algorithm to converge to the best solution

scales as the number of baselines. We note that there was no explicit multi-threading in

our implementation, nor was compiler optimisation turned on. The NLS algorithm is

significantly faster, and is therefore potentially very attractive for real-time calibration.

Since calibration is essentially an estimation problem, it is natural to ask what the

errors on the estimated parameters (i.e. the gains and visibilities in this case) are, and

how the errors obtained via the NLS algorithm compare with fundamental bounds on

the error, viz. the CRB. It has already been shown rigorously (see equation 4.63) that

the error covariance matrix and the Hessian are related. In Figure 4.6 are shown the

“kite plots”: the Hessian and covariance matrices. Further, if the measurement errors

are independent and identically distributed (i.i.d) Gaussian noise, then the Hessian

matrix, except for the sign, is equal to the Fisher information matrix. This is true for

any exponential family of distribution and therefore holds for Gaussian. The variances

estimated from the Fisher Information matrix equal the CRB. The parameter errors

estimated in this way would hence be a lower bound to the true error. Figure 4.7

shows a comparison between the mean ensemble error obtained from the simulations

for runs with different system temperatures i.e. with different signal-to-noise ratios.

The ensemble errors attain the CRB when the SNR ! 10.

4.4 Discussion

Let us return to a discussion on the Hessian and covariance matrices shown in Fig-

ure 4.6. These matrices are clearly diagonally dominant. A good approximation to

the variance can hence be obtained quickly by approximating the Hessian matrix to be

diagonal. In the simulation described above, this approximation leads to a difference

of only ∼ 1% in the values of the estimated standard deviation. Since the diagonal ap-

proximation simplifies the inversion of the Hessian, we could adopt this approximation

in the Levenberg-Marquardt algorithm to refine the step size dynamically after each

1Jan Noordam, while reviewing our work in Marthi & Chengalur (2014), communicated to us
that the NEWSTAR package used for WSRT data analysis also uses a steepest descent method which
leads to N2

A
performance, but when the redundant structure of the calibration problem is properly

exploited.
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Figure 4.4: The solutions, with their error bars obtained from a sky model with sources
following the radio source counts relation (Wieringa, 1991; Sirothia et al., 2009) but
without the clustering properties, are shown here. The signal-to-noise ratio for a 2 Jy
radio source is 4, which can be considered to be the mean SNR over all baselines.
The upper panel shows the amplitudes of the gains and the lower panel shows the
visibilities. The solid line connects the true solutions and the filled triangles are the
estimated solutions. The error bars on the estimated gains have been magnified by a
factor of 10 and those on the estimated visibilities by a factor of 5 to enable them to
be seen clearly.
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4.4 Discussion

iteration to attain the most rapid convergence. However, we do find that a constant

step-size is indeed adequate.

As stated in Section 4.1 we have been assuming that the beamshapes of the indi-

vidual antenna elements are identical, and that the ionospheric phases can be lumped

together with the electronic gains of the elements. In general these assumptions are

only approximately true. Further, we have been only dealing with a scalar equation,

whereas, in the presence of phenomena which mix the two polarisations (e.g. differ-

ential Faraday rotation) across the array, receptors whose response is not perfectly

orthogonal, (i.e. suffer from “leakage”, “ellipticity”, which themselves could in gen-

eral vary across the field of view) it is not possible to decouple the calibration of the

nominally orthogonal polarisations. High dynamic-range imaging would require one

to address all of these issues, and there have been a number of algorithms proposed

(dubbed “3GC” calibration algorithms; see e.g. Bhatnagar et al. 2008; Noordam &

Smirnov 2010; Smirnov 2011) to address these issues. A further issue that is relevant

in dealing with dipole arrays (as is the case for OWFA) is that there could be mutual

coupling between the elements. However, here are some considerations which suggest

that the approximations made above are reasonable to first order for the problem at

hand.

• Firstly, ORT measures only the polarisation along the length of the telescope,

i.e. north-south. The dipoles are hence arranged end-to-end, a configuration that

one would intuitively expect to minimise mutual coupling. Our measurements

have determined that the coupling between the dipoles is indeed negligible (see

Section 2.4.1). Infact, independent measurements of the sensitivity indicate that

the sensitivity of the ORT increases linearly with the number of dipole signals

added, again suggesting that mutual coupling can be ignored to first order.

• Further, since the ORT is equatorially mounted, the beams do not rotate in the

sky as it tracks the source, and hence to the extent that the different sections

have identical beams, the calibration issues are greatly simplified. Interestingly,

this means that the baseline lengths will also be fixed as it tracks the source,

meaning that each element pair measures the same sky visibility at all times (see

Sections 2.2.2.2 and 2.2.2.3).

• Finally since the “array” is small (530m), Mode-I of the upgrade (which breaks

the array up into 40 elements) falls within Lonsdale’s regime 1 (Lonsdale, 2005),

where the traditional solution to the ionospheric phase suffices. Mode-II, where

every ∼2m segment of the telescope is digitised (i.e. a compact array, wide field

of view, although note that even in this case, the E-W field of view is limited to
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Figure 4.5: Plot showing the comparison between the time taken for the two algorithms:
the linearised method by Liu et al. (2010) and the NLS method described in this
chapter. The plot shows the time taken by the algorithms (excluding the time taken
for disk I/O) as a function of the number of antennas in the array. The sky model
is generated from the known source counts at 325 MHz, and the average SNR per
visibility is ≈ 4. The filled squares show the time taken by the NLS algorithm for
different number of antennas, and the open squares show the corresponding time taken
by linearised method of Liu et al. (2010). The corresponding solid lines show the
empirical curves of the form a.xn with a = 7.0×10−7, n = 4.0 and a = 8.2×10−6, n = 2.0
for the Liu et al. (2010) and NLS methods respectively, clearly reflecting the structure
of the algorithm.
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4.5 Results from real data - an example

2◦ because of the reflector) would fall into Lonsdale’s case 3 where each source

in the field of view could be shifted by a time variable offset, that would need to

be calibrated for.

It is to be noted that the NLS algorithm suggested above would also be useful to

quantify the importance of such effects. Residuals obtained after calibration between

the visibilities measured on nominally redundant baselines would be indicative of the

importance of the direction dependent effects.

The observing band is usually split into N channels, and the complex response

of the telescope is a function of frequency as well. Therefore, any calibration has to

account for the spectral behaviour as much as the temporal. There could be a channel-

to-channel variation of the gain itself, and a fixed delay in the electronics would also

translate into different phases at different frequencies, causing a phase-ramp across the

band. For OWFA, we achieve bandpass calibration by applying the NLS redundancy

calibration algorithm independently to every channel. Since the gain is expected to vary

smoothly across frequency channels, one could use the solution in one channel to seed

the solutions for the next channel. However, this will not be ideal in algorithms which

parallelise across channels. In that case, each channel will have to be independently

calibrated and the final bandpass calibration can be done by scaling the channels

individually through external calibration.

4.5 Results from real data - an example

The NLS steepest descent calibration algorithm was demonstrated on simulated data,

and it was also established through Figure 4.7 that it is efficient and statistically

optimal. We shall now see the results of redundancy calibration on real data. These

data were obtained on 28 January 2014 during a test run. The telescope was pointed at

the Crab nebula and the data were recorded for two minutes. These data were recorded

with an early prototype, i.e. the Phase-I system described in Prasad & Subrahmanya

(2011), of which only one quarter was used here. Specifically, the ten antennas from

S01N to S05S were used, resulting in 45 baselines. The data were taken on the Crab

nebula. The model visibilities recovered from “channel zero”, in this case the central

channel (channel 32) are shown in Figure 4.10. The recovered flux has an amplitude

of ∼ 2.45 Jy. The data shown here were recorded on the target for the entire 2-minute

observation and no other source was observed to serve as a calibrator. The bandpass

responses of the baselines are shown in Figure 4.8 for the S03 data from Phase-I, before

bandpass calibration. Figure 4.9 shows the bandpass response of the same baselines

after bandpass calibration. Figure 4.11 shows a part of the pre-calibrated visibility
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(a) Hessian matrix of the estimated parameters (b) Covariance matrix of the estimated parameters

Figure 4.6: The kite plots: (a) shows the magnitude of the complex elements of the Hermitian-symmetric Hessian matrix, and (b)
shows the magnitude of the complex elements of the Hermitian-symmetric covariance matrix, both given in decibel (10 log10(.))
scale to accommodate the large contrast. The matrices are both 78 × 78 elements across, with the first 40 elements on each side
corresponding to the errors on estimated complex antenna gains ĝi, and the next 38 elements, the errors on the estimated model
visibilities M̂|i−j|. The diagonal elements of the matrices are, of course, real. The full range of grayscale intensity is exploited here
using the “cubehelix” mapping scheme (Green, 2011).
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4.5 Results from real data - an example

Figure 4.7: This figure shows the behaviour of the error on the antenna-averaged gains
for three different system temperatures. The filled circles represent ensemble errors
obtained from the Monte Carlo run, whereas the solid line is the Cramér-Rao bound.
At lower system temperatures, the errors reach the CRB upon integration of fewer
samples. At Tsys = 1500 K, for example, many more samples would have to integrated
than at Tsys = 150 K to attain the CRB.
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4. REDUNDANCY CALIBRATION

Figure 4.8: The bandpass response of some of the baselines of the earlier Phase-
I system, of which only a quarter was operational, is shown here before bandpass
calibration. The bandpass plots are derived over a 19-MHz band split into 64 channels
on an observation centered on the Crab nebula.
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4.5 Results from real data - an example

Figure 4.9: The bandpass response of the baselines of Figure 4.8 is shown here after
bandpass calibration.
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4. REDUNDANCY CALIBRATION

Figure 4.10: The model visibilities recovered from channel-32 for the Crab nebula,
from the 10-antenna Mode-I prototype system. Here, the absolute scale has not been
set. Since Crab is a very bright source, he error bars on the recovered visibilities and
phases, obtained from the Hessian, are so small that they are not visible in this plot.
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Figure 4.11: The 19-MHz band split into 64 channels, observing the Crab nebula. One record (one second) is shown from the
2-minute observation. The uncalibrated data show different baseline-wise fluxes and the phases ramping across the band.
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Figure 4.12: The 19-MHz band split into 64 channels, observing the Crab nebula. One record (one second) is shown from the
2-minute observation. The calibrated data show almost equal baseline-wise fluxes and the phases aligned across the band.
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4.6 Post-correlation beamforming

data and Figure 4.12 shows the calibrated data. In these three figures, the first two

channels (0 and 1) have been blanked as they are corrupted. Channels 11 and 12 appear

to be corrupted by RFI, and calibration appears to have been ineffective on baseline

40, which is indicative of bad data: the phase across the band still remains wound.

It is clear that the first round of calibration has revealed bad channels and baselines.

Similarly, bad time instants stand out after calibration as well. It appears then that

the first round of calibration has aided identifying pathological data, suggesting its

exclusion and re-calibration of the remainder of the good data. Absolute calibration

has not been applied to this observation.

4.6 Post-correlation beamforming

Having dwelt on calibration at length, we could perhaps turn our attention to an

application. Beamforming is a spatial filtering technique, often employed to improve

the signal-to-noise ratio of time-series data. This technique is particularly useful for

studying time-variable phenomena. In cases where the time variation of the signal

is slow because it is either intrinsic or the dispersion within a channel is too large

to be corrected for, post-correlation beamforming could be effective. The difference

between pre- and post-correlation beamforming is only the missing auto-correlations

in the latter. However, of course the visibilities have to be calibrated and rotated to

the location of the desired beam.

For OWFA, the projected length Un of the baseline between a pair of antennas

separated by a distance nd is

Un = nd cos δ (4.64)

when observing a source at delination δ0. The path length difference l between an

adjacent antenna pair as looked at from the direction (α, δ) towards which the beam

is to be formed, is given by

l = u sin(δ − δ0) (4.65)

where u = d cos δ0. The phase difference corresponding to this path length difference

at a given wavelength λ is

φ = 2π
l

λ
= 2π

d cosδ0 sin(δ − δ0)

λ
(4.66)

Therefore the phase difference between a pair of antennas separated by distance nu is
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4. REDUNDANCY CALIBRATION

nφ. The beam is formed towards the source at (α, δ) by taking the sum over all the
NAC2 baselines:

Vb(t, ν) =
2

NA(NA − 1)

NA∑

i=1

NA∑

j ̸=i

Vij e
−i|φj−φi| (4.67)

where NA is the number of antennas, and Vij is the visibility from the baseline consisting

of antennas i and j, and the phase argument of the complex exponential adjusts for the

extra phase accrued to the visibility from δ with respect to δ0. The phases across the

array form a linear gradient; the sign and slope of the gradient determine the direction

of the beam. Figure 4.13 and Figure 4.14 show the amplitude and phase response for

the beam obtained off and on Crab respectively with data from the S03 antenna of the

prototype Phase-I. In this particular case, the beam is formed towards the center of

the pointing direction: therefore the phase corrections are all identically zero. However

there is no loss of generality here, as this can be treated as a particular case of the

general direction of the beam δb being equal to δ0. These data were taken at a date

later than 28 January 2014, on which day the data for which the calibration results

are shown in Section 4.5 were taken. The amplitude of the visibility after calibration

is ∼ 1.3 Jy, where again, an external calibration scale has not been applied to these

data. In the absence of external calibration, identical flux values cannot be guaranteed

for the calibrated visibilities from different observations on the same target.

4.7 Conclusions

Calibration is the process of estimating the true signal and the instrument gains; it is a

fundamental step in radio interferometric data analysis. In this chapter, two different

classes of redundancy calibration have been described: (1) the linear least squares

method which estimates the gain and visibility phasors, and (2) the non-linear least

squares method which directly estimates them as complex numbers on the Argand

plane. The logarithm-based LLS algorithm due to Wieringa (1991) is a simple one-

step process for OWFA, as the measurement matrix A depends only on the geometry.

It never changes and its inverse has to be computed just once. However, it suffers

poor performance when the SNR is not sufficiently high: the solutions are biased. The

linearised Gauss-Newton algorithm of solving for the gains and visibilities due to Liu

et al. (2010) avoids the bias whereas its measurement matrix B depends on the array

geometry as well as the data. Therefore it has to be computed at regular intervals.

Moreover, it is compute-intensive as the typical complexity of operation goes as N4
A
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Figure 4.13: This plot shows the actual amplitude and phase response across the band for a beam off the source. The per-channel
RMS error in amplitude is 1.0 × 10−3 Jy and in phase is 0.32◦. The phase is not centered at 0◦, since there is little signal off the
source. The first four channels have been blanked and set to zero.
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Figure 4.14: This plot shows the actual amplitude and phase response across the band for a beam on the source. The per-channel
RMS error in amplitude is 1.5 × 10−2 Jy and in phase is 0.25◦. The phase is centered at 0◦, except in the few bad channels. The
first four channels have been blanked and set to zero.
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4.7 Conclusions

(see Figure 4.5).

The non-linear least-squares iterative algorithm, based on a steepest descent imple-

mentation avoids the bias (see Figure 4.3) inherent in the logarithmic LLS algorithm,

as well as runs much faster than the Taylor expansion-based linearisation algorithm.

It is shown to be an efficient and a minimum variance unbiased estimator by achieving

the CRB. It is used in an implementation of bandpass cailbration. Results from simu-

lated data establish the statistical optimality of the estimator and its efficacy. Besides,

results from real data appear to indicate that the calibration algorithm is indeed very

effective. It is also amenable to straightforward real-time implementation as it avoids

matrix inversions. Besides, very fast convergence is achieved as the vector Θ̂ = [ ĝ M̂ ]

needs only to be updated from the previous instant: the estimator tracks the gain and

visibility vectors efficiently. Redundancy calibration nevertheless is very similar to self-

cal inasmuch as it results in the measurement plane or image plane ambiguity. It is

immune to either plane being rotated, equivalent to a phase gradient along the array or

a systematic image shift in the celestial sphere. This ambiguity would necessarily have

to be resolved through external calibration. Coherent post-correlation beamforming is

a useful application for studying slow transients with high SNR. An example was shown

with a coherent beam on the target radio source at the pointing direction, without loss

of generality.
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Chapter 5

The dominant foregrounds and the

Hi signal

5.1 Introduction

The Ooty Wide Field Array is designed to operate at 326.5 MHz, with a bandwidth of

∼ 39 MHz. At the centre frequency, the Hi 21-cm wave is stretched to a wavelength

of ∼ 91 cm andthe telescope is sensitive to the Hi 21-cm emission from a redshift of

z ∼ 3.35. However, that is not the only astrophysical signal the telescope is expected

to be sensitive to. Besides the Hi signal we are interested in, the telescope is invariably

sensitive to astrophysical foregrounds. Foregrounds can be broadly defined as all the

emission from astrophysical sources other than the cosmological Hi signal. In this

thesis, two distinct foreground emission components are considered:

• the diffuse Galactic synchrotron foreground arising from the tenuous, ionised

component of the interstellar medium of the Milky Way

• the extragalactic foreground comtribution from discrete extragalactic radio sources

beyond the Milky Way

The origin and nature of this foreground emission is reasonably well understood.

The diffuse Galactic synchrotron foreground component arises from relativisitic cosmic

ray electrons (CRe) spiralling in the interstellar magnetic fields. The distribution of

their energies is a well known power law (Ginzburg & Syrovatskii, 1965, 1969). It

follows from the electron energy distribution that the radio synchrotron brightness

temperature follows the same spectral power law. Many different studies over a wide

range of radio frequencies have attempted to understand and characterise the Galactic

diffuse emission, such as Turtle & Baldwin (1962) and Turtle et al. (1962) at 26 MHz,
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178 MHz and 400 MHz, Alexander & Novaco (1974) at ∼ 4 MHz, Haslam et al.

(1982) at 408 MHz, etc. de Oliveira-Costa et al. (2008) summarise all such previous

studies (references therein) and propose a global model that encompasses over four

decades of radio wavelengths from 10 MHz to 100 GHz. The extragalactic point source

foreground component has been studied in detail through many surveys (e.g. Condon,

1989; Hopkins et al., 1998; Richards, 2000; Hopkins et al., 2003; Seymour et al., 2004;

Huynh et al., 2005; Simpson et al., 2006; Owen & Morrison, 2008) These seem to fit the

observed SEDs very well (see e.g. Toffolatti et al., 1998; González-Nuevo et al., 2005).

There have been numerous attempts at measuring the foregrounds for use in 21-cm

cosmlology experiments, e.g. by Ali et al. (2008), followed by Ghosh et al. (2011a,b,

2012), Yatawatta et al. (2013), Jelić et al. (2014, 2015), Vedantham et al. (2015),

Franzen et al. (2016) and Offringa et al. (2016). In this chapter, the two foreground

components shall be introduced individually. They are simulated using parameters

based on the measurements cited above. Using the realistic foreground model, we

can obtain model visibilities for OWFA. The rationale for simulating the foreground

components is hence two-fold:

• Ali & Bharadwaj (2014) have made detailed predictions for the Hi signal with

OWFA, as well as the foregrounds. Their foreground predictions are based on

simple analytical models, and they have not considered any instrumental system-

atics. The instrumental effects are a crucial ingredient in foreground or signal

predictions. In this thesis, the effects of the instrument response on foreground

predictions for OWFA are studied.

• Foreground removal is possibly the most important step in realising a detection

of the Hi signal. Unless the foregrounds are characterised well and estimated

robustly, its removal would remain a distant reality. Power spectrum estimation

of foregrounds affected by the instrument response is a realistic scenario, and we

may do well to understand and quantify such effects for OWFA. Simulations can

definitely serve to enlighten us with the limitations posed by the instrument, and

allow us to find avenues of mitigating such effects through new techniques, or

devising alternative foreground removal schemes.

5.2 The diffuse Galactic synchrotron foreground

5.2.1 Statistical parameters from observations

The diffuse Galactic synchrotron emission has been studied extensively. The Haslam

map (Haslam et al., 1981, 1982) gives a consistently calibrated all-sky map of the
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brightness temperature at 408 MHz. La Porta et al. (2008) have determined the mean

angular power spectrum (APS) from the Haslam total-intensity all-sky map at scales

larger than 0.5◦. The power law index γ determined from the mean APS is found

to take values in the range [2.6, 3.0]. Inorder to measure the spectral index α, they

compare the 408-MHz maps with 1420-MHz maps (Reich, 1982; Reich & Reich, 1986;

Reich et al., 2001; Testori et al., 2001). They derive a spectral index α in the interval

[2.9, 3.2] from the mean APS of the two frequencies at ℓ ∈ [20, 40]. γ is found to vary

systematically with latitude: the angular power spectrum is found to be steeper at

higher galactic latitudes. At scales smaller than 0.5◦, the index γ has been inferred

from a variety measurements at 150 MHz: (a) Bernardi et al. (2009) have determined

γ = 2.2 and A0 = 253 mK2 with the Westorbork Synthesis Radio Telescope (WSRT)

observations in a field around Galactic latitude b = 8◦, (b) Ghosh et al. (2012) find

γ = 2.34 and A0 = 513 mK2 in a field around b = 14◦ using GMRT, and (c) Iacobelli

et al. (2013b) determine γ = 1.84± 0.19 and A0 = 100 mK2 with LOFAR for the same

field observed with WSRT. All the measurements cited above were made at ℓ0 = 1000.

We can hence conveniently define the angular power spectrum, accounting for frequency

scaling, as

Cℓ(ν) = A0

(ν0
ν

)2α(ℓ0
ℓ

)γ

(5.1)

Rogers & Bowman (2008) have determined a mean spectral index α = 2.52 in the

frequency range 150-408 MHz at high Galactic latitudes. In this thesis, the values

A150 = 513 mK2 from the GMRT observations of Ghosh et al. (2012) at 150 MHz

are used. Consequently, following Ali & Bharadwaj (2014), this temperature scale is

extrapolated to 326.5 MHz using the mean spectral index α = 2.52 from Rogers &

Bowman (2008), and γ = 2.34 again from the GMRT observations of Ghosh et al.

(2012). Substituting these values, the angular power spectrum at 326.5 MHz, relevant

for OWFA, is

Cℓ = 513 mK2 ×
(

150

326.5

)2×2.54(1000

ℓ

)2.34

= 10.2 mK2 ×
(
1000

ℓ

)2.34

(5.2)

5.2.2 Simulating the diffuse foreground

The diffuse Galactic foreground has been simulated in many previous studies. For

example, Tegmark et al. (2000) adopt a simple power-law prescription to describe the

diffuse foregrounds in the CMB context, and Santos et al. (2005) for EoR studies.

Giardino et al. (2002) find from 2.4 GHz Parkes data that the diffuse Galactic fore-
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grounds are well described by a single-index power law. More recently Jelić et al. (2008)

have simulated the most important foreground components, including the diffuse fore-

grounds, for LOFAR Eor studies: however, they simulate a 4-D foreground model -

three dimensions in space and one in frequency. This method does come at the cost

increased computing power and time, but its advantages are attractive. The 4-D model

can naturally account for line-of-sight variation of the temperature scale A0 as well as

the index of the power law γ. In this thesis, a prescription based on a single power

law for the entire field, similar to Ali & Bharadwaj (2014), is used. Let us assume

that the fluctuations in the diffuse Galactic synchrotron brightness temperature are

statistically homogeneous and isotropic, described by a Gaussian random field whose

statistical properties are completely specified by the angular power spectrum. In addi-

tion, assume that the angular power spectrum is well described by a single power law

in the entire range of angular scales of our interest, given by equation 5.2. The steps to

simulate the diffuse Galactic synchrotron radiation from the angular power spectrum

are now described. A concise description can also be found in Choudhuri et al. (2014)

and Marthi et al. (2016).

Consider the model angular power spectrum given in equation 5.2. The Fourier

components of the brightness temperature fluctuations are generated on a grid through

∆T̃ (u, ν) =

√
ΩCℓ(ν)

2
(x+ iy) , (5.3)

where Ω is the total solid angle of the simulated field, and x and y are indepen-

dent Gaussian random variables with zero mean and unit variance. The map of the

brightness temperature fluctuations δT (θ⃗, ν) is obtained through a Fourier inversion.

Alternatively, one can work with the Fourier components of the flux density by scaling

equation 5.3 with the conversion factor

∂B

∂T
=

2kB
λ2

(5.4)

so that

∆S̃(u, ν) =

(
∂B

∂T

)√
ΩCℓ(ν)

2
(x+ iy) (5.5)

The grid is chosen to be 2n × 2n in size so that a Fast Fourier Transform can be per-

formed. The brightness temperature distribution on the sky is a real quantity; therefore

the two half-planes of the Fourier grid are complex conjugates. This Hermitian symme-

try of the Fourier transform has been exploited while populating the 2-D Fourier grid.
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5.2 The diffuse Galactic synchrotron foreground

Figure 5.1: The brightness distribution obtained from a temperature distribution of a
single random realisation of the diffuse Galactic foreground. This map shows only the
fluctuations about the mean, set here to zero, in Jy units. The pixel resolution of the
map is 1′ × 1′ and the map is 2048× 2048 pixels across. This map has been simulated
at the central channel of the 39-MHz band, at which the frequency is 326.5 MHz.

The inverse FFT results in a 2-D brightness temperature distribution as a function

of sky co-ordinates. The map is 2048 × 2048 pixels across, with a pixel resolution of

1′ × 1′. The angular extent of each side is ∼ 38◦. The zero-frequency value, which

corresponds to the mean temperature about which these fluctuations occur, can be

set to zero since an interferometer does not measure the zero spacing visibility. An

example distribution produced in this way is shown in Figure 5.1.

How does the spectral index α of the diffuse emission fold into the simulated map?

The scaling from 150 MHz to 326.5 MHz is already in place; this means that the

specific intensity map at the channel at which the frequency is 326.5 MHz is correctly

represented. The specific intensity in other channels has to be scaled appropriately
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to give the diffuse foreground an “in-band” spectral shape. This can be done in the

following manner: we scale the specific intensity in the central channel by the ratio of

the frequencies of the two channels, raised to the spectral index α−2, bearing in mind

that we are scaling flux, not temperature.

S(θ, ν) = S(θ, ν0)×
(ν0
ν

)α−2
(5.6)

This step completes our simulation of the diffuse Galactic foreground. In Prowess,

the map is available as a FITS cube with the sky co-ordinates in each plane of the

cube, and channel frequency for the third axis of the cube.

5.2.3 Validating the diffuse foreground simulation

The simulation can be quickly validated as follows: The simulated foreground flux

density fluctuation map ∆S(θ, ν) is inverse-Fourier transformed to ∆T̃B(U, ν). To

recover the power spectrum without applying an estimator, the whole U range is

then divided into 20 equally spaced logarithmic bins. The angular power spectrum is

estimated using∆T̃B(U, ν) of all the grid points in a particular bin, corresponding to an

annulus in the Fourier plane. Since there is no weighting of the simulated foreground

map, there is no scaling after the Fourier transform: the recovered power spectrum

matches the input power spectrum. Figure 5.2 shows the result of this validation

exercise.

In reality, the sky brightness distribution is weighted by the primary beam power

pattern. Therefore, we multiply the simulated flux density map ∆S(θ, ν) by the pri-

mary beam A(θ, ν). This is inverse Fourier transformed after scaling by equation 5.4

to give ∆T̃B(U, ν) on the same grid we originally started with. If the FT on the grid

now is the original temperature fluctuation power spectrum convolved with the FT of

the primary beam pattern, we must recover a convolved version of the original power

spectrum Cℓ(ν). The Fourier pair given below makes the above statement valid:

δT (θ, ν)×A(θ, ν)
F
$ Cℓ(ν) ∗ Ã

(
ℓ

2π
, ν

)
(5.7)

where ℓ = 2πU. Under the assumption that the value of Cℓ(ν) does not change much

within the width of the function |Ã(U−U′)|2, the convolution of Cℓ by Ã(U) can be

approximated as a product (Ali & Bharadwaj, 2014):

⟨∆T̃B(U, ν)∆T̃B∗(U, ν)⟩ =
[∫

d2U′|Ã(U−U′)|2
]
Cℓ(ν) (5.8)
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5.2 The diffuse Galactic synchrotron foreground

Figure 5.2: The input model angular power spectrum CM
ℓ (∆ν) at ν = 326.5 MHz,

shown by the curve in red. The angular power spectrum obtained from a random
realisation of the input angular power is shown by the black points, obtained over 20
logarithmically spaced bins. The shaded region shows the multipole range accessible
to OWFA.

where, Ã(U) is the Fourier transform of the primary beam A(θ, ν). This is valid since

Ã has compact support in U due to the finite aperture size. Therefore, the factor by

which the input and output power spectra differ is
∫
d2U′|Ã(U−U′)|2. The recovered

power spectrum is scaled down by this factor: if now the input and the output power

spectra match, our simulation has been successfully validated.

Figure 5.3 shows the comparison between the bin-averaged angular power spectrum

Cℓ(ν) (given by equation 5.8), scaled down by the FT of the primary beam power

pattern and the model CM
ℓ (ν) which has been used as the input to simulate the diffuse

signal. The bin-averaged angular power spectrum is convolved with the beam but

divided by the same number, and it can be seen that at large ℓ the convolution matches

the approximation to a product given by equation 5.8. We independently confirm that

the simulated foreground reproduces the input power spectrum by averaging many

independent realisations of the diffuse foreground, in Section 6.3; it is found to be in

excellent agreement with the input power spectrum.
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Figure 5.3: The input model angular power spectrum CM
ℓ (∆ν) at ν = 326.5 MHz,

shown by the curve in red. The input angular power spectrum is convolved with
the Fourier transform of the primary beam Ã(U) and scaled back by the integral in
equation 5.8 in the black curve. The approximation is valid throughout the entire
ℓ range, except at the smallest multipoles where the primary beam dominates the
fluctuations in those scales. The shaded region shows the multipole range ℓmin − ℓmax

accessible to OWFA.
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5.3 The extragalactic radio foreground

5.3.1 Statistical parameters from observations

Extragalactic point sources are expected to dominate the emission from the 325-MHz

sky at most of the angular scales of our interest (Ali & Bharadwaj, 2014). The con-

tribution to this emission comes from active galactic nuclei and star-forming galaxies

(Santos et al., 2005). Different radio surveys have been conducted at various frequen-

cies from 150 MHz to 8.5 GHz, with a wide range of angular resolutions from 1′′ to

5′. Singal et al. (2010) provide a comprehensive list of references for a large number of

surveys in this frequency range. The two vital pieces of information that can statisti-

cally describe the extragalactic point source population completely are (a) the binned

differential radio source counts and (b) the power spectrum of spatial distribution.

5.3.1.1 Differential source counts

Singal et al. (2010) have shown that the differential radio source counts, measured at

widely different frequencies, are roughly consistent. At ∼ 325 MHz, relevant for OWFA,

the source counts between Wieringa (1991), Rengelink et al. (1997) and Sirothia et al.

(2009) follow nearly the same behaviour except at the lowest flux bins. WENSS (Ren-

gelink et al., 1997) reaches a 5σ sensitivity of 18 mJy, and is therefore unable to con-

strain the source counts at smaller fluxes. Wieringa (1991) achieves a sensitivity of ∼
4 mJy, which is very close to the confusion limit for the resolution of WSRT at 325 MHz,

1′ × 1′. Sirothia et al. (2009) use the GMRT to observe the ELAIS-N1 field, attaining

a sensitivity of 40 µJy, well above the confusion limit at the resolution of ∼ 9′′ × 9′′.

This is the deepest 325-MHz radio source count study at the moment. However, for

deriving the source counts, they consider sources brighter than 315 µJy, which is 8σ.

Although there is a hint of evidence for the radio source counts flattening near 3-4 mJy

limit of Wieringa (1991) with the WSRT, Sirothia et al. (2009) find clear evidence for

flattening at 3 mJy. However, the 1 mJy flattening of the differential source counts was

first reported at 1.4 GHz by Oort & van Langevelde (1987), Oort (1987) and Condon

(1989). Subsequently, Rowan-Robinson et al. (1993), Hopkins et al. (1998), Richards

(2000), Hopkins et al. (2003), Jarvis & Rawlings (2004), Seymour et al. (2004), Huynh

et al. (2005), Simpson et al. (2006) and Owen & Morrison (2008) have re-restablished

the same behaviour at 1.4 GHz. Weistrop et al. (1987) have reported source count

flattening for fluxes < 1 mJy at 5 GHz with the VLA. It is attributed to the emergence

of a population of radio sources with very low flux levels, typically ∼1 mJy, understood

to be star forming galaxies and low luminosity AGN, as gleaned from their spectra (see
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e.g. Windhorst et al., 1985; Windhorst, 1986; Windhorst et al., 1993). This ∼1 mJy

turnover flux at 1.4 GHz is consistent with 3 mJy at 325 MHz and 1.9 mJy at 610 MHz

(with the GMRT; Bondi et al. 2007; Garn et al. 2007, 2008) from the spectral index

argument, assuming α = 0.7.

5.3.1.2 Angular power spectrum

The extragalactic point sources make two distinct contributions to the angular power

spectrum: a part that has a Poisson distribution and a part that is clustered (see e.g.

Cress et al., 1996; Condon, 2007; Owen & Morrison, 2008; Vernstrom, 2015). The

angular power spectrum can hence be written as

Cℓ = CP
ℓ + Ccl

ℓ (5.9)

In the case of the discrete point sources, the amplitude of the angular power spectrum

is set by the total flux provided by all the sources within the field of view. The Poisson

angular power spectrum is independent of the multipole moment ℓ, and it takes the

general form (see Condon et al., 2012)

CP
ℓ =

(
∂B

∂T

)−2 [∫ Sc

0

S2 dN

dS
dS

]
(5.10)

where Sc is the upper cut-off limit for the flux upto which we want to integrate (Ali

& Bharadwaj, 2014). It is implicitly assumed that all sources brighter than Sc have

been identified and subtracted. Cress et al. (1996) have determined the angular two

point correlation function at 1.4 GHz for the FIRST radio sources (Becker et al., 1995)

in the range 1.2′ to 2◦. This translates into a U range of 14 < U < 1430 at OWFA

wavelengths (Ali & Bharadwaj, 2014). The two point angular correlation function

takes the form of a single power law

ω(θ) =

(
θ

θ0

)−β

(5.11)

for which the measured clustering scale is θ0 = 17.4′ and β = 1.1Cress et al. (1996).

Consequently, the angular power spectrum of the clustered part can be written as

Ccl
ℓ = 0.88×

2π

θ−β
0

(
∂B

∂T

)−2 [∫ Sc

0

S2 dN

dS
dS

]
ℓβ−2 (5.12)
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after a Legendre transform of the angular two point correlation function. This can be

further simplified by plugging in the numbers, and written in the familiar form

Ccl
ℓ = 3.3× 10−5 ·

(
∂B

∂T

)−2 [∫ Sc

0

S2 dN

dS
dS

] (
1000

ℓ

)γ

(5.13)

where γ = 2− β, and γ = 0.9 here specifically.

The sum of these two parts, given by equation 5.9 produces a double power law fit.

With the source counts and the form of the expected power spectrum, we can

now make predictions for the extragalctic point source foreground. The source counts

from Wieringa (1991) has the advantage that it is confusion limited (∼ 4 mJy) at the

resolution of 1′ × 1′. The OWFA resolution is 6′ × 1.8◦, and the smaller dimension of

the beam - 6′ - can be comfortably Nyquist sampled at the resolution of 1′×1′. This is

guaranteed to give us confusion limited maps for OWFA. For OWFA at 326.5 MHz, we

can use the source counts relation at 325 MHz from either of Wieringa (1991), Rengelink

et al. (1997) or Sirothia et al. (2009). In practice, however, we use the 325-MHz

polynomial fit provided by Wieringa (1991), which also agrees with the measurements

provided by the other 325-MHz studies for fluxes > 3 mJy:

log10

(
dN

dS
S5/2

)
= 0.976 + 0.613x+ 0.3028x2 − 0.083x3 (5.14)

where x = log10 (S). Here, the flux S is in mJy. We can rewrite this equation as

log10

(
dN

dS

)
= 0.976 + 0.613x+ 0.3028x2 − 0.083x3 − 2.5x (5.15)

which becomes

log10

(
dN

dS

)
= 0.976− 1.887x+ 0.3028x2 − 0.083x3 (5.16)

We now have

dN

dS
= 10(a+bx+cx2+dx3) (5.17)

where a = 0.976, b = -1.887, c = 0.3028 and d = -0.083. Equation 5.17 can then be

directly plugged into equations 5.10 and 5.13, and the integral in each can be computed

numerically.
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5.3.2 Simulating the extragalactic foreground

Simulating extragalactic radio sources, the vast majority of which are unresolved at the

resolution of the OWFA, is more involved than the straightforward Fourier inversion

of the power spectrum of the diffuse foreground. The difficulty arises from the fact

that the extragalactic sources do not constitute a Gaussian random field in the sky.

This must also be obvious from the fact that unlike in the diffuse foreground where the

fluctuations are excursions about a mean specific intensity which can be set to zero,

the point sources only have positive flux density values.

The method used here has been adapted from González-Nuevo et al. (2005) but

it is elaborated here for completeness. Let ñ = n/N be the mean number density of

sources per pixel in a map which has n sources in N pixels. For a confusion limited

map, ñ ∼ 1. We begin with a random Poisson field of source density with ñ, for which

the density contrast is defined as δ(x) = [n(x) − ñ]/ñ. Then, its Fourier transform is

given by

∆(k) =
1

Ω2

∫
δ(x)e−ik.xdx (5.18)

where Ω is the angular size of the map in solid angle. Let its angular power spectrum be

denoted by CP
ℓ , which can be calculated from ∆(k), and is given by equation 5.10. We

can modify CP
ℓ by the clustering angular power spectrum Ccl

ℓ ; accordingly the Fourier

transform of the density contrast is modified as

∆′(k) = ∆(k)

√
CP

ℓ + Ccl
ℓ

CP
ℓ

(5.19)

The modified density contrast spectrum ∆′(k) is now reverse transformed to give the

modified density contrast function δ′(x). Finally, the modified pixel source density is

given by n′(x) = ñ[1 + δ′(x)].

The integrals have been computed from a polynomial fit to the source counts from

Wieringa (1991). The simulated map hence represents the true source distribution in

the sky as no bright sources are assumed to have been subtracted, equivalent to an

infinite cutoff flux. However, we impose a cutoff of 30 Jy in the numerical integration:

this is a reasonably good approximation to an infinite cutoff flux, as the number of

sources beyond ∼ 3 Jy falls very sharply, and this behaviour is well captured by the

polynomial approximation to the differential source counts. Although, Wieringa (1991)

gives a range of 4 mJy < 1 Jy for the polynomial fit to the normalised differential

source counts. The integral is not very sensitive to the lower limit to the flux, here 4
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mJy, because the flattening at 3 mJy is not observed at the limit of 4 mJy by Wieringa

(1991). The polynomial falls sharper than the expected flattening, and hence is unlikely

to affect the integral in any significant way. We are therefore quite justified in setting

the lower limit of the integral to zero.

The solid angular extent of the simulated map is Ω. So the number of sources we

expect in the map is

N(S) = Ω×
∫ Sc

0

dN

dS
dS (5.20)

since the number counts are defined for a steradian of the sky. For a confusion limited

map, we want the mean source density per pixel n ∼ 1, which means N(S) ∼ N ,

the number of pixels in the map. For an angular extent much less than a steradian,

this is likely to result in fractional numbers less than unity for the source counts in

the higher flux bins. This leads to difficulties in sampling the distribution to reach

the total number of sources given by N(S). This difficulty can be circumvented by

resorting to a sparse sampling technique, introduced by Kaiser (1986). Instead of

simulating a single map of extragalactic point sources, we simulate a large number of

maps M simultaneously. The angular extent of the sky we are trying to populate with

sources now is Ω×M such that the product is atleast the of order of a steradian. For

this simulation, M = 100 has been considered. In doing so, our objective is to get

assured numbers greater than unity for the radio source counts in the largest flux bins.

Therefore, the number of sources to generate effectively becomes a slightly modifed

version of the previous equation:

NM(S) = M × Ω×
∫ Sc

0

dN

dS
dS (5.21)

Having generated the population of the sources (let us call it the source bank), we

employ sparse sampling to obtain the M individual maps. We randomly choose N

sources from the source bank to populate the N pixels from among the approximately

NM(S) sources.

The clustered part has a power law index of γ = 0.9 (Cress et al., 1996). The mean

values are CP
ℓ = 1580 mK2 and Ccl

1000 = 444 mK2. The input angular power spectrum

for the extragalactic point sources in shown in Figures 5.5 and 5.6. The spectral indices

for the point source fluxes have been assigned randomly, drawing from a Gaussian fit

to the distribution centered at α = 0.7 with a dispersion of σα = 0.25, inferred from

Sirothia et al. (2009), and their channel-wise fluxes scaled accordingly. The central

zoom-in of one of the simulated point source maps is shown in Figure 5.4.
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Figure 5.4: The central 0.5◦×0.5◦ portion of the simulated extragactic point source map
is shown here. The sources have been drawn from the differential source counts relation
given by Wieringa (1991), and the spectral indeices of the sources have been randomly
drawn from a Gaussian fit to the distribution of indices from Sirothia et al. (2009),
centered at α = 0.7. The flux scale is in Jy and the central channel at the frequency of
326.5 MHz is shown. The map has been simulated for a 39-MHz bandwidth with 312
channels.
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5.3 The extragalactic radio foreground

Figure 5.5: The input model angular power spectrum CM
ℓ (∆ν) at ν = 326.5 MHz,

shown by the curve in red, which is the sum of the Poisson and the clustered parts
shown in blue. The angular power spectrum obtained from a random realisation of
the input angular power is shown by the black points, obtained over 20 logarithmically
spaced bins. The shaded region shows the multipole range accessible to OWFA.

The extragactic foreground simulation can be validated as well, following the same

method used for the diffuse foreground component. The result for the angular power

spectrum recovered after weighting without the primary beam is shown in Figure 5.5

and with the primary beam is shown in Figure 5.6. Unlike the diffuse foreground

simulation where the differences between the recovered power spectra, with and without

primary beam weighting, are more readily perceptible, the differences between the two

cases for the extragalactic foreground are too small to be noticeable in these plots.

The confusion limit for OWFA is 175 mJy (Ali & Bharadwaj, 2014). However, we

do not propose to identify and subtract sources from the one-dimensional images made

using OWFA. Instead, a model for the sky obtained from deep GMRT imaging could,

for example, be used to subtract the contribution to the visibility from the extragalactic

radio sources. Alternatively, the model visibilties upto 18 mJy (the 5σ lmit) could just

as well be obtained from the shallower Westerbork Northern Sky Survey (WENSS;

Rengelink et al. 1997).
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Figure 5.6: The input model angular power spectrum CM
ℓ (∆ν) at ν = 326.5 MHz,

shown by the curve in red, which is the sum of the Poisson and the clustered parts shown
in blue. The input angular power spectrum is convolved with the Fourier transform of
the primary beam Ã(U) and scaled back by the integral in equation 5.8 in the black
curve. The approximation is valid throughout the entire ℓ range, except at the smallest
multipoles where the primary beam dominates the fluctuations in those scales. The
shaded region shows the multipole range ℓmin − ℓmax accessible to OWFA.
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5.4 Visibilities of the realistic sky model

5.4 Visibilities of the realistic sky model

Having obtained both the diffuse foregrounds as well as the extragalctic point source

contribution, the viisbilities for OWFA can be computed for a realistic model of the

sky that consists of the sum of these two foreground contributions. The flux density

function is then given by

S(α, δ, ν) = ∆SD(α, δ, ν) +
L∑

k=1

Sk(αk, δk, ν) (5.22)

where ∆SD(α, δ, ν) is the fluctuation in the flux density of the diffuse foreground emis-

sion, and the L distinct extragalactic radio sources are identified by their co-ordinates

(αk, δk) and fluxes Sk. The model visibilities M(U, ν) for the non-redundant set of

baselines are obtained as a pixel-by-pixel Fourier sum of the primary-beam weighted

specific intensity distribution

M(U, ν) =
∑

α,δ

S(α, δ, ν) A(α, δ, ν) e−i2πU.n̂ (5.23)

where

n̂ = sin(δ) k̂+ cos(δ)
[
cos(α− α0) î+ sin(α− α0) ĵ

]
(5.24)

The full U-range of the OWFA is 0 − 500 λ approximately at δ0 = 0◦. However, for

fields at high declinations, the range of U is compressed by the factor cos δ0, where δ0

is the declination of the centre of the field. An equivalent but valid reinterpretation

of the co-ordinate system is allowed by looking at the array from the source. At a

declination 0◦ the baselines appear at their full physical lengths. As the declination

increases, the baselines appear foreshortened and their projected lengths differ from

their physical lengths by the factor cos δ0. The shortened baselines will therefore access

larger scales of emission from the sky. However, the sensitivity falls off equally by the

same cos δ0 factor due to the reduced aperture at higher declinations. The model

visibilities for a single realisation of the sky that includes both the diffuse emission

and extragalactic radio sources for four different declinations are shown in Figure 5.7.

The higher declinations allow for a compressed range of U but pick up more of the

extended emission at U < 100. At those short baselines, the largest scales of emission

from the diffuse foregrounds dominates the point source foregrounds. This is expected

as their slopes are very different: the steep index of the diffuse foregrounds rises above

the point source contribution at these very large scales of emission. The spread in U
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5. THE DOMINANT FOREGROUNDS AND THE HI SIGNAL

for a given baseline d is given by

∆U = −
d cos δ0
λ2

∆λ (5.25)

from which it is obvious that at higher declinations, there could be considerable overlap

in U between physically distinct baselines, as strikingly borne out by Figure 5.8.

Figures 5.8(a) and 5.8(b) show the distinct baselines and their U range. The

horizontal dashed lines show the range of U for each declination at some baseline: red

is δ0 = 0◦, blue is δ0 = 20◦, black is δ0 = 40◦ and magenta is δ0 = 60◦. We see

that there is no overlap between the U range of adjacent baselines at any declination

for the short baselines. The situation changes as we move to the longer baselines.

There is considerable overlap in U between the adjacent baselines at all declinations.

The red horizontal dashed line about d = 34 cuts through d = 33 at δ0 = 0◦ and

d = 35. At higher declinations, the overlap between adjacent baselines spills to the

second neighbour.

 0.01

 0.1

 1

 10

 100

 1  10  100

Jy

U (λ)

 0.01

 0.1

 1

 10

 100

 1  10  100

Jy

U (λ)

 0.01

 0.1

 1

 10

 100

 1  10  100

Jy

U (λ)

 0.01

 0.1

 1

 10

 100

 1  10  100

Jy

U (λ)
 100  200  300  400  500

U (λ)
 100  200  300  400  500

U (λ)
 100  200  300  400  500

U (λ)
 100  200  300  400  500

U (λ)

Figure 5.7: The red, blue, black and magenta colours code respectively the declinations
0◦, 20◦, 40◦ and 60◦. This figure shows the model visibilities for a particular realisa-
tion of the sky, and emission from the larger scales being picked up by the shortened
baselines at increasing declination.
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Figure 5.8: The short and the long baselines at different declinations. The colours red,
blue, black and green respectively encode the declinations δ0 = 0◦, 20◦, 40◦ and 60◦.
The overlap between the adjacent baselines is more pronounced at the longer baselines.
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5.5 The redshifted Hi 21-cm signal

One of the main aims of this thesis is to develop an understanding of the systematic

effects introduced by the instrument through the study of simulated foregrounds. Al-

though the simulation of the Hi signal itself is out of the scope of this thesis, a very

brief account follows; details can be found in Chatterjee et al. (2016).

The simulation uses a cosmological Particle Mesh (PM) N-body code to generate

the dark matter particle distribution at z = 3.35. Here, the initial redshift for the

simulation is z ∼ 50. The initial linear matter power spectrum is generated by the

fitting function of the ΛCDM transfer function, given by Eisenstein & Hu (1999).

The cosmological parameters used are from Planck Collaboration et al. (2014). The

simulations were run using a N3 = [2048]3 grid which corresponds to a comoving

volume of [2944 Mpc]3. The grid spacing is chosen to be L = 1.4375 Mpc so that

it exactly matches the frequency channel width, i.e. L = r′ × ∆ν; ∆ν = 125 kHz

here and r′ ∼ 11.5 MpcMhz−1 (see Section 2.5). The redshift space distortion effect is

incorporated from the velocity information of the dark matter particles.

Assuming a neutral fraction xHI = 2.02 × 10−2, calculated from ΩHI = 10−3 (see

e.g. Lanzetta et al., 1995; Storrie-Lombardi et al., 1996; Rao & Turnshek, 2000; Péroux

et al., 2003) and that the neutral gas traces the underlying dark matter particle dis-

tribution, the dark matter halos are assigned Hi with a scale independent linear bias1

bHI = 2, following Bagla et al. (2010). Figure 5.9 shows the Hi brightness distribution

within a 1 MHz window by summing the signal in 8 125-kHz channels.

The model visibility for this brightness distribution can be obtained in exactly the

same manner as for the foregrounds. The visibility of the Hi signal is given by

MHI(U, ν) =

∫
d2θA(θ, ν)δI(θ, ν)e−2πiU·θ (5.26)

where

δI = Ī
δρ

ρ̄
(5.27)

is the specific intensity fluctuation that traces the dark matter fluctuation. The primary

beam weighted model visibility of the simulated Hi distribution over 39 MHz for Mode-I

of OWFA is shown in Figure 5.10.

We can square these visibilities to directly compute the power spectrum to check

1More recently, Sarkar et al. (2016) have modelled the bias of the post-EoR neutral Hydrogen,
where they again use the fitting formula of Eisenstein & Hu (1999) for the ΛCDM transfer function
to generate the matter power spectrum.
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5.5 The redshifted Hi 21-cm signal

Figure 5.9: The brightness distribution of redshifted Hi 21 cm emission summed from
8 125-kHz channels from the simulated data, or the signal over 1 MHz. The flux scale
is in Jy units. The Hi distribution traces the underlying dark matter particle density
distribution.
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Figure 5.10: The model visibilties of the simulated redshifted Hi 21 cm signal over
39 MHz is shown for Mode-I of OWFA. The input brightness distribution is shown in
Figure 5.9.
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Figure 5.11: The power spectrum of the Hi signal obtained after averaging over five re-
alisations of output from the N-body code is compared with the analytically computed
power spectrum. The error bars in the large scales are dominated by cosmic variance.

it against the linear dark matter power spectrum. We will separately discuss the

OWFA two-visibility correlation estimator for the simulated Hi signal in Section 6.8.1.

Figure 5.11 compares the power spectrum PHI(k) obtained from these simulated data

with the analytically computed power spectrum predicted from linear theory. It is

instructive to refer to Figure 1.4, from which it is seen that the simulated dark matter

power spectrum deviates increasingly from the linear dark matter power spectrum at

Fourier modes k ≥ 0.2 Mpc−1. These deviations are a consequence of the non-linear

evolution of the density fluctuations. Figure 1.4 is merely the ratio of the two curves

in Figure 5.11. The effects of nonlinear growth of structure on the power spectrum can

be seen at large k, where smaller structures are assembling at this redshift, whereas at

the larger scales the power spectrum is largely still linear. The analytically computed

power spectrum is the linear power spectrum, with respect to which the departure is

to be interpreted as nonlinearity.
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Chapter 6

Power spectrum estimation

6.1 Introduction

One of the main goals of the cosmological Hi experiments at low radio frequencies is

to measure the fluctuations in the intensity of redshifted 21-cm emission, either from

the EoR or from the post-reionisation epoch (Bharadwaj & Sethi, 2001; Bharadwaj &

Srikant, 2004; Morales & Hewitt, 2004; Zaldarriaga et al., 2004; Barkana & Loeb, 2005;

Morales, 2005). The sensitivity with which the power spectrum can be measured de-

pends on the level of thermal noise, calibration errors, systematic effects introduced by

the instrument on the foregrounds and the Hi signal, and residual contamination after

foreground subtraction. One of the objectives of this thesis is to develop a thorough

understanding of the systematic effects introduced by the instrument, and the complex

ways in which the foregrounds and the instrument interact. The software model de-

scribed in Chapter 3 was developed with the aim of addressing such questions, along

with testing various calibration algorithms as discussed in Chapter 4.

Experiments tailored for statistical detection of the large scale structure typically

aim to either: (a) determine an angular two-point correlation function of the intensity

distribution, or (b) determine the power spectrum of the Fourier modes in the inten-

sity distribution. The statistical properties of the large scale structure are generally

assumed to be adequately represented by either of the two. Optical surveys typically

directly measure the two point correlation function from redshift surveys. Eisenstein

et al. (2005) measure the angular two point correlation function as well as the BAO

feature in the clustering of galaxies from data taken as part of the Sloan Digital Sky

Survey (SDSS; York et al. 2000).

Examples of the power spectrum approach abound in the literature as well. In low

frequency radio experiments, the power spectrum method of detecting the signal statis-

tically appears the most favoured method. The power spectrum can again be measured
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from an image of the sky, by first obtaining an angular two-point correlation function

followed by a Fourier transform, or by obtaining the power spectrum from the visibil-

ities themselves (Bharadwaj & Sethi, 2001; Bharadwaj & Pandey, 2003; Zaldarriaga

et al., 2004). Paciga et al. (2011, 2013) have set upper limits to the 21-cm Hi power

spectrum from z ∼ 8.6 using the GMRT, computing it from the visibilities. Chapman

et al. (2012), on the other hand, obtain the power spectrum by Fourier transforming

a foreground-subtracted image and binning the result in the k-space for LOFAR. The

advantage of working directly with the visibilities is that the noise covariance matrix of

the visibilties is nearly diagonal (White et al., 1999), which is of particular advantage

and one which we shall exploit in computing the angular power spectrum in this chap-

ter. The other distinct advantage of working directly with the visibilities is that the

noise is well-understood in the uv plane: in the image plane, deconvolution complicates

the noise properties.

The relation between the interferometric visibilities, the sky brightness distribution

and the power spectrum is captured by Figure 6.1, adapted from Crovisier & Dickey

(1983). A Fourier transform of the visibilities along the sky co-ordinates results in

the sky brightness distribution. The autocorrelation function of the sky brightness

distribution can be Fourier transformed to give the power spectrum, which can also

be obtained as the visibility function modulus squared. However, the square of the

modulus of the visibility is almost never used as an estimator of the power spectrum,

since the self-correlated noise biases the estimate of power. Since an antenna has a finite

aperture, it averages the uv measurements within the aperture. Therefore, we could

use this fact to correlate visibilities arising from baselines separated by less than an

antenna aperture. This fact has been employed in the context of GMRT, for example,

by Begum et al. (2006). In the case of OWFA, visibilities from different redundant

baselines can also be correlated without introducing a noise bias.

In this chapter, an estimator for the multi-frequency angular power spectrum that

can operate directly on the visibility data is described. The estimator has been in-

troduced earlier: by Bharadwaj & Ali (2005) in the context of cosmological Hi ex-

periments, by Begum et al. (2006) as applied to the study of Hi distribution in dwarf

galaxies and later by Datta et al. (2007) specifically in the context of EoR, all with

the GMRT. However, in this chapter, the estimator is reintroduced specifically for

OWFA, taking particular advantage of its geometry and redundancy. We shall see

how this leads to a simple algorithm for computing the estimator. The main goal of

this chapter is to not merely introduce the estimator and validate it, but to develop a

rigorous understanding of the instrumental effects on the observed foregrounds. This

study is possible with simulated foregrounds, which comprised the subject matter of
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Figure 6.1: The relation between the interferometric visibilities, the sky brightness
distribution and the power spectrum is brought out clearly by this schematic. Adapted
from Crovisier & Dickey (1983).

the previous chapter.

6.2 The multi-frequency angular power spectrum

6.2.1 The two-visibility correlation as the MAPS estimator

From an observation of a region of the sky, we want to extract the angular power

spectrum of emission Cℓ(∆ν). Let us denote the specific intensity of emission from the

sky at a frequency ν by a fluctuation imprinted on a mean specific intensity as

I(θ, ν) = Ī(ν) +∆I(θ, ν) (6.1)

The visibility function for a baseline U = (u, v) is

M(U, ν) =

∫
d2θA(θ, ν)I(θ, ν)e−i2πU.θ (6.2)

where A(θ, ν) is the primary beam and I(θ, ν) is the specific intensity function of the

sky as a function of sky co-ordinates θ at the frequency ν. Its Fourier transform is

Ã(U, ν) =

∫
d2θA(θ, ν)e−i2πU.θ (6.3)
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If the antenna aperture has a finite size, the Fourier transform of the primary beam

power pattern Ã(U, ν) has compact support in U. Further, an interferometer is sensi-

tive only to the varying component of the specific intensity function on the sky. The

visibility can hence be written as a convolution equation.

M(Un, ν) =

∫
d2U′Ã(Un −U′, ν)∆Ĩ(U′, ν) (6.4)

where∆Ĩ(U′, ν) is Fourier transform of the fluctuation in the specific intensity function.

In practice, we estimate the model visibilities through calibration. If V(Un, ν) is

defined as an estimate of the true visibility M(Un, ν) obtained after calibration, we

can define the two-visibility correlation for a baseline, S2, as

S2(Un,Um, νi, νj) ≡ ⟨V(Un, νi)V
∗(Um, νj)⟩ (6.5)

where the angular brackets denote averaging over the multiple copies of V(Un, ν).

There are three distinct cases:

1. Pairs of visibilities arising from redundant baselines correlate: S2(Un, νi, νj)

2. Baselines whose lengths differ by less than an aperture equivalent would have a

non-zero correlated visibility component: S2(Un,Un±1, νi, νj)

3. Visibility pairs from all other baselines are uncorrelated: S2(Un,Un±m, νi, νj);

m ≥ 2

Unless explicitly stated, we shall restrict our attention to the visibility correlation of

two redundant baselines, S(Un, νi, νj). The true power spectrum that we want to

estimate is

⟨∆Ĩ(U, ν)∆Ĩ(U′, ν +∆ν)⟩ = P (U,∆ν)δ2(U−U′) (6.6)

where δ2(U−U′) is the two-dimensional Dirac-delta function and

P (U,∆ν) =

(
∂B

∂T

)2

C2πU(∆ν) (6.7)

The final relation between S2 and Cℓ is (see e.g. Ali & Bharadwaj, 2014)

S2(Un,∆ν) =

(
∂B

∂T

)2 ∫
d2U′

∣∣∣Ã(Un −U′)
∣∣∣
2

C2πUn(∆ν) (6.8)

where S2(Un,∆ν) ≡ S2(Un, |νi − νj |). That is, the estimator S2 is equal to P (U,∆ν)
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convolved with the Fourier transform of the primary beam power pattern (which is

equal to the convolution of the aperture illumination with itself). In essence, S2 esti-

mates the multi-frequency angular power spectrum (MAPS), viz., Cℓ(∆ν). On large

baselines, it is easy to see from equations 6.4, 6.5 and 6.6 that the estimator S2 is

merely the power spectrum P (U,∆ν) weighted by a number that depends only on the

primary beam power pattern, or equivalently on the aperture illumination function.

The convolution can be approximated as a product for longer baselines

S2(Un,∆ν) =

(
∂B

∂T

)2

Cℓ(∆ν)

[∫
d2U′

∣∣∣Ã(Un −U′)
∣∣∣
2
]

(6.9)

where ℓ = 2πUn is the angular multipole and ∂B
∂T = 2kB

λ2 . The discrepancy arising

from approximating the convolution as a product is already illustrated by Figure 5.3,

where the approximation is seen to introduce a small error at the smaller multipoles

and negligible error at the larger multipoles.

6.2.2 Computing the estimator

The steps in the estimation of the multifrequency angular power spectrum are now

outlined. In practice, we would calibrate the simulated observed visibilities making

use of the redundant measurements (see Chapter 4). Absolute fluxes are set by scaling

the gains to those set by external calibration. We could, for example, use a standard

calibrator like 3C295, which is unresolved at the longest baselines of the ORT, to scale

the gains and visibilities obtained through redundant spacing calibration. For a baseline

Un, let there be Nn copies of the estimated visibility V(i)(Un, ν) at a channel whose

central frequency is ν. The Nn copies can be added to improve the signal-to-noise ratio

because, effectively, due to redundancy they measure the same Fourier mode on the

sky. But the noise on each redundant copy of that baseline is independent. Therefore,

the sum

V(Un, ν) =
Nn∑

i=0

V
(i)(Un, ν) (6.10)

shows a baseline-dependent 1/
√
Nn noise behaviour as the number of copies Nn of

the baseline goes down linearly with increasing baseline length. Let us also define the

quantity

V
′(Un, ν) =

Nn∑

i=0

|V(i)(Un, ν)|2 (6.11)
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We can now define our estimator, S2, as

S2(Un, νi, νj) =
V(Un, νi)V∗(Un, νj)− δijV′(Un, νi)

N2
n − δijNn

(6.12)

For an N-channel visibility dataset, the real-valued S2(Un, νi, νj) is a N × N matrix.

When multiplying V(Un, ν) with its conjugate, the product of the sums produces a

“self” term (the principal diagonal) when νi = νj , which is due to the correlated noise.

This fact can be understood by writing the product V(Un, νi)V∗(Un, νj) in expanded

terms for a particular baseline for the same pair of channels (νi, νi):

V(Un, νi)V
∗(Un, νi) = V

(1)(Un, νi)V
∗(1)(Un, νi) + V

(1)(Un, νi)V
∗(2)(Un, νi) + · · ·

+ V
(Nn−1)(Un, νi)V

∗(Nn)(Un, νi) + V
(Nn)(Un, νi)V

∗(Nn)(Un, νi)

(6.13)

In this equation, the product of the visibility from a baseline copy with its own con-

jugate contributes to the noise, whereas this contribution is absent in the product

of the conjugate visibilities from two different baseline copies. This correlated noise

term biases the diagonal νi = νj . The second term in the numerator of equation 6.12

offsets this noise bias on the principal diagonal. The noise covariance matrix, which

is expected to be nearly diagonal, is hence effectively subtracted from the estimator.

The S2 matrix is real-valued and symmetric. The estimator for the whole observation

data set can be represented as a data cube of NA − 1 matrices for OWFA, each of

size N × N . In the following pages, the terms “two visibility correlation matrix” and

“MAPS estimator” are used interchangeably to represent S2.

6.3 Simulations and results

The results of the foreground power spectrum estimation through the MAPS estimator

are presented in this section. As a verification step, the simulations were performed for

a noise-free realisation of the sky model discussed in the earlier chapter. The diffuse

Galactic synchrotron was simulated as a random realisation of a power spectrum with

C1000 = 10.2 mK2 at 326.5 MHz with γ = 2.34, and α = 2.54 imparts a spectral

shape within the band. The point sources were obtained as a single realisation drawn

from the equivalent of 100 maps obtained with CP
ℓ = 1580 mK2 and Ccl

ℓ = 444 mK2

according to the flux limits considered in Chapter 5.

The MAPS estimator S2 returns a matrix of the visibility correlation as a function

of the two frequencies at which it is computed. Figure 6.2 shows an example of the
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6.3 Simulations and results

the estimator matrix for foregrounds that have contributions from both the diffuse

Galactic synchrotron as well as the extragalactic point sources. Each panel in the plot

is a true-sense representation of the matrix: the elements go from top left to bottom

right. This observation is simulated for a declination of δ = 0◦. For the short baselines,

the spectral structures are broad and smooth in the (νi, νj) plane. As the baselines

get longer, more spectral structure can be seen in the matrices. This phenomenon has

to be understood well, and we shall return to a rigorous treatment shortly. But we

may state at the moment that the spectral structure is caused by emission arising from

large angular distances from the phase centre, and the effect is more pronounced on

the longer baselines.

The angular power spectrum recovered from this simulated data individually for the

diffuse Galactic foregrounds and the extragalactic point source foregrounds are shown

in Figure 6.3. The left panel shows the APS recovered from 10 simulated realisations

of the diffuse Galactic foregrounds. The solid red line is the input angular power

spectrum and the points represent the recovered angular power spectrum. The 1σ

error bars in each multipole moment bin shown here are obtained from the scatter

across the 10 realisations. Similarly, the right panel of Figure 6.3 shows the recovered

angular power spectrum for the extragalactic point sources, where the solid red line is

the input angular power spectrum, which is the sum of the Poisson and the clustered

contributions shown individually in blue.

As a brief digression, it may be useful to look at the estimator matrices for pairs of

non-redundant baselines which are separated by exactly one aperture. These matrices

are denoted by S2(Un,Un±1, νi, νj), and some examples are shown in Figure 6.4. Unlike

the S2 matrices for the same baseline pair shown in Figure 6.2, these matrices are

real but not symmetric. As discussed above, these visibilities correlate because they

correspond to separations less than the averaging arising due to the finite size of the

antenna aperture. This is illustrated in Figure 6.5. The hatched region has contribution

to the baseline under consideration from the adjacent baseline or baselines. One can

exercise the choice of whether or not to include the contribution from the adjacent

baselines when estimating the foregrounds or the signal. Such choice would be dictated

by the fraction of the cosmological Hi signal available in this contribution, and whether

the returns justify the added complexity of treating asymmetric matrices.

It is important to convince ourselves that the estimator has not compromised any

spectral information contained in the astrophysical signal. This check is vital if we are

to model the foregrounds robustly. Unless the foreground is accurately represented,

foreground subtraction is not guaranteed to work optimally. We hence test if our

estimator reproduces all the input spectral behaviour in a statistical sense. The spectral
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6. POWER SPECTRUM ESTIMATION

Figure 6.2: The MAPS estimator S2(Un, νj, νj) is shown for a particular realisation of
the sky, for simulated observations at δ = 0◦. Baselines 1, 4, 7, 10, 13, 16, 19, 22, 25,
29, 34 and 38 are shown. The longer baselines show more spectral structure than the
shorter baselines. The matrices are real and symmetric. A customised divergent colour
scheme is used in these plots (see Moreland, 2004).

140

Chapter6/Chapter6Figs/color_V2_BL1.eps
Chapter6/Chapter6Figs/color_V2_BL4.eps
Chapter6/Chapter6Figs/color_V2_BL7.eps
Chapter6/Chapter6Figs/color_V2_BL10.eps
Chapter6/Chapter6Figs/color_V2_BL13.eps
Chapter6/Chapter6Figs/color_V2_BL16.eps
Chapter6/Chapter6Figs/color_V2_BL19.eps
Chapter6/Chapter6Figs/color_V2_BL22.eps
Chapter6/Chapter6Figs/color_V2_BL25.eps
Chapter6/Chapter6Figs/color_V2_BL29.eps
Chapter6/Chapter6Figs/color_V2_BL34.eps
Chapter6/Chapter6Figs/color_V2_BL38.eps


6
.3

S
im

u
la
tio

n
s
a
n
d

resu
lts

Figure 6.3: (Left)The input angular power spectrum of the diffuse power spectrum, shown in red is recovered by the MAPS
estimator. The 1σ error bars correspond to averaging over 10 realisations. (Right)The input angular power spectra for the Poisson
and the clustered parts of the point sources are shown in blue. Their sum is shown in red, and the angular power spectrum recovered
from averaging 10 realisations, with the 1σ error bars similarly derived.
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6. POWER SPECTRUM ESTIMATION

Figure 6.4: The MAPS estimator S2(Un,Un±1, νj , νj) is shown for the same realisation
of the sky used to obtain Figure 6.2. The same baselines 1, 4, 7, 10, 13, 16, 19, 22, 25,
29, 34 and 38 are shown. The matrices are real but are not symmetric.
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∼
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Figure 6.5: The U range and the respective weights contributed to each visibility
from the redundant baseline pair and the adjacent baseline. The hatched region has
contribution to the baseline under consideration from the adjacent baseline or baselines.

dependence in the form of the primary beam and the chromatic baseline length will

introduce instrumental spectral variation in the estimator. To determine the form of

the spectral dependence, we start with equation 6.9, which is repeated here so that

this discussion is self-contained:

S2(Un,∆ν) =

(
∂B

∂T

)2

Cℓ(∆ν)

[∫
d2U′

∣∣∣Ã(Un −U′)
∣∣∣
2
]

(6.14)

where

∣∣∣Ã(Un −U′)
∣∣∣
2

=
λ2

bd
Λ

(
uλ

d

)
Λ

(
vλ

b

)
(6.15)

is the Fourier transform of the primary beam power pattern, or the convolution of the

rectangular aperture with itself, U = (u, v) and Λ(x) is the triangular function defined

as

Λ(x) = 1− |x| for |x| < 1, and Λ(x) = 0 for |x| ≥ 1. (6.16)

Λ(u) is periodic in u with period d/λ. Consider the Galactic diffuse foreground, de-

scribed by a single power law as in equation 5.2. Given that ℓ = 2πU where U = d/λ,

we may write

Cℓ ∝
(
λ

d

)γ

(6.17)

Substituting for all the terms, equation 6.14 can be rewritten as

S2(Un,∆ν) ∝
(
2kB
λ2

)2( λ

λ0

)2α(1000λ

2πd

)γ (λ2

bd

)
(6.18)
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6. POWER SPECTRUM ESTIMATION

from which it follows that

S2(Un,∆ν) ∝ λ2α+γ−2 (6.19)

or equivalently

S2(Un,∆ν) ∝ ν2−2α−γ (6.20)

Therefore, we expect the estimator to show this spectral behaviour across the band of

observation centred at 326.5 MHz.

A large number of realisations of the diffuse Galactic synchrotron foreground, all

with the same values of α = 2.52 and γ = 2.34 were obtained. The model visibilities

were obtained for each realisation, and the two-visibility correlation computed from

each visibility set. The diagonal of the S2(νi, νj) matrix corresponds to S2(ν,∆ν = 0).

The diagonal from the S2 matrix is obtained for 1000 independent realisations of the

diffuse Galactic foregrounds and the mean of these diagonals is computed. The 1σ error

bars too are computed from these 1000 independent realisations. The mean and the

error bars are then individually normalised at ν = 326.5 MHz; the normalised mean and

error bar curves can be represented as ∥S2(ν)∥ and ∥∆S2(ν)∥; the argument ∆ν = 0

is implicit since it is fixed. Figure 6.6 shows the normalised mean of the diagonals as

filled black circles. These have been sampled at every tenth channel so that they are

seen clearly in the plot. The shaded region represents the bounds of the normalised

1σ error bars. The thin solid line in black represents the analytically computed curve

(ν/ν0)(2−2α−γ). The two red curves correspond to two different realisations of the

Galactic foregrounds: they have been normalised to ν = 326.5 MHz individually to

enable a consistent comparison with the estimated and the expected mean curves. As

can be seen, there is excellent agreement between the normalised mean estimator and

the analytical curve on the shorter baselines, where the two realisations shown here

are spectrally simpler. As the baselines become longer, there is more obvious spectral

structure in the estimator across the band. This increased variance has led to a small

mismatch between the estimated mean and the analytical curve on the longer baselines.

An even larger number of realisations need to be averaged for these to match on the

longer baselines.

We conclude that the estimator, as expected, preserves the spectral information in

the visibility, and therefore can be applied for foreground estimation. The S2 matrix is

a new tool for studying the frequency structure of the foregrounds in its entirety. This

is because, in principle, the signals being discussed here, viz. the foregrounds, are not

stationary, i.e., S2 is not a function of |νi− νj | alone. If ⟨Vn(νi)V∗
n(νj)⟩ were a function
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6.3 Simulations and results

Figure 6.6: The normalised MAPS estimator ∥S2(U, ν)∥ is shown left to right, top to
bottom, for baselines 1, 3, 5, 6, 7, 8, 11, 16, 21, 23, 25 and 31. The red curves relate
to two different realisations of the diffuse Galactic synchrotron foreground from a total
of 1000. The estimated mean is given by the filled circles and the solid black line is
the analytically computed curve given by (ν/ν0)(2−2α−γ). The simulation is over 39
MHz split into 312 channels, but only a sampled version of the estimated mean (filled
circles) is shown for clarity. The shaded region represents the 1σ error bound.
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of ∆ν = |νi − νj | alone, then we could have dealt only with the averages along the

diagonals of S2. However since ⟨Vn(νi)V∗
n(νj)⟩ is in reality a function of both νi and νj ,

it is useful to retain the full information contained in the S2 matrix. We shall return

to the usefulness of this representation later in the context of foreground subtraction.

6.4 Systematic signatures in the estimator

Having obtained the estimate for the multi-frequency angular power spectrum, let

us now discuss the most important aspect of foreground estimation: the systematic

instrumental effects. Numerous studies have addressed the problem of instrumental

effects on the estimation of the Hi signal, and the limitations posed by effects such

as residual foreground contamination (see e.g. Liu & Tegmark, 2012), mode-mixing

(Bowman et al., 2009; Thyagarajan et al., 2013) or chromatic instrumental effects

(Vedantham et al., 2012). Some of these studies have addressed these effects in general

while others discuss them in the context of a specific instrument (e.g. Vedantham et al.,

2014, for LOFAR). An analysis for OWFA is carried out here. This is motivated by

the need to understand the effects introduced by the specific instrument, and to devise

ways and means to handle such effects in real data.

6.4.1 Sources at large angular distances

The effects of sources at large angular distances from the pointing centre coupling in

through the primary beam is well-known (see e.g. Datta et al., 2010; Vedantham et al.,

2012; Pober et al., 2013a). Consider a single point source at the co-ordinates θ = (l,m).

Let us also assume that the pointing of observation is (α0 = 0, δ0 = 0) without loss of

generality. For the nth baseline in the linear array, we note that at frequency ν = c/λ,

Un = nU1 = n
d

λ
= n

d

λ0

λ0
λ

(6.21)

The visibility, obtained as a Fourier sum in the simulation and given in equation 5.23,

simplifies to

M(U, ν) =
∑

θ

I(θ, ν) A(θ, ν) e−i2πmnd
λ0

λ0
λ (6.22)

Since V(U, ν) represents an estimate of M(U), the two-visibility correlation at (νi, νj)

for this baseline becomes

S2(Un, νi, νj) ∼ |I(θ, ν0)|2 |A(θ, ν0)|2 e
−i2πm

(
nd
λ0

)(
νi−νj

ν0

)

(6.23)
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assuming that the approximations

|I(θ, ν0)|2 = I(θ, νi)I
∗(θ, νj) (6.24)

and

|A(θ, ν0)|2 = A(θ, νi)A
∗(θ, νj) (6.25)

are reasonable, but in general not strictly true. A source away from the phase centre

leaves oscillatory features in the MAPS estimator, and the frequency of the oscillation

depends on the location of the source m as well on the baseline nd. It is interesting to

note that ∆ν/ν0 is of the order of 12% (∼40 MHz/327 MHz) for OWFA. The effective

contribution to the sinusoidal feature in S2 from the fractional frequency separation

∆ν/ν is small and sub-dominant, whereas contribution from distant sources (∝ m) on

the longer baselines is more dominant. The argument can be generalised to include

many point sources, and by extension to the diffuse foregrounds as well. We must note

that the sum total contribution from all emission within the field of view superimpose

with a range of phases that tend to partly cancel out. But residual features remain

imprinted on the innocuous-looking smooth spectra. Figure 6.7 shows the S2 for the

same realisation of diffuse and point source foregrounds used to obtain the plots in

Figure 6.2, but computed as a function of ∆ν by averaging along the diagonals of the

S2 matrix for two example baselines. Although the foregrounds are non-stationary as

discussed in Section 6.3, it is instructive to cast the estimator in the familiar form as

a function of ∆ν for this exercise. The apparently smooth curves in the top panels

can be fitted by low-order polynomials successively. The residual contamination can

still be seen in the bottom panels. The frequency of the oscillatory pattern is higher

as expected for longer baselines. It must be noted that the amplitude of the residual

oscillatory features is about 7 orders smaller than the visibility correlation S2, and they

are comparable to the amplitude of the expected Hi visibility correlation, which is in

the range of 10−8 − 10−9 Jy2, shown in Figure 6.19.

We have indeed seen that these residuals remain even when excluding the point

source foreground. While the contribution from point sources is significantly larger,

in random realisations we have also seen that occasionally, very bright point sources

(! 300 mJy) near the nulls exacerbate the problem, leaving stronger oscillatory resid-

uals. Chapman et al. (2012) have discussed such effects in the context of foreground

removal on simulated foregrounds for LOFAR EoR. They further point to studies (Bow-

man et al., 2006; Liu et al., 2009b) which have painted an optimistic picture: that

these residuals are likely to be fainter than the Hi signal. In figure 6.7, the residuals
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Figure 6.7: The S2(∆ν) curves for two baselines U2 and U17 are shown in the top left
and right panels respectively. The residual after fitting polynomials are shown in the
bottom panels, indicating the contribution from sources in the sidelobes.
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6.4 Systematic signatures in the estimator

are slightly brighter or at the level of the expected Hi signal. We shall see results from

simulated Hi signal in a subsequent section. These undesirable oscillatory features

can be suppressed by restricting the total FoV. This can be achieved by tapering the

primary beam with a weighting function, typically a Gaussian window function. How-

ever, this is possible only in the uv-plane post-correlation, through a 2D convolution.

Beam tapering in uv has been shown to be quite effective for real GMRT data (Ghosh

et al., 2011b). The tapered-gridded estimator has been shown to be equally effective

for simulated GMRT data (Choudhuri et al., 2014, 2016), but its adaptation to OWFA

is proposed as an extension of this work in the near future.

6.4.2 Instrument chromatic response

As the primary beam shrinks with increasing frequency, a point source near the null

produces a spectral signature in the signal. This transfer of power from angular to

frequency dimension is called mode-mixing (see e.g. Bowman et al., 2009). Besides,

Vedantham et al. (2012) discuss contamination due to the point-spread function (PSF),

in the context of instrument-induced limitations on imaging for EoR. Let us consider

these two effects together now: (a) the chromatic primary beam response, and (b) the

chromatic interferometer response. These are both the causes for mode-mixing and

PSF contamination.

We shall now attempt to disentangle the intrinsic frequency dependence attributed

to the emission from the sky - the spectral and spatial indices - from the chromatic

instrument response. This can be achieved by varying the spectral index α and the

spatial index γ over a wide range of values and observing the spectral behaviour of the

MAPS estimator, but employing the same realisation of the Gaussian random field.

Figure 6.8 shows the normalised MAPS estimator curves for four different baselines,

in each of which cases the brightness temperature spectral index α is allowed to take

three different values: 0.0, 1.0 and 2.0 (the three curves) for each γ. α = 0.0 represents

the case where the brightness temperature (in K) of the observed field is achromatic,

whereas α = 2.0 denotes an achromatic flux (in Jy) throughout the field. The principal

diagonal of S2(U, νi, νj) is normalised to its value S2(U, ν = 326.5MHz).

Between the three values of α, the spectral trend appears to remain largely similar.

The differences between the curves for the different values of α are small in comparison

with the overall spectral trend seen in the plots for a given baseline. Between the three

columns in the 4× 3 plot, each of which takes a different value for γ, the similarity of

the curves is remarkable. These different curves can also be described by a polynomial

of the same order for a given baseline Un, with only the coefficients of the fit changing
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Figure 6.8: The normalised estimator ∥ S2(ν) ∥ for different values of α and γ are
shown here. The first row shows the curves for the baseline U1 for the three values of
γ = 0, 1, 2, the second for U15, the third for U22 and the fourth for U38. Each plot has
three curves; one each for α = 0.0, 1.0, 2.0, shown by the colours blue, red and purple
respectively. The curves have been normalised to S2(ν0) at ν0 = 326.5 MHz.
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slightly from one γ to another. The first column represents the behaviour when γ = 0,

when there is no “clustering”. The spatial index γ exerts a spectral dependence through

ℓ = 2πU, U = dν/c and S2 ∝ ℓ−γ. α affects S2 through ν−2α. By making γ = 0 and

α = 2 (achromatic flux density), we ensure that there is no contribution from the

sky1 that is likely to cause a chromatic effect in the estimator. Then, all the spectral

behaviour that manifests in the α = 2 curve in the first column is hence being caused by

(a) the baselines U changing with frequency and (b) the primary beam shrinking with

increasing frequency. Particularly striking is the fact that the different α curves for

each γ follow each other closely, emphasising that the contribution to the spectral trend

from the spectral index α is indeed small. We may hence conclude that the bulk of the

spectral trend of the MAPS estimator S2 comes from the chromatic response of the

primary beam and the interferometer. However, the foregrounds and these systematic

effects on the foregrounds still appear smooth in frequency, a fact that is crucial to tell

their spectral signatures apart from those of the Hi signal.

6.5 The cylindrical power spectrum

The MAPS estimator matrix S2 is real and symmetric. The matrix can be reduced

to the more commonly used form by summing along the diagonals in the principal

direction, and retaining only one half of the sum. The diagonals are the loci of constant

frequency separation, ∆ν = νi − νj. This one-dimensional representation of S2, which

corresponds to the power spectrum in the case of a stationary signal, has already been

shown in Figure 6.7. We now examine the cylindrical power spectrum representation.

The cylindrical power spectrum can now be obtained from the two-visibility correlation

MAPS estimator S2(∆ν) by taking a Fourier transform along the frequency separation

(∆ν) axis. The frequency separation ∆ν is the Fourier conjugate of lag η.

The cylindrical power spectrum is an extremely useful representation of the power

spectrum (see e.g. Datta et al. 2010; Vedantham et al. 2012; Thyagarajan et al. 2013;

Liu et al. 2014 for more details). The brief derivation presented here draws extensively

on the literature widely available on the topic (Morales & Hewitt, 2004; Datta et al.,

2010; Morales et al., 2012; Vedantham et al., 2012; Pober et al., 2013a; Thyagarajan

et al., 2013; Seo & Hirata, 2016). The cylindrical power spectrum measures the power

of the signal in different sinusoidal modes over a range of wavenumbers k on the plane

of the sky and along the comoving direction. On the plane of the sky, the transverse

k-modes, called k⊥, are measured from the modes aligned along the imaginary x and y

1The diffuse foreground was simulated from the angular power spectrum, where α is the temper-
ature spectral index. To convert to flux, we take α− 2.
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6. POWER SPECTRUM ESTIMATION

axes drawn on a Cartesian frame on the flat sky. The line-of-sight (LOS) wavenumber

is given by k∥ which is measured along the redshift or frequency axis in the visibility

data. The spatial wave vectors k = (k⊥, k∥) are related (Morales & Hewitt, 2004) to

the baseline U and the frequency interval ∆ν as

k⊥ =
2π |U|
D(z)

(6.26)

where

k⊥ =
√
k2
x + k2

y , (6.27)

|U| =
√
u2 + v2 , (6.28)

D(z) =
H0 νHIE(z)

c (1 + z)2
(6.29)

is the transverse comoving distance and

k∥ ≈ η
2πH0 νHIE(z)

c (1 + z)2
(6.30)

where

E(z) =
[
ΩM (1 + z)3 + Ωk (1 + z)2 + ΩΛ

]1/2
(6.31)

and

η =
1

∆ν
(6.32)

The minimum value for k∥ is set by the bandwidth of the system, that is when η = 1/B,

and the maximum value taken by k∥ is set by the frequency resolution, or the smallest

channel width, when η = N/B. These correspond respectively to the smallest and

largest delays in the delay space, which is the Fourier conjugate of the frequency sep-

aration ∆ν. The minimum and maximum values taken by the transverse wavenumber

k⊥ are set by the shortest and the longest baselines respectively.

Following Parsons et al. (2012b), where they introduce the delay transform and

delay-rate filtering for the foregrounds, we can write

V(u, v, η) =

∫
dldmdνA(l,m, ν)I(l,m, ν)e−2πi(ul+vm+ην) (6.33)
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6.5 The cylindrical power spectrum

Figure 6.9: The cylindrical power spectrum for a noise-free, foreground-only sky model
simulated for the Mode-I system of OWFA. The foreground wedge is clearly visible.
The dashed line denotes the boundary of the wedge, which is related to the angular
extent of the simulated map. In practice, its extent would depend on the FoV. The
solid line denotes the horizon limit.
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6. POWER SPECTRUM ESTIMATION

Since P (k) represents the power spectrum of the temperature fluctuations, the relation

between the S2 matrices and the power spectrum P (k) can be derived. We can now

write (see Parsons et al., 2012, for a full derivation)

⟨V(U, νi)V(U, νj)
∗⟩ =

(
∂B

∂T

)2 ∫
d2U|A(U)|2

(
B

D(z)2 r′ν

)
P (k⊥, k||) (6.34)

where P (k⊥, k||) is the cylindrical power spectrum, and the left-hand side is equal

to S2(U, νi, νj). Since |V(η)|2 = V(η).V(η)∗, by the convolution theorem of Fourier

transforms it follows that

V(η).V(η)∗
F
$ V(ν) ∗ V∗(ν) (6.35)

Therefore, equivalently we have

⟨|V(U, η)|2⟩ =
(
∂B

∂T

)2 ∫
d2U|A(U)|2

(
B

D(z)2 r′ν

)
P (k⊥, k||) (6.36)

It is easy to see that the quantity S2(∆ν) represents the auto-convolution of the vector

V(U, ν). The auto-convolution sum S(∆ν) is equivalently obtained from the full S2

matrix by summing along the diagonals. P (k) can now be uniquely defined by inverting

equation 6.34,

P (k⊥, k||) =

(
B
N

) ∫
w(∆ν)S2(U,∆ν)e−2πi∆νηd∆ν

(
∂B
∂T

)2 ∫
d2U|A(U)|2

(
B

D(z)2 r′ν

) (6.37)

where ∆ν is a variable taking the values |νi − νj| in multiples of the channel width

B/N . Writing the Fourier integral in the numerator as a Fourier sum,

P (k⊥, k||) =

(
B
N

)2 N−1∑
i=0

w(∆ν)S2(U,∆ν)e−2πi∆νη

(
∂B
∂T

)2 ∫
d2U|A(U)|2

(
B

D(z)2 r′ν

) (6.38)

The reduced S2 matrices, where the data have been summed along the diagonals in

each matrix to obtain S2(∆ν), are weighted with a suitable window function w(∆ν)

along the frequency axis and Fourier transformed. There is some freedom in the choice

of the bandpass weighting function. The weighting function suppresses the sidelobes

arising from the Fourier transform, also called the “picket-fence” effect in signal pro-

cessing literature. Vedantham et al. (2012) suggest the Blackman-Nuttall window as

highly suitable for sidelobe suppression. However, the choice of the weighting function
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6.5 The cylindrical power spectrum

is usually a tradeoff between sidelobe suppression and loss of sensitivity and resolution

(Thyagarajan et al., 2013): the peak of the Fourier transform of the Blackman-Nuttall

window is ∼ 2.76 times lower than for a sinc function. The simulations presented here

(Marthi et al., 2016) have used a Blackman-Nuttall window (Nuttall, 1981), which is

defined as

w(n) = 0.36−0.49 cos
2πn

N − 1
+0.14 cos

4πn

N − 1
−0.01 cos

6πn

N − 1
, 0 ≤ n ≤ M−1 (6.39)

where M is N/2 for N odd and (N + 1)/2 for N even.

In Figure 6.9 is shown the cylindrical power spectrum for a foreground-only, noise-

free sky realisation for the Mode-I system of OWFA, with the 39-MHz observing band

split into 312 channels of 125 kHz each. The value of kmax
⊥ is fixed by the longest

baseline U = 487.5, but there is some freedom in the choice of kmax
∥ in the OWFA

programmable receiver since the number of channels across the band can be chosen at

the time of correlation. The values for the transverse and LOS wavenumbers are given

in Table 2.4. For the Mode-I cylindrical power spectrum shown here in Figure 6.9,

1.1× 10−2 Mpc−1 < k⊥ < 4.6× 10−1 Mpc−1 and 1.4× 10−2 Mpc−1 < k∥ < 4.6 Mpc−1.

We also consider a hypothetical version of the Mode-I array with the number of an-

tennas unchanged but their separation scaled up 6 times in the North-South direction.

This is done merely to bring out clearly the features of the foreground wedge. The

longest baseline in this hypothetical array is U = 2925, and the corresponding kmax
⊥ is

increased from 4.6 × 10−1 Mpc−1 to 2.76 Mpc−1. This results in larger delays at the

longer baselines. The power spectrum of the same foreground realisation for this scaled

array is shown in Figure 6.10. A null-like feature within the wedge is apparent through-

out the k⊥ range, but it appears particularly pronounced on the longer baselines in this

figure. This corresponds to the first null of the sinc2 primary beam in the North-South

direction, as the interferometer is sensitive to delays only to the projected North-South

component of an incoming wavefront. Figure 6.9 can schematically be considered to

be a subset of Figure 6.10, bounded by the appropriate kmax
⊥ . Although the two figures

show the cylindrical power spectrum for the same foreground realisation, their peak

powers are slightly different. This is because the true power spectrum is not sampled

in k-space identically, corresponding to the differences in the baseline lengths between

the two interferometer modes.

The two interferometric modes of OWFA span very similar ranges of k⊥ since the

longest baseline is ∼ 500 m. There are only small differences arising from the fact

that Mode-II measures a few extra k⊥ modes since it has a few baselines shorter

than U = 12.5 and a few slightly longer baselines than Mode-I corresponding to the
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6. POWER SPECTRUM ESTIMATION

extreme ends of the array. Therefore, between Mode-I and Mode-II, the cylindrical

power spectrum of the sky signal is likely to appear very similar.

The wavefront from a source at a given location in the sky arrives with a delay

between the two antennas of a baseline. The longer the baseline, the larger the delay.

Similarly, the further away the source from the phase centre, the larger the delay.

Consider a source in a given direction with a smooth spectrum across the observing

band. After a Fourier transform, in the delay space this would translate into the Fourier

transform of the intrinsic spectral shape of the source centred at the delay for that

angular position, convolved with the Fourier transform of the instrumental bandpass.

This leads to a region in the instrumental k-space where the power from all the smooth

spectrum sources in the sky is confined to within a region bounded by a straight line

that is set by the largest delay encountered by the signals at each baseline. This region

then gives the appearance of a wedge. The wedge can be analytically derived from the

equations given earlier. It can be seen that the delay

η =
d

c
=

U

ν0
=

U(1 + z)

νHI
(6.40)

where ν0 is the frequency of observation, given by ν0 = νHI/(1 + z). Since u =
√
u2 + v2 < L/λ, where L is the largest possible separation of a pair of antennas,

η, the geometric propagation delay is largest for signals arriving from the horizon.

Then, from equations 6.26, 6.30 and 6.40, it follows that

k∥ =
H0E(z)D(z)

c (1 + z)
k⊥ (6.41)

defines a straight line at the boundary of the wedge. The boundary is set by the

“horizon”, given by the condition l2 +m2 = 1, called the horizon limit (see e.g. Pober

et al., 2013a).

However, the boundary of the wedge in Figures 6.9 and 6.10 is set by the angular

extent of the foreground maps and the primary beam used in the simulations here.

This explains why the wedge is confined to a very small region in Figure 6.9. The

effect of having longer baselines can be seen more pronounced in Figure 6.10, where

the cylindrical power spectrum of the same sky realisation measured with a scaled

version of the Mode-I interferometer has meant that the delays are larger at the longer

baselines. For OWFA, the horizon limit, given by equation 6.41 is

k∥ ∼ 1.72k⊥ (6.42)
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6.5 The cylindrical power spectrum

Figure 6.10: The cylindrical power spectrum for the same realisation of noise-free,
foreground-only sky model simulated for a scaled version the Mode-I system of OWFA.
The array has been scaled 6 imtes in length, so the baselines are all longer by the
same factor. The foreground wedge is well sampled by the longer baselines of this
hypothetical interferomter. Here again, the dashed line denotes the boundary of the
wedge in this simulation and the solid line denotes the horizon limit.
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6. POWER SPECTRUM ESTIMATION

using D(z) = 6.67 Gpc, computed at z = 3.35. It is interesting to note that the

slope of the wedge depends purely on cosmological quantities and is independent of

the dimensions of the instrument. The slope of the boundary of the visible wedge in

these figures represents the largest delay in the simulation, caused by a source at the

boundary that is approximately 20◦ from the phase centre of the beam. This translates

into a delay of

η ∼
|d|
c

sin 20◦ (6.43)

that results in the relation

k∥ ∼ 0.59k⊥ (6.44)

The edge of the foreground wedge is set by the dashed line in Figures 6.9 and 6.10,

which corresponds to the extent of the FoV. The solid line sets the horizon limit, beyond

which the foreground is expected to roll off very sharply, leaving a clean “foreground-

free” region in the k-space. In reality, the primary beam of OWFA would respond to

sources beyond the simulation FoV, albeit with reduced sensitivity. The wedge would

therefore open with a larger angle than in these simulations, but it is expected to lie

somewhere between the simulated FoV boundary and the horizon limit.

There is some power in Figures 6.9 and 6.10 beyond the extent given by the bound-

ary of the wedge (the dashed line). This is being caused by the spectral structure of

the foregrounds within the band. It can also be seen that the foregrounds beyond the

FoV limit appear brighter on the shortest baselines. This can be understood as being

contributed by the large scale diffuse emission which the short baselines are preferen-

tially sensitive to (see e.g. Pober et al., 2013a, for a similar discussion). The last thing

one can see from Figure 6.9 is that there is a fair amount of “foreground-free” region,

equivalent to the “EoR window”, from which the Hi signal could be estimated. One of

the studies that we propose to carry out, in order to enable meaningful predictions is

through a Fisher matrix formalism excluding the foreground wedge.

6.6 Error on the estimator

The estimator S2 has the dimensions of variance. For the error on S2 we are hence

interested in the variance of the variance. In the simulations described above, the

visibility correlation matrix S2 is computed at every one-second interval. For an N -

second observation, therefore, N such matrices are available for each baseline, from
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6.6 Error on the estimator

which the mean matrix and the RMS matrix for each baseline can be computed. It has

been shown in Section 6.2.2 that the error on the summed model visibility goes down

as
√
1/Nn when visibilities from Nn baselines are added. This means that the error on

the estimator itself goes inversely as Nn for each baseline n.

A noise-only simulation was run in which noise equivalent to T = 150 K, the OWFA

system temperature, was added to zero visibility data for each baseline, and the data

were simulated for an observation of 60 seconds. The visibility correlation estimator

is, of course, consistent with zero. But the error bars on the estimate can be obtained

from the 60-second observation itself, as the RMS of the 60 S2 matrices, as outlined

above. Figure 6.11 shows the RMS error drawn from the reduced data, where baselines

of equal lengths have been added prior to cross-correlation, as set out by equation 6.10.

The solid line through the RMS error points follows the behaviour 1/Nn, where Nn is

the number of copies of baseline n. A larger number of copies results in a smaller RMS

error on the shorter baselines. The agreement between the measured errors and the

expected error is not readily apparent in a single realisation. But when averaged over

1000 different realisations of 60 seconds each, which is equivalent to observing for 1000

minutes, the agreement between the measured RMS errors and the expected scaling

behaviour, shown in Figure 6.12, is excellent. The error bars on the RMS errors relate

to the 1σ error obtained over all the 1000 realisations.

The estimator S2 and the error matrix ∆S2 are computed similarly for a single

realisation of the Galactic diffuse foreground, with the same system temperature of

150 K and a 60-second observation. This is equivalent to deriving the error bars from

as many independent realisations (60) of the noise, given a single realisation of the

foreground. Figure 6.13 shows the mean estimator matrix S2(νi, νj) on the left and the

1σ error matrix ∆S2 on the right. Figure 6.14 shows the recovered power spectrum

by shooting imaginary skewers through the mean and RMS cubes, S2 and ∆S2, at the

same (νi, νj) co-ordinates: the power spectrum is obtained from the mean S2 matrix

and the error bars from the RMS ∆S2 matrix. The left plot of Figure 6.14 shows

the “self” power spectrum with the error bars where νi = νj =326.44 MHz, and the

right plot shows the “cross” power spectrum with error bars, at νi =342.19 MHz and

νj =326.94 MHz. The dashed straight line through the plots is not a fit, but it is the

input power spectrum used for simulating the diffuse Galactic foreground. TheU values

on the x-axis are computed at the central frequency 326.5 MHz, as there is no other

meaningful way to represent U at a pair of frequencies (νi, νj) at which these spectra

have been extracted. Figure 6.14 is an important result purely from the perspective

of foregrounds: a 60-second integration has resulted in a 10σ detection of the diffuse

foregrounds, under the implicit assumption that the point source foregrounds have
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Figure 6.11: The band-averaged RMS noise in the estimator on each baseline for a
simulated zero-signal, noise-only observation. The total integration time is 60 s with
Tsys = 150K. The RMS decreases as the number of copies of the shorter baselines
increases. The points represent the measured RMS and the solid line, proportional to
1/Nn, shows the general expected RMS behaviour, and is not a fit to the points.
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Figure 6.12: The band-averaged RMS noise in the estimator on each baseline averaged
over 1000 realisations of a simulated zero-signal, noise-only observation. The total
integration time for each realisation is 60 s with Tsys = 150K. The RMS error measured
in each baseline is in excellent agreement with the expected RMS behaviour, scaling as
1/Nn, given by the solid line. The error bars on the RMS errors are 1σ obtained over
these 1000 realisations.
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Figure 6.13: The MAPS estimator 2 (left) and its RMS error (right) for a realisation of the Galactic synchrotron foreground with
system noise equivalent to Tsys = 150 K added to the model visibilities and integrated for 60 seconds.
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Figure 6.14: The left and right panels respectively show the “self-power spectrum” and “cross-power spectrum” at different values
of (ν1, ν2) by shooting skewers through the S2 cube. The error bars, drawn from the same co-ordinates of the RMS cube, correspond
to 60 seconds of integration with a system temperature of Tsys = 150 K. The dashed straight line is the input angular power spectrum
of the Galactic diffuse synchrotron foreground. The scatter in the estimated power spectrum arises from the stochasticity of this
realisation of the foreground.
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6. POWER SPECTRUM ESTIMATION

been modelled out, or are sub-dominant, as would be the case for the short baselines

of OWFA (see Section 5.4). This is a very optimistic scenario if we are interested in

the study of the statistics of the intensity of the diffuse foregrounds.

6.7 Estimator representation in eigenspace

We have seen that the two-visibility correlation is an estimator of the multi-frequency

angular power spectrum. The power spectrum is obtained from the data in one of two

ways: through a Fourier transform of the angular two-point correlation of the brightness

temperature map, or through the visibility correlation directly. The MAPS estimator

discussed in Section 6.2 is obtained through visibility correlations, and we have seen it

in action in Section 6.3. Since we are concerned with estimation and characterisation

of the foregrounds here, we have applied the MAPS estimator to a “foregrounds-only”

sky signal. In reality, the cosmological signal is embedded in the estimator: we have

not addressed that aspect yet. Owing to the smooth spectral nature of the foreground

signal, we expect that it has a small number of degrees of freedom in ν. We now seek

to characterise the foreground signal in ν on every baseline in a uniformly consistent

manner.

From Section 6.2.2, we see that the MAPS estimator has the general form of the

sum of two independent vectors

S2 ≈ Re(V ).Re(V ) + Im(V ).Im(V ) (6.45)

where V has dimensions of the visibility. We now seek an eigenspace to orthogonalise

the vectors. Obviously, in the N-dimensional orthogonal space (dimension equal to the

number of channels), the estimator matrix would occupy a rank of 2. The components

along the subspace axes can be obtained through a Karhunen-Loève (KL) transform.

The transformation

S2 = WΛW† (6.46)

diagonalises the MAPS matrix: it returns the matrix of the orthonormal column eigen-

vectors W and the eigenspectrum Λ with rank 2. Figure 6.15 shows the eigenvectors of

the foreground obtained wFG through the KL transform, and one of the foreground-free

eigenvectors wn, along with their estimator matrices.

The KL transform is a norm-preserving transform because the matrix of the eigen-
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6.7 Estimator representation in eigenspace

(c) Baseline 7 (d) Baseline 29

Figure 6.15: The estimator matrix S2(U, νi, νj) is shown in the top panels for the two
baselines U7 and U29. The two foreground eigenvectors and one of the foreground-free
eigenvectors are shown for each matrix in the bottom panels.
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6. POWER SPECTRUM ESTIMATION

Figure 6.16: The lower set of filled circles is the square of the input model visibilities
averaged across channels, equal to S2, and the upper set of filled triangles is a proxy for
S2 through the sum

∑L
k=0 λk. If we had summed the squares of the visibilities instead

of averaging them across channels, the points would lie one on top of the other. The
straight lines through the two sets of points are not fits, but merely a visual aid for the
factor of 312 separation as a result of averaging rather than summing across the 312
channels.
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6.8 The Hi power spectrum

vectors is unitary by construction.

||S2|| = ||ΘFG||, ||S2 −ΘFG|| ≈ 0 (6.47)

Equivalently,

tr(Λ)−
L∑

k=0

λk ≈ 0 (6.48)

where L is the rank of the matrix under transformation, in general. Therefore,
∑L

k=0 λk

gives a direct estimate of the channel-summed foreground power spectrum in the ob-

serving band. For the foregrounds, because of equation 6.45, L is always 2. Therefore

the sum of the two eigenvalues is thus a measure of the total angular power within the

band for that baseline.

We test this against the power spectrum obtained through the square of the input

model visibility function V (Un, νi) in our simulation. This is allowed for the OWFA

since there is no rotational aperture synthesis. The visibilities are all measured at

regularly spaced points on the v axis. The expected two-visibility correlation can be

directly obtained from the input model visibilities against which the true estimator

can be validated. Figure 6.16 shows the channel-averaged square of the input model

visibilities, which is proportional to the power spectrum as we have shown in Section 6.2

and the estimate of the power spectrum through the sum of the foreground eigenvalues.

The latter sum is up exactly by a factor equal to the number of channels, which is 312

here.

Three points have to be noted in the context of this exercise: (1) the per baseline

foreground eigenvectors in frequency are orthonormal in this representation, giving us a

consistent comparison of the normalised frequency dependence of the foreground signal

in each baseline, (2) the trace of the eigenspectrum directly measures the total power

in each baseline, and (3) the d−ν−ν representation can be further compressed as we

retain only the two eigenvalues and their eigenmodes. The eigenspace representation

of the S2 matrix has led to a fast algorithm for obtaining random realisations of the

Hi visibilities, which shall be described in the next section.

6.8 The Hi power spectrum

The two-visibility correlation estimator in action for simulated foregrounds was demon-

strated in the previous section. The estimator S2 itself is blind to the nature of the

signal it is being used to estimate, and is hence equally effective in recovering the
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Hi signal. This section draws largely on the work presented in Chatterjee et al. (2016)

and Sarkar et al. (2016b).

6.8.1 Visibility correlation of the Hi signal

The Hi power spectrum was introduced in Section 1.3. To summarise, the mean bright-

ness temperature T̄ of Hi at a post-EoR redshift z is given by

T̄ (z) = 4.0 (1 + z)2
(
Ωbh2

0.024

)(
0.7

h

)(
H0

H(z)

)
mK (6.49)

The Hi power spectrum PHI(k, µ) traces the dark matter power spectrum P (k), and is

given by

PHI(k, µ) = b2HI x̄
2
HI T̄

2 [1 + βµ2]2 P (k) (6.50)

where β is the linear redshift space distortion parameter and µ is the correction to

account for the line of sight component of the peculiar velocities. The average specific

intensity of the Hi emission, given by

Ī = 2.5× 102
Jy

sr

(
Ωbh2

0.022

)(
0.7

h

)
H0

H(z)
× x̄HI × bHI (6.51)

can be determined for any assumed values of parameters x̄HI and bHI, i.e., the neutral

faction and the Hi bias. Further, the visibility correlation for the Hi signal can be

obtained analytically (Bharadwaj & Ali, 2005):

S2(Un,Um, νi, νj) = Ī2ν

∫
d3k

(2π)3
Ã(Un −

rν
2π

k⊥)Ã
∗(Um −

rν
2π

k⊥)PHI(k)e
ik∥r

′
ν |νi−νj |

(6.52)

where r′ν is the comoving distance at the redshift corresponding to the observed Hi sig-

nal frequency ν, Ã is the Fourier transform of the primary beam power pattern. The

visibilities at Un and Um will be correlated only if there is a significant overlap between

the terms Ã(Un − rν
2πk⊥) and Ã∗(Um − rν

2πk⊥), which peak around different values of

k⊥. It is sufficient to restrict the discussion to Un = Um at the moment, since we ex-

pect the correlation to fall off to zero for separation |Un−Um| larger than the aperture

dimension. Subfigures 6.17(a) and 6.17(b) show the expected Hi visibility correlation

matrices for baselines U1 and U10 respectively. In frequency separation, the expected

Hi visibility correlation is confined to ∆ν < 1 MHz (Bharadwaj & Ali, 2005), which
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translates to a narrow banded region about the diagonal of the S2 matrix. On the

longer baselines, it is expected to decorrelate more rapidly, with the consequence that

the S2 matrix is nearly diagonal. This translates into stationarity in frequency for the

expected Hi signal: the statistics of the expected signal in a given baseline depends only

on the separation in frequency and not the absolute frequency, within the observing

band.

The visibility correlation of the redshifted Hi signal can be computed from the result

of a dark matter N-body simulation, in which case we proceed as follows. The Hi model

visibilities obtained from from the N-body dark matter simulation was described in

Section 5.5. One can reuse equation 6.12, but substituting the estimated visibility

V(Un, ν) with the computed model visibility MHI(Un, ν). Besides, the term to offset

the noise bias is redundant in a noise-free, signal-only simulation. Therefore, the

expression

S2(Un, νi, νj) =
MHI(Un, νi)M∗

HI(Un, νj)− δijM′
HI(Un, νi)

N2
n − δijNn

(6.53)

simplifies to

S2(Un, νi, νj) =
MHI(Un, νi)M∗

HI(Un, νj)

N2
n

(6.54)

where, by using the computed model visibility given by equation 5.26, we obtain the

visibility covariance matrices of the Hi signal realisation for the baselines Un. The

results from this exercise are shown in Section 6.8.3.

6.8.2 Simulating Hi visibilities from the expected covariance

We propose (Sarkar et al., 2016b) a new scheme to obtain random realisations of the

Hi signal visibilities from the expected Hi visibility correlation. We repeat the exercise

of decomposing the expected Hi visibility correlation into its eigenmodes, introduced

for the foregrounds in Section 6.7. For the Hi signal, we can write S2 as

S2 = EΛE† (6.55)

where E is the matrix of the eigenvectors and Λ is the diagonal matrix of the eigenval-

ues. Since the expected Hi signal is stationary, we can expect the eigen-decomposition

to naturally result in a Fourier-like basis, and the matrix Λ to be full-rank. Figure 6.17

shows the analytically computed expectation of Hi visibility correlation for baselines

U1 and U10 in the top panels. The bottom panels show the first four eigenmodes and

169



6. POWER SPECTRUM ESTIMATION

(a) U1: signal covariance (b) U10: signal covariance

(c) U1: eigenmodes (d) U10: eigenmodes

Figure 6.17: The estimator matrix S2(U, νi, νj) for the analytically computed expected
Hi signal is shown in the top panels for the two baselines U1 and U10. Their respective
first four eigenvectors and the rank-ordered eigenspectrum are shown for each matrix
in the bottom panels.
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Figure 6.18: Three different realisations, from top to bottom, of the Hi signal visibility
for the first baseline, MHI(U1, ν), as a function of ν for a portion of the band. The real
part is shown in black and imaginary part in blue. The dotted red line in the figure
represents the mean. Adapted from Sarkar et al. 2016b.

the rank-ordered eigenspectrum. Now, the Hi visibility in channel j for baseline Un

can be obtained as a single random realisation of the form

MHI(U, νj) =
N∑

k=1

√
λk
2

(x+ iy) êjk (6.56)

where λk is the kth eigenvalue of the signal covariance matrix S2, êjk is its corre-

sponding eigenvector, x and y are Gaussian random numbers with zero mean and unit

variance. Figure 6.18 shows the simulated visibilities for three different realisations of

the Hi signal for the first baseline, obtained by this method.
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6.8.3 Results from simulations

The Hi brightness distribution cube is available to us (see Figure 5.9), very much like the

foreground signals were, and the details of simulating the Hi signal have been already

discussed in 5.5. Therefore, we proceed in an identical manner to obtain the model

visibilities, an example of which was shown in Section 5.5 in Figure 5.10. These model

visibilities can hence be used to obtained the two-visibility correlation, or the MAPS

estimator. Figure 6.19 shows the S2(νi, νj) matrices for the same baselines we showed

for in Figure 6.2 for the foregrounds. These are obtained for a single realisation of the

Hi signal. The Hi signal is confined to a narrow band around the diagonal νi = νj , and

decorrelates very rapidly unlike the foregrounds. This is the chief discriminant between

the Hi signal and the foregrounds. It can also be seen that, as expected, the Hi signal

is more widepread in the νi−νj plane on the shorter baselines. This dependence on

baseline length can be quantified via the correlation coefficient κ(∆ν), which is defined

as

κ(∆ν) =
S2(∆ν)

S2(0)
(6.57)

Figure 6.20 shows κ(∆ν) as a function of ∆ν as derived from the simulations described

above.

The angular power spectrum can be recovered from the estimator by scaling with

the Fourier transform of the primary beam and converting from flux to temperature

units. The APS recovered from the estimator averaged over the five realisations of the

Hi signal is shown in Figure 6.21. The 1σ error bars in each bin are obtained over the

five realisations.

Finally, it is worth comparing the cylindrical power spectrum of the cosmological

Hi signal with that of the foregrounds. Figure 6.22 shows the power of the Hi signal

in the k-space. The power spectrum shown in this figure is obtained for the same

realisation of the Hi visibilities shown in Figure 5.10, and the corresponding Hi visibility

covariance matrices shown in Figure 6.19. We observe that there is significant power

from the Hi emission beyond the horizon limit in the k-space. Although some amount

of the signal is to be found within the foreground wedge region, most of it is beyond

the foreground horizon on the short baselines. This presents an optimistic scenario

at OWFA for isolating the Hi signal in the k-space. In the context of the OWFA

experiment, the predictions for Mode-II by Bharadwaj et al. (2015) and Sarkar et al.

(2016a) present a much more optimistic outcome than for Mode-I, based on both the

integration times as well as the power in the signal in the large angular scales that

Mode-II will have exclusive access to. It is therefore worthwhile for us to repeat these
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6.8 The Hi power spectrum

Figure 6.19: The MAPS estimator S2(U, νj , νj) is shown for the Hi signal for a single
realisation at δ0 = 0◦. Baselines 1, 4, 7, 10, 13, 16, 19, 22, 25, 29, 34 and 38 are shown.
The Hi signal is confined close to the diagonal in all the baselines.
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Figure 6.20: The decorrelation of the visibility correlation for the baselines of Mode-I
of OWFA. The decorrelation curves have been obtained from the S2(∆ν) curves after
averaging over five different realisations of the Hi signal, equivalent to observing five
different, non-overlapping direections at δ0 = 0. On most baselines, there is little signal
beyond ∼ 1 MHz.
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Figure 6.21: The angular power spectrum Cℓ(∆ν = 0) recovered from the estimator
S2(νi = νj) averaged over five realisations of the Hi signal is shown here for OWFA
Mode-I. The 1σ error bars have been obtained from the APS of each of the realisations.
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6.8 The Hi power spectrum

Figure 6.22: The cylindrical power spectrum for the realisation of the Hi signal shown
in Figure 5.10, derived from the S2 matrices shown in Figure 6.19. The solid line shows
the horizon limit and the dashed line the boundary of the foreground wedge expected
for the angular extent of the simulated maps. Most of the cosmological Hi signal is
expected to fall in the complementary “foreground-free” region, which can be isolated
from the foreground emission in the wedge.
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simulations for the foreground isolation approach for Mode-II: this is one of the possible

research extensions to this thesis, which will again be pointed out in Chapter 7.

6.9 Summary and final thoughts

We have seen in this chapter that the two-visibility correlation is an estimator of

the multi-frequency angular power spectrum. But it requires precise knowledge of

the primary beam. The esimator matrices encode all the spectral information of the

sky and the spectral response of the instrument. Although some undesirable spectral

signatures result from the chromatic response of the telescope at a small level, the bulk

of the foregrounds are very smooth across frequency. We also see that the decorrelation

bandwidths of the foregrounds on almost all baselines are much larger, typically more

than 5 MHz. In contrast, we see the Hi signal to be much more confined in the ν − ν

space near the main diagonal. Physically, this translates into the Hi signal decorrelating

very rapidly with frequency separation. This contrasting feature is crucial for isolating

the foregrounds from the signal.

Although this thesis does not discuss foreground subtraction, let us briefly note

some of the earlier attempts at foreground subtraction through polynomial fitting.

Many studies (see e.g. McQuinn et al., 2006; Gleser et al., 2008; Jelić et al., 2008)

have used the fact that the 21-cm signal is not smooth across frequency to fit out

smooth functions to the foregrounds. Ghosh et al. (2011a,b) have tried fitting smooth,

low-order polynomials to the foreground multi-frequency angular power spectrum at

different multipoles for a post-EOR experiment with the GMRT. They assume that

the Hi signal is confined to ∆ν < 1 MHz in the MAPS curves for different multipole

moments, Cℓ(∆ν), and subtract these fits from the data. However, they do find un-

desirable oscillatory patterns in the residuals of the fit. As discussed in Section 6.4.1,

these arise due to the chromatic response of the instrument to the distant sources. They

have proposed a tapering function to suppress this contribution, achieved through a

convolution kernel in the uv plane. Choudhuri et al. (2014) and Choudhuri et al. (2016)

have again presented a more detailed analysis of this technique and its effectiveness in

suppressing oscillatory patterns. A similar exercise would have to be repeated for the

OWFA experiment; however, the specifics of the convolving kernel would have to be

tailored for the particular case. This is possibly a topic of research as an extension to

this thesis in the near future.

The simulations here have used a limited FoV, and its effect on the cylindrical

power spectrum was shown in Section 6.5. A self-consistent derivation would require

accounting for the curvature of the sky for large fields of view.
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At this point in time, it is not clear if the OWFA Hi experiment will adopt the

foreground isolation or the foreground subtraction approach to measure the cosmolog-

ical Hi signal. Both methods have to be explored more rigorously before an optimal

strategy is identified. Nonetheless, some brief thoughts on the foreground subtraction

method may be in order. Similar to the polynomial subtraction method for Cℓ(∆ν) of

Ghosh et al. (2011a,b), it may be useful to try a modification of the method by fitting

smooth surfaces through the S2 matrices by specifically excluding the region close to the

diagonal in determining the surface polynomials. Similarly, the slope of the foreground

wedge can be controlled to some extent by sculpting the beam to suppress emission

from large angular distances by adopting the methods suggested by Choudhuri et al.

(2014) and Choudhuri et al. (2016).
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Chapter 7

Summary, conclusions and outlook

7.1 The cosmology experiment and OWFA

This thesis represents the research work carried out for the Ooty Wide Field Array

(Subrahmanya et al., 2016a) redshifted Hi 21-cm experiment. The OWFA redshifted

Hi 21-cm experiment aims for a statistical detection of the large-scale structure around

z ∼ 3.35 (Ali & Bharadwaj, 2014). The post-reionisation Hi signal is interesting

because it provides both constraints on cosmological parameters as well as constraints

to galaxy formation (Loeb & Wyithe, 2008; Wyithe et al., 2008; Bharadwaj et al., 2009;

Visbal et al., 2009).

OWFA is an upgrade to the legacy ORT, which is an offset parabolic reflector

telescope operating at 327 MHz. The telescope is located in the Nilgiri Hills in the

Indian peninsula on a hill that slopes 11◦, that is equal to the geographical latitude of

the place. This effectively makes the telescope equatorial mounted. This 530 m long

telescope can be steered on its axis along the length of the cylinder, allowing it to track

sources on the sky for 9.5 hours. The legacy receiver system works as a correlating

beamformer and is used routinely for space weather studies. A statistical detection of

the large-scale structure necessitates measuring either the angular correlation function

of the cosmological signal or its angular power spectrum. Inorder to enable this study

the ORT is being upgraded to operate as an interferometer (Prasad & Subrahmanya,

2011; Subrahmanya et al., 2016a,b). The interferometer will operate in two independent

but concurrent modes - Mode-I and Mode-II - which offer two different, wide fields of

view and antenna configurations. In Mode-II, OWFA will have 264 antennas. Mode-I

is a scaled-down version of Mode-II only in terms of the number of antennas and the

field of view. Due to the smaller number of antennas and the resulting smaller number

of baselines and hence data rates, Mode-I is envisaged as a test bed for data processing

algorithms before proceeding to the analysis of Mode-II data. In both the modes, the
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bandwidth is identical at ∼ 39 MHz.

7.2 The emulator and its applications

The main objectives of this thesis are three-fold: (1) to devise, test and propose optimal

calibration strategies through simulations, (2) to devise and develop an efficient power

spectrum estimation algorithm that can exploit the specific configuration of OWFA,

and (3) to develop a thorough understanding of the various systematics arising from

the chromatic response of the telescope. To address these three objectives, I have de-

veloped a software-based emulator that can produce visibility data based on a realisitc

sky model (Marthi, 2016). Besides, it can run fast calibration and power spectrum es-

timation programs to yield “science-ready”, processed data. This emulator is designed

to evolve organically into the observatory data pipeline system for OWFA.

The emulator takes as its input the antenna and the array geometry, the band-

width and the number of channels the band is to be split into. Based on the antenna

description and the array configuration, the physically distinct baselines are obtained

as antenna pairs, and the true baseline vectors are computed for each channel. This

leads to a natural chromatic description of the interferometer. Similarly, the primary

beam is defined for each channel which, again, naturally accommodates the chromatic

response of the primary beam.

The foreground brightness temperature maps themselves are simulated as random

realisations of the Fourier transform of the model foreground angular power spectrum

(see Chapter 5). For the diffuse Galactic foregrounds, the model angular power spec-

trum has been measured (La Porta et al., 2008) from data taken by many previous

studies (Haslam et al., 1982; Reich, 1982; Reich & Reich, 1986; Reich et al., 2001;

Testori et al., 2001). Based on these we characterise the power spectrum of the diffuse

foreground as a single power law in the scales of interest to OWFA (Ali & Bharadwaj,

2014). For OWFA simulations, we have used power spectrum measurements of the dif-

fuse Galactic foreground, made with the GMRT (Ghosh et al., 2012). The simulated

brightness temperature maps (see Section 5.2.2) can be scaled to give specific intensity

maps in every channel. This simulation of the diffuse foreground has been validated

by recovering the power spectrum from the simulated data and is shown to match the

input (Section 5.2.3, as well as Marthi et al. 2016).

Similarly, the extragalactic point source foreground can be simulated from its angu-

lar power spectrum (see Section 5.3.2). Based on previous studies of the extragalactic

point source foregrounds (e.g. de Oliveira-Costa et al., 2008, and all the references

therein), it appears that at most of the angular scales accessible to OWFA, the ex-
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tragalactic foregrounds are likely to dominate the total foreground emission (Ali &

Bharadwaj, 2014). Simulating the extragalactic foreground maps is slightly more in-

volved than simulating the diffuse foregrounds. The power spectrum of the point source

distribution has two components, one with a Poisson distribution and one which is clus-

tered (see e.g. Cress et al., 1996; Condon, 2007; Owen & Morrison, 2008; Vernstrom,

2015). We simulate both the components and populate them with sources with their

fluxes drawn from the observed radio source counts. Once again we validate the sim-

ulated images by computing the corresponding power spectrum and showing that it is

in accord with the input (see Section 5.3.2).

7.3 Calibration

The different realisations of the simulated foreground maps (i.e. the diffuse and the

point source foregrounds) are summed and weighted by the primary beam. This final

map that OWFA would “see” is used to obtain the model visibilities. The model

visibilities are obtained only for the small set of non-redundant baselines as a pixel-

by-pixel Fourier sum (Marthi et al., 2016). The instantaneously redundant copies of a

baseline measure the same Fourier mode on the sky. The observed visibility on each

of the baselines is simulated as a realisation of the model visibility corrupted by the

complex gains of the antennas participating in the baseline.

The simulated visibilities are calibrated by exploiting the intrinsic redundancy of

the baselines for which we propose a new efficient, unbiased algorithm. Redundancy

calibration offers the advantage of being able to simultaneously calibrate both the

complex instrument gains as well as the complex sky visibilities. Although linear least

squares algorithms are available, the solutions suffer from being biased at low signal-

to-noise ratios, or being computationally very intensive.

The non-linear least squares algorithm based on steepest descent that we have

developed provides unbiased solutions and is also computationally very efficient (see

Chapter 4). We have also established that this fast calibration algorithm is statisti-

cally optimal, in that it achieves the Cramér-Rao bound (Marthi & Chengalur, 2014).

Besides simulations, we have tested and validated this calibration on real data from

the historical Phase-I system. We have also validated post-correlation beamforming

on the calibrated data, which can be used for studying transients at 325 MHz (see

Section 4.6).
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7.4 Power spectrum estimation and the expected

systematics

The calibrated data is now science-ready, and we proceed to the next step that would

take us closer to detecting the Hi signal. The foregrounds are several orders of mag-

nitude brighter than the cosmological signal we are interested in (Chapter 5). These

foregrounds have to be either subtracted from the calibrated data, or we have to iden-

tify a strategy by which we can separate the foregrounds and the signal in a parameter

space where they would occupy disjoint territories.

In this thesis, I have attempted to employ the two-visibility correlation (Bharadwaj

& Ali, 2005) as a model-free foreground estimator. I have tailored the estimator to

exploit the redundancy inherent in the configuration of OWFA, and apply the estima-

tor to the simulated foregrounds (see Chapter 6). For the purpose of identifying the

systematics, the simulations are noise-free. However, I have also separately addressed

the noise behaviour in the estimator.

The two-visibility correlation estimator represented as a matrix for each baseline

is a useful representation as it retains the complete spectral information available in

the visibilities. The foregrounds appear as very smooth features in the estimator. The

spectral structures are very weak on the shortest baselines. As the baseline beomes

longer, the spectral structure becomes more pronounced. Much of this spectral struc-

ture can be attributed to contribution from sources at large angular distances from

the beam centre. I show that from the two-visibility correlation, derivative represen-

tations such as the bandwidth decorrelation and the cylindirical power spectrum can

be obtained. The systematics we are concerned about are chiefly of chromatic origin.

The telescope has a slightly different response to the signal from the sky at different

frequencies. We have established that these effects are much stronger than the intrinsic

spectral shape of the foregrounds themselves. Most of the spectral signatures of the

foregrounds visible in the estimator can conclusively be attributed to the chromatic

response of the primary beam of the telescope and the interferometric baselines.

Earlier studies (such as Datta et al., 2010; Vedantham et al., 2012; Thyagarajan

et al., 2013, for example) have shown that the foregrounds are confined to a wedge in

the cylindrical representation of the power spectrum. We find that for OWFA there

is a significant region of the observed k-space that lies outside this wedge which can

hence be used for estimating the Hi signal. This sizeable foreground-free region arises

largely because of the compact overall size of the instrument.

We apply the same two-visibility correlation estimator on simulated Hi signal re-

alisations obtained from an N-body simulation (Chatterjee et al., 2016). We find that
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the Hi signal is confined to a narrow band about the principal diagonal, in contrast

with the foregrounds. This is along expected lines as the Hi signal decorrelates beyond

a frequency interval of 1 MHz at the redshift of z ∼ 3.35.

7.5 Conclusions

The essential accomplishments of this thesis are the following:

• A software emulator for OWFA has been developed. It would serve as the ob-

servatory data processing pipeline for the Hi experiment (Marthi et al., 2016;

Marthi, 2016).

• A robust and statistically optimal redundancy calibration algorithm has been

devised (Marthi & Chengalur, 2014), and it is found to be fast. Our timing

estimates suggest that real-time calibration of the instrument and the sky should

be possible using this algorithm. The errors on the estimated solutions can be

obtained at every iteration of the algorithm.

• Foreground simulations that produce realistic sky maps have been developed

(Marthi et al., 2016). Besides being an essential aid in devising power spectrum

etimation algorithms and the study of systematics introduced by the instrument,

these foreground simulation tools could be very useful in refining our predictions

for the foregrounds themselves based on various statistical parameters.

• A visibility covariance based power spectrum estimator has been studied that

exploits the redundancy of the baselines (Marthi et al., 2016). The estimator is

validated by recovering the power spectra of the foregrounds. A detailed study

of the various systematics arising out of the chromatic primary beam and inter-

ferometer response of the telescope has been performed. The study suggests that

the chromatic response is much stronger than the intrinsic spectral character of

the emission from the sky. However, the short baselines of OWFA has also meant

that the foregrounds are confined to a small region of the instrumental k-space.

• The Hi signal is found to decorrelate very rapidly unlike the spectrally smooth

foregrounds, and it confirms our understanding of the Hi signal obtained analyt-

ically (Chatterjee et al., 2016). The simulated Hi signal obtained from N-body

particle mesh simulations have provided us with insights into the signatures of the

cosmological signal in the power spectrum representation, and how it contrasts

with the foregrounds.
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7.6 Limitations of OWFA

It might be useful to list the limitations within the contours of which the Hi experiment

is being designed.

• ORT is a single-polarised radio telescope. The most direct consequence of this

fact is that it operates at a reduced sensitivity. This has consequences for the

survey speed.

• Although calibration itself does not suffer severely from lack of the second po-

larisation, it precludes being able to calibrate polarised foregrounds. Polarised

foregrounds have important consequences for the detectability of the Hi signal

(see e.g. Moore et al., 2013; Paciga et al., 2013; Shaw et al., 2015). Foregrounds

have a significant polarised component. Especially, the diffuse Galactic fore-

ground has an extremely rich Faraday structure (see e.g. Jelić et al., 2014). The

intrinsic polarised emission from the diffuse and the extragalactic foregrounds,

as well as the Faraday rotation imparted by the magneto-ionic medium of the

Galaxy to the emission from the extragalactic sources would contribute to the

polarisation uncertainties in the observed astrophysical signal. This can be stud-

ied in more detail using the emulator that has been developed, and discussed in

this thesis.

• The lack of east-west baselines is a handicap, as it limits the number of k⊥ modes

sampled by the telescope. With only north-south baselines, all the k⊥ modes we

will sample are essentially pure ky modes. A combination of kx and ky modes

would greatly enhance the sampling density in the instrumental k-space. Besides,

the inability to make 2D images means that foreground subtraction would have to

be entirely model-based, with the models having to come either from predictions

or from deep high-resolution images over wide fields of view obtained through

observations using other telescopes.

7.7 Outlook for the future

I now list some of the research projects that would naturally follow this thesis. These

research problems have to be addressed to further our understanding of the systematics,

and to make more realistic forecasts for the cosmological Hi signal.

• In this thesis I have not addressed the issue of direction-dependent effects (DDE).

This will be important for Mode-II more than Mode-I due to the very wide FoV.
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Estimating and correcting for DDEs is challenging in the absence of imaging

capabilities. However, due to the enormous redundancy of the array, the system

of equations is sufficiently overdetermined to allow some simple parametrization

of the direction dependence at the time of redundancy calibration itself. Although

this proposition has not been tested yet, it holds the potential to nominally

estimate the direction-dependent antenna gains.

• I have not addressed foreground subtraction in this thesis. The stationary nature

of the Hi signal, a feature borne out very clearly by the visibility covariance

matrix, informs us that foreground subtraction may well be attempted on the

visibility covariance matrix S2, but by excluding the banded region about the

diagonal where the Hi signal is expected. Nor have I addressed apriori point

source subtraction. The inability to make images with OWFA means that point

source subtraction has to be entirely model-based. Such sky models have to

come from high resolution deep observations made with other telescopes, like the

GMRT, for example.

• A combination of techniques such as point source subtraction and beam tapering

to suppress the response from the sidelobes is required to mitigate the resid-

ual oscillatory patterns in the visibility correlation. Ghosh et al. (2011b, 2012),

Choudhuri et al. (2014) and Choudhuri et al. (2016) propose convolving the grid-

ded visibility data with a kernel in the uv plane, and have demonstrated its ability

to suppress the oscillatory patterns in the residual visibility correlation. The ef-

fect of beam tapering on the foreground isolation scheme needs to be explored in

detail, since the extent of the wedge can be controlled through the field of view.

This has important consequences for the Hi signal detection sensitivity.

• The Ooty Radio Telescope is a singly polarised radio telescope. But foregrounds

in general are expected to have a small fraction of polarisation. The ORT is sensi-

tive only to the component of polarised intensity whose electric vector is aligned

with the dipole when it reaches the telescope. As a result, ORT would look

at the polarised sky through a spatially distributed intensity modulation mask.

So far, simulations have only treated unpolarised foregrounds in total intensity.

This would underestimate as well as alter the foreground power spectra. Besides,

Faraday rotation of the polarised component leads to ocillatory patterns in the

polarisation basis of the telescope that could mimic the cosmological Hi signal at

certain Faraday depths. It appears that the polarised foregrounds are again con-

fined to the wedge region in the instrumental k-space and polarisation calibration

errors pose no serious threat to the isolated signal window (Kohn et al., 2016).
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However, a complete and rigorous study of the effects of polarised foregrounds

on estimating the foregrounds and the signal with the single-polarised OWFA is

therefore essential in the near future.
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Appendix

Prowess - some programs and their functions

Prowess is short for “Programmable OWFA Emulator System”. It was envisaged

as a suite of programs capable of simulating visibilities for OWFA, based on simulated

realistic sky maps. In course of time, it has organically evolved into a package that

would serve as the observatory data analysis software as well. The package follows

a function-rich programming philosophy: it is relatively straightforward to add more

functions for a user, as well as to write a new program by calling various functions

in sequence. This appendix is a very brief account of the various programs which are

likely to be the most important and most frequently used. “A Project.Par” file is

required by most programs as in input; an example is shown in Figure 1.

mkprbeam

Usage : mkprbeam -o OutputFITSmap

Given an antenna definition table Antenna.Def and the Project.Par parameter file, this

program makes a channel-by-channel primary beam for as many channels requested in

Project.Par. Although at the moment it produces a 2D sinc2 beam, it can accommodate

any functional form of definition for the primary beam. The output map is available

as a FITS image cube.

gengalfg

Usage : gengalfg -o OutputFITSmap

Simulates a diffuse Galactic synchrotron map parameterized by a power law index γ

and a spectral index α, both defined internally. The output map is available as a FITS

image cube.

genEPS

Usage : genEPS -n nMaps

Simulates nMaps maps of the extragalactic radio point sources with a predefined clus-

tering and Poisson power. The source fluxes are distributed according to the normalized
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**********************************************************
** Project parameter inputs - edit only the par values! **
** According to the number of scans in SCANPAR, add or **
** remove SCAN info. Do not modify the format or layout **
** of the file! **
** -Visweshwar Ram Marthi, 09-JAN-2012 **
**********************************************************

#PROJPAR
Project Code : DASTEST01
Observer : Marthi
Obs. Mode (TRANSIT/TRACKING) : TRACKING
Channels per sideband : 1

#SCANPAR
No. of scans : 1

#SCAN
Scan number : 1
Source Name : 1330+251
Source Flux : 32.0
Pointing RA : 00h00m00.000s
Pointing Dec : 40d00’0.000"
Calibrator ( Y / N ) : Y

#END

Figure 1: A Project.Par project definition file is required by most programs.

differential source counts. Each discrete radio source is given a spectral index drawn

randomly from a Gaussian distribution with a mean spectral index of α = −0.7 in flux

density. The output map is available as a FITS image cube.

mkmodel

Usage : mkmodel -i InputFITSmap/catalog -p [Primary Beam FITS File] -t [threshold

(mJy)]

This program computes the model visibilities, given a simulated map or a catalog of

radio sources with positions (αk, δk) and flux density in mJy. The primary beam file

is an optional argument; by default it picks up a PRBEAM.FITS file in the same

working directory. The threshold in mJy is an optional argument set by default to

zero, which serves as a cutoff flux upto which to compute the model. This is equivalent

to subtracting sources above the flux threshold. The model visibilities are available

as an ASCII text file with the real and imaginary parts against U in λ units, for all
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baselines and all channels.

addmodel

Usage : addmodel -i Modelfile1 -j Modelfile2 -o Outputmodelfile

The visibilities from two input model visibility files are added and the output is written

to the output model file in the same format. The two input model visibilities are

expected to be at the same U.

submodel

Usage : submodel -i Modelfile1 -j Modelfile2 -o Outputmodelfile -t [threshold mJy]

The visibilities from Modelfile2 are subtracted from Modelfile1. If the threshold flux

density is provided (defaults to zero), only model visibilities above that flux are sub-

tracted.

plotmodl

Usage : plotmodl -i InputFITSmap -m 0/1 for amp-phase / real-imag -d default x/X

for Xwindow, p/P for postscript

Plots the model visibilities against u(λ) in Jy units. Visibility data from all the fre-

quency channels are plotted together. The -m switch chooses to plot the visibility in

real/imaginary or amplitude/phase format. This switch can also be toggled dynami-

cally when the program is running. The plotting device can be chosen to be either a

PGPLOT X device or a postscript printer.

mdl2FITS

Usage : mdl2FITS -i Inputmodelfile -o OutputFITSFile -t T

Given a model visibility file, it produces an output UV FITS visibility file that simulates

an observation of length T seconds. It requires Antenna.Def and Project.Par. The

input model visibiilties are corrupted by the input antennas gains generated internally

following a predefined pattern. The pattern to be followed for assigning the antenna

gains is programmable.

genFITS

Usage : genFITS -o OutputFITSFile -t T -p EPSmap -g -h HICubeFITS -b [pbeam-

FITS]

This program generates visibilities based on an input point source map EPSmap. If

the -g switch is on, it also simulates the diffuse foreground map to be added to the

point source map. Alternatively, the EPSmap along with the -p switch can be omitted

but only the -g switch can be retained if only the diffuse foreground has to be realised.

An HI data FITS cube can be supplied after the -h switch. If a primary beam FITS

cube is available by the default PRBEAM.FITS name, it can be supplied by the -b
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switch, otherwise it internally computes the primary beam. The -b switch is useful if

the program is to be used to generate multiple realizations of visibilities repetitively,

as the primary beam for a given declination is reusable. The observing duration T in

seconds has to be necessarily supplied, else it produces a dummy FITS file with the

headers but no data. code. The output FITS file is written to disk.

FITSinfo

Usage : FITSinfo -i InputFITSFile [-a -b -f ]

Parses the input FITS file header and prints the information on the screen, It tells

whether the FITS file is a UVFITS or FITS image file, and the relevant information

like number of antennas, baselines, channels, the pointing centre of observation, or the

dimensions of the FITS image file. The optional switches -a and -b allow the user

to list the antennas and the baelines respectively when the file is UVFITS. They are

ignored for a FITS image file. The switch -f dislpays the flag mask when used for the

visibility covariance matrix cube V2CORR.FITS.

The following few visualisation programs are useful for inspecting the simulated

visibility data or real data from the telescope.

imagtifr

Usage : imagtifr -i InputFITSFile [-a=0] Ant 1 [-b=1] Ant 2 -m 0/1 [-d=’X’] Plot

device -f ITF: default ’l’- lin, ’g’- log, ’s’- sqrt

Plots the visibility data on a colour-coded surface in time-frequency order for the

baseline (defaults to the first) comprised of antennas a and b, supplied by the options

-a and -b. Real/Imaginary or Amplitude/Phase mode for the data can be toggled

dynamically, or chosen at the start by the -m option. The image transfer function can

be set by the -f option or can be chosen dynamically by typing ’l’, ’s’ or ’g’. The plots

can be printed to postscript by specifying the -dp option, which defaults to PGPLOT X

device. The time and frequency ranges to plot can be looped dynamically at runtime.

imagtibl

Usage : imagtibl -i InputFITSFile [-dX ] Plot device [-m=0] Plot mode [-n=N/2] Chan-

nel number

Plots the visibility data on a colour-coded surface in time-baseline order for a chosen

frequency, set by the -n option. The default is the central channel. The real/imaginary

or amplitude/phase mode can be chosen at the start by the -m option or toggled dy-

namically at runtime. Plotting defaults to the PGPLOT X device, but can be printed

to postscript by choosing the -dp option.
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plottibl

Usage : plottibl -i InputFITSFile [-n=N/2] Display chan. [-r=3] plot rows [-c=5] plot

cols [-d=’X’] Device [m=0] mode [-s] Scale reset

Makes line plots of the visibility data in time-baseline order for the channel given by

the -n option. The number of rows and columns are set by the -r and -c options

which default to 3 rows and five columns respectively. Postscript plots are obtained by

choosing the -dp option. The -m option can be invoked similar to the imagtibl program

either at the start or dynamically at runtime. In addition, the toggle switch -s chooses

a full range or full scale for the y-axis, that can also be toggled dynamically.

imagfrbl

Usage : imagfrbl -i InputFITSFile [-d=’X’] Plot device [-m=0] Plot mode [-k=4] First

k channels to blank

Plots the visibility data on a colour-coded surface in frequency-baseline order for a

chosen time instant given by the -n option. The record to plot is chosen at runtime.

The real/imaginary or amplitude/phase mode can be chosen at the start by the -m

option or toggled dynamically at runtime. Plotting defaults to the PGPLOT X device,

but can be printed to postscript by choosing the -dp option.

plotfrbl

Usage : plotfrbl -i InputFITSFile [-r=3] plot rows [-c=5] plot cols [-d=’X’] Device [-

m=0] Mode [-s] Scale reset [-k=4] First k chan to blank

Makes line plots of the visibility data in frequency-baseline order for the record that

is chosen at runtime. The number of rows and columns are set by the -r and -c

options. Postscript plots are obtained by choosing the -dp option. The -m option

can be invoked similar to the imagfrbl program either at the start or dynamically at

runtime. In addition, the toggle switch -s chooses a full range or full scale for the

y-axis, that can also be toggled dynamically. The first few number of channels to be

blanked is given by the -k option, which defaults to four.

Calibration and power spectrum estimation programs are described below.

FITSbsol

Usage : FITSbsol -i InputFITSFile -o OutputFITSFile -t T≥1 -n [Channel to calibrate

1-MAXCHAN] -k [Channels to blank for BPASS plots] -r [No. of rows per plot page]

-c [No. of columns per plot page] -m [model visibility file]

FITSbsol calibrates an input UVFITS visibility file and writes the calibrated data to

an output UVFITS visibility file. Every T seconds of data can be integrated for better
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SNR, and T defaults to one when it is omitted as an option. The channel which is

to be considered the 0 channel for bandpass calibration can be specified after the -n

switch, which defaults to the central channel. The -k option defaults to 4, which is the

number of channels from the band-edge to be blanked when plotting the bandpasses

of the baselines. The -r and -c switches set the number of rows and columns of the

bandpass response respectively to plot in a single page. The bandpass response can be

dynamically printed to a postscript file. An input model visibility file can be supplied

if the model is availble, or as a calibrator model if a calibrator scan is available in the

UVFITS file.

FITS2mdl

Usage : FITS2mdl -i UVFITSfile

This estimates the model visibilities on the set of non-redundant baselines from the

input UVFITS visibility file. This is useful if the model visibilities have to be es-

timated on the non-redundant baselines by averaging multiple redundant baselines,

after calibration.

v2corr

Usage : v2corr -i InputFITSFile

Computes the visibility correlation matrix S2(U, νi, νj) for a given UVFITS file. If there

is more than one record, also computes the error on the covariance matrix. The outputs

are V2CORR.FITS and V2ERR.FITS, which are both stored as FITS cubes, with the

third axis being the baseline and the two axes of each plane being the frequency. These

outputs can be viewed with FITSview.

FITSview

Usage : FITSview -i InputFITSFile [-d=’X’] Plot device [-p] to publish; default no [-c :

colour map ; default monochrome ] ITF: default ’l’- lin, ’g’- log, ’s’- sqrt [-n : channel

to show ; default N/2]

FITSview can be used to view image cubes through three different image transfer

functions that can be chosen as an input or switched dynamically at runtime. The

-c option chooses a colour display, and it can be toggled at runtime using the space

bar. The viewing program FITSview is interactive when it displays the V2CORR.FITS

cube. Any point on the display image can be clicked to extract and plot the power

spectrum through that point as a function of baseline. When using FITSview to view

these outputs, the usage is

FITSview -i V2CORR.FITS -j V2ERR.FITS

The display device can be chosen through the -d option.
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