
A

Project Report

Submitted to

GIANT METREWAVE RADIO TELESCOPE,
(National Centre for Radio Astrophysics),
(Tata Institute of Fundamental Research)

Under the Guidance of

Mr. Ajith Kumar B. Mr. Navnath D. Shinde

 Engineer-E & Technical Assistant-C

 (GMRT-NCRA-TIFR) (GMRT-NCRA-TIFR)

Submitted by:

Meha Kainth

B.TECH (ECE)

(Jaypee University of Information Technology)

STP-2009 (15 June ‘09-26 August ‘09)

PROGRAMMABLE WALSH

PATTERN GENERATOR USING

CPLD

Date:

CERTIFICATE

This is to certify that Ms. Meha Kainth, a graduate student of

B.Tech, Jaypee University of Information Technology, Solan

(HP) has undertaken a project entitled “Programmable

Walsh Pattern Generator using CPLD” at this institute from

15.06.2009 to 26.08.2009. She has done very good work and

completed the project successfully.

Ajith Kumar B. Navnath D. Shinde

 Engineer – E Technical Assistant-C

GMRT –NCRA‐TIFR GMRT –NCRA‐TIFR

Page 2

ACKNOWLEDGEMENTS

Working at Giant Meterwave Radio Telescope for student training program (STP) has been

enriching experience for me. This project is result of many people‟s dedication, inspiration,

guidance, knowledge and moral support. I would like to take this opportunity to thank them.

My foremost thanks to my guides, Mr. Ajith Kumar B. and Mr. Navnath D. Shinde, both of

whom have helped me in every possible way in my project. It was really kind of them to devote

their precious time and solve my difficulties. They were always eager to help me whenever I

approached them, be it day or night. They not only cleared my concepts during this project, but

also deepened my knowledge of the related topics.

I am highly grateful to the honorable Center Director of NCRA‐GMRT, Mr. Rajaram

Nityananda; Chief Scientist Mr. Yashwant Gupta; for giving me a chance to work in such a

fabulous environment with all intellectuals around. I would like to express deep gratitude

towards Mrs. N.S. Deshmukh, STP Coordinator, GMRT, for solving all my problems and

offering me help to make my stay here more comfortable.

I feel delighted to express my sincere thanks to all the members of the Analog Lab, Ms. Sweta

Gupta, Mr. Satpal Gole, Mr. Sudhir Phakatkar, Mr. R. Gosavi, Mr. Ramdas and Mr. Mangesh

Bhor for providing me guidance and help through various stages of the project. I would also like

to thank Srinivas for helping me with my project work and Aarti Sandikar for her cooperation.

Last but not the least; I am thankful to Mr. S. Sabhapathy for his support and sharing his beliefs

and ideas with me and other STP students and for taking us all for the wonderful Shirdi trip and

am also thankful to my friends Rolly Seth, Pritama Kundu, Abhijeet for their support.

Finally, I want to say thanks to all those who helped me directly or indirectly during this project

and during my stay at GMRT Observatory.

Meha Kainth

Page 3

CONTENTS

CERTIFICATE ... 1

ACKNOWLEDGEMENTS .. 2

ABSTRACT .. 5

CHAPTER 1-INTRODUCTION…………………………………………………...(6-15)

1.1. Introducing GMRT ... 7

1.1.1.Why Metre Wavelengths? .. 7

1.1.2. Array Configuration .. 8

1.1.3.Gmrt Front‐Ends and Back‐Ends ... 9

1.2. Existing Front- End Electronics .. 11

1.3. Front-End Control from LO Synthesiser ... 12

1.3.1. Noise Calibration .. 12

1.3.2. Walsh Switching ... 13

1.3.3. Requirements for the Front End System from the LO Synthesiser: 13

1.3.4. Control at the ABR .. 14

1.4. Problem Definition ... 15

CHAPTER 2-REPROGRAMMABLE SYSTEMS..……...……………………….(16-22)

2.1. Reprogrammable Systems .. 17

2.1.1. Types of Programmable Logic Devices/FPDs ... 17

2.1.3. CPLD vs. EPROM ... 21

CHAPTER 3-DESIGN AND DEVELOPMENT..………………………………(23-45)

3.1. Walsh Functions ... 24

3.1.1. Applications of Walsh Functions ... 24

Page 4

3.1.2. Definition and Properties ... 25

3.1.3. Generation of Walsh Patterns... 28

3.2. Selection of Walsh Patterns and Noise Patterns in D-49 PIU: .. 30

3.2.1. Existing Design .. 30

3.2.2. New Design and Development.. 32

CHAPTER 4-PHYSICAL REALIZATION ON CPLD………………………….(46-59)

4.1 Physical Implementation on CPLD Chip .. 47

4.1.1. Architecture of XC95108 .. 47

4.1.2. Device Programming .. 48

4.2. Results on MSO .. 57

CHAPTER 5-HARDWARE IMPLEMENTATION AND TESTING…………(60-72)

5.1. Walsh Card PCB Design .. 61

5.2. Testing the Walsh Card PCB .. 62

5.2.1. Test Setup ... 63

5.2.2. Procedure for Testing ... 64

5.3. Test Results ... 67

CHAPTER 6-CONCLUSIONS..…………………………………………………..(73-74)

6.1. Conclusions .. 74

FUTURE SCOPES…………………………...………………………………………….75

REFERENCES ...76

APPENDIX A ..77

APPENDIX B ..98

APPENDIX C .. 100

Page 5

ABSTRACT

The VLSI technology has made revolutionary changes in status of electronic industry and

capturing the digital design by schematic entry, hardware description or combination of both.

With the recent advancements in Field Programmable Gate Arrays (FPGA) and Complex

Programmable Devices (CPLD), it has been possible to design a system on a programmable chip

(SOC).

A circuit to control certain Front-end System parameters, through MCM-2 (in the LO

Synthesiser) in the GMRT receiver chain is developed. This report describes in detail the circuit

design and implementation. An introduction to Walsh functions is given and an efficient method

of Walsh pattern generation has been described. The logic for Walsh pattern generation forms

the main part of the front end control circuit along with various other logics for noise pattern

generation, sequency pattern generation and control of monitoring signals. The overall

architecture for various patterns generation has been programmed in a CPLD using Xilinx

Design Tools 8.2i, so as to develop a SOC. Additional functional features have been added to this

circuit to provide more flexibility to a user while observation. Finally, the overall circuit has been

implemented on a PCB using Altium Design Tools 6.1and the final PCB has been tested online.

The various results obtained after testing have been compared with the calculated and the

simulated results.

CHAPTER-I

INTRODUCTION

CHAPTER 1-Introduction

Page 7

1.1. INTRODUCING GMRT

Giant Metrewave Radio Telescope (GMRT), located near Pune in India, is the worldʹs largest

radio telescope working at metre wavelengths. It is operated by the National Centre for Radio

Astrophysics, a part of the Tata Institute of Fundamental Research, Mumbai. In the form of

GMRT, NCRA (National Center for Radio Astrophysics, TIFR) has set up a unique facility for

radio astronomical research using the metre wavelengths range of the radio spectrum.

Giant Metrewave Radio Telescope (GMRT) is located at a site about 80 KM north of Pune. It is

an aperture synthesis array consisting of 30 fully steerable giant parabolic dishes of 45m

diameter. GMRT is one of the most challenging experimental programmes in basic sciences

undertaken by Indian scientists and engineers.

GMRT, about 10 km east of Narayangaon town on the Pune‐Nasik highway, was selected after

an extensive search in many parts of India, considering several important criteria such as low

man‐made radio noise, availability of good communication, vicinity of industrial, educational and

other infrastructure and, a geographical latitude sufficiently north of the geomagnetic equator in

order to have a reasonably quiet ionosphere and yet be able to observe a good part of the

southern sky as well.

1.1.1. Why Metre Wavelengths?

The study of universe at high frequencies can easily be done, but the most challenging work was

to develop a telescope which can work at low frequencies or more specifically Radio Frequencies

because this is the range of frequencies in which maximum noise lies. Since in other countries like

USA, the RF Noise level is too high, no other country had taken an initiative to develop such a

system working at this frequency range. The RF noise level being comparatively low in India,

CHAPTER 1-Introduction

Page 8

gave an opportunity to pick up this challenging project of GMRT working at Radio frequencies.

Hence, the metre wavelength part of the radio spectrum has been particularly chosen for study

with GMRT because man‐made radio interference is considerably lower in this part of the

spectrum in India. Although there are many outstanding astrophysics problems which are best

studied at metre wavelengths, there has, so far, been no large facility anywhere in the world to

exploit this part of the spectrum for astrophysical research.

GMRT currently operates at five observing bands centered at 150 MHz, 235 MHz, 327 MHz,

610 MHz and an L-band extending from 1000 to 1450 MHz. The Astronomical bodies that can

be best studied at metre wavelengths through GMRT are – Pulsars, Sun, Jupiter Radio Bursts,

Hydrogen Lines, Milky way and other nearby Galaxies.

1.1.2. Array Configuration

The number and configuration of the dishes was

optimized to meet the principal astrophysical

objectives which require sensitivity at high

angular resolution as well as ability to image

radio emission from diffuse extended regions. The

GMRT has a hybrid configuration, with 14 of its

antennas randomly distributed in a central region

(~ 1 km across), called the central square. The

distribution of antennas in the central square was

deliberately “randomized” to avoid grating lobes. Figure 1.1-The GMRT array as viewed from space.

The remaining antennas are distributed in a

roughly Y shaped configuration, with the

length of each arm 1 of the Y being ~14 km.

The maximum baseline length between the

extreme arm antennas is ~25 km. The arms

are called the “East”, “West” and “South”

arms. The central square antennas provide

a large number of relatively short baselines.

This is very useful for imaging large

extended sources, whose visibilities are

concentrated near the origin of the UV Figure1.2-One of the 30 GMRT antennae

CHAPTER 1-Introduction

Page 9

plane. The arm antennas on the other hand are useful in imaging small sources, where high

angular resolution is essential. A single GMRT observation hence yields information on a variety

of angular scales

.

GMRT is an indigenous project. The construction of 30 large dishes at a relatively small cost has

been possible due to an important technological breakthrough achieved by Indian Scientists and

Engineers in the design of light‐weight, low‐cost dishes. The design is based on what is being

called the `SMARTʹ concept ‐ for Stretch Mesh Attached to Rope Trusses.

1.1.3. GMRT front‐ends and back‐ends

Radio waves from the distant cosmic source

impinge on the antenna and create a fluctuating

voltage at the antenna terminals. This voltage

varies at the same frequency as the cosmic

electro-magnetic wave, referred to as the Radio

Frequency (RF). The voltage is first amplified

by the front-end (or Radio Frequency)

amplifier. The signal is weakest here, and hence

it is very important that the amplifier introduce

as little noise as possible.

Front end amplifiers hence usually use low noise solid state devices. After amplification, the

signal is passed into a mixer. A mixer is a device that changes the frequency of the input signal.

Mixers have two inputs, one for the signal whose frequency is to be changed (the RF signal in

this case), and the other input is usually a pure sine wave generated by a tunable signal

generator, the Local Oscillator (LO). The output of the mixer is at the beat frequency of the radio

frequency and the local oscillator frequency. So after mixing, the signal is now at a different (and

usually lower) frequency than the RF, this frequency is called the Intermediate Frequency (IF). The

main reason for mixing (also called heterodyning) is that though most radio telescopes operate at

a wide range of radio frequencies, the processing required at each of these frequencies is identical.

The economical solution is to convert each of these incoming radio frequencies to a standard IF

and then to use the same back-end equipment for all possible RF frequencies that the telescope

accepts. In telescopes that use co-axial cables to transport the signal across long distances, the IF

frequency is also usually chosen so as to minimize transmission loss in the cable. Sometimes there

 Figure 1.3-Block diagram of a single dish Radio

 Telescope

CHAPTER 1-Introduction

Page 10

is more than one mixer along the signal path, creating a series of IF frequencies, one of which is

optimum for signal transport, another which is optimum for amplification etc. This is called a

„super-heterodyne‟ system. After conversion to IF, the signal is once again amplified (by the IF

amplifier), and then mixed to a frequency range near 0 Hz (the Base Band (BB)) and then fed into

the backend for further specialized processing. What backend is used depends on the nature of the

observations.

The GMRT accepts radio waves in six bands from 50 MHz to 1.4 GHz and has IFs at 130 MHz,

175 MHz and 70 MHz. The GMRT receiver chain is shown schematically in Figure 1.4.

 The first block is the multi-frequency front-end. This is located in a rotating turret at the

prime focus. All the feeds and low noise RF front-ends have been configured to receive

dual polarization signals. Lower frequency bands (from 50 to 610 MHz) have dual

circular polarization channels, i.e. left circular and right circular polarizations which have

been labeled as CH1 and CH2 respectively. The L-band (1000-1450 MHz) system has

dual linear polarization channels, i.e. vertical and horizontal polarizations (also labeled

CH1 and CH2 respectively).

 The first local oscillator (I LO, situated at the base of the antenna, inside a shielded

room) converts the RF band to an IF band centered at 70 MHz. After passing the signal

through a bandpass filter of selectable bandwidth, the IF at 70 MHz is then translated

(using II LO) to a second IF at 130 MHz and 175 MHz for CH1 and CH2, respectively.

The maximum bandwidth available at this stage is 32 MHz for each channel.

 This frequency translation is done so that signals for both polarizations can be frequency

division multiplexed onto the same fiber for transmission to the Central Electronics

Building (CEB). The IF signal at 130 MHz and 175 MHz along with telemetry and LO

round trip phase carriers directly modulate a laser diode operating at 1300nm antennas

and the CEB.

 At the CEB, these signals are received at „nm‟ wavelengths which are coupled to a single

mode fiber-optic link by the Fiber-Optic Receiver and the 130 and 175 MHz signals are

then separated out and sent for base band conversion. The baseband converter section

converts the 130 and 175 MHz IF signals first to 70 MHz IF (using III LO), these are

CHAPTER 1-Introduction

Page 11

 then converted to upper and lower sidebands (each at most 16 MHz wide) at 0 MHz

using a tunable IV LO. There are also two Automatic Level Controllers (ALCs) in the

receiver chain.

 There are a variety of digital backends available at the GMRT. The principal backend

used for interferometric observations is a 32 MHz wide FX correlator. The FX

correlator produces a maximum of 256 spectral channels for each of two polarizations for

each baseline.

 All control and monitoring commands to the system are sent from the central computer

through a telemetry system. The telemetry system provides a Measurement, Control and

Monitor (MCM) circuit for sending digital control data to the circuits and for acquiring

analog monitor data.

1.2. EXISTING FRONT- END ELECTRONICS

 At the focus of each antenna, each feed has two low noise amplifiers (one for each

polarization), with a noise injection facility where the user can select any of the 4 values

of injected noise power. The two signals go to a common box (also on the feed turret)

where the user can select which frequency signals appear at the output of the common

box since only 2 cables go down to the antenna base. The common box has facilities for

the user to select solar attenuators (0, 14, 30 or 44 dB) and swap the two polarization

channels.

1.4- Schematic Diagram of GMRT Receiver chain

CHAPTER 1-Introduction

Page 12

 There is a bandpass filter after the LNA in the front end box, which is followed by a post

amplifier, to have the required output power at the end of front end box. Thereafter the

signal is modulated with Walsh function using phase switching to minimize the effect of

crosstalk between different signals. Mini-circuits double balanced mixer SBL-1MH is

used for phase-switching.

2.5- Schematic Diagram of GMRT Front End System

 At the correlator the exact reverse phase switching is done for each antenna so that the

original phase is recovered just before the cross correlation is done. Such a scheme can

greatly reduce the cross-talk at all points between the RF amplifier and the baseband.

1.3. FRONT-END CONTROL FROM LO SYNTHESISER

All the front end parameters are controlled through a MCM-5 in the front end. Few of the

parameters of the front end system are varied at the time of observation of a celestial source. All

these front end parameters along with switching ON/OFF of the front end MCM are controlled

at the Antenna Base Rack in the Local Oscillator Synthesiser. Before analyzing the requirements

for the front end control of the GMRT, it is necessary to understand what is noise calibration

and Walsh switching and why are these required for the GMRT.

1.3.1. Noise Calibration

An additional noise signal (of known strength) is injected (as described above) into the RF signal

to measure the system temperature. The noise generator at the front-end of each antenna can be

switched in both power and Time Domains for different durations as per the requirement. The

advantages of noise injection facility are as follows:

CHAPTER 1-Introduction

Page 13

 This facility is used in order to calibrate the gain of the receiver. By adding noise of

known strength, SNR is decreased be a known amount and the variation in gain of the

system can be measured. For example, the front end noise generator is to be kept on

continuously for duration in order to troubleshooting the receiver system. This is

however, not used for online observation purposes.

 It may be used a secondary calibration system, the primary being the standard celestial

sources. By synchronously measuring the total power, it is possible to calibrate the

system temperature.

The synchronous total power measurement however has not yet been implemented.

1.3.2. Walsh Switching

Signals from one antenna could leak into another antenna at various points along the signal flow

chain. This is normally referred to as cross-talk. This would cause a spurious correlation between

the baseband signals from these two antennas. This leakage can be minimized by switching the

phase of the RF signal of each antenna by a pattern that is ortho-normal to the pattern used for

all other antennas. Typically the ortho-normal functions used are Walsh functions, and this

scheme is called Walsh Switching.

 1.3.3. Requirements for the Front End System from the LO Synthesiser:

 Generation and selection of noise patterns for noise switching.

 Generation and selection of Walsh patterns for Walsh switching at the front end.

 Switching ON and OFF the front end MCM.

Switching of Front-end Noise Generator in Time Domain:

The Noise switching in power domain is achieved by switching appropriate attenuators and the

switching in time domain by a switching pattern in time, which is produced at base of the

antenna in the Antenna Base Rack (ABR) and will be described later. It is possible to inject noise

at any one of four levels. Four patterns are available, NGN1, NGN2, NGN3, NGN4

corresponding to 0%, 25%, 50%, and 100% ON period for the noise generator. The noise at any

antenna can be switched on and off (on sub second time scales) according to a pre-determined

pattern, which is encoded in PROMs in the Antenna Based Receiver (ABR).

CHAPTER 1-Introduction

Page 14

Walsh switching at the front end:

A phase switching facility using separate Walsh functions for each signal path is available at the

RF section of the receiver. As discussed previously, a set of Walsh patterns are produced at the

base of each antenna, for the following two purposes:

 To phase-modulate the RF output of the LNA in the front-end using a double balanced

mixer as a broad band phase switch. This is to take care of coupling between the two

signal channels of an antenna as well as coupling of signal between antennas. The

demodulation will be done at an appropriate location in the correlator.

 To phase-modulate the return LO referance signal. As phase-coherent LO reference

signals at 105 Mhz are received at CEB through the return link from all thirty antennas,

it is felt that there might be coupling between signals at CEB to result in inaccuracies of

RTP measurement. Hence phase switching of the LO return signal might be essential.

However, this scheme has not been implemented as yet.

128 Walsh patterns with 128 transitions over a period of the function, defined as sequency, have

been generated using a program. The sequency pattern uniquely defines the start of Walsh

pattern. So, there are 64 pairs of Walsh patterns for use in 30 antennas (for each of the two

channels of every antenna) divided into „Low Group‟ and „High Group‟. The first and the last

patterns are not used. The required Walsh patterns for each antenna are also encoded in

PROMs situated at the ABR.

Switching ON and OFF the Front end MCM

MCM-5 is placed in the front end and is to be switched off at the time of observation. This is

done because an MCM consist of microprocessor, digital circuitry which generates a lot of RFI

(Radio Frequency Interference) and since this MCM is in the front end, near the feeds, the feeds

can pick up the RFI and thus resulting in undesirable results. Again the required signal for

controlling the MCM ON/OFF is controlled at the ABR.

1.3.4. Control at the ABR

The Monitor and Control Module-2 (MCM-2) in the control digital Plug-In-Unit, D-49 PIU

which is placed at the ABR in the LO Synthesiser, controls the selection of various patterns at

the ABR which will be combined with the RF signals at the front-end and the control of front

end MCM, as per the online commands issued by the user in the control room. A Walsh card

CHAPTER 1-Introduction

Page 15

PCB WNG_RO in the PIU is used for this purpose and consists of EPROM which is encoded

with the various patterns this PCB also generates the various monitoring signals for enabling the

Monitoring card PCB in the D-49 PIU. The complete process of pattern selection has been

discussed later. An interface panel with a 10-way terminal strip has been provided at the rear of

the ABR rack to bring the patterns from rear of D-49 PIU to a convenient location for

connecting to the 10-core front-end cable.

1.4. PROBLEM DEFINITION

The main aim of the project is to make Front End control to control Front End system

parameters through MCM-2 in the ABR. This involves improving the Walsh card PCB in the D-

49 PIU. This PCB consists of digital circuitry having a number of IC's with differential line

driver circuitry for long distance transmission of signals from the antenna base to the front end.

All this Digital circuitry part can be simulated in the CPLD and thus saving the cost and

providing better performance in comparison to the EPROM based circuitry of the existing

Walsh card. Hence, the new Walsh card consists of the CPLD and differential line driver

circuitry with minimum Components and thus size. Besides reducing the size, additional

functionality can be added to the card by programming the CPLD in order to improve the overall

performance and provide more flexibility to the user for better analysis while observation.

Overview of the work that has to be done:

 Understanding the working and function of the Walsh Card PCB.

 Understanding the Walsh functions and finding the most efficient method for generation

of Walsh Patterns for the GMRT.

 Developing the logic for Walsh pattern generation, Sequency pattern generation, noise

pattern generation, front end MCM control and Monitoring signals control.

 Selection of a suitable CPLD.

 Physical realization of the various logics in the CPLD.

 Preparing a PCB with this CPLD and other circuitry for implementing the complete

functionality of the Walsh card PCB.

 Testing the PCB online.

CHAPTER –II

REPROGRAMMABLE

SYSTEMS

CHAPTER 2-Reprogrammable Systems

 Page 17

2.1. REPROGRAMMABLE SYSTEMS

Reconfigurable Computing has been described as hardware going soft. A computing platform

based on this principle has an architecture that can be modified by the software to suit the

application at hand. An algorithm will always run fastest when directly hardwired (DSP, ASIC).

Dramatic performance gains can therefore be obtained by implementing an algorithm in the

reconfigurable portion of such a system. Prompted by the development of new types of

sophisticated field-programmable devices (FPDs), the process of designing digital hardware has

changed dramatically over the past few years. Unlike previous generations of technology, in

which board-level designs included large numbers of SSI chips containing basic gates, virtually

every digital design produced today consists mostly of high-density devices. This applies not

only to custom devices like processors and memory, but also for logic circuits such as state

machine controllers, counters, registers, and decoders. When such circuits are destined for high-

volume systems they have been integrated into high-density gate arrays. The most compelling

advantages of FPDs are instant manufacturing turnaround, low start-up costs, low financial risk

and (since programming is done by the end user) ease of design changes.

The market for FPDs has grown dramatically over the past decade to the point where there is

now a wide assortment of devices to choose from. A designer today faces a daunting task to

research the different types of chips, understand what they can best be used for, choose a

particular manufacturer‟s product, learn the intricacies of vendor-specific software and then

design the hardware. Confusion for designers is exacerbated by not only the sheer number of

FPDs available, but also by the complexity of the more sophisticated devices.

Field-Programmable Device (FPD) is a general term that refers to any type of integrated circuit

used for implementing digital hardware, where the chip can be configured by the end user to

realize different designs. Programming of such a device often involves placing the chip into a

special programming unit, but some chips can also be configured “in-system”. Another name for

FPDs is programmable logic devices (PLDs).

2.1.1. Types of Programmable Logic Devices/FPDs

Many types of programmable logic are available. The current range of offerings includes

everything from small devices capable of implementing only a handful of logic equations to huge

CPLDs that can hold an entire processor core (plus peripherals). In addition to this incredible

difference in size there is also much variation in architecture. Some of the most common types of

programmable logic devices have been mentioned as under:

CHAPTER 2-Reprogrammable Systems

 Page 18

Figure 2.1- Hierarchy of various PLDs

PLDs

At the low end of the spectrum are the original Programmable Logic Devices (PLDs). These

were the first chips that could be used to implement a flexible digital logic design in hardware. In

other words, you could remove a couple of the 7400-series TTL parts (ANDs, ORs, and NOTs)

from your board and replace them with a single PLD. Other names for this class of device are

Programmable Logic Array (PLA), Programmable Array Logic (PAL), and Generic Array Logic

(GAL).

PLDs are often used for address decoding, where they have several clear advantages over the

7400-series TTL parts that they replaced. First, of course, is that one chip requires less board

area, power, and wiring than several do. Another advantage is that the design inside the chip is

flexible, so a change in the logic doesn't require any rewiring of the board. Rather, the decoding

logic can be altered by simply replacing that one PLD with another part that has been

programmed with the new design.

Inside each PLD is a set of fully connected macrocells. These macrocells are typically comprised

of some amount of combinatorial logic (AND and OR gates, for example) and a flip-flop. In other

words, a small Boolean logic equation can be built within each macrocell. This equation will

combine the state of some number of binary inputs into a binary output and, if necessary, store

that output in the flip-flop until the next clock edge. Of course, the particulars of the available

logic gates and flip-flops are specific to each manufacturer and product family. But the general

idea is always the same.

CPLDs

As chip densities increased, it was natural for the PLD manufacturers to evolve their products

into larger (logically, but not necessarily physically) parts called Complex Programmable Logic

CHAPTER 2-Reprogrammable Systems

 Page 19

Devices (CPLDs). For most practical purposes, CPLDs can be thought of as multiple PLDs (plus

some programmable interconnect) in a single chip. The larger size of a CPLD allows the

implementation of either more logic equations or a more complicated design. In fact, these chips

are large enough to replace dozens of 7400-series parts. When a CPLD is configured, the

internal circuitry is connected in a way that creates a hardware implementation of the

software application. Unlike processors, CPLDs use dedicated hardware for processing logic

and do not have an operating system. CPLDs are truly parallel in nature so different

processing operations do not have to compete for the same resources. As a result, the

performance of one part of the application is not affected when additional processing is

added. Also, multiple control loops can run on a single CPLD device at different rates.

CPLD-based control systems can enforce critical interlock logic and can be designed to

prevent I/O forcing by an operator. However, unlike hard-wired printed circuit board (PCB)

designs which have fixed hardware resources, CPLD-based systems can literally rewire their

internal circuitry to allow reconfiguration after the

control system is deployed to the field.

CPLDs store their logic design in an EPROM,

EEPROM, flash or SRAM memory that associates each

programmable connection point with a memory cell (is

the connection open or closed). The building block of a

CPLD is the macro cell, which contains logic

implementing disjunctive normal form expressions and

more specialized logic operations. CPLD– Produced by Altera, AMD, Lattice, Xilinx and etc

2.1.2. Architecture of CPLD

As shown in above figure, there are logic blocks which are

themselves comprised of macrocells and interconnect

wiring, just like an ordinary PLD. The macrocells within a

function block are usually fully connected. If a device

contains multiple function blocks, then the function blocks

are further interconnected. In concept, CPLDs consist of

multiple PAL-like logic blocks interconnected together via

a programmable switch matrix. Typically, each logic block

contains 4 to 16 macrocells, depending on the architecture.

Figure 2.2- Internal structure of a CPLD

http://www.answers.com/topic/disjunctive-normal-form

CHAPTER 2-Reprogrammable Systems

 Page 20

Some of the major variations between CPLD

architectures include the number of product terms

per macrocell, whether product terms from one

macrocell can be borrowed or allocated to another

macrocell, and whether the interconnect switch

matrix is fully- or partially-populated. In some

architectures, when the number of product terms

required exceeds the number available in the

macrocell, additional product terms are borrowed

from an adjoining macrocell. This makes the CPLD

device useful for a wider variety of applications.

 Figure 2.3- Arrangement of Macro Cells within

 a logic block

When borrowing product terms from an adjoining macrocell, that macrocell may no longer be

useful. In some architectures, the macrocell still has some basic functionality. Borrowed product

terms usually mean increased propagation delay.

Another difference in architectures is the number of connections within the switch matrix. A

switch matrix supporting all possible connections is fully populated. A partially- populated

switch supports most, but not all, connections. The number of connections within the switch

matrix determines how easy a design will fit in a given device. With a fully-populated switch

matrix, a design will route even with a majority of the device resources used and with fixed I/O

pin assignment. Generally, the delays within a fully populated switch matrix are fixed and

predictable. At the high-end (in terms of numbers of gates), there is also a lot of overlap in

potential applications with CPLDs. Because of its less flexible internal architecture, the delay

through a CPLD (measured in nanoseconds) is more predictable and usually shorter. In short, we

can conclude the following points about CPLDs:

 Significant characteristics for the CPLD-architecture:

 » product terms generated in programmable macrocells.

 » typically one dedicated flip-flop per macrocell.

 » many macrocells per logic-block.

 » typically all logic-blocks identical.

 » minimum two logic-blocks per device.

 » routing between logic-blocks via global switch matrix.

http://www.fpga-site.com/faq.html#Macrocell

CHAPTER 2-Reprogrammable Systems

 Page 21

 Main-advantages :

 » predictable timing

 » fast pin-to-pin delay

 » efficient resource utilization by switch-matrix

 » medium design complexities possible

Programming a CPLD

In order to program a CPLD, solder the device to its printed circuit board, and then feed it with a

serial data stream from a personal computer. The CPLD is in-circuit programmable and contains

a circuit that decodes the data stream and configures the CPLD to perform its specified logic

function via a JTAG interface or from an on-board embedded processor. This makes it possible to

erase and reprogram the device internals.

FPGAs

FPGAs use a grid of logic gates, similar to that of an ordinary gate array, but the programming

is done by the customer, not by the manufacturer. The term "field-programmable" means the

array is done outside the factory, or "in the field." FPGAs are usually programmed after being

soldered down to the circuit board, in a manner similar to that of larger CPLDs. In most larger

FPGAs the configuration is volatile, and must be re-loaded into the device whenever power is

applied or different functionality is required.

The main difference between FPGAs and CPLDs is that FPGAs have a volatile memory, thus it

requires to be programmed after power up. CPLDs do not. Also, FPGAs usually consume more

power than CPLDs due to their SRAM nature. Finally, CPLDs do not have as many registers or

memory storage as FPGAs. In general CPLDs are a good choice for wide combinatorial logic

applications while FPGAs are more suitable for large state machines (i.e. microprocessors).

FPGAs are internally based on Look-up tables (LUTs) while CPLDs form the logic functions

with sea-of-gates (e.g. sum of products).

2.1.3. CPLD vs. EPROM

Before PLDs were invented, read-only memory (ROM) chips were used to create arbitrary

combinational logic functions of a number of inputs. Consider a ROM with m inputs (the address

lines) and n outputs (the data lines). When used as a memory, the ROM contains 2m words of n

bits each. Now imagine that the inputs are driven not by an m-bit address, but by m independent

http://www.answers.com/topic/read-only-memory
http://www.answers.com/topic/combinational-logic

CHAPTER 2-Reprogrammable Systems

 Page 22

logic signals. Theoretically, there are 2m possible Boolean functions of these m signals, but the

structure of the ROM allows just 2n of these functions to be produced at the output pins. The

ROM therefore becomes equivalent to n separate logic circuits, each of which generates a chosen

function of the m inputs.

The advantage of using a ROM in this way is that any conceivable function of the m inputs can

be made to appear at any of the n outputs, making this the most general-purpose combinatorial

logic device available. Also, PROMs (programmable ROMs), EPROMs (ultraviolet-erasable

PROMs) and EEPROMs (electrically erasable PROMs) are available that can be programmed

using a standard PROM programmer without requiring specialized hardware or software.

However, there are several disadvantages:

 They are usually much slower than dedicated logic circuits,

 They cannot necessarily provide safe "covers" for asynchronous logic transitions so the

PROM's outputs may glitch as the inputs switch,

 They consume more power, and

 Because only a small fraction of their capacity is used in any one application, they often

make an inefficient use of space.

 PROM and EPROM can only be encoded with the help of a separate piece of lab

equipment called a device programmer. On the other hand, CPLDs based on EEPROM

or Flash technology are in-circuit programmable. In other words, the additional circuitry

that's required to perform device (re)programming is provided within the FPGA or

CPLD silicon as well. This makes it possible to erase and reprogram the device internals

via a JTAG interface or from an on-board embedded processor.

http://www.answers.com/topic/boolean-function
http://www.answers.com/topic/programmable-read-only-memory
http://www.answers.com/topic/eprom
http://www.answers.com/topic/ultraviolet
http://www.answers.com/topic/eeprom

CHAPTER-III
DESIGN AND

DEVELOPMENT

CHAPTER 3-Design and Development

 Page 24

3.1. WALSH FUNCTIONS

Figure 3.1-walsh patterns

Walsh functions are a series of square waves that can be combined to create almost

any waveform. These functions consist of trains of square pulses (with the allowed states being

-1 and 1) such that transitions may only occur at fixed intervals of a unit time step; the initial

state is always +1. The function WAL(i,k) represents a waveform, known as Walsh Pattren, as a

function of time k with i transitions over the period of the function defined as Sequency function.

Thus, the parameter n can be interpreted as “one half the number of zero crossings per unit time.

i is known as the normalized sequency or sequency. For an index n, i=log2n. There are 2
n Walsh

functions of length 2n. Furthermore, within the set of 2n functions there is one function of zero

sequency, one of (normalized) sequency 2
n–1, and one pair (odd and even) of each (normalized)

sequency from 1 to 2
n–1

– 1. The Walsh functions are commonly subdivided into the even

functions Cal (i,k), and the odd functions Sal (i,k) which are defined by:

Cal (i,k) = wal (2i,k)

Sal (i,k) = wal (2i-1,k)

3.1.1. Applications of Walsh Functions

Walsh functions and transforms are important analytical tools for signal processing and have

wide applications in digital communication, digital image processing, statistical analysis, solving

differential equations as well as in digital logic design. The Walsh function series can be applied

http://www.encyclopedia.com/doc/1O11-sequency.html

CHAPTER 3-Design and Development

 Page 25

to many areas where sinusoidal techniques have previously dominated. This is so in the design of

digital equipment for communication and computer applications, where the two levels that form

the function match binary logic. In the applications of the Walsh transform to CDMA, VLSI

testing, cryptography, and digital signal and image processing, the fastest approach is the

hardware implementation.

Applications of Walsh functions in Radio Astronomy Instruments

An effective means of getting a further reduction of several tens of decibels in the unwanted

responses is known as phase switching. In case of phase switching, the RF signal received at one

of the antennas is periodically reversed in phase by a switch that is driven by a square wave a few

tens of Hertz. The component of the multiplier outputs resulting from the signals entering the

antennas reverses in sign following the action of the switch, and is rectified by synchronous

detectors. The unwanted signals, which are not phase switched, produce components which are

essentially constant at the multiplier outputs and thus are eliminated by the synchronous

detection.

For phase switching a multielement array in which the products of the signals from all possible

pairs of antennas are to be formed, phase switching can be represented by multiplication of the

received signals by periodic functions that alternate in time between values of +1and -1. For the

mth and nth antennas let these functions be fm(t) and fn(t). Synchronous detection of the multiplier

output for these two antennas requires a reference waveform fm(t)fn(t), and any nonvarying

components from the multiplier are reduced by a factor

T

T
0

nm (t)(t)ff
1

after averaging for a time T. This factor will be zero if fm(t) and fn(t) are orthogonal over the

interval T or a submultiple of it.

3.1.2. Definition and Properties

Many different definitions for Walsh functions are known and used for various applications.

These functions are commonly defined in terms of a subset, the Rademacher functions.

 A Rademacher function of the nth order is defined as:

 2(sin)(SgnkRm 2
m
k), m=0,1,2… (2.1)

CHAPTER 3-Design and Development

 Page 26

Where, the signum function Sgn(y) is defined by:

0,1

0,1
)(

y

y
ySgn

 (2.2)

 Figure 3.2- Rademacher-functions R0 to R4

Property 3.1:

Rademacher functions form an orthogonal, but incomplete set. Actually, they form a subset of the

Walsh set of functions. The Rademacher functions Rm(k) are the walsh functions of index 2m
-1

R0 (k) = wal (20
-1, k) = sgn (sin 2πk)

R1 (k) = wal (22
-1, k) = sgn (sin 4πk)

And in general,

Rm(k) = wal (2m+1
-1, k) = sgn (sin 2m+1

πk) , k≥0. (2.3)

First Walsh pattern i.e. w(0,k) is a series of all 1’s and 0 sequency.

Property 3.2:

The product of any two Walsh functions is a third Walsh function

wal (i, k) .wal (j, k) = wal (p, k) (2.4)

such that

pji (2.5)

Where (.) means that if i, j, p are expressed as binary numbers, then p is formed from the bit-by-

bit modulo-2 sum of i and j. Equation (2.3) may be written alternatively as

0 pji

R(0,1)

R(1,1)

R(2,1)

R(3,1)

R(4,1)

CHAPTER 3-Design and Development

 Page 27

For convenience and simplicity of notation the Walsh functions can be considered to be formed

from (0, 1) values rather than from (+ 1, - 1) values; multiplication of the functions is then

replaced by modulo-2 addition, the (0, 1) values xi being related to the (+1, -1) values yi by the

equation

ii xy 21

wal (i, k) will for briefness be written w(i) and Rm(k) will be written Rm.

Property 3.3:

An arbitrary Walsh function w(i) may be written as a linear combination of Walsh functions

all with index of the form 2m . For if the binary equivalent of i is bzbz-1…..b3b2b1b0, (with b0 as

the least significant digit) then

 i = (bo2
0 b12

1 b22
2 …….)

z

m

mb
0

2
m
 (2.6)

where the summation symbol denotes the modulo-2 sum. Therefore,

z

m

mwbiw
0

)((2m), 1,0mb (2.7)

This is evident from (2.4) and (2.5) and shows that an arbitrary Walsh function w(i) may be

written as a linear combination of Walsh functions with indices of the form 2
m, and that the

combination required is obtained directly from the binary equivalent of i.

For example, if i = 50 (= 110010 in binary)

w(50) = w(2
5
) w(2

4
) w(2

1
)

 = w(32) w(16) w(2)

 = w(32) w(13)

Property 3.4:

Any Walsh function may also be expressed as a linear combination of the Rademacher functions:

wgiw
z

m

m

0

)((2
m+1

-1) =

z

m

mmRg
0

, 1,0mg (2.8)

The gm forms the Gray code equivalent of i.

CHAPTER 3-Design and Development

 Page 28

3.1.3. Generation of Walsh Patterns

Many different definitions for Walsh functions are known and used for various applications.

They include: Walsh functions in strict sequency ordering (known also as Walsh - Kaczmarz)

related to Sal and Cal symmetries; Walsh functions in dyadic Paley ordering (known also as

Dyadic) known also as Gray code ordered functions; Walsh functions in natural Hadamard

ordering; Walsh functions in X-ordering; and Walsh functions in reverse Gray ordering. Since

they are square waves, they are very easy to create. Various Walsh function generators exist that

use different methods. The sequence generators having the widest applicability are those

generating a set of Walsh functions, although in some cases these functions are obtained by first

generating Rademacher functions. Ideally, the generated functions should be orthogonal to each

other and some designs are better in achieving this than others. For the second case, the Walsh

orderings form a group under modulo-2 addition and such generators can be easily implemented

using multiplicative EXOR gates.

For our project, we have adopted the method to generate the Walsh patterns in strict sequency

ordering directly from the primary set of Rademacher functions. This method has been adopted

as it is simpler and requires lesser hardware resources as compared to other methods reviewed.

This method generates all the i Walsh functions at the same time, where i is the index of Walsh

functions. As already stated, the sequency of a Walsh function is defined as the number of zero

crossings in one cycle. In strict sequency order, each row has one more crossings between 1’s

and -1’s than the row above. Thus, alternate even and odd patterns i.e. Cal-Sal patterns are

obtained in this ordering. The various steps and algorithm for generation have been discussed as

under.

Algorithm for Walsh pattern generation

In the algorithm for Walsh functions generation, the original 1‟s are kept, but -1’s are replaced

by 0, and all the Walsh functions are generated in the complete interval between 0 and 1 rather

than between -½ and ½. After the changing of original symbols the basic properties like a

modulo-2 addition of two Walsh functions yields another Walsh function hold for all the Walsh

functions. To generate, we use the properties described above.

Step-I: Let = (bn-1, bn-2,……,bj,…..,b0) be a binary vector representing an index of the

Walsh function (i.e. the sequency), where 0≤ j ≤ n-1.

Step-II: obtain the Gray code =(gn-1, gn-2,……,gj,…..,g0) from the natural binary code

CHAPTER 3-Design and Development

 Page 29

= (bn-1, bn-2,……,bj,…..,b0), where jjj bbg 1 for 0 ≤ j ≤ n-2, and gn-1=bn-1.

Step-III: Generate the Walsh functions in strict sequency ordering as follows (i is the index

of walsh patterns):

 Some of the Walsh patterns (say WR patterns) can be obtained directly from the

Rademacher functions as

WR(2i+1
-1, k) = Ri(k) (using property 2.1)

 W(0,k)=WR(0,k)=+1, for all k

 Remaining Walsh functions are obtained from these WR patterns as follows:

1

0

)(
n

j

jgiw WR(2
j+1

-1) =

1

0

n

j

jjRg , (using property 2.4)

 While obtaining the patterns using the above equation, reduce any combinations of 3 or

more Walsh functions (wherever possible) to combinations of two Walsh functions which

have already been obtained in the sequence of patterns. (Using property 2.2 and 2.3)

 The Cal patterns are even functions having even sequency and Sal patterns are odd

functions having odd sequency. Every even indexed (is even) walsh pattern i.e. the Cal

pattern is to be complemented.

 Figure 3.3-flow graph for Walsh patterns generation

Generate WR patterns for given

index of Walsh functions.

Generate remaining Walsh patterns

by modulo-2 summation of WR

patterns and gray codes

Modify these combinations of walsh

patterns by reducing them.

Convert natural binary

code to gray code

Complement the even indexed

patterns or Cal patterns

CHAPTER 3-Design and Development

 Page 30

3.2. SELECTION OF WALSH PATTERNS AND NOISE

PATTERNS IN D-49 PIU:

In the following sections, the existing design for pattern selection in D-49 PIU has been

highlighted and then the new design has been discussed.

3.2.1. Existing Design

The 128 Walsh patterns have been divided into two groups as High Group and Low Group. The

control signals required for enabling/disabling Walsh Patterns, selection of High Group or Low

Group and Noise ON/OFF are generated in the control PIU D-49 in the ABR at the base of each

antenna . The Digital Plug-In-Unit (PIU), D-49 of the Local Oscillator (LO) Synthesiser in the

ABR is the control PIU and contains the following PCBs:

 The MCM PCB, which is the interface to the LO systems.

 The Reset PCB RESET_R1.

 The Control PCB CON_R2.

 The Walsh and Noise Generator control PCB WNG_RO with ID Code D 85, used in the

Monitoring scheme of the synthesizer as well as controlling a few parameters of the

front-end at the antenna.

 The Power supply PCB.

 The Monitor multiplexer PCB, MON32_R0.

 The front panel LED indicator PCB, LED49_R0.

A Block Diagram of the control PIU-D49 is shown in the following figure.

Figure 3.4- Block Diagram of D-49 PIU

 I/P from PC or ABC

RS-485

Monitoring

Signals

D1 to D16

MCM

Card

Control

Card

Walsh

Card
Monitor

Card

Power

Supply

Unit Frequency

control

Front end

control

CHAPTER 3-Design and Development

 Page 31

MCMs are general purpose microcontroller based cards which provide 16 TTL digital control

outputs and can monitor up to 64 input analog signals. These MCMs are the interface to all the

settable GMRT subsystems, like the front-ends, the LOs, the attenuators, etc. In detail, at each

antenna, MCM 5 is the interface to the front end system, while MCMs 2, 3, and 9 are the

interface to the LO and IF systems. Input to MCM card is provided from PC or ABC through a

RS-485 line. These inputs are the various commands issued by a user for setting the parameters

of the electronics and for monitoring a range of parameters. The 16 bit digital data from MCM

card is divided into three parts as under:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

The address bits for address are used to obtain, in principle a total of 8×12=96 independent

control bits. Also, the Enable and Latch bit helps in latching the data so that any Address Group

can be set without worrying about the control bits already set through another address group.

 Address groups 0, 1, 2 and 4 are used for the control of GMRT synthesizer to set the

required frequency. The controls under these groups are controlled using the Control

card PCB.

 Address group 6 contains control bits used for monitoring. These controls are operated

by the Walsh card PCB.

 Address group 7 contains control bits used for setting a few of the front-end parameters

related to Walsh switching. The controls under this group are controlled by the Walsh

card PCB.

 Address groups 3 and 5 are not used.

The digital data from MCM is available on 20 pin FRC Connector and then sent to control card

PCB CON_R2 and Walsh and noise generation PCB WNG_RO. Depending on the address

group selected (as stated above), Control card PCB or the Walsh card PCB comes into operation

and gives the required outputs as per the control bits selected. Thus WNG_RO PCB comes into

operation by group 6 and group 7 selections and is used for generating monitoring outputs and

selection of noise ON/OFF or Walsh enable/disable respectively. The block diagram of the

existing Walsh Card WNG_RO is as follows:

Address Bits Enable and

Latch bit
Control Bits

CHAPTER 3-Design and Development

 Page 32

D12 to D14

D0 to D11

Enbm,

enbw

 Figure 3.5- Block Diagram of Walsh Card

3.2.2. New Design and Development

As per our project, we aim to use a CPLD based circuit for the functions under the group-7 and

control of functions under group-6. Thus the CPLD has to be programmed with logic for these

operations and to be placed in the Walsh card circuit along with few other components and

digital IC‟s. In this section, we discuss the architecture and the logic synthesis and simulations

for generating and selecting the various patterns on the new Walsh card. The main differences

between the previous design and the new design are as follows:

 The heart of the new Walsh card circuit is a CPLD which contains the main logic for

various pattern generation and selection instead of EPROM. The various advantages of

using CPLD over EPROM have been discussed in the beginning.

 In case of the new Walsh card, we are generating a desired pattern based on the selection

inputs at that particular instant, instead of storing them in advance.

 The new Walsh card can be used for generating only the Cal patterns or the Sal patterns,

in comparison to the existing circuit which uses both the Cal and the Sal patterns.

 Additional functionality can easily be added by reprogramming the CPLD at any time in

future to provide more flexibility to the users. Some of these additional modifications will

be discussed in later sections.

To
 F

ro
n

t
en

d
 s

ys
te

m

From

MCM

Card

Differential
outputs for

Walsh
Patterns &
Noise
Pattern

Sequency

Monitoring

Outputs

Antenna selection

switch

8-bit Latch for

patterns selection

Clock circuitry

8-bit latch for

monitoring

64 K×8

EPROM

Delay

Buffer

Differential

Line Drivers

Power

Supply Unit

From

Control

Card

CHAPTER 3-Design and Development

 Page 33

The advantages of using a CPLD based Walsh card circuit are as follows:

 Consist of a programmable Walsh pattern generator:

Instead of storing all the 128 Walsh patterns, Sequency pattern and noise pattern in

advance, we now generate the desired pattern dynamically as per the requirements of the

user. This will reduce the requirement of the resources for the operation.

 Independent channel selection facility for taking the Walsh patterns output on any of the channels

of an antenna:

The user can now have the provision to select independent channels of a particular

antenna and add Walsh patterns on these channels as follows:

 To add Walsh pattern on one of the channels, i.e., Channel (CH1) 1 or Channel 2 (CH2)

while disabling Walsh pattern on the other.

 To add different Walsh patterns on both the channels from Group-1 or Group-2. For

CH-1 or CH-2, respectively, at the same time.

 To add the CH-1 Walsh pattern on CH-2.

 To add the CH-2 Walsh pattern on CH-2.

 Variable time period selection for all the patterns:

The complete 128 bits pattern for Walsh function, Sequency and the pattern for noise

may be needed for certain time duration depending on the need of the user and the

system. The new circuit thus gives the facility to select variable time period for each of

the bits of these patterns. The user can select either a 4ms, 8ms, 16ms or 32ms duration

time period each bit of every pattern.

 Independent time period of noise patterns and Walsh patterns:

The length and time period of noise patterns and 128-bits Walsh patterns, sequency

patterns is independent of each other, i.e., the time period of noise pattern can be varied

while keeping the time period for Walsh pattern and sequency pattern constant and

vice-versa.

 Only CAL patterns selection:

In order to remove the phase ambiguity between Cal and Sal patterns, only Cal patterns

have been used for the antennae.

The new circuit consists of various blocks replacing the components in the previous Walsh card

circuits which have been described above. The blocks are as follows:

CHAPTER 3-Design and Development

 Page 34

Enbm, enbw

D0-D11

D12-D14

Figure 3.6- Block diagram of new Walsh card

 CPLD with core logic for various pattern generation and monitoring outputs.

 Differential line driver circuitry

Working of the circuit

 The 16 bit control bits D0-D14 are input to the Walsh card from the MCM card and the

two latch enable bits enbw and enbm from the Control card, through the 20 pin input

FRC. „enbw‟ is the enable bit for the group 7 and „enbm‟ is the enable bit for group 6.

Both these bits are generated by a 3:8 decoder in the control card from D15-D12 bits

coming from the MCM card.

 Antenna selection switch: A DIP-5 switch is used for selecting the antenna to be operated.

 CPLD is dedicated for pattern outputs and monitoring outputs. It consists of:

 Walsh latch: 10 bit latch used for latching the control bits D0 to D9. The remaining 2 bits

D11-D12 are not used. It holds the control bits for clock frequency selection, Walsh

pattern selection, channel selection, noise pattern selection, switching ON and OFF the

front end MCM, and at the output; we obtain control bits C0-C9. It is enabled when

group 7 has been selected after a low to high transition on „enbw‟. The output bit C4 is

used for MCM ON/OFF.

Differential outputs
for

Walsh patterns

Noise patterns

Sequency pattern

Monitoring

outputs

To
 f

ro
n

t
e

n
d

 s
ys

te
m

C
o

n
tr

o
l b

it
s

fr
o

m
 M

C
M

From

Control

Card

CPLD

Differential line

driver

Antenna selection switch

2
0

 p
in

 in
p

u
t

FR
C

Power supply

Clock

2
0

 p
in

 o
u

tp
u

t
FR

C

Differential line

driver

CHAPTER 3-Design and Development

 Page 35

 Monitoring latch: 6 bit latch for latching the control bits D0 to D5 for selecting

monitoring signals and is enabled when group 6 has been selected after a low to high

transition on „enbm‟. The latched out bits are the monitoring outputs.

 Delay Buffer: A Delay buffer is used for delaying one of the monitoring outputs from the

6-bit monitoring latch.

 Clock Circuitry: This is required for synchronizing all the components for pattern

generation. Clock circuitry comprises of 1.024 MHz crystal oscillator and two 3 stage

binary counters. Frequency division is required for various patterns to be ON/OFF for a

fixed duration of time in order to synchronize with the system. Thus, an internal clock

frequency division by 212 is needed which is further divided variably from 21 to 23. The

variable frequency division is selected using C2-C3 for noise generator and C8-C9 for

Walsh generator. For Fin = 1.024 MHz

F1 =F21 = (1.024×10
6
) /4096

 =250 Hz T1= T21 = 4 ms

F22 = 250/2

=125 Hz T21 = 8 ms

F23 =250/4

 =62.5 Hz T22 = 16 ms

F24 = 250/2

 =31.25 Hz T23=32 ms

 Walsh pattern generator: 128 patterns can be generated of length 128 bits each for both the

channels of the 30 antennae and these are selected by combination of antenna selection

bits. Clock input is from the binary counter for Walsh generator. The control bits C5-C7

are used for pattern selection on each of the channels. Each pattern is a 128 bit pattern.

 Sequency pattern generator: 128 bit pattern is generated for indicating start and stop of the

Walsh pattern. It is to be synchronized with the Walsh patterns and hence same clock

input is used as the Walsh pattern.

CHAPTER 3-Design and Development

 Page 36

 Noise generator: NGN pattern is obtained at its output by combination of C0-C1. The

clock input is from the binary counter for noise generator. It is independent of Walsh and

Sequency patterns and can be switched ON/OFF at any time by changing the control

bits combination.

 Differential line drivers: The patterns thus produced are processed in differential line drivers

MC 3487, so that long lines to the front-end can be driven. Additional outputs of the pattern

and Sequency are provided for retransmission to CEB through the LOR return link

electronics. Differential line driver are required for transmitting the signals over long

distance, such as from the antenna base to the front end. For each input, there are two

differential outputs, where one is positive and the other one is its reverse. The Walsh

patterns, Sequency pattern, noise pattern, MCM on/ off signal from the CPLD are sent

through two differential line drivers giving a total of 8 signals at the output. At the frontend

there is a differential line receiver IC MC3486 which recombines the differential input and

then further processing is performed.

CHAPTER 3-Design and Development

 Page 37

Clock Sequency
pattern

CH1 Walsh
pattern

CH2 Walsh
pattern

Noise
pattern

C8-C9

C5-C7

Antenna selection bits

C2-C3

C0-C1

/21 /22 /23 /212

Walsh pattern

generator

Noise pattern

generator

 Sequency pattern generator

/2
1

/2
2

/2
3

6 bit latch

Buffer

delay

D0-D5

Monitoring outputs

The following diagram shows the structure of the CPLD. Each block and its logic for implementation

have been discussed in the following section.

10 Bit latch

enbw D0-D9

Control bits
C0-C3, C5-C9

Walsh latch

M5

MONC

C4

Binary counter 2

Binary counter 3

Binary counter1

Monitoring Latch

enbm

Figure 3.7-structure for pattern generation circuitry (programmed in CPLD)

CHAPTER 3-Design and Development

 Page 38

Counter for noise

Clock

Counter for Walsh & Sequency

Figure 3.8-block diagram for clock circuitry

Architecture for Clock circuitry

The clock circuitry consists of 3 binary counters as follows:

 One of the counters divides the incoming clock signal frequency from the clock oscillator

by 212
 (i.e. 4096). The divided clock signal now becomes the driving clock signal for rest

of the circuit operation. The remaining two counters are 3 stage counters (counts from 0

to 127) used for dividing the above clock signal further by 21 or 22 or 23 or none.

 Two 4:1 multiplexers are to be used for selecting any one of the clock signals for walsh

generator and noise generator, respectively.

 The select lines are the control bits C2-C3 for varying the clock frequency of the noise

generator and C8-C9 are the select lines for varying the clock frequency of the Walsh

and Sequency generator.

Table 3.1- Truth Table for Clock Circuitry

Frequency selection bits for
Noise pattern generator

Frequency selection bits for
Walsh pattern generator

Selected Clock
frequency

(Fin/2n)

Time period

D3 D2 D9 D8 n (1/Fin)

0 0 0 0 0 4 ms

0 1 0 1 1 8 ms

1 0 1 0 2 16 ms

1 1 1 1 3 32 ms

*Fin=1.024 Mhz

4:1 MUX 4:1 MUX

Binary counter

1

To noise pattern generator To Walsh pattern generator

Frequency

selection bits

Frequency

selection

bits

CHAPTER 3-Design and Development

 Page 39

Architecture and Logic for Walsh Pattern Generator

We have discussed earlier that 128 Walsh patterns must be generated for each of the channels of

30 GMRT Antennae, where first and the last Walsh pattern in the series will not be used i.e.

patterns w(0) and w(127) are not used. Thus, the index for Walsh patterns is 128. Thus, there

are 63 pairs of Cal-Sal patterns for Walsh switching. But, we have decided to use only the Cal

patterns for Walsh switching and hence the new circuit generates 62 Cal patterns at the output.

The first 31 Cal patterns are grouped into Group-1 and the next 31 Cal patterns are grouped into

Group-2. Out of these only 60 patterns are required for each of the 2 channels of the 30 antennae

and so we actually require 60 Cal patterns from cal(1) to cal(60) which is w(2) to w(120),

respectively (cal(0) is w(0)). The logic for Walsh function generator is based on the algorithm

discussed in previous section. By implementing this algorithm, we can generate all the 128

patterns of 128 bit length, simultaneously and keep only 62 of these patterns. But at the output,

we need only one pattern for each channel of the antenna which is obtained using a multiplexer.

We obtain single bit-by-bit output at every clock cycle. The various blocks of the generator are

as follows:

 7 T Flip-Flops with positive edge triggering which form a binary counter to count from 0 to 127.

At every low-high transition of the clock, each of the flip flops output bit is obtained

forming Walsh-Rademacher patterns. After 127
th counts, the counter is again reset to 0.

 XOR Gates for performing modulo-2 summation between Rademacher patterns and other

Walsh patterns. This forms the combinational part of the circuitry.

 Two 31:1 multiplexers for selecting Walsh patterns on individual channels. The select

lines for these multiplexers are the antenna selection bits through Antenna selection

switch.

 Combination of antenna selection bits is used as the input for selecting a corresponding

Walsh pattern for that particular antenna.

 Control bits are used for channel selection for the selected antenna. C5-C7 used for

channel selection.

CHAPTER 3-Design and Development

 Page 40

 Figure 3.10-circuit diagram for generating 16 Walsh patterns

R(i) Rademacher function

W(j) Walsh function

Antenna selection bits

W(1)

W(3)

W(7)

W(15)

W(31)

W(63)

W(127)

Binary Counter

Clock

C
o

m
b

in
at

io
n

al
 P

ar
t

3

1
 C

al
 p

at
te

rn
s

3

1
 C

al
 p

at
te

rn
s

 31:1

 MUX

 31:1

 MUX

R(0)

R(1)

R(2)

R(3)

R(4)

R(5)

R(6)

CH1 Walsh
Pattern

CH2 Walsh
Pattern

Channel selection bits

 Figure 3.9-block diagram representing the architecture of Walsh pattern generator

CHAPTER 3-Design and Development

 Page 41

Figure 3.10 shows the circuit diagram for generation of set of 16 Walsh patterns. The same

circuit has been used to generate 128 Walsh patterns by adding XOR gates and T- Flip Flops.

Table 3.2-Truth Table for Walsh Generator

Antenna selection Bits

Channel selection bits

 Channel

DS0 DS1 DS2 DS3 DS4

D7 D6 D5 CH1 CH2

X X X X x 0 0 0 WALSH OFF WALSH OFF

0 0 0 0 0 0 0 1 CAL 1 WALSH OFF

 0 1 0 WALSH OFF CAL 32

0 1 1 CAL 1 CAL 32

1 0 0 CAL1 CAL1

1 0 1 CAL32 CAL32

0 0 0 0 1 0 0 1 CAL 2 WALSH OFF

 0 1 0 WALSH OFF CAL 33

0 1 1 CAL 2 CAL 33

1 0 0 CAL2 CAL2

1 0 1 CAL33 CAL33

0 0 0 1 0 0 0 1 CAL 3 WALSH OFF

 0 1 0 WALSH OFF CAL 34

0 1 1 CAL 3 CAL 3

1 0 0 CAL3 CAL3

1 0 1 CAL34 CAL34

0 0 0 1 1 0 0 1 CAL 4 WALSH OFF

0 1 0 WALSH OFF CAL 35

0 1 1 CAL 4 CAL 35

1 0 0 CAL4 CAL4

1 0 1 CAL35 CAL35

0 0 1 0 0 0 0 1 CAL 5 WALSH OFF

 0 1 0 WALSH OFF CAL 36

0 1 1 CAL 5 CAL 36

1 0 0 CAL5 CAL5

1 0 1 CAL36 CAL36

0 0 1 0 1 0 0 1 CAL 6 WALSH OFF

 0 1 0 WALSH OFF CAL 37

0 1 1 CAL 6 CAL 37

1 0 0 CAL6 CAL6

1 0 1 CAL37 CAL37

0 0 1 1 0 0 0 1 CAL 7 WALSH OFF

 0 1 0 WALSH OFF CAL 38

0 1 1 CAL 7 CAL 38

1 0 0 CAL7 CAL7

1 0 1 CAL38 CAL38

0 0 1 1 1 0 0 1 CAL 8 WALSH OFF

 0 1 0 WALSH OFF CAL 39

0 1 1 CAL 8 CAL 39

1 0 0 CAL8 CAL8

1 0 1 CAL39 CAL39

0 1 0 0 0 0 0 1 CAL 9 WALSH OFF

CHAPTER 3-Design and Development

 Page 42

 0 1 0 WALSH OFF CAL 40

0 1 1 CAL 9 CAL 40

1 0 0 CAL9 CAL9

1 0 1 CAL40 CAL40

0 1 0 0 1 0 0 1 CAL 10 WALSH OFF

 0 1 0 WALSH OFF CAL 41

0 1 1 CAL 10 CAL 41

1 0 0 CAL10 CAL10

1 0 1 CAL41 CAL41

0 1 0 1 0 0 0 1 CAL 11 WALSH OFF

 0 1 0 WALSH OFF CAL 42

0 1 1 CAL 11 CAL 42

1 0 0 CAL11 CAL11

1 0 1 CAL42 CAL42

0 1 0 1 1 0 0 1 CAL 12 WALSH OFF

 0 1 0 WALSH OFF CAL 43

0 1 1 CAL 12 CAL 43

1 0 0 CAL12 CAL12

1 0 1 CAL43 CAL43

0 1 1 0 0 0 0 1 CAL 13 WALSH OFF

 0 1 0 WALSH OFF CAL 44

0 1 1 CAL 13 CAL 44

1 0 0 CAL13 CAL13

1 0 1 CAL44 CAL44

0 1 1 0 1 0 0 1 CAL 14 WALSH OFF

 0 1 0 WALSH OFF CAL 45

0 1 1 CAL 14 CAL 45

1 0 0 CAL14 CAL14

1 0 1 CAL45 CAL45

0 1 1 1 0 0 0 1 CAL 15 WALSH OFF

 0 1 0 WALSH OFF CAL 46

0 1 1 CAL 15 CAL 46

1 0 0 CAL15 CAL15

1 0 1 CAL46 CAL46

0 1 1 1 1 0 0 1 CAL 16 WALSH OFF

 0 1 0 WALSH OFF CAL 47

0 1 1 CAL 16 CAL 47

1 0 0 CAL16 CAL16

1 0 1 CAL47 CAL47

1 0 0 0 0 0 0 1 CAL 17 WALSH OFF

 0 1 0 WALSH OFF CAL 48

0 1 1 CAL 17 CAL 48

1 0 0 CAL17 CAL17

1 0 1 CAL48 CAL48

1 0 0 0 1 0 0 1 CAL 18 WALSH OFF

 0 1 0 WALSH OFF CAL 49

0 1 1 CAL 18 CAL 49

1 0 0 CAL18 CAL18

1 0 1 CAL49 CAL49

1 0 0 1 0 0 0 1 CAL 19 WALSH OFF

0 1 0 WALSH OFF CAL 50

0 1 1 CAL 19 CAL 50

1 0 0 CAL19 CAL19

CHAPTER 3-Design and Development

 Page 43

1 0 1 CAL50 CAL50

1 0 0 1 1 0 0 1 CAL 20 WALSH OFF

 0 1 0 WALSH OFF CAL 51

0 1 1 CAL 20 CAL 51

1 0 0 CAL20 CAL20

1 0 1 CAL51 CAL51

1 0 1 0 0 0 0 1 CAL 21 WALSH OFF

 0 1 0 WALSH OFF CAL 52

0 1 1 CAL 21 CAL 21

1 0 0 CAL21 CAL52

1 0 1 CAL52 CAL52

1 0 1 0 1 0 0 1 CAL 22 WALSH OFF

0 1 0 WALSH OFF CAL 53

0 1 1 CAL 22 CAL 53

1 0 0 CAL22 CAL22

1 0 1 CAL53 CAL53

1 0 1 1 0 0 0 1 CAL 23 WALSH OFF

 0 1 0 WALSH OFF CAL 54

0 1 1 CAL 23 CAL 23

1 0 0 CAL23 CAL54

1 0 1 CAL54 CAL54

1 0 1 1 1 0 0 1 CAL 24 WALSH OFF

 0 1 0 WALSH OFF CAL 55

0 1 1 CAL 24 CAL 55

1 0 0 CAL24 CAL24

1 0 1 CAL55 CAL55

1 1 0 0 0 0 0 1 CAL 25 WALSH OFF

 0 1 0 WALSH OFF CAL 56

0 1 1 CAL 25 CAL 56

1 0 0 CAL25 CAL25

1 0 1 CAL56 CAL56

1 1 0 0 1 0 0 1 CAL 26 WALSH OFF

 0 1 0 WALSH OFF CAL 57

0 1 1 CAL 26 CAL 57

1 0 0 CAL26 CAL26

1 0 1 CAL57 CAL57

1 1 0 1 0 0 0 1 CAL 27 WALSH OFF

 0 1 0 WALSH OFF CAL 58

0 1 1 CAL 27 CAL 58

1 0 0 CAL27 CAL26

1 0 1 CAL58 CAL58

1 1 0 1 1 0 0 1 CAL 28 WALSH OFF

 0 1 0 WALSH OFF CAL 59

0 1 1 CAL 28 CAL 59

1 0 0 CAL28 CAL28

1 0 1 CAL59 CAL59

1 1 1 0 0 0 0 1 CAL 29 WALSH OFF

 0 1 0 WALSH OFF CAL 60

0 1 1 CAL 29 CAL 60

1 0 0 CAL29 CAL29

1 0 1 CAL60 CAL60

1 1 1 0 1 0 0 1 CAL 30 WALSH OFF

 0 1 0 WALSH OFF CAL 61

CHAPTER 3-Design and Development

 Page 44

0 1 1 CAL 30 CAL 61

1 0 0 CAL30 CAL30

1 0 1 CAL61 CAL61

1 1 1 1 0 0 0 1 CAL 31 WALSH OFF

 0 1 0 WALSH OFF CAL 62

0 1 1 CAL 31 CAL 62

1 0 0 CAL31 CAL31

1 0 1 CAL62 CAL62

1 1 1 1 1 x x x - -

Logic for Sequency pattern generation

This pattern is generated by a binary counter which increments from 0 to 127 for every low-high

clock transition for obtaining a 128 bit long pattern. The counter resets after 128th count. The

output gets a high for first count and low for the remaining counts. Bit-by-bit pattern is obtained

at every clock cycle. Sequency pattern is free running i.e. is depends only on the clock transition

and not the control bits or any of the latches. Thus, this pattern is always obtained for group-6

and group-7 selection.

Architecture and Logic for noise patterns generator

4 patterns are generated corresponding to noise patterns of duty cycle 25%, 50%, 0% and 100%.

 There is a 4:1 Multiplexer which gives one of the noise patterns at the output. The select

lines are the control bits C0-C1. It is to be noted that unlike the Walsh generator, only

single pattern is generated here when its control bit combination has been selected and

not all the patterns are generated simultaneously. We obtain a bit-by bit output for every

clock input from the binary counter for noise patterns generator.

 25% and 50% patterns have been are generated using 2 binary counters which count from

0 to 7 and are incremented with every low-high transition of the clock, respectively.

 For 25% duty cycle, NGN2 pattern is obtained which is high for 2 counts of one of the

counters.

 For 50% duty cycle NGN3 pattern is obtained which is high for 4 counts of the other

counter.

 NGN1 pattern is always low for every clock cycle.

 NGN4 is always high for every clock cycle.

CHAPTER 3-Design and Development

 Page 45

 Figure 3.11- Block Diagram for Noise Pattern Generator

Table 3.3- Truth Table for Noise Pattern selection

Pattern selection bits
 D1 D0

Noise pattern
(NGN)

Duty Cycle

 0 0 NGN1 0% (Noise OFF)

0 1 NGN2 25%

1 0 NGN3 50%

1 1 NGN4 100%

CLOCK

 25% noise
 Pattern

 50% noise
 Pattern

 noise ON

 noise OFF

4:1

MUX
NGN Pattern

Pattern

selection bits

 CHAPTER-Iv

PHYSICAL REALIZATION
ON CPLD

CHAPTER 4-Physical Realization on CPLD

Page 47

4.1 PHYSICAL IMPLEMENTATION ON CPLD CHIP

After developing the design, our next step is to implement it in a CPLD. We have chosen the

Xilinx XC95108-15 PC84C from the Xilinx XC9500 family and Xilinx Design Tools 8.2i for

synthesis and simulation of the design.

4.1.1. Architecture of XC95108

The XC95108 is a high-performance CPLD providing advanced in-system programming and test

capabilities for general purpose logic integration. It is comprised of 6 function blocks of 18

macrocells (total of 108 macrocells) providing 2,400 usable gates with propagation delays of 7.5

ns and is available in 84 pin PLCC. See Figure for the architecture overview.

Figure 4.1- Architecture overview of XC95108

Features of XC95108

 7.5 ns pin-to-pin logic delays on all pins

 fCNT to 125 MHz

 108 macrocells with 2400 usable gates

 Up to 108 user I/O pins

 5 V in-system programmable (ISP)

CHAPTER 4-Physical Realization on CPLD

 Page 48

- Endurance of 10,000 program/erase cycles

 - Program/erase over full commercial voltage and temperature range

 - Enhanced pin-locking architecture

 Flexible 36V18 Function Block

 - 90 product terms drive any or all of 18 macrocells within Function Block

 - Global and product term clocks, output enables, set and reset signals

 Extensive IEEE Std 1149.1 boundary-scan (JTAG) support.

 Programmable power reduction mode in each macrocell

 Slew rate control on individual outputs

 User programmable ground pin capability

 Extended pattern security features for design protection

 High-drive 24 mA outputs

 3.3 V or 5 V I/O capability

 Advanced CMOS 5V Fast FLASH technology

 Supports parallel programming of more than one XC9500 concurrently

 Available in 84-pin PLCC, 100-pin PQFP, 100-pin TQFP and 160-pin PQFP packages

4.1.2. Device Programming

There are number of steps to be followed in order to program the CPLD and implement the

design in it. The following flow chart shows the steps involved in the design flow. We will be

describing the step-by-step procedure for programming XC95108 for the design of Walsh card

with reference to this design flow.

Figure 4.2-Flow Graph for programming CPLD

CHAPTER 4-Physical Realization on CPLD

 Page 49

Design Entry

A description of the hardware's structure and behavior is written in a high-level hardware

description language (usually VHDL or Verilog) and that source code is then compiled and

downloaded prior to execution. Care should be taken while writing the source codes as these

codes will be executed and transformed to programming logic for distributing resources

(macrocells) in the CPLD. The code should be effective in order to allocate the resources

optimally in the device.

Hardware description languages(HDL‟s) such as VHDL have made it possible for circuit and

board design to be done without resorting to paper allowing computers to manage the design

database and automate the translation between various representations of the systems . The

VHSIC Hardware Descriptive Language (VHDL) is an industry standard language used to

describe hardware from the abstract to the concrete level. VHDL is a powerful language with

numerous language constructs that are capable of describing very complex behavior. VHDL is

very adaptable, owing to its architecture, allowing designers, electronic design automation

companies and the semiconductor industry to experiment with new language concepts to ensure

good design tools and data interoperability. VHDL descriptions specify exactly what functions a

new device would have to perform and the timing information associated with it. Through

simulation of these descriptions, the design of new device can be accurately modeled before being

physically verified. Also, it allows the detail structure of a design to be synthesized from more

abstract specification, allowing designers to concentrate on more strategic design decisions and

reducing time to market.

Xilinx ISE Tools 8.2i have been used to define the VHDL source codes. We have made the

source code for programming the CPLD for the Walsh card using VHDL. There is a „main_gen‟

code for the overall structure described in previous chapter in order to interface the different

modules for Walsh pattern generator, noise pattern generator, sequency pattern generator, clock

circuitry, latches using the logic explained in previous chapter. All the source codes have been

annexed in Appendix A for reference. The various truth tables and the logics described in

previous chapter were used for implementing every block in the structure.

CHAPTER 4-Physical Realization on CPLD

 Page 50

Table 4.1-Nomenclature for structure and VHDL codes

Logic Synthesis

Compilation only begins after a functionally correct representation of the hardware exists. This

hardware compilation consists of two distinct steps. First, an intermediate representation of the

hardware design is produced. This step is called synthesis and the result is a representation called

a netlist. Logic synthesis is a process by which an abstract form of desired circuit behavior

(typically register transfer level (RTL)) is turned into a design implementation in terms of logic

gates and flip flops. The netlist is device independent, so its contents do not depend on the

particulars of the FPGA or CPLD; it is usually stored in a standard format called the Electronic

Design Interchange Format (EDIF).

Nomenclature used for VHDL codes Nomenclature in the structure

(figure 2.7)
COUNTER_MASTER Binary counter 1

COUNT_WGN Binary counter 2

COUNT_NGN Binary counter 3

WNG_MON Monitoring latch

WNG_LATCH Walsh latch

WALSH_GEN Walsh pattern generator

WNG_MUX

NOISE_GEN Noise pattern generator

SEQUENCY_GEN Sequency pattern generator

DS(0:4) Antenna selection bits

Dat1,dat2,dat3,dat4,dat5,dat6, dat7, dat8, dat9, dat10

dat6,dat7,dat8,dat9,dat10

D0-D9

enbm (enable bit for monitoring Latch i.e.(group6))

Enbw (enable bit for Walsh Latch i.e.(group7))

MON(0-5) Monitoring Outputs

MONC MONC

NGN Noise pattern

SEQ Sequency pattern

WNG5 D4

WP1 CH1 Walsh pattern

WP2 CH2 Walsh pattern

http://en.wikipedia.org/wiki/Register_transfer_level
http://en.wikipedia.org/wiki/Logic_gates
http://en.wikipedia.org/wiki/Logic_gates
http://en.wikipedia.org/wiki/Logic_gates

CHAPTER 4-Physical Realization on CPLD

 Page 51

Following steps are to be followed in order to synthesize the VHDL source codes for our project.

 Check the syntax by double clicking “check syntax” option under “synthesize-XST”

under “implement design” in “processes window”.

 For Synthesis, select implement Design-XST in the Xilinx ISE window.

 Then go to process properties.

 Under the synthesis tab, select “Optimization Goal = Area” and “Optimization Effort =

Normal”. Then click OK.

 Double click “synthesize-XST”.

We have checked the RTL schematic and the synthesis report for our design as shown below:

CHAPTER 4-Physical Realization on CPLD

 Page 52

Figure 4.3-RTL schematic for Black Box View and structure view

 Figure 4.4- View of Synthesis Report

WNG_LATCH

WNG_MON

NOISE_GEN

WNG_MUX

SEQUENCY_GEN

COUNT_NGN

COUNT_WGN

COUNTER_MASTER WALSH_GEN

CHAPTER 4-Physical Realization on CPLD

 Page 53

Implementation

The second step in the translation process is called “Implement Design”. It consists of “Fit”

process. This step involves mapping the logical structures described in the netlist onto actual

macrocells, interconnections, and input and output pins. This process is similar to the equivalent

step in the development of a printed circuit board, and it may likewise allow for either automatic

or manual layout optimizations. The result of the Fit process is a bitstream. Each CPLD (or

family) has its own, usually proprietary, bitstream format. The bitstream is the binary data that

must be loaded into the CPLD to cause that chip to execute a particular hardware design.

Following steps must be followed in order to implement our design in the CPLD:

 Select implement Design-XST in the Xilinx ISE window.

 Then go to process properties.

 Add user constrain by generating UCF file using “Assign Pin Package Option” for input-

output pin configuration. The UCF file has been annexed in Appendix B.

 Under the fitting tab, select “Implementation Template =Optimize Density” and “Logic

Optimization = Density”. Then click OK.

The “Fitter Report” giving the summary of CPLD resources, input-output pin list, logic, function

blocks used and allocation of macrocells in each function block, equations (containing product

terms) was generated, the summary of implementation is shown below:

CHAPTER 4-Physical Realization on CPLD

 Page 54

 Figure 4.5-Summarized Fitter Report

Simulation

Typically, the synthesis step is followed or interspersed with periods of functional simulation.

That's where a simulator is used to execute the design and confirm that the correct outputs are

produced for a given set of test inputs so that the designer can at least be sure that his logic is

functionally correct before going on to the next stage of development. We have used the Xilinx

Simulation Tool 8.2i for simulating the design. The simulated results are as follows:

The following results have been obtained for D0=1, D2=0, D2=0, D3=0, D4=1, D5=1, D6=1, D7=0, D8=0,

D9=0

NGN <=NGN2 (25%); WP1<=CAL 2; WP2<=CAL 33; WNG5<=1;

MON 0<=0; MON 1<=1; MON2<=0, MON 3<=0, MON 4<=0; MON5<=0

Figure 4.6-Simulation results for the design

CHAPTER 4-Physical Realization on CPLD

 Page 55

In the next figure, the simulation results for the 62 cal patterns have been shown for two time

periods. Each time period consists of a 128 bit pattern. Each pattern bit is generated with the

transition in clock. Every pattern repeats itself after one time period.

Figure 4.7- Simulated results for 62 cal patterns

CHAPTER 4-Physical Realization on CPLD

 Page 56

In the following simulation results for Walsh generator unit, we have shown the output 128 bit

Walsh patterns on both the channels for different selections for antenna 1. It is to be noted that

the end of each pattern is marked by a new 128 bit sequency pattern.

Figure 4.8-Simulation results for Walsh generator unit.

In the following simulation results for noise generator unit, we have shown the output noise

patterns for different control bit selections.

Figure 4.9-Simulation results for Noise pattern generator

Programming

Once a bitstream is created for a particular CPLD, we need to

somehow download it to the device. The details of this

process are dependent upon the chip's underlying process

technology.

XC95108 is programmed using the in-system programmable

circuit with a JTAG interface. To physically implement the

design in a CPLD chip, a development kit is necessary. The

development kit must be connected to a PC running ISE

Tool through a downloading cable in order for the chip to be

programmed. Figure 4.10-Devenlopment Kit

CHAPTER 4-Physical Realization on CPLD

 Page 57

Development kit used by us is “Mechatronics Universal Trainer Kit” (Test Equipment Model-

MXUK-SMD-001). The view of the kit is shown in the figure next. After the implementation of

the design,

 Run the process “impact” under “generate programming file” process.

 Right click the icon and select “program”. The device is programmed and a “program

succeeded” message is displayed.

Figure 4.11-Setup for Device Programming

4.2. RESULTS ON MSO

Inputs for the various control bits were given through the input switches on the development

board used for programming the CPLD. The outputs at the respective pins of the CPLD chip

were taken using Mixed Signal Oscilloscope (LeCroy MS-500 Mixes Signal Oscilloscope). The

results obtained on the MSO are shown below. These have been taken for internal clock

frequency division by 1 for all the patterns and antenna selected is 2 through input switches on

the development board.

 D0=>50% noise pattern (NGN 3)

 D1=> Sequency Pattern

 Both channels enabled with different Cal patterns i.e.

CHAPTER 4-Physical Realization on CPLD

 Page 58

D2=>CAL 33; D3=>CAL 2

Figure 4.12- Output results of programmed CPLD chip on MSO

Observations and Calculations

 Calculation of number of bits in each of the Walsh and Sequency patterns:

Sequency pattern marks the start and stop of Walsh patterns. In order to calculate the number of

bits in pattern obtained in MSO, we need to find the time difference between two consecutive

Sequency patterns.

The incoming clock frequency to the CPLD chip is 4 MHz from the development board. It is

internally divided by 4096. For our selection, we have chosen further frequency division by 1.

HzFF

HzHzF

MHzFin

977
1

9775.9764096/4000000

4

111

1

 Time period for single bit in each sequency pattern is (observed on MSO):

Hz
X

F

msX

9771

1

1
1

1

 Time period for a complete sequency pattern (as shown in figure 3.12) is:

Hz
X

F

msX

63.71

131

2
2

2

 The number of bits in each sequency pattern is:

CHAPTER 4-Physical Realization on CPLD

 Page 59

bits
F

Fofbitsno 047.128
63.7

977.
2

1

bits128

Thus the length of each Walsh pattern=128 bits

 Independent time period for Walsh patterns and Noise Patterns:

In the following figures, we show the various results obtained by varying the frequency selection

bits for the noise patterns while keeping the frequency selection for the Walsh patterns constant.

A 50% duty cycle noise pattern has been chosen for this frequency variation and cal1 and cal32

patterns have been selected on channel 1 and channel 2 respectively.

Figure 4.13 a- results for 4 ms time period selection for 50 %
Noise pattern

Figure 4.13 b- results for 8 ms time period selection for 50 %
Noise pattern

Figure 4.13 c- results for 16 ms time period selection for 50 %
Noise pattern

Figure 4.13 d- results for 32 ms time period selection for 50 %
Noise pattern

Page 60

CHAPTER-V

HARDWARE

IMPLEMENTATION &

TESTING

CHAPTER 5-Hardware Implementation and Testing

Page 61

5.1. WALSH CARD PCB DESIGN

After programming the CPLD chip, next step is to fix the CPLD chip onto a PCB to complete

the hardware implementation of the new Walsh Card circuit based on CPLD. The block diagram

for implementation has been shown in the chapter 3. For implementing this on printed circuit

board, a PCB design was made using Altium Designer 6.1. Following steps are involved in PCB

design:

 Making the schematic for the circuit: this involves placing the various components used for

the design onto a schematic sheet and indicating net labels (connections) between various

components. The schematic for our circuit is as follows:

Figure 5.1- Schematic for Walsh Card PCB

 PCB Layout: After making the schematic, it is updated onto a PCB. The PCB design sheet

in the PCB design window consist of the details footprints of the components, drill

details , PC layers, solder masks, tracks and their widths between various components,

etc. these tracks were laid by routing using manual routing and auto-routing options.

The base for a PC84 package is PLCC84. Its footprint had to be made by modifying

footprints of similar components.

 Generation of output files: Gerber files are required for manufacturing the PCB. These files

were generated as output. There are other files as well and these have been annexed in

Appendix C.

CHAPTER 5-Hardware Implementation and Testing

Page 62

 Figure 5.2-Multilayer composite output for Walsh card PCB

5.2. TESTING THE WALSH CARD PCB

The final step of the project work involves testing the Walsh card PCB. The final Walsh card

PCB after manufacturing and soldering the components onto it is as shown below:

Figure 5.3- Walsh card PCB

CHAPTER 5-Hardware Implementation and Testing

 Page 63

5.2.1. Test Setup

 For testing the PCB, firstly the Walsh card PCB is placed in D-49 PIU. Output of the

microcontroller (SBC086) in the MCM-2 i.e. the 15 control bits and the two enable bits

for group-6 and group-7, i.e., enbm and enbw, respectively, are given as input to the

Walsh card PCB, at the respective pins of the 20-pin input FRC, through the control

card. +10 volt and -10 volt power supply was also provided which is brought to +5 volt

by the voltage regulator in the circuit. The view of the D-49 PIU after assembly of

MCM-2, Control card, Walsh card and power supply card is as follows:

 Figure 5.4- D-49 PIU with control card, CPLD based Walsh Card PCB, MCM-2 (left to right in lower row) and

power supply PCB (in upper row)

 In the next step, the D-49 PIU is connected to DOS based computer through which 16

bit hexadecimal words are given to the MCM for performing various operations through

the Walsh card PCB.

 The outputs from the CPLD and the 20 pin FRC are observed on the MSO connected to

it.

The complete Test setup is as shown below:

CHAPTER 5-Hardware Implementation and Testing

 Page 64

Figure 5.5- Test Setup

5.2.2. Procedure for Testing

 First provide power supply to all the units.

 In the DOS PC make the command files containing the HEX codes for different test

operations.

 Give the following commands on the DOS PC:

 C:\ABR\MEHA\MCMNEW1

 Then select port 1.

 Give command 18 with MCM address 2 to start communication with the MCM-2.

 Give NULL command to check execution.

 Give command 20 to enter the file name containing the command.

 Enter the name of the file.

 Check the corresponding output on the output pins under test in the MSO.

 Repeat the above steps (except first step) for different command files containing the HEX

codes for different operations.

CHAPTER 5-Hardware Implementation and Testing

 Page 65

Making the command file

Command files contain the 32 bit HEX words given to MCM through the computer. Care should

be taken while making a command file as it contains the sequence of 16 bit input bits given to the

Walsh card PCB through the MCM-2. Each 16 bit word in the 32 bits word indicates what

function is to be performed by the circuit. The configuration of all the bits for different operations

has been described in chapter 3. In a command file, 32 bit data is to be entered, where, the first 16

bits are for low on D15 enable bit and the next 16 bits are for a high on the enable bit D15. This

gives a low to high transition on the enable bit D15 so that the decoder in the control card will

generate a corresponding low or high on the group-6 or group-7 enable bit leading to a

transition on this bit. This in turn will enable the latches which are positive edge triggered.

For example, the following 32 bit HEX command format is to be followed as shown below. This

command simply selects the group-7 by enabling enbw. The 32 bit binary code is given next.

HEX CODE:

 7000 F000

BINARY CODE:

0111 0000 0000 0000 1111 0000 0000 0000

A list of command files that were used for testing has been given below with their names, the

corresponding HEX codes with the ON bits in the first 12 control bits of the 16 bits sequence,

and the desired function:

D15 D0 D15 D0

32- Bits binary code

CHAPTER 5-Hardware Implementation and Testing

 Page 66

Table 5.1- List of command files used for testing the circuit

Command file

name
Function Hex codes ON bits

FEON Switch on the front end MCM 7010 F010 D4 is high

FEOF Switch OFF front end MCM 7000 F000 All b12 bits are low

NGON Enable 100% duty cycle noise pattern 7003 F003 D0, D1 are high

NG50 Enable 50% duty cycle noise pattern 7002 F002 D1 is high

NG25 Enable 25% duty cycle noise pattern 7001 F000 D0 is high

NGOF Noise off 7000 F000 All 15 bits are off

WL1
Enable Walsh pattern only on channel 1

of the selected antenna
7020 F020 D5 is high

WL2
Enable Walsh pattern only on channel 2

of the selected antenna
7040 F040 D6 is high

WLB
Enable Walsh patterns on both the

channels of the selected antenna
7060 F060 D5, D6 are high

WL1-CH12
Enable channel 1 Walsh pattern on both

channels of selected antenna
7080 F080 D7 is high

WL2-CH12
Enable channel 2 Walsh pattern on both

the channels of the selected antenna
70A0 F0A0 D5, D7 are high

NG50-F1
Enable divide by 2 frequency selection

for 50% duty cycle noise pattern
7006 F006 D1, D2 are high

NG50-F2
Enable divide by 4 frequency selection

for 50% duty cycle noise pattern
700A F00A D1, D3 are high

NG50-F3
Enable divide by 8 frequency selection

for 50% duty cycle noise pattern
700E F00E D1, D2, D3 are high

WLB-F1

Enable divide by 2 frequency selection

for different Walsh patterns on both the

channels of the selected antenna

7160 F160 D5, D6, D8 are high

WLB-F2

Enable divide by 4 frequency selection

for different Walsh patterns on both the

channels of the selected antenna

7260 F260 D5, D6, D8 are high

WLB-F3

Enable divide by 8 frequency selection

for different Walsh patterns on both the

channels of the selected antenna

7360 F360
D5, D6, D8, D9 are

high

CHAPTER 5-Hardware Implementation and Testing

 Page 67

MALL

Enable 25% duty cycle noise pattern,

different Walsh patterns on both

channels of the selected antenna

7071 F071
D0, D4, D5, D6 are

high

MON Enable the monitoring controls 603F E03F
D0, D1, D2, D3, D4

are high

5.3. TEST RESULTS

Following are the results obtained on the various output pins of the CPLD in the Walsh card

PCB on MSO for the command files given in the table 5.1and the antenna no.1 has been selected

by the setting the switches position to 0. It is to noted that in following figures,

 D0 is the noise pattern

 D1 is the sequency pattern

 D2 is the Walsh pattern for channel 1.

 D3 is the Walsh pattern for channel 2.

 D10 is the front end control signal.

I. Results for FEON & FEOF:

 Figure5.6 a- Results for FEON Figure5.6 b- Results for FEOF

CHAPTER 5-Hardware Implementation and Testing

 Page 68

II. Results for NGON, NGOF, NG50 & NG25

Figure 5.7b-Results for 25% duty cycle noise pattern

Figure 5.7c-Results for 50% duty cycle noise pattern Figure 5.7d-Results for noise pattern disable

 Figure 5.7a-Results for 100% duty cycle noise pattern

CHAPTER 5-Hardware Implementation and Testing

 Page 69

III. Results for WL1, WL2, WLB, WL1-CH12, WL2-CH12

Figure 5.8c-Results for Walsh patterns on both channels

Figure 5.8a-Results for Walsh pattern on channel-1 Figure 5.8b-Results for Walsh pattern on channel-2

Figure 5.8d-Results for channel-1 Walsh pattern on channel-2

CHAPTER 5-Hardware Implementation and Testing

 Page 70

IV. Results for MALL v. Results for MON

Figure 5.8e-Results for channel-2 Walsh pattern on channel-1 Figure 5.8f-Walsh off

Figure 5.9-Results for the signals enabled at once Figure 5.10-Results for monitoring signals enabled

CHAPTER 5-Hardware Implementation and Testing

 Page 71

VI. Results for MWB-F1, MWB-F2, MWB-F3 & NG50F1, NG50F2, NG50 F3.

Figure 5.10a-Results for the freq. division by 2 for Walsh patterns

while keeping it constant for the noise pattern

Figure 5.10b-Results for the freq. division by 4 for Walsh patterns

while keeping it constant for the noise pattern

Figure 5.11a-Results for the freq. division by 2 for noise pattern

while keeping it constant for the Walsh patterns

Figure 5.11b-Results for the freq. division by 4 for noise pattern

while keeping it constant for the Walsh patterns

CHAPTER 5-Hardware Implementation and Testing

 Page 72

It is to be noted in figures 5.10a, 5.10b, 5.10c that even though the frequency for both the Walsh

patterns on both the channels is being varied, the 50% duty cycle pattern for noise remains

constant. Similarly in the figures 5.11a, 5.11b, 5.11c, the frequency for 50% noise pattern is

varying but that of Walsh patterns remains constant.

After analyzing all these results we find that these results are as expected and these also verify

the simulation results and the results obtained on the Development Board.

Figure 5.10c-Results for the freq. division by 8 for Walsh patterns

while keeping it constant for the noise pattern
Figure 5.11c-Results for the freq. division by 8 for noise pattern

while keeping it constant for the Walsh patterns

CHAPTER-VI

CONCLUSIONS

CHAPTER 6-Conclusions

Page 74

6.1. CONCLUSIONS

The Walsh Card PCB has been designed to control certain front end parameters required at the

time of observation of a source. This circuit mainly consists of a programmable chip for

generating various Walsh patterns, noise patterns, sequency patterns and monitoring signals and

the differential line drivers for long distance transmission of these signals from the ABR to the

front end. The chip can be reprogrammed as per the changes required in future. Extra facilities

required during observation have been added to the circuit. The circuit has been tested

thoroughly and found to meet the specifications and hence integrated with the MCM-2 in D-49

PIU at the ABR.

The CPLD based Walsh card adds many facilities for front end control. The new circuit allows a

user to select variable time periods for all the patterns. The user can also select independent time

periods for Noise patterns and the Walsh Patterns, sequency patterns. Another facility is that the

user can select independent channels for selecting Walsh functions for a particular antenna. The

user can disable Walsh pattern on any of the channels or have different patterns on both the

channels simultaneously or have one channel‟s pattern on the other.

The performance of the Walsh card PCB after integration into the D-49 PIU has been tested and

found to be as expected. The settings for the patterns selection are controlled through the DOS

based computer and the results obtained are as per the design.

Page 75

FUTURE SCOPES

In order to further modify the D-49 PIU in the LO Synthesiser, the Control card PCB for

frequency control of the LO Synthesiser and the Walsh card PCB for Front-end control, both can

be combined by using a single CPLD. The logic for functioning of the control card has already

been implemented on a separate CPLD based PCB. To further reduce the space occupied by this

separate Control card PCB and Walsh card PCB, both of these can be merged to a single CPLD

based PCB which will control all the operations of group0, group1, group2, group3, group4,

group5, group6 and group7 of the LO Synthesiser.

The hardware resources requirement of the CPLD will increase but this can be overcome by

using a CPLD of higher macrocells such as XC95144, or higher from XC9500 family of Xilinx

CPLDs, etc.

Page 76

REFERENCES

[1] Benjamin Jacoby, “Walsh Functions: A Digital Fourier series.”

[2] B.J. Falkowski and T. Sasao, “Unified algorithm to generate Walsh functions in four different

orderings and its programmable hardware implementations.”

[3] B.J. Falkowski., “Recursive relationships, fast transforms, generalisations and VLSI iterative

architecture for Gray code ordered Walsh functions.”

[4] B. J. Falkowski, T. Sasao, T. Łuba, Nanyang technological university, Singapore Kyushu

institute of technology, Japan ,Warsaw university of technology, Poland, “Programmable

hardware implementation based on Four Walsh sequences.”

[5] Bogdan J. Falkowski and Tsutomu Sasao, “Implementation of walsh function generator of

order 64 Using lut cascades.”

[6] Granlund, fellow, IEEE, a. R. Thompson, member, IEEE, and b. G. Clark, “ An

Application of Walsh Functions in Radio Astronomy Instrumentation.”

[7] Jayaram N Chengalur, Yashwant Gupta, K. S. Dwarakanath, “Low Frequency Radio

Astronomy”, Edition 4.

[8] Volnei A. Pedroni, Circuit Design with VHDL, MIT Press, Cambridge, Massachusetts

[9] J. Bhasker, A VHDL Primer, Pearson Education.

[10] www.xilinx.com for tutorials about CPLD fitting and XC9500 CPLDS

 CPLD Fitting, Tips and Tricks-

http://www.xilinx.com/support/documentation/application_notes/xapp444.pdf

 CPLD user I/O Guide-

 http://www.xilinx.com/support/documentation/user_guides/ug445.pdf

http://www.xilinx.com/

Page 77

APPENDIX A

VHDL Source Codes

--main source code for interfacing all the components.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity main_gen is

port(clk,enbw,enbm:in std_logic;

 --clk:external clock input to the circuit.

 --enbw is the enable bit from MCM card for walsh latch.

 --enbm is the enable bit from MCM cardfor monitoring latch.

 dat1,dat2,dat3,dat4,dat5,dat6,dat7,dat8,dat9,dat10:in std_logic;

 --control bits from MCM card.

 DS:in std_logic_vector(0 to 4);

 --antenna selection bits.

 monc:out std_logic;

 --buffered monitoring output.

 MON:out std_logic_vector(0 to 5);

 --monitoring outputs

 wng5:out std_logic;

 --data bit used in line line driver circuitry.

 NGN,WP1,WP2,SEQ:out std_logic);

 --patterns

end main_gen;

architecture Behavioral of main_gen is

--frequency counter for dividing incoming clock frequency by 4096.

component freq_counter_master is

port(clk:in std_logic;

Page 78

 master_clk:out std_logic);

end component freq_counter_master;

--latch for group 7 selection for walsh, noise and sequency pattern

generation.

component latch_gen is

port(enable:in std_logic;

 dat1,dat2,dat3,dat4,dat5,dat6,dat7,dat8,dat9,dat10: in std_logic;

 data_out: out std_logic_vector(0 to 9));

end component latch_gen;

--frequency counter for dividing the incoming clock frequency by 2 or 4

or 8.

--DAT9,DAT10 ARE THE CONTROL BITS FOR SELECTING CLOCK FREQUENCY FOR

WALSH PATTERNS AND SEQUENCY GENERATION.

--DAT3,DAT4 ARE THE CONTROL BITS FOR SELECTING CLOCK FREQUENCY FOR NOISE

PATTERN GENARATION.

component freq_counter is

port(clk:in std_logic;

 wng_bit:in std_logic_vector(0 to 1);

 clk_wng:out std_logic);

end component freq_counter;

--latch for group 6 selection for monitoring outputs generation.

component latch_gen2 is

port (enable:in std_logic;

 dat1,dat2,dat3,dat4,dat5,dat6: in std_logic;

 data_out: out std_logic_vector(0 to 5));

end component latch_gen2;

--walsh patterns generator.

component walsh_gen is

port(clk:in std_logic;

 cal:out std_logic_vector(1 to 62));

end component walsh_gen;

--sequency pattern generator.

component sequency_gen is

port(clk:in std_logic;

 SEQ:out std_logic);

Page 79

end component sequency_gen;

--noise patterns generator.

--DAT1,DAT2 ARE FOR SELECTING THE NOISE PATTERS:ON,OFF,25%,50%

component noise_gen is

port(clk,wng1,wng2:in std_logic;

 NGN:out std_logic);

end component noise_gen;

--multiplexer for selecting walsh patterns on independent channels.

--DS0,DS1,DS2,DS3,DS4 ARE THE ANTENNA SELECTION BITS.

--DAT6,DAT7,DAT8 ARE THE MUX. SELECTION BITS FOR OBTAINING THE WALSH

PATTERNS ON INDEPENDENT CHANNEL FOR A PARTICULAR ANTENNA.

component mux1 is

port (clk:in std_logic;

 wng_mux:in std_logic_vector(0 to 2);

 DS: in std_logic_vector(0 to 4);

 wp1,wp2:out std_logic;

 w:in std_logic_vector(1 to 62));

end component mux1;

signal clk_wng,clk_ngn,master_clk:std_logic;

signal wng:std_logic_vector(9 downto 0);

signal cal_patterns:std_logic_vector(1 to 62);

signal mon_test:std_logic_vector(0 to 5);

begin

wng5<=wng(4);

mon<=mon_test;

monc<=mon_test(5) after 30 ns;--buffering mon5 to generate monc after a

30 ns delay.

--frequency counter for frequency division by 2^12.

COUNTER_MASTER:freq_counter_master port map(clk,master_clk);

--walsh latch unit.

WNG_LATCH:latch_gen port map(enbw,

dat1,dat2,dat3,dat4,dat5,dat6,dat7,dat8,dat9,dat10,wng);

--frequency counter for division of incoming clock freq. by 2 or 4 or 8

for walsh and sequency patterns generation.

Page 80

COUNT_WNG:freq_counter port map(master_clk,wng(8 downto 0),clk_wng);

--monitoring latch unit.

WNG_MON:latch_gen2 port

map(enbm,dat1,dat2,dat3,dat4,dat5,dat6,mon_test);

--walsh patterns generator unit.

WAL1: walsh_gen port map (clk_wng,cal_patterns);

--sequency pattern generation unit.

SEQ1:sequency_gen port map (clk_wng,seq);

--frequency counter division of incoming clock freq. by 2 or 4 or 8 for

noise patterns.

COUNT_NGN: freq_counter port map(master_clk,wng(3 downto 2),clk_ngn);

--noise patterns generator unit.

NGN1:noise_gen port map (clk_ngn,wng(1),wng(0),NGN);

--32:1 multiplexers unit for obtaining walsh patterns on independent

channels.

MUX:mux1 port map(clk_wng,wng(7 downto 0),ds,wp1,wp2,cal_patterns);

end behavioral;

--FREQUENCY COUNTER UNIT: DIVIDES THE INCOMING CLOCK FREQUENCY BY 2^12.

--IT CONTAINS A 12-BIT COUNTER FOR COUNTING FROM 0 TO 4095.

--THE OUTPUT FROM THIS COUNTER BECOMES THE MASTER CLOCK FOR REST OF THE

CIRCUIT.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

Page 81

entity freq_counter_master is

port(clk:in std_logic;

 master_clk:out std_logic);

end freq_counter_master;

architecture Behavioral of freq_counter_master is

begin

process(clk)

variable count_master:integer range 0 to 31;

begin

if (clk='1' and clk'event) then

if (count_master<16) then

master_clk<='1'; else master_clk<='0';

end if;

count_master:=count_master+1;

if (count_master=32) then

count_master:=0;

end if;

end if;

end process;

end Behavioral;

--FREQUENCY COUNTER UNIT: DIVIDES THE CLOCK (FROM FIRST FREQUENCY

COUNTER) BY 2^2 OR 2^4 OR 2^3 OR NONE DEPENDING ON THE CONTROL BITS.

--IT CONTAINS A COUNTER FOR COUNTING FROM 0 TO 7 AND A 4:1 MULTIPLEXER

FOR SELECTING DESIRED FREQUENCY DIVISION.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity freq_counter is

port(clk:in std_logic;

Page 82

wng_bit:in std_logic_vector(0 to 1);

 clk_wng:out std_logic);

end freq_counter;

architecture Behavioral of freq_counter is

signal count:std_logic_vector(2 downto 0);

begin

process(clk)

variable clkv:std_logic;

begin

if (clk'event and clk='1') then

if count<7 then count<=count+1;

else count<="000";

end if;

end if;

case wng_bit is

when "00"=> clkv:=clk;clk_wng<=clkv;--THE INCOMING CLOCK FREQUENCY

 REMAINS UNCHANGED.

when "01"=> clk_wng<=count(0);-INCOMING CLOCK FREQUENCY IS DIVIDED BY 2.

when "10"=> clk_wng<=count(1);-INCOMING CLOCK FREQUENCY IS DIVIDED BY 4.

when "11"=> clk_wng<=count(2);-INCOMING CLOCK FREQUENCY IS DIVIDED BY 8.

when others=> clk_wng<='0';-THE CLOCK IS DISABLED FOR ANY OTHER

 COMBINATION OF THE CONTROL BITS.

end case;

end process;

end Behavioral;

--MONITOR LATCH UNIT. FOR LOW TO HIGH TRANSITION OF THE ENABLE INPUT,

THE INCOMING DATA BITS ARE LATCHED OUT.

--THE OUTPUT BITS ARE USED FOR MONITORING.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

Page 83

--use UNISIM.VComponents.all;

entity latch_gen2 is

port (enable:in std_logic;

 dat1,dat2,dat3,dat4,dat5,dat6: in std_logic;

 data_out: out std_logic_vector(0 to 5));

end latch_gen2;

architecture Behavioral of latch_gen2 is

begin

process(enable)

begin

if (enable='1' and enable'event) then

data_out(0)<=dat1;

data_out(1)<=dat2;

data_out(2)<=dat3;

data_out(3)<=dat4;

data_out(4)<=dat5;

data_out(5)<=dat6;

else null;end if;

end process;

end Behavioral;

--WALSH LATCH UNIT:

-- FOR LOW TO HIGH TRANSITION OF THE ENABLE INPUT, THE INCOMING DATA

BITS ARE LATCHED OUT.

--THE OUTPUT BITS ARE USED AS CONTROLS FOR VARIOUS PATTERNS GENARTION

AND FRQUENCY SELECTION.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity latch_gen is

Page 84

port (enable:in std_logic;

 dat1,dat2,dat3,dat4,dat5,dat6,dat7,dat8,dat9,dat10: in std_logic;

 data_out: out std_logic_vector(9 downto 0));

end latch_gen;

architecture Behavioral of latch_gen is

begin

process(enable)

begin

if rising_edge(enable) then

data_out(0)<=dat1;

data_out(1)<=dat2;

data_out(2)<=dat3;

data_out(3)<=dat4;

data_out(4)<=dat5;

data_out(5)<=dat6;

data_out(6)<=dat7;

data_out(7)<=dat8;

data_out(8)<=dat9;

data_out(9)<=dat10;

else null;

end if;

end process;

end Behavioral;

--WALSH PATTERN GENERATOR UNIT.

--THE PROGRAM GENERATES ALL THE 128 WALSH PATTERNS BUT ONLY THE CAL

OUTPUTS ARE TAKEN AT THE OUTPUT.

--CAL PATTERNS 0 AND 63 ARE NOT USED.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

Page 85

entity walsh_gen is

port(clk:in std_logic;

 cal:out std_logic_vector(1 to 62));

 end walsh_gen;

architecture Behavioral of walsh_gen is

signal qn1,qn3,qn7,qn15,qn31,qn63,qn127:std_logic;

begin

process(clk,qn1,qn3,qn7,qn15,qn31,qn63,qn127)

variable q1,q3,q7,q15,q31,q63,q127:std_logic:='0';

variable w:std_logic_vector(124 downto 2);

begin

--TOGGLE FLIP-FLOPS WHICH GENERATE THE CONTROL WALSH

PATTERNS:WAL(1),WAL(3),WAL(7),WAL(15),WAL(31),WAL(63),WAL(127)

if (clk='1' and clk'event) then

q127:=not q127;

qn127<=q127;

end if;

if (qn127='1' and qn127'event) then

q63:=not q63;

qn63<=q63;

end if;

if (qn63='1' and qn63'event) then

q31:=not q31;

qn31<=q31;

end if;

if (qn31='1' and qn31'event) then

q15:=not q15;

qn15<=q15;

end if;

if (qn15='1' and qn15'event) then

q7:=not q7;

qn7<=q7;

end if;

Page 86

if (qn7='1' and qn7'event) then

q3:=not q3;

qn3<=q3;

end if;

if (qn3='1' and qn3'event) then

q1:=not q1;

qn1<=q1;

end if;

--w(1):=qn1; --WAL(1)

--w(3):=qn3; --WAL(3)

--w(7):=qn7; --WAL(7)

--w(15):=qn15; --WAL(15)

--w(31):=qn31; --WAL(31)

--w(63):=qn63; --WAL(63)

--w(127):=qn127; --WAL(127)

w(2):=not(qn1 xor qn3); --CAL(1)

w(4):=not(qn3 xor qn7); --CAL(2)

w(5):=(not w(2)) xor qn7;

w(6):=not(qn1 xor qn7); --CAL(3)

w(8):=not(qn7 xor qn15); --CAL(4)

w(9):=(not w(6))xor qn15;

w(10):=not(w(5) xor qn15); --CAL(5)

w(11):=(not w(4)) xor qn15;

w(12):=not(qn3 xor qn15); --CAL(6)

w(13):=(not w(2)) xor qn15;

w(14):=not (qn1 xor qn15); --CAL(7)

w(16):=not(qn15 xor qn31); --CAL(8)

w(17):=(not w(14))xor qn31;

w(18):=not(w(13) xor qn31); --CAL(9)

w(19):=(not w(12)) xor qn31;

w(20):=not(w(11) xor qn31); --CAL(10)

w(21):=(not w(10)) xor qn31;

w(22):=not (w(9) xor qn31); --CAL(11)

w(23):=(not w(8))xor qn31;

w(24):=not(qn7 xor qn31); --CAL(12)

w(25):=(not w(6)) xor qn31;

w(26):=not(w(5) xor qn31); --CAL(13)

w(27):=(not w(4)) xor qn31;

w(28):=not (qn3 xor qn31); --CAL(14)

Page 87

w(29):=(not w(2))xor qn31;

w(30):=not(qn1 xor qn31); --CAL(15)

w(32):=not(qn31 xor qn63); --CAL(16)

w(33):=(not w(30))xor qn63;

w(34):=not(w(29) xor qn63); --CAL(17)

w(35):=(not w(28)) xor qn63;

w(36):=not(w(27) xor qn63); --CAL(18)

w(37):=(not w(26)) xor qn63;

w(38):=not (w(25) xor qn63); --CAL(19)

w(39):=(not w(24))xor qn63;

w(40):=not(w(23) xor qn63); --CAL(20)

w(41):=(not w(22)) xor qn63;

w(42):=not(w(21) xor qn63); --CAL(21)

w(43):=(not w(20)) xor qn63;

w(44):=not (w(19) xor qn63); --CAL(22)

w(45):=(not w(18)) xor qn63;

w(46):=not(w(17) xor qn63); --CAL(23)

w(47):=(not w(16))xor qn63;

w(48):=not(qn15 xor qn63); --CAL(24)

w(49):=(not w(14)) xor qn63;

w(50):=not(w(13) xor qn63); --CAL(25)

w(51):=(not w(12)) xor qn63;

w(52):=not (w(11) xor qn63); --CAL(26)

w(53):=(not w(10))xor qn63;

w(54):=not(w(9) xor qn63); --CAL(27)

w(55):=(not w(8)) xor qn63;

w(56):=not(qn7 xor qn63); --CAL(28)

w(57):=(not w(6)) xor qn63;

w(58):=not (w(5) xor qn63); --CAL(29)

w(59):=(not w(4)) xor qn63;

w(60):=not(qn3 xor qn63); --CAL(30)

w(61):=(not w(2))xor qn63;

w(62):=not(qn1 xor qn63); --CAL(31)

w(64):=not(qn63 xor qn127); --CAL(32)

--w(65):=(not w(62))xor qn127;

w(66):=not(w(61) xor qn127); --CAL(33)

--w(67):=(not w(60)) xor qn127;

w(68):=not(w(59) xor qn127); --CAL(34)

--w(69):=(not w(58)) xor qn127;

w(70):=not (w(57) xor qn127); --CAL(35)

Page 88

--w(71):=(not w(56))xor qn127;

w(72):=not(w(55) xor qn127); --CAL(36)

--w(73):=(not w(54)) xor qn127;

w(74):=not(w(53) xor qn127); --CAL(37)

--w(75):=(not w(52)) xor qn127;

w(76):=not (w(51) xor qn127); --CAL(38)

--w(77):=(not w(50))xor qn127;

w(78):=not(w(49) xor qn127); --CAL(39)

--w(79):=(not w(48))xor qn127;

w(80):=not(w(47) xor qn127); --CAL(40)

--w(81):=(not w(46)) xor qn127;

w(82):=not(w(45) xor qn127); --CAL(41)

--w(83):=(not w(44)) xor qn127;

w(84):=not (w(43) xor qn127); --CAL(42)

--w(85):=(not w(42))xor qn127;

w(86):=not(w(41) xor qn127); --CAL(43)

--w(87):=(not w(40)) xor qn127;

w(88):=not(w(39) xor qn127); --CAL(44)

--w(89):=(not w(38)) xor qn127;

w(90):=not (w(37) xor qn127); --CAL(45)

--w(91):=(not w(36)) xor qn127;

w(92):=not(w(35) xor qn127); --CAL(46)

--w(93):=(not w(34))xor qn127;

w(94):=not(w(33) xor qn127); --CAL(47)

--w(95):=(not w(32))xor qn127;

w(96):=not(qn31 xor qn127); --CAL(48)

--w(97):=(not w(30))xor qn127;

w(98):=not(w(29) xor qn127); --CAL(49)

--w(99):=(not w(28)) xor qn127;

w(100):=not(w(27) xor qn127); --CAL(50)

--w(101):=(not w(26)) xor qn127;

w(102):=not (w(25) xor qn127); --CAL(51)

--w(103):=(not w(24))xor qn127;

w(104):=not(w(23) xor qn127); --CAL(52)

--w(105):=(not w(22)) xor qn127;

w(106):=not(w(21) xor qn127); --CAL(53)

--w(107):=(not w(20)) xor qn127;

w(108):=not (w(19) xor qn127); --CAL(54)

--w(109):=(not w(18)) xor qn127;

w(110):=not(w(17) xor qn127); --CAL(55)

Page 89

--w(111):=(not w(16))xor qn127;

w(112):=not(qn15 xor qn127); --CAL(56)

--w(113):=(not w(14)) xor qn127;

w(114):=not(w(13) xor qn127); --CAL(57)

--w(115):=(not w(12)) xor qn127;

w(116):=not (w(11) xor qn127); --CAL(58)

--w(117):=(not w(10))xor qn127;

w(118):=not(w(9) xor qn127); --CAL(59)

--w(119):=(not w(8)) xor qn127;

w(120):=not(qn7 xor qn127); --CAL(60)

--w(121):=(not w(6)) xor qn127;

w(122):=not (w(5) xor qn127); --CAL(61)

--w(123):=(not w(4)) xor qn127;

w(124):=not(qn3 xor qn127); --CAL(62)

--w(125):=(not w(2)) xor qn127;

--w(126):=not(qn1 xor qn127); --CAL(63)

--w(0):='1'; --CAL(0)

for i in 1 to 62 loop

cal(i)<=w(2*i);

end loop;

end process;

end Behavioral;

--THE PROGRAM CONSISTS OF FOUR 32:1 MULTIPLEXERS FOR OBTAINING CAL

PATTERNS ON INDIVIDUAL CHANNELS .

--THERE ARE 5 ANTENNA SELECTION BITS FOR EACH OF THE MULTIPLEXER.

--THERE ARE 3 CONTROL BITS FOR SELECTING THE MULTIPLEXER FOR CHANNELS

SELECTION.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.

--library UNISIM;

--use UNISIM.VComponents.all;

entity mux1 is

Page 90

port (clk:in std_logic;

 wng_mux:in std_logic_vector(0 to 2);

 DS: in std_logic_vector(0 to 4);

 wp1,wp2:out std_logic;

 w:in std_logic_vector(1 to 62));

end mux1;

architecture Behavioral of mux1 is

begin

process(clk,w)

begin

if (clk='1' and clk'event) then

case wng_mux is

when "000"=>

wp1<='0';wp2<='0';

when "001"=>

wp2<='0';

case DS is

when "00000"=> wp1<=w(1);

when "00001"=> wp1<=w(2);

when "00010"=> wp1<=w(3);

when "00011"=> wp1<=w(4);

when "00100"=> wp1<=w(5);

when "00101"=> wp1<=w(6);

when "00110"=> wp1<=w(7);

when "00111"=> wp1<=w(8);

when "01000"=> wp1<=w(9);

when "01001"=> wp1<=w(10);

when "01010"=> wp1<=w(11);

when "01011"=> wp1<=w(12);

when "01100"=> wp1<=w(13);

when "01101"=> wp1<=w(14);

when "01110"=> wp1<=w(15);

when "01111"=> wp1<=w(16);

when "10000"=> wp1<=w(17);

when "10001"=> wp1<=w(18);

when "10010"=> wp1<=w(19);

when "10011"=> wp1<=w(20);

when "10100"=> wp1<=w(21);

CHAPTER 5-Hardware Implementation and Testing

 Page 91

when "10101"=> wp1<=w(22);

when "10110"=> wp1<=w(23);

when "10111"=> wp1<=w(24);

when "11000"=> wp1<=w(25);

when "11001"=> wp1<=w(26);

when "11010"=> wp1<=w(27);

when "11011"=> wp1<=w(28);

when "11100"=> wp1<=w(29);

when "11101"=> wp1<=w(30);

when "11110"=> wp1<=w(31);

when others=> wp1<='0';

end case;

when "010"=>

wp1<='0';

case DS is

when "00000"=> wp2<=w(32);

when "00001"=> wp2<=w(33);

when "00010"=> wp2<=w(34);

when "00011"=> wp2<=w(35);

when "00100"=> wp2<=w(36);

when "00101"=> wp2<=w(37);

when "00110"=> wp2<=w(38);

when "00111"=> wp2<=w(39);

when "01000"=> wp2<=w(40);

when "01001"=> wp2<=w(41);

when "01010"=> wp2<=w(42);

when "01011"=> wp2<=w(43);

when "01100"=> wp2<=w(44);

when "01101"=> wp2<=w(45);

when "01110"=> wp2<=w(46);

when "01111"=> wp2<=w(47);

when "10000"=> wp2<=w(48);

when "10001"=> wp2<=w(49);

when "10010"=> wp2<=w(50);

when "10011"=> wp2<=w(51);

when "10100"=> wp2<=w(52);

when "10101"=> wp2<=w(53);

when "10110"=> wp2<=w(54);

CHAPTER 5-Hardware Implementation and Testing

 Page 92

when "10111"=> wp2<=w(55);

when "11000"=> wp2<=w(56);

when "11001"=> wp2<=w(57);

when "11010"=> wp2<=w(58);

when "11011"=> wp2<=w(59);

when "11100"=> wp2<=w(60);

when "11101"=> wp2<=w(61);

when "11110"=> wp2<=w(62);

when others=> wp2<='0';

end case;

when "011"=>

case DS is

when "00000"=> wp1<=w(1);wp2<=w(32);

when "00001"=> wp1<=w(2);wp2<=w(33);

when "00010"=> wp1<=w(3);wp2<=w(34);

when "00011"=> wp1<=w(4);wp2<=w(35);

when "00100"=> wp1<=w(5);wp2<=w(36);

when "00101"=> wp1<=w(6);wp2<=w(37);

when "00110"=> wp1<=w(7);wp2<=w(38);

when "00111"=> wp1<=w(8);wp2<=w(39);

when "01000"=> wp1<=w(9);wp2<=w(40);

when "01001"=> wp1<=w(10);wp2<=w(41);

when "01010"=> wp1<=w(11);wp2<=w(42);

when "01011"=> wp1<=w(12);wp2<=w(43);

when "01100"=> wp1<=w(13);wp2<=w(44);

when "01101"=> wp1<=w(14);wp2<=w(45);

when "01110"=> wp1<=w(15);wp2<=w(46);

when "01111"=> wp1<=w(16);wp2<=w(47);

when "10000"=> wp1<=w(17);wp2<=w(48);

when "10001"=> wp1<=w(18);wp2<=w(49);

when "10010"=> wp1<=w(19);wp2<=w(50);

when "10011"=> wp1<=w(20);wp2<=w(51);

when "10100"=> wp1<=w(21);wp2<=w(52);

when "10101"=> wp1<=w(22);wp2<=w(53);

Page 93

when "10110"=> wp1<=w(23);wp2<=w(54);

when "10111"=> wp1<=w(24);wp2<=w(55);

when "11000"=> wp1<=w(25);wp2<=w(56);

when "11001"=> wp1<=w(26);wp2<=w(57);

when "11010"=> wp1<=w(27);wp2<=w(58);

when "11011"=> wp1<=w(28);wp2<=w(59);

when "11100"=> wp1<=w(29);wp2<=w(60);

when "11101"=> wp1<=w(30);wp2<=w(61);

when "11110"=> wp1<=w(31);wp2<=w(62);

when others=> wp2<='0';wp1<='0';

end case;

when "100"=>

case DS is

when "00000"=> wp1<=w(1);wp2<=w(1);

when "00001"=> wp1<=w(2);wp2<=w(2);

when "00010"=> wp1<=w(3);wp2<=w(3);

when "00011"=> wp1<=w(4);wp2<=w(4);

when "00100"=> wp1<=w(5);wp2<=w(5);

when "00101"=> wp1<=w(6);wp2<=w(6);

when "00110"=> wp1<=w(7);wp2<=w(7);

when "00111"=> wp1<=w(8);wp2<=w(8);

when "01000"=> wp1<=w(9);wp2<=w(9);

when "01001"=> wp1<=w(10);wp2<=w(10);

when "01010"=> wp1<=w(11);wp2<=w(11);

when "01011"=> wp1<=w(12);wp2<=w(12);

when "01100"=> wp1<=w(13);wp2<=w(13);

when "01101"=> wp1<=w(14);wp2<=w(14);

when "01110"=> wp1<=w(15);wp2<=w(15);

when "01111"=> wp1<=w(16);wp2<=w(16);

when "10000"=> wp1<=w(17);wp2<=w(17);

when "10001"=> wp1<=w(18);wp2<=w(18);

when "10010"=> wp1<=w(19);wp2<=w(19);

when "10011"=> wp1<=w(20);wp2<=w(20);

when "10100"=> wp1<=w(21);wp2<=w(21);

when "10101"=> wp1<=w(22);wp2<=w(22);

when "10110"=> wp1<=w(23);wp2<=w(23);

when "10111"=> wp1<=w(24);wp2<=w(24);

when "11000"=> wp1<=w(25);wp2<=w(25);

when "11001"=> wp1<=w(26);wp2<=w(26);

Page 94

when "11010"=> wp1<=w(27);wp2<=w(27);

when "11011"=> wp1<=w(28);wp2<=w(28);

when "11100"=> wp1<=w(29);wp2<=w(29);

when "11101"=> wp1<=w(30);wp2<=w(30);

when "11110"=> wp1<=w(31);wp2<=w(31);

when others=> wp2<='0';wp1<='0';

end case;

when "101"=>

case DS is

when "00000"=> wp1<=w(32);wp2<=w(32);

when "00001"=> wp1<=w(33);wp2<=w(33);

when "00010"=> wp1<=w(34);wp2<=w(34);

when "00011"=> wp1<=w(35);wp2<=w(35);

when "00100"=> wp1<=w(36);wp2<=w(36);

when "00101"=> wp1<=w(37);wp2<=w(37);

when "00110"=> wp1<=w(38);wp2<=w(38);

when "00111"=> wp1<=w(39);wp2<=w(39);

when "01000"=> wp1<=w(40);wp2<=w(40);

when "01001"=> wp1<=w(41);wp2<=w(41);

when "01010"=> wp1<=w(42);wp2<=w(42);

when "01011"=> wp1<=w(43);wp2<=w(43);

when "01100"=> wp1<=w(44);wp2<=w(44);

when "01101"=> wp1<=w(45);wp2<=w(45);

when "01110"=> wp1<=w(46);wp2<=w(46);

when "01111"=> wp1<=w(47);wp2<=w(47);

when "10000"=> wp1<=w(48);wp2<=w(48);

when "10001"=> wp1<=w(49);wp2<=w(49);

when "10010"=> wp1<=w(50);wp2<=w(50);

when "10011"=> wp1<=w(51);wp2<=w(51);

when "10100"=> wp1<=w(52);wp2<=w(52);

when "10101"=> wp1<=w(53);wp2<=w(53);

when "10110"=> wp1<=w(54);wp2<=w(54);

when "10111"=> wp1<=w(55);wp2<=w(55);

when "11000"=> wp1<=w(56);wp2<=w(56);

when "11001"=> wp1<=w(57);wp2<=w(57);

when "11010"=> wp1<=w(58);wp2<=w(58);

when "11011"=> wp1<=w(59);wp2<=w(59);

when "11100"=> wp1<=w(60);wp2<=w(60);

when "11101"=> wp1<=w(61);wp2<=w(61);

Page 95

when "11110"=> wp1<=w(62);wp2<=w(62);

when others=> wp2<='0';wp1<='0';

end case;

when others=>

wp1<='0';wp2<='0';

end case;

end if;

end process;

end Behavioral;

--SEQUENCY PATTERN GENERATION.

--THE PROGRAM CONSIST OF A COUNTER WHICH COUNTS FROM 0 TO 127.

--FOR FIRST COUNT THE OUTPUT IS HIGH AND FOR REMAING 127 COUNTS, THE

OUTPUT IS LOW.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity sequency_gen is

port(clk:in std_logic;

 SEQ:out std_logic);

end sequency_gen;

architecture Behavioral of sequency_gen is

signal countseq:integer range 0 to 127;

begin

process(clk)

begin

if (clk='1' and clk'event) then

if (countseq<1) then

seq<='1'; else seq<='0';

end if;

Page 96

countseq<=countseq+1;

if (countseq=127) then

countseq<=0;

end if;end if;

end process;

end Behavioral;

--NOISE PATTERNS GENERATION UNIT.

--THE PROGRAM CONSISTS OF A COUNTER WHICH DIVIDES THE INCOMING CLOCK

FREQUENCY BY 4.

--FOR NOISE ON, THE OUTPUT NGN PATTERNS IS ALWAYS HIGH.

--FOR NOISE OFF, THE OUTPUT NOISE PATTERN IS ALWAYS LOW.

--FOR NOISE 25%/75%, THE OUTPUT PATTERN IS HIGH FOR FIRST COUNT AND LOW

FOR REMAINING 3 COUNTS;

--FOR NOISE 50%, THE OUTPUT PATTERN IS HIGH FOR FIRST TWO COUNTS AND LOW

FOR REMAINING 2 COUNTS;

--THERE IS A 4:1 MUX FOR SELECTING EACH OF THE PATTERNS.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity noise_gen is

port(clk,wng1,wng2:in std_logic;

 NGN:out std_logic);

end noise_gen;

architecture Behavioral of noise_gen is

begin

process(clk,wng1,wng2)

variable countngn2,countngn3:integer range 0 to 3;

begin

if (clk='1' and clk'event) then

Page 97

if (wng1='0' and wng2='1') then

countngn3:=0;

if (countngn2<1) then

ngn<='1'; else ngn<='0';

end if;countngn2:=countngn2+1;

if(countngn2=4) then

countngn2:= 0 ;

end if;end if;

if (wng1='1' and wng2='0') then

countngn2:=0;

if (countngn3<2) then

ngn<='1'; else ngn<='0';

end if;

countngn3:=countngn3+1;

if(countngn3=4) then

countngn3:= 0 ;

end if; end if;

if (wng1='0' and wng2='0') then

ngn<='0';

end if;

if (wng1='1' and wng2='1') then

ngn<='1';

end if;end if;

end process;

end Behavioral;

Page 98

APPENDIX B

 Device Pin Out

Device : XC95108-15-PC84

 --

 /11 10 9 8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75 \

 | 12 74 |

 | 13 73 |

 | 14 72 |

 | 15 71 |

 | 16 70 |

 | 17 69 |

 | 18 68 |

 | 19 67 |

 | 20 66 |

 | 21 XC95108-15-PC84 65 |

 | 22 64 |

 | 23 63 |

 | 24 62 |

 | 25 61 |

 | 26 60 |

 | 27 59 |

 | 28 58 |

 | 29 57 |

 | 30 56 |

 | 31 55 |

 | 32 54 |

 \ 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 /

 --

Pin Signal Pin Signal

No. Name No. Name

 1 dat2 43 TIE

 2 dat1 44 TIE

 3 DS<4> 45 WP2

 4 DS<3> 46 TIE

 5 DS<2> 47 TIE

 6 DS<1> 48 TIE

 7 DS<0> 49 GND

 8 GND 50 TIE

 9 dat10 51 TIE

 10 clk 52 TIE

 11 TIE 53 TIE

Page 99

 12 TIE 54 TIE

 13 MON<0> 55 TIE

 14 MON<1> 56 TIE

 15 MON<2> 57 TIE

 16 GND 58 TIE

 17 MON<3> 59 TDO

 18 MON<4> 60 GND

 19 MON<5> 61 TIE

 20 TIE 62 NGN

 21 TIE 63 SEQ

 22 VCC 64 VCC

 23 TIE 65 TIE

 24 TIE 66 TIE

 25 TIE 67 TIE

 26 TIE 68 TIE

 27 GND 69 TIE

 28 TDI 70 TIE

 29 TMS 71 TIE

 30 TCK 72 TIE

 31 wng5 73 VCC

 32 monc 74 TIE

 33 WP1 75 enbm

 34 TIE 76 enbw

 35 TIE 77 dat9

 36 TIE 78 VCC

 37 TIE 79 dat8

 38 VCC 80 dat7

 39 TIE 81 dat6

 40 TIE 82 dat5

 41 TIE 83 dat4

 42 GND 84 dat3

Legend : NC = Not Connected, unbonded pin

 PGND = Unused I/O configured as additional Ground pin

 TIE = Unused I/O floating -- must tie to VCC, GND or other signal

 VCC = Dedicated Power Pin

 GND = Dedicated Ground Pin

 TDI = Test Data In, JTAG pin

 TDO = Test Data Out, JTAG pin

 TCK = Test Clock, JTAG pin

 TMS = Test Mode Select, JTAG pin

 PROHIBITED = User reserved pin

Page 100

APPENDIX C

Data sheets links

 Data sheet for XC95108 PC84C-

http://www.xilinx.com/support/documentation/data_sheets/DS066.pdf

 Data sheet for MC3487-

http://www.datasheetcatalog.org/datasheet/texasinstruments/mc3487.pdf

 Data sheet for crystal Oscillator (Andhra Electronics)-

http://www.andhraelec.com/httpdocs/catalogue/CXO%20300.pdf

 Data Sheet for voltage Regulator LM317-

http://www.national.com/ds/LM/LM117.pdf

http://www.xilinx.com/support/documentation/data_sheets/DS066.pdf
http://www.datasheetcatalog.org/datasheet/texasinstruments/mc3487.pdf
http://www.andhraelec.com/httpdocs/catalogue/CXO%20300.pdf
http://www.national.com/ds/LM/LM117.pdf

