
MULTI-ELEMENT CORRELATOR AND
BEAMFORMER USING OPENCL ON FPGA

ACCELERATOR CARD

REPORT SUBMITTED TO
SAVITRIBAI PHULE PUNE UNIVERSITY
FORMERLY KNOWN AS UNIVERSITY OF PUNE

By

RAGHUTTAM SHREEPADRAJ HOMBAL

FOR THE DEGREE OF
MASTER OF SCIENCE (M.Sc.)

IN
ELECTRONIC SCIENCE

Under the Guidance of

Dr. Pranoti Bansode
Depratment of Electronics &
Instrumentation Science

Mrs. Mekhala Muley
Giant Metrewave Radio Tele-
scope,
NCRA - TIFR

Department of Electronics & Instrumentation Science
Savitribai Phule Pune University

Pune - 411 007
June, 2022

CERTIFICATE

Certified that the project work entitled “Multi-element Correlator and Beamformer
using OpenCL on FPGA accelerator card” is work done by Mr. Raghuttam Hombal at
Giant Metrewave Radio Telescope (GMRT), NCRA-TIFR in the partial fulfillment of
requirements for award of M. Sc (Electronic Science) degree of Savitribai Phule Pune
University during the year 2021-2022. The work has not formed the basis for the award
of any other degree, diploma, in this or any other University or other institution of higher
learning.

Head,
Department of Electronics
& Instrumentation Science,
S. P. Pune University

Mrs. Mekhala Muley,
Guide, Engineer E,
Giant Metrewave Radio Tele-
scope,
NCRA - TIFR

i

Preface

As a part of my Curriculum Credit Course and also to gain more knowledge about the
field of High Performance Computing and Astronomical Instrumentation, I present you
this project report. The project is developed as a part of Student Trainee Program at
Giant Metrewave Radio Telescope (GMRT), NCRA-TIFR which is one of the world’s
largest operational Radio Telescope.

Radio Interferometry refers to the process of combining signals from multiple antenna
to form an image of the radio source in the sky. Radio-astronomical imaging is computa-
tionally challenging and poses strict performance and energy-efficiency requirement. The
aim of this project is to design an energy-efficient multi-element correlator and beam-
former on FPGA using High-Performance Computing. The digital signal processing for
radio astronomy involves compute intensive operations such as FFT, correlation, beam-
formation, filtering etc. which can be implemented using parallel processing techniques.
In this project, Open Computing Language (OpenCL) is used for designing the digital
signal processing chain on the FPGA. We expect it to be high-performing and energy-
efficient with rapid development cycle.

The project helped me in studying Digital Signal Processing with an approach that
is more application-oriented. Through this project, I could obtain more insight on how
the real-time systems work and how is the data flow designed and optimized to perform
compute intensive tasks.

ii

Acknowledgement

I would like to thank, my guide Mrs. Mekhala Muley, for the constant support, guidance
and patience. I have benefited greatly from your knowledge and wisdom. I am extremely
thankful for everything that I have gained from you during the course of this project. I
would also like to thank Prof. Yashwanth Gupta (NCRA), Sri. Ajith Kumar (GMRT)
and Dr. Jayanta Roy (NCRA) for providing me this opportunity to work on this project
in such a prestigious institution. Thanks to Mr. Harshavardhan Reddy (GMRT), Mr.
Sanjay Kudale (NCRA) & Mr. Kaushal Buch (GMRT) for their help in conducting
multiple experiments. Special thanks to all the staff of Giant Metrewave Radio Telescope
for their constant coordination and cooperation towards the whole project and make this
project possible.

Thank you Dr. Pranoti Bansode for the support that you provided, remotely, during
the course of the project. Special thanks to Prof. D. C. Gharpure for constantly support-
ing us in every way possible and helping us push our limits to the extreme. I would also
like to mention the staff of Department of Electronic Science & Instrumentation Science
for their patience and guidance.

iii

List of Figures

1.1 GMRT Array Configuration[3] . 2

2.1 Represents OpenCL Architecture and Execution Model 7

3.1 Butterfly Diagram of 8-point FFT . 11
3.2 A two element interferometer with fringe stopping and delay tracking[3] . 12
3.3 Block Diagram of XF Correlator[3] . 13
3.4 Block Diagram of FX Correlator[3] . 13

4.1 Block Diagram of Nallatech 385A . 16
4.2 Block Diagram of the implemented system 18
4.3 Signal flow of MAC and Beamformer section 19
4.4 Signal flow chart of the Host Program . 22

5.1 The plot shows the Amplitude of input signals w.r.t Time 24
5.2 Plots show Selfs & Cross Magnitude & Phase of Signals under test 25
5.3 Plots show the Selfs & Cross Magnitude & Phase of 2 independent Noise

sources . 27
5.4 The plot shows the Correlated output with different number of iterations 28
5.5 Normalized Output of the Cross-correlated signals 29
5.6 Plots showing Correlated Signals from C0 and C1 Antenna 31
5.7 The plot of IA Beamformer output of 5 Mhz Signal 32
5.8 Phase of Cross Correlated Signals . 33
5.9 Self-power of both Antenna over a single spectrum 34
5.10 Cross of C06 & C09 before phasing . 35
5.11 Cross of C06 & C09 after phasing . 36
5.12 Monochrome Heatmap of Intensity vs FFT channel & Time 37
5.13 Snapshots of GPTool processed by Test-Design 39
5.14 Snapshots of GPTool processed by GWB 40
5.15 Filtered Phase Profile - IA of B0329+54 41
5.16 Filtered Phase Profile - PA of B0329+54 41

iv

Contents

1 Introduction to Interferometry 1
1.1 An overview of GMRT . 1
1.2 Radio Interferometry . 2

1.2.1 Aperture Synthesis . 2
1.2.2 Correlator . 3
1.2.3 Beamformer . 3

2 Heterogenous Computing 4
2.1 Need for Heterogeneous Computing . 4
2.2 Compute Platforms . 4
2.3 OpenCL . 5

2.3.1 Architecture . 5
2.3.2 Programming Models . 6
2.3.3 Execution and Memory Model . 7

2.4 Intel FPGA SDK . 8
2.4.1 Board Support Package . 8

3 Signal Processing 9
3.1 Cross-Correlation . 9
3.2 Fourier Transform . 10
3.3 Correlators . 11
3.4 Types of Correlators . 12
3.5 Beamformer . 12

3.5.1 IA Beamformer . 14
3.5.2 PA Beamformer . 14

4 Implementation 15
4.1 Specifications of FPGA Accelerator Card 15
4.2 System Parameters . 16
4.3 Block Diagram and Signal Flow . 17

4.3.1 Fetch and FFT . 17
4.3.2 Fractional Delay Compensation and Fringe Stop 17
4.3.3 Multiply and Accumulate . 20
4.3.4 Beamformer . 20

4.4 Resource Utilization . 20
4.5 Host Program . 21

v

5 Tests and Results 23
5.1 Two Single Tone Signals . 23

5.1.1 Inputs . 23
5.1.2 Expectations . 23
5.1.3 Results . 24

5.2 Noise Source . 26
5.2.1 Inputs and Expectations . 26
5.2.2 Plots . 26

5.3 Varying Iterations . 26
5.3.1 Inputs and Expectations . 26
5.3.2 Results . 26

5.4 Correlated Noise . 26
5.4.1 Inputs . 26
5.4.2 Expectation . 30
5.4.3 Plots . 30

5.5 Antenna Signals . 30
5.5.1 Inputs and Expectations . 30
5.5.2 Plots . 30

5.6 Beamformer . 30
5.6.1 Inputs and Expectations . 30
5.6.2 Plots . 32

5.7 Fractional Delay Correction and Fringe Stop 32
5.7.1 Varying Fractional Delay . 32
5.7.2 Varying Fringe . 32
5.7.3 Varying Delay Rate . 32
5.7.4 Fringe Rate . 34

5.8 Testing Correlator on 3C147 Source . 34
5.8.1 Inputs . 34
5.8.2 Plots . 34
5.8.3 Results . 34

5.9 Observing Pulsar B0329+54 . 37
5.9.1 Inputs . 37
5.9.2 Expectation . 37
5.9.3 Results . 37
5.9.4 Comparision with GWB . 38
5.9.5 Inference . 38

5.10 Static Power Consumption Report . 38

6 Conclusion 42
6.1 Summary . 42
6.2 Future Scope . 42

vi

Chapter 1

Introduction to Interferometry

1.1 An overview of GMRT

The Giant Metrewave Radio Telescope (GMRT)[3] is an array of 30 antenna, each being
45 m in diameter designed for study of Radio Astronomy. The Observatory has 14
antenna distributed randomly in a compact region of radius approximately 1 km, called
the Central Square. Rest of the antennas are distributed in a roughly Y-shaped pattern
with each arm being approximately 14 km in length as shown in Fig1.1. The central
square provides shorter baselines, which is useful for imaging a large extended sources
whose visibility is focused at the origin of the U-V Plane. The arms are very useful in
imaging a smaller sources, where high angular resolution is essential, as they provide
extended baseline. A single GMRT observation hence yields information on a variety of
angular scales.[3]

The GMRT currently operates at 5 different frequency bands distributed within the
range of 50 MHz to 1400 MHz. The feeds work at the ambient temperatures only. Band
selection and preliminary amplification of RF signal is done in front-end system. After
the first RF amplifier stage i.e. Low Noise Amplifier Stage (LNA), signals are fed to a
common second stage amplifier.The RF signal is then brought to antenna base for further
processing. Signal is then fed to lase-diode for converting them into optical signals and
are transmitted to Central Electronics Building (CEB) by fiber optics cable for further
digital signal processing. GMRT features two backends running simultaneously viz. :

• Legacy system - processing 32 MHz bandwidth using GMRT Software Backend
(GSB)

• uGMRT system - processing 400MHz bandwidth using GMRT Wideband Back-
end (GWB)

FX correlator is used for interferometry mode, supporting both total intensity and
full polar mode processing. A range of observing bandwidths are available with varied
resolution.The correlator output / visibilities are stored in a format called LTA format
which are further converted into FITS format. In parallel with the correlator, the GWB
also has incoherent array (IA) and phased array (PA) beam-formers for the array mode,
which are useful for observations of sources such as pulsars and fast transients.

1

Figure 1.1: GMRT Array Configuration[3]

1.2 Radio Interferometry

The angular resolution of telescope i.e. the smallest angle between close objects that can
be seen clearly to be separate, is given by Rayleigh’s Criterion,

θ ≈ λ

D
(1.1)

where D is the size of Aperture, which implies that, for higher angular resolution, the
Diameter of the instrument should be much larger. In order to achieve higher resolution
in RF - Domain (metrewave lengths) it is not practically possible to increase the diameter
of the telescope after a point (which would be in order of 105 m). This is why one uses a
technique known as Interferometry. Interferometry is a technique that allows one to use
an array of smaller antenna to observe the sky instead of a very large one (which is not
practical to be built or used).

The physics of this imaging technique is built on the Van Cittert - Zernike Theo-
rem. This theorem relates the spatial coherence function to the distribution of intensities
of the incoming radiation. Ultimately, the Visibility function over an U-V plane is given
by the equation[3]

ν(u, v, w) =

∫
I (l,m) exp−ı2π[lu+mv+nw] dldm√

1− l2 −m2
(1.2)

This is the fundamental relationship given by Van Cittert - Zernike Theorem.
This equation resembles Fourier Transform for a large extent when:

• The observations are confined to U-V plane, i.e. w = 0.

• The source brightness distribution is limited to a small region of sky.

1.2.1 Aperture Synthesis

The visibility function of a 2D plane is just a simple Fourier Transform of the source
brightness distribution given in Equ 1.2, hence, a single source brightness distribution

2

can be derived by Fourier Transform of correlated voltages from multiple antenna. After
many measurements, Inverse Fourier Transform of correlated data can be obtained to
obtain what is referred to as a map. Since the Radio sky does not vary much with
respect to time, one can measure all required Fourier Components at different instances
by moving the telescope over an area to get more resolution. Radio Telescope Arrays
take advantage of rotation of the earth, which apparently displaces the antenna after a
while to a different coordinate in place (in km). This method of gradually building up all
the required Fourier components and using them to image the source is called ”aperture
synthesis”.This allows us to synthesis the data as if it is from a single Antenna.

1.2.2 Correlator

The mutual coherence function is measured by cross-correlating the voltages from each
pair of antennas. The measured cross-correlation function is also called visibility. In
general it is required to measure the visibility for different frequencies (spectral visibility)
to get spectral information for the astronomical source.[3] This visibility data is used
in imaging, continuum and many other astronomical observations. For an array of N
antennas, at any given points one has to measure NC2 number of Fourier Components
(samples on U-V Plane) which means that one needs to measure NC2 correlations at an
instant of time. This operation is performed by what is known as a Correlator.

1.2.3 Beamformer

Pulsars are the weak radio sources, so their individual pulses often do not rise above the
background noise level. Pulsar is a very highly magnetized rotating neutron star, which
emits pulses with a very high precision period i.e small duty cycle.

Beamforming is the basic technique used for their studies. It is used in sensor arrays for
directional signal transmission or reception. This is achieved by combining elements in the
array in such a way that signals at particular angles experience constructive interference
while others experience destructive interference. In beamformer, the antenna signals can
be added coherently or incoherently. So for Pulsar observation, array mode with higher
time resolution is used.

3

Chapter 2

Heterogenous Computing

In this chapter, we are going to see why do we need Heterogeneous Computing systems,
What are the ways that one can achieve it and where does this finally take us. We shall
see what are commonly used devices for this and why should we choose that particular
device if we do so. What are the standards that let us achieve Heterogeneous Computing
and how do we go about it.

2.1 Need for Heterogeneous Computing

Even though trend of Moore’s law [10] is no more holding good, the need for faster pro-
cessing has not depreciated, instead with advancements in software and complex systems
it has increased a lot. Traditional CPUs can no longer perform the tasks as fast as we want
them too. This has lead to development of Application Specific Integrated Circuits
or ASICs. These systems are focused one performing few particular kinds of tasks with
super-speed but lack general purpose task handling capabilities. Graphics Processing
Units (GPUs) and Field Programmable Gate Arrays (FPGAs) and very commonly
used types. These systems are particularly designed to achieve parallelism in order to
complete the task as soon as possible but they are not capable of running independently.

During this era of internet, many tasks needs to be completed with almost real-time
latency in order to keep up with the never ending ocean of tasks and queries coming
in. Even many leading Cloud Service Providers offer options to run the servers using
many such Heterogeneous Computing Systems that are specially designed to provide
high throughputs for complex operations. This keeps the traffic smooth rather than
using CPUs for compute intensive tasks and queue the rest. Computation can be done
hundred folds faster when such systems are used efficiently.

2.2 Compute Platforms

As mentioned earlier, There are four major computing platforms - ASICs, CPUs, GPUs
and FPGA. CPU or Central Processing Unit is mainly dedicated for General Purpose
Computing. It is good with file handling, task management, mathematical operations,
interfacing I/O to the system. It is flexible but with the cost of losing performance. The
architecture of the CPU is designed in such a way that it should be able to do basically
any task, but time is not a serious constraint here.

4

In recent times, GPU or Graphical Processing Unit emerged as a system that
could allow user to crunch the numbers as fast as possible. With a number of cores, It
could achieve parallelism in a much broader perspective than a CPU could ever achieve.
Having multiple cores to work on, It could run a single instruction on multiple data within
no time. This formed the basis of Single Instruction/Multiple Data or generally known
as SIMD. In earlier days, even though they were not created for scientific computations,
they had huge number of cores that were optimized only for integer or floating point
arithmetic. They communicated with CPU via interconnect, traditionally using PCIe
bus. Even though they are super-fast for transfers, they created a overhead problem,
as transferring data over links itself could be much larger than gain in computation
time. Even though there are solutions for this problem such as splitting the transfer or
adding more number of GPUs, they are not a general ideal solution, especially when one
wants a Real-time performance. The hard wired architecture of GPUs also restrict many
functional possibilities that could have been inculcated in the design.

Field Programmable Gate Array or FPGA have gained popularity over a period
of time in this domain. They have blocks of Gates, Flip-flops, DSPs built-in which can be
used to carry out the job. Conventionally they are configured through Register-Transfer
Level (RTL) descriptions using VHDL or Verilog. Synthesis tools (most of the times
vendor specific) converts these HDL codes to RTL and then to bit file which configures
the FPGA with the specific design. Nowadays, with advancements in technology, there
are standards available through which we can program FPGAs using high-level language
such as C/C++. This makes FPGAs more accessible to high-level programmers and
provides smoother development environment.

2.3 OpenCL

OpenCL (Open Computing Language) is an open royalty-free standard for general pur-
pose parallel programming across CPUs, GPUs, FPGAs and other processors, giving
software developers portable and efficient access to the power of these heterogeneous pro-
cessing platforms.[9] It is actually designed to support a wide range of processing units
for High Performance Computing solutions. This standard is derived from ISO C99 with
extensions and also defines numerical requirements specified by IEEE 754. OpenCL on
a much broader view, gives control for the programmer achieve parallelism in the form
that he/she prefers having. May it be coarse-grained or fine-grained such as that for a
single instruction.

2.3.1 Architecture

OpenCL API includes libraries that can be used to write portable yet efficient codes to
obtain High performance from the machine. There are two basic units for a OpenCL
Platform model.

Host: This can be any General Purpose compute unit such as a CPU. Even ARM devices
can be used for this purpose. The primary job of the host is to identify devices,
create context, program the attached device, dispatch and read the data from the
device. A source code is usually written in C/C++ to generate an executable to
perform this action.

5

Devices: These can be GPUs, FPGAs or maybe another CPU too. They are pro-
grammed during the execution, with a source file written using OpenCL language
(with extension .cl) or through a generated binary file for vendor specific devices
such as that of Intel FPGA.

The application that runs on the host is responsible for submitting commands from host
to device in order to execute instructions/programs on work items (or compute units). A
single host is capable of handling multiple Devices, they may not be of similar type too.
It is discretion of the programmer to make the best use of the available resource.

2.3.2 Programming Models

There are two forms of programming models offered by OpenCL standard. Based on the
nature of the task and requirement of the programmer, either of them or a combination
of them can be implemented.

NDRange Programming Model

This model divides the task into multiple work items. For instance, if the task is to
add two vectors of 100 elements each, then this model is capable of replicating an Adder
(Basic unit of a Vector addition) into many work items and can have 100 operations in a
single clock. This is a form of SIMD implementation, wherein a single instruction has
to be executed on multiple sets of data. Note that Every work-item is independent of
each other and cannot communicate in whatsoever way. It is possible to create a pipeline
of such an instruction, and a initiation interval can be started for each work-item [1],
but by doing this, we tend to achieve a coarse-grain parallelism which requires more
logic and memory. Alternative option is to replicate more number of Compute Units and
let assigning each Compute Unit the same task. Even though it increases the usage of
arithmetic resource, It gives more control over the task.

Single Work-Item

In this form, an entire operation is performed by only a single work-item. High Perfor-
mance is obtained by unrolling and pipelining the code wherever possible, such as Loops.
Instead of executing a single instruction in sequential fashion, the block that is previous
to the current stage can start the job with the next data. This reduces the time required
to compute a set to data provided the data must be purely independent of each other.
OpenCL can even merge multiple instructions, for instance, if there are 2 Multiply and
ACculmulate operations adjecent to each other, then they can be combined into a single
instruction to reduce the latency.

Not always can a task be divided into several units independent of each other. There
has to be a combination of Pipelining and Sequencing of the instruction over a range.
It is also important to know that, every work-item is independent of each other, which
means that there is no direct way of synchronization of tasks. Synchronization is done by
using some kinds of Events to indicate the status of the job, Profiling of a task or through
a command, wherein it can force the work-items to delay until another event’s occurrence
takes place[13]. There can be Host notifications and callback functions to indicate the
execution of a task. Wait-lists and command events are another way of achieving some
form of synchronization among the Tasks enqueued. With events one can establish the

6

Figure 2.1: Represents OpenCL Architecture and Execution Model

order for the execution of commands. That is to force one or more commands to wait
until a set of events have completed. These sets of delaying events are called wait lists.[13]

2.3.3 Execution and Memory Model

Even though we tend to focus on FPGAs here, Execution model for any other device is
quite similar to this. There are two elements needed for OpenCL to be executed. The
Kernel Program, which is programmed onto the device and the Host Program which
is compiled by the native C/C++ compiler and executed locally. The Host is responsible
for creation of required resource entities, allocation of any kind of Memory Units, Copying
of the Buffers, Queuing the tasks for Execution, Reading back the Data from the Device,
Managing Contexts, etcetera. All memory operations are explicit. Multiple levels of
Memory are available. The user is responsible of making the best use of the memory
types available. There is a Global Memory situated on some form of DDR memory that
is available when we use FPGA or GPU, in order to eliminate the overhead of transferring
over the Host-Device interconnect for data each time. There is also Local memory and
Private memory based on the hierarchy of the stage.

A Work-item is an elementary unit of computing. It is accompanied by a Private
Memory for faster data retrieval. There can be multiple Work-items doing the same
job simultaneously which results in parallelism. Every work-item is independent of each
other and have no synchronization whatsoever until explicitly told to synchronize. A
group of work-items is called a work-group, which is native to the Device. Usually every
work-item under a work-group performs same task or executes the same set of instruction.
A Work-group also has a dedicated memory known as Local Memory. This is a kind
of shared memory among the work-items of that group. This acts as a L2-cache for the
work-items, much bigger but at the cost of latency.

Multiple Work-groups can be created in a device based on its capacity. A single or
multiple devices can form what is called to be a Context. The devices selected work
together, share a common memory known as Global Memory. Contexts make is pos-
sible to create Command Queues, the structures that allow hosts to send kernels to
devices, and enqueue the tasks . [13] A Global Memory is like a pool of data that needs
to be worked on. Every work-item fetches data from the Global Memory and performs
operations as instructed. Host is capable of communicating to the Global Memory only.
It is to be noted that, there can be multiple contexts on a platform using many devices,

7

but there cannot be any context using multiple devices from different platforms.

2.4 Intel FPGA SDK

Intel FPGA SDK is a work environment for designing digital circuits for Intel’s FPGA
using OpenCL in a 2-step process[6]. There is a OpenCL Offline Compiler that is respon-
sible for compiling the OpenCL kernels and generate a bit file and there is a host-side
regular GCC Compiler that compiles the host program written in C/C++ and links it
to the OpenCL Kernels. There are three main parts of the programming model.

• A host application and Compiler

• The OpenCL Kernel and offline Compiler

• Custom Platform

Custom Platform comprises of OpenCL Reference Platform Design i.e. details about
the target platform and Board Support Packages. It gives information about the device
to the Offline compiler so that, the compiler can generate an hardware image of the target
using the IP blocks. A series of files are generated by the Intel’s AOC [13] Compiler that
contains the HDL code, synthesis report, details about the timing constraints, etc. It
takes time for the compiler to generate a bit file that programs the actual hardware.
This might even be in hours, this makes it harder for the developer to test and debug
the behavioural errors of the system. Instead, there is an Emulator Mode that can be
used to analyse the functionality of the code. It takes very less time to get the job done.

The host application is then responsible for management of the process. It is supposed
to read the bit file, use it to program the FPGA, Create buffers and communicate to
target device. It is to be noted that for FPGAs, onlny way to program them is by using
the Binary file, unlike GPUs and CPUs where in we can program them using the .cl file
too.

2.4.1 Board Support Package

Board Support Package (BSP) contains file sets for generating OpenCL executables for
running on the FPGA accelerator card. The BSP package also includes the required
drivers and software libraries for creating and running the associated host executables. It
supports communication of the target device with the Host, DDR memory, Networking
ports and many more. In addition to the memory blocks and PCIe lanes, any HPC
application would require ways to transport data efficiently to/from the target device
using IO interface. This is taken care by the BSPs. There are a number of such packages
specifically built for some purpose with some added advantages and usually the vendor of
the board provides one. Even the on-chip memory of the FPGA, that is allocated as the
local memory for the kernels, needs an interconnect to communicate and the BSP takes
care of that. It does take up some amount of static on-board memory but is necessary
for the process.

8

Chapter 3

Signal Processing

The main objective of the project is to implement Multi-element Correlator and
Beamformer on FPGA using OpenCL. The word Correlation itself suggests that it is
a measure of match/resemblance of two entities. In digital signal processing, It deals
with the concept of how well a signal resembles another signal or itself. Computing the
correlation between the two signals is to measure the degree to which the two signals
are similar and thus to extract some information that depends to a large extent on the
application. [8] There are two types of correlations -

Auto-Correlation This type of correlation involves only one signal. It is performing
the operation on itself. This kind of operation is used to find out the faint signal
that is buried under the noise.

Cross-Correlation This involves two signals. The operation is performed to find out
the common frequency components between both of them, or to calculate the phase
delay between two signals.

3.1 Cross-Correlation

As mentioned above, This type of Correlation involves more than one signal. Mathemat-
ically it can be represented as

rxy(l) =
∞∑

n=−∞

x(n+ l)y(n)

=
∞∑

n=−∞

x(n)y(n− l),

l = 0,±1,±2,±3, (3.1)

It is to be noted that,
rxy(l) = ryx(−l) (3.2)

which implies that rxy(l) is simple the folded version of ryx(l), with respect to l = 0, but,
they provide exactly the same information with respect to the similarity between x(n) to
y(n). [8]

Similarity with Convolution

The operations Correlations of two signals and convolution of two signals are very similar
to each other. In Convolution, one the signal is folded, time-shifted, multiplied and

9

summed up at every points. Correlation also does the same thing except for the folding
of the signal about a point. Hence, Correlation operation is convolution of two signals
with one of the folded about a point [8]. If ∗ is the operation for convolution, then,

rxy(l) = x(l) ∗ y(−l) (3.3)

This will be helpful as we proceed further

3.2 Fourier Transform

Fourier Transform is one of the powerful tools of Engineering Mathematics that revo-
lutionized the stream of Signal Processing. In simpler words, Fourier Transform FT
converts a signal from Time-domain to its equivalent form in Frequency-domain. This
gives the user capabilities of Filtering a signal, Compressing the Data, Convolving Signals
faster and much more. Just like a prism that splits a white light into multiple compo-
nents, Fourier Transform splits a signal into its different frequency components. The
output of the Fourier transform is in format of a complex number. For Analog signals,
FT is given by

X(jω) =

∫ ∞

−∞
x(t)e−j2πωt (3.4)

For Discrete Signals that are causal in nature, it becomes,

X(k) =
N−1∑
n=0

x(n)e−j2πk n
N (3.5)

This form is known as Discrete Fourier Transform (DFT). More is the number of
points or N , more will be the number of the distinct frequency components found. The
process of computation requires atleast N2 number of complex multipliers, even if we
pre-calculate and form a Look-Up Table (LUT) for the twiddle factor coefficients. This
was very time consuming as not at all feasible for applications that required FT to
be computed immediately. In 1965, J. W. Cooley and John Tukey came up with an
algorithm that would be a faster implementation of FT, popularly known as the Fast
Fourier Transform or FFT.[5]

FFT uses ’Divide and Merge’ theory to operate on the given data, and reduces the
number of computations to N log(N). It is interesting to note that as the Number of
points i.e. N increases, the effect of log(N) reduces and it becomes almost linear. Modern
systems make use of FFT to a very large extent due to its reduced complexity, faster
calculation and expandability. The working of FFT is shown in the Fig.3.1. It is just a
FFT of 8-points but can be scaled up in similar fashion. It is very important to note that
the Fourier transformation function is linear in nature, i.e. if F is function representing
Fourier Transform, and x(n) and X(n) be the signal and FT of it, respectively, then,

if, x(n) = α1x1(n) + α2x2(n)

then,X(n) = F (x(n))

= F (α1x1(n)) + F (α2x2(n))

= α1X1(n) + α2X2(n)

(3.6)

10

Figure 3.1: Butterfly Diagram of 8-point FFT

Advantage of Fourier Transform

One of the main advantages of converting any time-domain signal into fourier-domain is
that, operations such as convolution becomes very simple. A convolution operation in
Time-domain is just element-wise multiplication of Fourier-domain equivalents of those
signals. if,

y(n) = x(n) ∗ h(n)

=
∞∑

n=−∞

x(l − n)h(n)

but if Y (k), X(k) and H(k) are FT of y(n), x(n) and h(n) respectively, then

Y (k) = X(k) ·H(k) (3.7)

Since Convolution and Correlation are very similar to each other, we can extend the same
to infer that, if Rxy is FT of rxy by (Equ3.3)

Another feature of Fourier Transform is its Time-Shifting Property. A signal x(n) can
be time shifted in Fourier Domain by multiplying it with a factor. This can be used to
make Fine Delay adjustments and Fringe Correction.

X(N −N0) = X(N) · e
−N0
N (3.8)

This property is used to delay the signal in fraction of samples and also for fringe stop.
More about this is explained in sections below.

Rxy(n) = FT [rxy(n)]

= FT [x(n) ∗ y(−n)]

= FT [x(n)] · [y(−n)]

= X(k) · Y ⋆(k)

(3.9)

3.3 Correlators

A radio interferometer measures the mutual coherence function of the electric field due
to a given source brightness distribution in the sky. The antennas of the interferometer

11

Figure 3.2: A two element interferometer with fringe stopping and delay tracking[3]

convert the electric field into voltages. The mutual coherence function is measured by
cross correlating the voltages from each pair of antennas. Refer to the Figure 3.2. Since
the radio waves from the source have to travel an extra distance b·sin(θ) to reach antenna
2, the voltage there is delayed by the amount b ·sin(θ

c
). This is called the geometric delay.

Also θ is function of angular frequency of earth’s rotation causing the output to vary in
quasi-sinusoidal form (called as fringes). Thus delay (geometric and instrumental) and
fringe correction is done. So basically a correlator does the delay correction, FT, fine
delay correction & fringe stop, multiplication and integration of the two signals.

3.4 Types of Correlators

As discussed before, There are two kinds of Correlators.[3] FX andXF. There is not much
of a major difference between both of them but, in FX Correlator, FFT is performed on
the signals before passing them through Multipliers, whereas in a XF Correlator a series
of Complex Multipliers and Accumulators does their job before the FFT of the signal is
obtained. Use of a particular method among the above mentioned is purely a choice of
the programmer, but, GMRT uses FX Correlators for their operations[3]

The Block Diagrams show in Fig.3.3 and Fig.3.4 are of the entire system. For now, we
are concerned only with a fewer blocks that include FFT and Multiply and ACcumulate
(MAC).

3.5 Beamformer

Beamforming is a signal processing technique used in sensor arrays for directional signal
transmission or reception.In beamformer, the antennae signals can be added coherently

12

Figure 3.3: Block Diagram of XF Correlator[3]

Figure 3.4: Block Diagram of FX Correlator[3]

13

or incoherently.

3.5.1 IA Beamformer

Incoherent Array (IA) beamformation and Phased Array (PA) beamformation are two
most commonly used techniques for Antenna Arrays and are the ones used in GMRT
back-ends.[12] The Incoherent Array beam is formed by summation of squared values of
voltages by every antenna. Therefore, IA beam signal is given by,

PIA =
N−1∑
i=0

|Vi|2 (3.10)

where Vi are the voltages from each antenna present in the array.

Advantages of IA Beamformer

• Improvement in sensitivity by
√
N

• Increased Beamwidth of single Antennae

• Application in large scale pulsar search and study of the source which are extended
in size and covers a large fraction of the beam of the element pattern.

3.5.2 PA Beamformer

The Phased array (PA) or in other words, coherent Beam is formed by summing together
of voltages that are phase corrected, and then squaring the resultant sum, i.e.

PPA =

[
N−1∑
i=0

Vie
−iϕi

]2

(3.11)

where, as we know, Vi are the voltages from each antenna present in the array and e−iϕi

is the phase introduced in Antenna i.

Advantages of IA Beamformer

• Improvement in sensitivity by N

• Beamwidth becomes narrower than the single antennae by almost 1
N

times

• Application in studies of individual known pulsars with its polarimetry studies.

The Incoherent beam is less sensitive than Phased Array Beam and also more vulnerable
to gain fluctuations of the instruments and Radio-Frequency Interference.

14

Chapter 4

Implementation

A Correlator and Beamformer for 2 single polarized Antenna with baseband of bandwidth
100 MHz band (can be varied) is done. Long Term Accumulation (LTA) of correlator
being 1.342s and Beamformer with Short Term Accumulation (STA) of 163.84µs has
been implemented on a FPGA Accelerator Card using OpenCL for this design. The size
of FFT can be varied and the designed can be compiled for range of 128 to 8k, but we
have fixed our size for tests to 128 Point FFT and 4k point FFT for real-world signals.
It is to be noted that we are doing this in offline mode, i.e. from pre-recorded Antenna
raw voltages.

4.1 Specifications of FPGA Accelerator Card

The card that is being used for the project is 385A PCIe FPGA board that is powered
by Intel Arria 10 GX 1150 FPGA provided byb Nallatech limited. This is a low
profile accelerator card equipped with powerful PCIe bus to enable fast data transfers
between on-board Memory chips and FPGA itself. Having a 10G/40G I/O Platform
makes development across a wide range of applications possible.

FPGA Intel Arria 10 GX 1150
On-board Memory 2 Banks of 4GB SDRAM × 72-bit
Host Interface x8 Gen3 interface to FPGA
Cooling Single-width active heatsink
Operating Temperature 278K to 308K

The block diagram of Nallatech 385A is shown in the Figure 4.1 [7]. Some of the
specifications of the Interal Arria 10 GX 1150 FPGA is mentioned below.

Resource Value
Logic Elements 1,150

Adaptive Logic Modules 427,200
Registers 1,708,800

DSP Blocks 1,518
18 × 19 Multiplier 3,036

PLL (Fractional Synthesis) 32
PLL (I/O) 16

PCIe Hard IP Block 4
Hard Memory Controller 16

15

Figure 4.1: Block Diagram of Nallatech 385A

4.2 System Parameters

Some of the specifications of the system designed are given below.

Signals: Voltage values from 2 uni-polarized Antenna.

Input: Input format given to the system is a vector (here, structure) of two variables in
Character format representing a real and imaginary part in a complex number.
The format is decided to be 8-bit signed character as that is what we expect to
obtain from the ADC used in the GWB Note: Since we provide only real signals,
we have the imaginary part equated to 0 all the time

Output: Expected output format from the FPGA Accelerator card is also a vector of
two variables in Float format representing a real and imaginary part respectively.

Other Parameters: The list of parameters that are needed to be mentioned during
execution of program are listed below.

• LOGN: Logarithm value with base 2 of size of the FFT needed to be per-
formed, like, for a 4K point FFT, LOGN should be 12. Acceptable Range: 6
- 14.

• Iteration: Number of FFT spectrum processed. Product of Iteration and
FFT Size decides the number of points that will be processed in a batch, hence
determining the integration time of the observation to be made. Acceptable
Range: Multiples of LTA (here, 65536).

• Inverse: This is to inform the FFT Kernel if the operation needs to be a
Forward FFT or Inverse. For Radio Interferometry, only Forward is used.
Acceptable values: 0 (Forward FFT) or 1 (Inverse FFT)

• Phasing parameters: These parameters include Fractional Delay, Delay
Rate, Fringe and Fringe Rate in radians. These four are followed by the
Phasing values that needs to be compensated. All these paramters must be in
Radians and Float-type.

16

4.3 Block Diagram and Signal Flow

The block diagram of the implemented system is shown in the Figure 4.2. Data from the
Antenna is stored in the DDR Memory before we enqueue the task for the Device. Both
the inputs are stored in different banks in order to speed up the process of memory transfer
between Memory and FPGA. An array is of required size i.e. Number of Iterations ×
FFT size elements is allocated for each of the input signals and they are filled with the
stored values. Coarse Delay compensation is done in the host itself. Once the task starts,
2 independent chains begin to process, with one input to each. They are fetched and
processed in batches of 8 points and written on the channel respectively. Once a batch of
8 points is written on the channel, MAC and Beamformer kernel reads both the channels,
and performs their function respectively and stores the output back to DDR Memory in
order read it from the host.

The Multiply and Accumulate section, as the name suggestes, performs multiplication
on the FFTs and goes on adding the correlated values on the previous one until the
count of FFTs hits the LTA. Beamformer works in a little different way. The output are
accumulated for a very small time (STA) and copied to the DDR memory. Next batch is
not added to the previous one, but is concatenated with the previous output. This is why
the size of correlator output is limited to the size of FFT being performed, but the size
of Beamformer depends upon the integration time. More is the integration time, larger
will the array of the Beamformer output. Signal flow of MAC and Beamformer section
is shown in fig. 4.3

4.3.1 Fetch and FFT

These blocks are responsible for fetching the data in batches of 8 points in a single clock.
Fetch is responsible for obtaining 8 points from the total data provided to the kernel. This
particular kernel is a multiple work-item based kernel and the whole process is pipelined
in order to fasten the process. Once a batch is fetched, it is written on to the respective
channels. Since, we have multiple work items, burst filling of data takes place, which
needs the channels to be of some depth, so that, none of the data is lost.

Followed by Fetch, the main FFT kernel is enqueued. This is made as a single work-
item and the channels are read and FFT is performed. The output that we obtain from
this process is in the bit-reversed form only. This is then written onto another set of
channels which will continue the process further.

4.3.2 Fractional Delay Compensation and Fringe Stop

Correction is done by using Time-shifting property of Fourier Transform given in Equ
3.8.

Acorrected(N) = A(N) · e
τ
N
−θ (4.1)

where,
τ = Fractional Delay + (Time ·Delay Rate)

and
θ = Fringe+ (Time · Fringe Rate)

17

Figure 4.2: Block Diagram of the implemented system

18

Figure 4.3: Signal flow of MAC and Beamformer section

19

Correlation operation is performed as shown in Equ.3.9.
Fractional Delay, Delay Rate, Fringe and Fringe Rate information is passed to the

device from host during the execution as 2 buffers, one for each channel. With respec-
tive values of above mentioned parameters, τ (Delay) and θ (Fringe) are calculated and
corrected with corresponding FFT Value. This operation is performed soon after the
channels which contain FFT values are read. A single factor will be calculated which
from these 4 inputs for each antenna and cis() of this factor is multiplied to the corre-
sponding sample.

If τ0 (Fractional Delay), δτ (Delay Rate), θ0 (Fringe) & δθ (Fringe Rate) be the values
that we obtain for the respective antenna for corresponding set of data. Then,

ϕ(N) = τ ·N − θ

= (τ0 + δτ) ·N − (θ0 − δθ)
(4.2)

The quantity that will be multiplied to the sample that needs phase adjustment is given
by eiϕ.

4.3.3 Multiply and Accumulate

As the name suggests, this section is responsible for multiplying FFTs of 2 signals and
produce Correlated output of the same. Now, even though the FFT values still belongs
to the bit-reversed index, It would not change the result as every point in the FFT output
is independent of each other. The correlated output is stored in a local array and then
transferred to the DDR Memory so that Host could access the result. A local memory is
used to accumulate because fetching the DDR memory every time would create a bigger
overhead and could result in slower throughput. The extent of integration depends upon
the number of iterations that are being processed, but finally the resultant would be an
array of size same as FFT, with each point having two components - real and imaginary.
This is passed on to the DDR Memory

4.3.4 Beamformer

There are two sections in Beamformers namely - IA and PA. In IA, the FFT values are
squared and added with the corresponding index ones. These values are integrated for
8 FFT cycles and then concatenated with the previous ones. Integration happens in
the local variable only, but after every 8 such integrations, the chunk is written on to
the DDR Memory, and the pointer is incremented by number same as the size of FFT.
Further the same process repeats.

PA Beamformer is also implemented in the same way, but, the phased signals in
Fourier domain are added first and then the power is obtained by squaring them. STA
is same here too (i.e. 8 FFT Cycles).

4.4 Resource Utilization

By the report generated by the Intel Quartus Prime software during the compilation of
the code, the resources utilized by the design is shown in Table 4.1.

20

Component Used Available Percentage used

ALUTs 253763 747080 33.96%
Flip-Flops 408940 1494160 27.36%
RAMs 1300 2367 54.92%
DSPs 1172 1446 81.05%

Table 4.1: This table shows the resource utilization of the design

4.5 Host Program

This program manages to create & destroy the resources, manage the data transfers,
enabling the kernel to perform certain task, read/write the inputs/outputs and much
more. This program is written in C++ language and bundles up all the libraries that are
required to perform the set of desired jobs.

The Signal Flow inside Host program is shown in Fig. 4.4. It is to be noted that the LTA,
STA, Iterations per cycle, Size of FFT and few such parameters are fixed and the Device
program is also compiled for the same, but, number of batches of data to processed can
be accordingly changed.

21

Figure 4.4: Signal flow chart of the Host Program

22

Chapter 5

Tests and Results

5.1 Two Single Tone Signals

Simplest way to verify the design was to run the design with 2 single tone signals. Since
they had no noise, it was easy to recognise and verify the output of the Correlator and
confirm its working. We are testing only FFT and correlation functionality here, without
any delay & fringe corrections.

5.1.1 Inputs

Input to the system was 2 single tone signals separately at respective channels. Signals
were sampled at Sampling frequency (fS) of 800 MHz. One of the signal was 50MHz and
the other was 150 MHz. Both were generated from a code in C-language and stored in 2
different files with .data extension with 998,400 sample of floating point numbers present
in each. With the FFT Size of 128, This number of samples was sufficient for the design
to run for 7800 iterations. The Time-series plot of the signal is given in the figure 5.1.

5.1.2 Expectations

With the available amount of data and given the sampling frequency of the input signal,
The processing that we can expect is

Total number of points = 998, 400

Number of Points needed

to be processed in 1 second = 800M

Throughput (Expected) =
Points to be processed

T ime to process

= 0.8 Gpoints/sec

T ime required to process our data =
Total number of points

Throughput

= 1.248× 10−3sec

With the plots, we must observe a single spike at the desired frequency (Here, 150 Mhz
and 50 MHz) for the magnitude values of self correlated power of signals 1 & 2, but no

23

Figure 5.1: The plot shows the Amplitude of input signals w.r.t Time

power for the normalized correlated magnitude hence making it a null over the spectrum.
There can be visible change in phase in the Cross-correlation but the phases of the self-
correlated power of both signals.

5.1.3 Results

With the parameters mentioned above, the design was run on the board, and following
is the results that were observed.

Processing

Total time taken to Process 1.1392 ms
Number of points processed 998400
Throughput (Observed) 0.8764 Gpoints/sec
Throughput (Expected) 0.8 Gpoints/sec
Time Taken (Expected) 1.248 ms

Performance 65.7315 Gflops

Plots

The plots are shown in Figure 5.2 and are as expected. One can observe sharp spikes
at the corresponding frequency bins and also the cross-correlated power becomes null
making the magnitude equivalent to zero.

24

(a) Self power of signal 1

(b) Self power of signal 2

(c) Normalized Correlation of Signal 1 & 2

Figure 5.2: Plots show Selfs & Cross Magnitude & Phase of Signals under test

25

5.2 Noise Source

5.2.1 Inputs and Expectations

The Inputs provided to the system were from two Noise Sources, 50% correlated. The
values were generated Gaussian randomly and for 2.5µs i.e. 1000 iterations of 128 size
FFT. Random amplitude and Phase is expected in the output spectrum which infers that
system is responding to the Noise.

5.2.2 Plots

The output plots for Correlation of Noise Source 1, Noise Source 2 and Normalized plot
of Cross-correlation of both these can be seen in Figure 5.3.

5.3 Varying Iterations

With the change in the integration time, the power of the correlated output changes
with change in the integration time. This can be observed in the magnitude plots of the
correlation data.

5.3.1 Inputs and Expectations

For simplicity, we provide single tone signal of 50 MHz to the board at both the inputs
and change the number of iterations to be performed. We expect to obtain 2 sets of data
and plot them separately in two plots. By doubling the number of iterations for one of
the plot, we generally expect the magnitude of the output to be doubled.

5.3.2 Results

The plot of the magnitude can be seen in the Figure 5.4. It can be seen that the magnitude
of the plot from the one with 1000 iterations has been doubled when we increase the
number of iterations to 2000.

5.4 Correlated Noise

Since we are dealing with Correlator, we must be able to visually observe the power of
the cross-correlated signal being reduced when we provide Noise sources with different
amount of correlation to each other.

5.4.1 Inputs

The inputs were 2 noise sources generated with different correlation levels. Generation of
these data sets was done using Variable Correlation Digital Noise Source.[2] We provide
3 sets of signals, 2 in each which has 5%, 50% and 100% correlation with each other.

26

(a) Self power of Noise source 1

(b) Self power of Noise source 2

(c) Normalized Correlation of Noise sources 1 & 2

Figure 5.3: Plots show the Selfs & Cross Magnitude & Phase of 2 independent Noise
sources

27

(a) 1000 Iterations

(b) 2000 Iterations

Figure 5.4: The plot shows the Correlated output with different number of iterations

28

(a) 5% Correlated Signals

(b) 50% Correlated Signals

(c) 100% Correlated Signals

Figure 5.5: Normalized Output of the Cross-correlated signals

29

5.4.2 Expectation

Since, we are trying to provide different levels of correlation, we expect the magnitude
of the cross-correlation output to vary proportionally. When we obtain the normalized
cross-correlation of both the inputs, we must observe the proportional increase in them.

5.4.3 Plots

The Figure 5.5 shows the plots of the outputs. Phase plots of these do not explain much
of the hypothesis but, Magnitude plots clearly demonstrate the cross-correlation measure
when noise sources with different correlation levels are used to test the system.

5.5 Antenna Signals

A set of raw data collect from C0 and C1 Antenna were used to test the design and
output was stored and visualized by the help of a python script.

5.5.1 Inputs and Expectations

The data is a 8-bit value stored in a file with extension .raw. The host program was
modified to read the binary file, convert it into float and transfer it to the device for
further processing. The integration of 1 ms was taken with 400,000 samples which meant
3125 iterations of FFTs.

It is obvious to expect various values in multiple bands and also a non-singular cross-
correlated spectrum. Since both the Antenna are geographically away, the signal reaching
one of them is a little delayed than the other, which infers that there will be phase change
in the cross-correlated spectrum and no phase change in the self-correlated powers.

5.5.2 Plots

The output can be seen in Figure 5.6. Here, when we compare the magnitude plots of Self-
correlated and Cross-correlated outputs, most of the unwanted components are filtered
out and signals belonging to very few frequency bins are retained in the cross-correlated
spectrum.

5.6 Beamformer

Currently in this test, we have included only Incoherent Array type of Beamformer. The
way it is formed is explained in previous chapters.

5.6.1 Inputs and Expectations

The single tone signals of 5 MHz were used to demonstrate the working of IA Beamformer.
Therefore we expect to see a plot of FFT × Number of iterations / 10 as concatenation
of multiple FFTs. Since we are using single tone signals, No noise is expected to show
up in the Beamformed output. Number of iterations provided is 200 which should give
us 20 concatenated FFT outputs of 5 Mhz signals.

30

(a) Self power of Signal from C0 Antenna

(b) Self power of Signal from C1 Antenna

(c) Normalized Cross - Correlated Power

Figure 5.6: Plots showing Correlated Signals from C0 and C1 Antenna

31

Figure 5.7: The plot of IA Beamformer output of 5 Mhz Signal

5.6.2 Plots

The Figure 5.7 shows the plots of Amplitude of the beamformation of the 5 MHz signal.
The FFTs are concatenated to other and if we increase the number of iterations, the
amplitude will remain the same, but the graph goes on continuing in X-axis. Each
segment of FFT is integrated for 10 iterations just to make the output of Beamformer
smaller and also avoid fetching DDR memory of iteration number of times.

5.7 Fractional Delay Correction and Fringe Stop

We used 100% Correlated noise to test Fractional Delay, Delay Rate, Fringe and Fringe
Rate. When we have 100% correlated noise as inputs, there would be no change either in
delay or in fringe. We can then add the above mentioned parameters to check if we are
able to achieve the shift in phase and time. For instance, If we pass 90◦ to be Fractional
delay, we must be able to observe 90◦ increase in phase over the spectrum (i.e. ramp
from 0◦ to 90◦). Corresponding plots can be seen in Fig. 5.8.

5.7.1 Varying Fractional Delay

We try to vary the fractional delay only, keeping every other parameter constant and
obtain the cross-phase between both the signals.The plot can be seen in Fig.5.8 .

5.7.2 Varying Fringe

We try to vary the Fringe only, keeping every other parameter constant and obtain the
cross-phase between both the signals.The plot can be seen in Fig.5.8 .

5.7.3 Varying Delay Rate

We try to vary the Delay Rate only, keeping every other parameter constant and obtain
the cross-phase between both the signals. We expect to have no ramp at 1st iteration,
but as we increase the number of iteration, we expect to see ramps increasing from 0◦ to
θ◦ in steps. The plot can be seen in Fig.5.8 . The rate was fixed to π

2

32

(a) Varying Fractional Delay (b) Varying Fringe

(c) Varying Delay Rate (d) Varing Fringe Rate

Figure 5.8: Phase of Cross Correlated Signals

33

Figure 5.9: Self-power of both Antenna over a single spectrum

5.7.4 Fringe Rate

Similar to Delay Rate, even Fringe Rate was varied by π
2
and output was observed for

every iteration.

5.8 Testing Correlator on 3C147 Source

5.8.1 Inputs

Observation was made on the source 3C147 using C06 and C09 antenna from the central
square array and the raw voltages were recorded. In order to correct the delays and for
fringe stop, the instantaneous values of F.S.T.C, Delay Rate, Fringe and Fringe Rate were
also recorded for the corresponding Antenna. This set of data was used to process. In
addition to above mentioned parameters, Phasing have to be done to make the output
perfectly in phase. Using the original output obtained from correlator, phases were
calculated to apply them for the same data set. One can even notice the difference in the
plots given below.

5.8.2 Plots

When analysing the outputs, one can have the self-power of the single antenna over
the spectrum. This is shown in Fig. 5.9. The cross correlation can be observed in
other plots. Normalized value of the cross-correlation in all the cross-plots. Fig. 5.10
represents Magnitude & Phase of Cross correlated signals over a spectrum followed by
cross magnitude & phase of a single channel (Channel 1000) over time. Similarly, Fig.
5.11 shows the same plots but, after the phasing has been done.

5.8.3 Results

Even though the output is delay compensated and post fringe-stop, there will be some
phase that needs to be additionally corrected. This is calculated by running the set of
data, obtaining output, calculating phases and using those phases for correcting. This

34

(a) Magnitude Plot (b) Phase Plot

(c) Magnitude Plot (d) Phase Plot

Figure 5.10: Cross of C06 & C09 before phasing

35

(a) Magnitude Plot (b) Phase Plot

(c) Magnitude Plot (d) Phase Plot

Figure 5.11: Cross of C06 & C09 after phasing

36

Figure 5.12: Monochrome Heatmap of Intensity vs FFT channel & Time

can be noticed when Fig. 5.10 and Fig. 5.11 are compared. Once the phasing is done,
the cross phase gets nullified to great extent and this can also be observed over time.

Due to addition of so many parameters to the design and constraint of available system
resources, the performance that could be achieved is given below.

Time taken to Process 1 segment 11.636 s
No. of points processed in 1 seg 268,435,456

Throughput (Observed) 0.0461 Gpoints/sec
Throughput (Expected) 0.2 Gpoints/sec
Time Taken (Expected) 1.342 s

Performance 3.5755 Gflops

5.9 Observing Pulsar B0329+54

5.9.1 Inputs

A Pulsar - B0329+54 was observed using 2 Antenna (C06 & C08). The ADC outputs were
recorded into a file, which were further used for processing. The antennas were focused
on a calibrator source (Here 3C147) and phases were calculated using cross-correlation
output. These phases were again applied on the pulsar data to obtain phased signals
from corresponding antenna.

5.9.2 Expectation

Both Incoherent Array and Phased Array were tested in this and the output was stored
in binary format which was later visualized using self-written program and also using
GPTool [4] . A signature of a pulsar is expected to appear when we look at heatmap of
FFT’s over a period of time. The pulsar that we are observing has a period of 0.71452
seconds which should be evident in our results.

5.9.3 Results

Signature of a pulsar can be seen in fig. 5.12. By the image we can obtain the difference
between both the pulsars to be around 4360 pixels, making the time period between 2

37

pulsar sweep to be 0.71434 sec.
When the output data is processed using GPTool, the snaps of obtained outputs

are shown in Fig. 5.13. Simultaneously, when the data was being recorded, GWB was
processing. The results are shown in Fig 5.14.

5.9.4 Comparision with GWB

The outputs of IA Beamformer from the design was compared with that from GMRT
Wideband Backend (GWB[11]) with the help of phase profile. In Fig. 5.15, IA Outputs
of both - design and GWB are compared to each other. In Fig. 5.16, PA Outputs of both
- design and GWB can be seen.

5.9.5 Inference

The pulsar can be seen in both IA as well as PA Beamformer. Phased Array Beamformer
has sensitivity equal to

√
N times that of Incoherent array, where N is number of Antenna

(here
√
2). This is not reflected in the above shown Fig 5.13 and Fig 5.14. This might be

because of multiple reasons. Firstly, The technique of calculating the phase for correction
is different in the design when compared to that used in GWB, This might be a problem
as these calculated phases are multiplied to FFT values which in turn are used to form
the Beam. Another reason could be that, as we can see in Fig. 5.16, The peak of PA
beam is also not at

√
2 times that of IA. This might be issue of RF-Interference that can

be seen in the GPTool snaps 5.13 and 5.14. This might have caused our SNR to degrade
to the value that we have obtained.

5.10 Static Power Consumption Report

Paramter Value (mW)
Total Thermal Power Dissipation 32956.54

Transceiver Standby Thermal Power Dissipation 3047.21
Transceiver Dynamic Thermal Power Dissipation 6267.18

I/O Standby Thermal Power Dissipation 1358.67
I/O Dynamic Thermal Power Dissipation 4680.40
Core Dynamic Thermal Power Dissipation 10185.68
Device Static Thermal Power Dissipation 7417.82

The table shows us the static power report of the design with 50% I/O signals toggling,
i.e. the maximum number of toggles that a signal can undergo in a single clock cycle
of the fabric clock and 50% engagement of the clock signifies that the I/O signal cannot
toggle twice in the same clock cycle. If this factor increases, it refers to the possibility of
a glitch that can occur during the input of the signal.

38

(a) Incoherent Array

(b) Phased Array

Figure 5.13: Snapshots of GPTool processed by Test-Design

39

(a) Incoherent Array

(b) Phased Array

Figure 5.14: Snapshots of GPTool processed by GWB

40

(a) Normalized output from design (b) Normalized output from GWB

Figure 5.15: Filtered Phase Profile - IA of B0329+54

(a) Normalized output from design (b) Normalized output from GWB

Figure 5.16: Filtered Phase Profile - PA of B0329+54

41

Chapter 6

Conclusion

6.1 Summary

The design of 2 Antenna (single pol) Correlator and Beamformer was implemented on
Nallatech 385A board with Intel Arria 10 FPGA using OpenCL standard. The size of
FFT being 4k points with 100 MHz Bandwidth and has fixed LTA of 1.342s and STA of
163.84µs. All these parameters have flexibility to vary according to the user’s need.

Feasibility of running an off-line Correlator and Beamformer on FPGA Accelerator
card is demonstrated using antenna raw voltages. Use of Intel’s FPGA SDK for OpenCL
have reduced the development cycle and made FPGAs more accessible to high level
programmers. The outputs obtained from the design matches the ones from GWB to a
great extent. In additiom to these, Parallel programming techniques were used to achieve
real-time processing of data upto 400MHz bandwidth.

6.2 Future Scope

• Number of Antenna that this prototype is designed for is just a fraction of ac-
tual number of antenna used for observation. This implies that there needs to be
thoughtful scaling of the same design and manage their data flow to obtain desired
combinations of correlations from multiple antennas. For 2 element correlator, we
would obtain 3 correlation values but for 30 elements, 465 correlation outputs are
expected.

• To make the system real-time capable, one must also consider the overhead time
that is being used up for data transfer from the host to device and vice-versa. There
are multiple options to build this, either using the available I/O ports or smartly
handling data transfers between two data processing sequences.

• When it comes to real-time operation of the system, apart from flexibility of pa-
rameters such as LTA & STA, even multi-threading of process plays important role,
as the overhead introduced by Host computer itself will overpower the processing
performance of the system.

• A Single device might not be able to implement for bigger set of Antenna, hence a
multiple Accelerator cards can be set up and smartly managed to extract maximum
efficiency both from the whole system as well as each Card.

42

• Bit reduction algorithms can be inculcated to reduce the amount of hardware used
and can use the resources available in the device to its fullest extent.

43

Bibliography

[1] Martijin Berkers. Solving convex optimization problems on fpga using opencl. Mas-
ter’s thesis, Delft University of Technology, 2020.

[2] Kaushal D. Buch, Yashwant Gupta, and B. Ajith Kumar. Variable correlation digital
noise source on fpga — a versatile tool for debugging radio telescope backends.
Journal of Astronomical Instrumentation, 3, 2014.

[3] Jayaram Chengalur, Yashwant Gupta, and K Dwarkanath. Low frequency Radio
Astronomy. National Centre for Radio Astrophysics, 01 2003.

[4] Aditya Chowdhury and Yashwant Gupta. Real-time rfi mitigation for the beam-
former mode of the upgraded gmrt. In General Assembly and Scientific Symposium.
URSI, August 2017.

[5] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of
complex fourier series. Mathematics of Computation, pages 297–301, 1965.

[6] Intel. Intel FPGA SDK for OpenCL Programming Guide, 2017.12.08 edition, 12
2017.

[7] Intel. Intel Arria 10 Device Overview, 2018.

[8] Dimitris G. Manolakis John G. Proakis. Digital Signal Processing. Pearson, 4 edition,
2007.

[9] Khoronos OpenCL Working Group. The OpenCL Specification, 1.0 edition, 6 2009.

[10] Gordon E. Moore. Cramming more components onto integrated circuits, reprinted
from electronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEE Solid-State
Circuits Society Newsletter, 11(3):33–35, 2006.

[11] Suda Harshavardhan Reddy, Sanjay Kudale, Upendra Gokhale, Irappa Halagalli,
Nilesh Raskar, Kishalay De, Shelton Gnanaraj, Ajith Kumar B, and Yashwant
Gupta. A wideband digital back-end for the upgraded gmrt. Journal of Astro-
nomical Instrumentation, 6(1):16, 2017.

[12] Jayanta Roy, Jayaram N. Chengalur, and Ue-Li Pen. A post-correlation beam-
former for time-domain studies of pulsars and transients. The Astrophysical Journal,
864(2):160, 2018.

[13] Matthew Scarpino. OpenCL in Action. Manning Publications Co., 2012.

44

	Introduction to Interferometry
	An overview of GMRT
	Radio Interferometry
	Aperture Synthesis
	Correlator
	Beamformer

	Heterogenous Computing
	Need for Heterogeneous Computing
	Compute Platforms
	OpenCL
	Architecture
	Programming Models
	Execution and Memory Model

	Intel FPGA SDK
	Board Support Package

	Signal Processing
	Cross-Correlation
	Fourier Transform
	Correlators
	Types of Correlators
	Beamformer
	IA Beamformer
	PA Beamformer

	Implementation
	Specifications of FPGA Accelerator Card
	System Parameters
	Block Diagram and Signal Flow
	Fetch and FFT
	Fractional Delay Compensation and Fringe Stop
	Multiply and Accumulate
	Beamformer

	Resource Utilization
	Host Program

	Tests and Results
	Two Single Tone Signals
	Inputs
	Expectations
	Results

	Noise Source
	Inputs and Expectations
	Plots

	Varying Iterations
	Inputs and Expectations
	Results

	Correlated Noise
	Inputs
	Expectation
	Plots

	Antenna Signals
	Inputs and Expectations
	Plots

	Beamformer
	Inputs and Expectations
	Plots

	Fractional Delay Correction and Fringe Stop
	Varying Fractional Delay
	Varying Fringe
	Varying Delay Rate
	Fringe Rate

	Testing Correlator on 3C147 Source
	Inputs
	Plots
	Results

	Observing Pulsar B0329+54
	Inputs
	Expectation
	Results
	Comparision with GWB
	Inference

	Static Power Consumption Report

	Conclusion
	Summary
	Future Scope

