
VHDL Implementation of

MAD-based RFI Filtering Algorithm

Student Project

By

Sohankumar H. Patel

Electronics And Communication Engineering
Sardar Vallabhbhai National Institute of Technology,

Surat

Under the Guidance of
Mr. Kaushal Buch

GIANT METREWAVE RADIO TELESCOPE

NATIONAL CENTER FOR RADIO ASTROPHYSICS

TATA INSTITUTE OF FUNDAMENTAL RESEARCH
Narayangaon,Tal-Junnar,Dist-Pune

May 2022 - July 2022

1

ABSTRACT

In this era of Radio Communication technology, one finds much-unwanted radiation during
the reception of the signal. For Radio Astronomy, the signal itself is feeble. Thus, any other
radio frequency interference (RFI), man-made or natural causes, makes it challenging to
analyze. This project explores the VHDL implementation of the Median Absolute Deviation
(MAD) based RFI Filtering algorithm on the upgraded GMRT system. MAD computation
requires recursive median calculation, which is a computationally challenging problem for
real-time performance. The optimized approach is a histogram-based median computation
method to meet real-time filtering.

This report describes the FPGA implementation of the MAD-based RFI filtering algorithm.
Further, another variant of MAD called Median-of-MAD (MoM) is described. Both methods
detect the data samples in the voltage domain only. Another way to detect RFI is to detect the
data samples in the power domain. FPGA implementation of this algorithm is also described
in this report.

All these implementations are done on the Xilinx Kintex Ultrascale FPGA device. The same
algorithm is implemented on MATLAB as the golden model, and the functional verification
of the design is carried out by using it.

2

Acknowledgements

I express my sincere gratitude and indebtedness to my guide Mr. Kaushal D. Buch, Engineer
E, Digital Backend Group, GMRT, for their valuable guidance, encouragement, and
suggestions throughout the work. Without him, I would not have been able to complete this
report. His encouragement and valuable lessons kept me moving in the challenging parts. I
heartily thank him for his constant support and guidance throughout.

I am grateful to the Group Coordinator, GMRT Backend Group, Mr. B. Ajith Kumar, for the
cooperation and support and for allowing me to work in the Digital Back-end Group.

I also thank Prof. Yashwant Gupta, Center Director, Prof. Nissim Kanekar, Dean NCRA
Faculty, and Prof. Jayaram Chengalur, Director TIFR, for allowing me to work at GMRT.

I sincerely thank the Digital Backend group members and the entire staff of GMRT. Everyone
who met me taught me something and motivated me to work.

Sohankumar Patel

3

Contents

ABSTRACT …………………………………………………………………………. 2
Acknowledgements ………………………………………………………………….. 3
List of Figures …………..…………………………………………………………… 6
List of Tables ………………………………………………………………………... 7

1. Introduction ………………………………………………………………………… 8
1.1 Overview
1.2 Real-time RFI filtering for uGMRT
1.3 VHDL Implementation of RFI filter

2. Histogram-based Median and MAD computation ……………………………… 11
2.1 Median computation
2.2 MAD computation
2.3 Implementation details

3. MoM computation ………………………………………………………………… 15
3.1 Algorithm
3.2 Implementation details

4. Filtering ……………………………………………………………………………. 17
4.1 Algorithm
4.2 Implementation details
4.3 Synthesis and Implementation

4.3.1 Implementation View
4.3.2 Timing report
4.3.3 Utilization report

5. Integration ………………………………………………………………………… 24
5.1 Algorithm
5.2 Implementation details
5.3 Synthesis and Implementation

5.3.1 Implementation View
5.3.2 Timing report
5.3.3 Utilization report

5.4 Verification Environment
5.5 Results

5.5.1 MAD based filtering plots
5.5.2 MoM based filtering plots
5.5.3 Functional Verification

4

6. Power domain detection …………………………………………………………... 39
6.1 Algorithm
6.2 Implementation details
6.3 Synthesis and Implementation

6.3.1 Implementation View
6.3.2 Timing report
6.3.3 Utilization report

7. Conclusion and Future Scope ……………………………………………………. 45

References ………………………………………………………………………….. 46
Appendix …………………………………………………………………………… 47

5

List of Figures

Figure 1.1 GMRT Antenna 7
Figure 1.2 Flowchart of MAD based filtering algorithm 9
Figure 2.1 Block diagram of Histogram based Median computation method 10
Figure 2.2 Block diagram of Median Absolute Deviation computation 11
Figure 2.3 Block diagram of Median 12
Figure 3.1 Block diagram of Median of MAD - MoM computation method 14
Figure 3.2 Block diagram view of MoM computation block 15
Figure 4.1 Block diagram of Histogram based Median computation method 16
Figure 4.2 Block diagram of Filter design 17
Figure 4.3 FPGA Implementation view of RFI Filter 19
Figure 4.4 Timing report of FPGA implementation of Filter 20
Figure 4.5 Utilization report of FPGA implementation of RFI Filter 21
Figure 5.1 Block diagram of MAD-based Filtering implementation 22
Figure 5.2 Block diagram of MoM based Filtering implementation 22
Figure 5.3 FPGA Implementation view of MAD-based RFI Filter 24
Figure 5.4 FPGA Implementation view of MoM-based RFI Filter 25
Figure 5.5 Timing report of FPGA implementation of MAD-based RFI Filter of 16k window 26
Figure 5.6 Timing report of FPGA implementation of MoM-based RFI Filter of 16k window 26
Figure 5.7 Utilization report of FPGA implementation of MAD-based RFI Filter 28
Figure 5.8 Utilization report of FPGA implementation of MoM-based RFI Filter 30
Figure 5.9 Verification Environment used for Functional Verification 31
Figure 5.10 Functional Coverage result of GMRT RAW Voltage data samples 31
Figure 5.11 Filter output of MAD-based RFI Filter 32
Figure 5.12 Filter output of MoM-based RFI Filter 34
Figure 5.13 Functional Verification of VHDL implementation with golder model-MATLAB 35
Figure 6.1 Block diagram of Filtering in Power domain 36
Figure 6.2 FPGA Implementation view of MAD-based RFI Filter in Power domain 38
Figure 6.3 Timing report of FPGA implementation of MAD-based Power domain Filter 39
Figure 6.4 Utilization report of FPGA implementation of MAD-based Power domain Filter 40

6

List of Tables

Table 2.1 VHDL interface of Histogram based Median 13
Table 2.2 VHDL interface of Subtraction and Absolute Deviation 13
Table 2.3 VHDL interface of Block RAM 14
Table 3.1 VHDL interface of MoM computation block 16
Table 4.1 Filtering Replacement Modes 19
Table 4.2 VHDL interface of Threshold Calculation block 19
Table 4.3 VHDL interface of Comparator block 19
Table 4.4 VHDL interface of RFI and Data counter block 20
Table 4.5 VHDL interface of RFI Filter block 20
Table 5.1 VHDL interface of MAD and MoM based RFI Filter 25
Table 5.2 Frequency comparison of MAD and MoM based Filter on different window size 28
Table 6.1 VHDL interface of RFI Filter in Power domain 40
Table A.1 Generic description 47
Table A.2 Details of datasets used for testing 47

7

Chapter 01: Introduction

1.1 Overview
Giant Metrewave Radio Telescope is an observatory that explores the metre wavelength
range of the radio spectrum. It is set up by the National centre for Radio Astrophysics
(NCRA). GMRT consists of 30 fully steerable gigantic parabolic dishes of 45m in diameter,
which are spread over distances of up to 25 km. The site was selected because it fulfills the
following important criteria as

1) Low man-made radio noise.
2) Low wind speed.
3) It has a geographical latitude that is sufficiently north of the geomagnetic equator
to have a reasonably quiet ionosphere and yet be able to observe a good part of the
southern sky.

Figure 1.1 GMRT Antennas (Courtesy: NCRA Archives)

In the electromagnetic spectrum, the metre wavelength range of spectrum has been mainly
chosen for study with GMRT because man-made radio interference is relatively less in this
part of the spectrum in India, and many outstanding astrophysical phenomena are best studied
at metre wavelengths [1].

8

1.2 Real-time RFI filtering for uGMRT
Radio Frequency Interference (RFI) is the ‘unwanted signal’ produced due to Natural and
Man-made activities. Audio-Visual transmissions, RADAR, Satellite communication, Wi-Fi
networking, power-line radiation, spark ignition noise, and radiation due to electronic devices
are considered Man-made radio interference. Radio astronomical signals are very weak
(typically -110 dBm at the input of the radio telescope receiver). Thus radio telescopes are
very sensitive to capturing such weak signals here and are more prone to interference. This
interference can severely damage the quality of the data, and excision of it can also cause loss
of data.

There are two methods for handling RFI situation
1.Proactive methods - Prevention of RFI by establishing ‘Radio Quiet Zones’
2.Reactive methods – Signal processing for RFI mitigation after reception of the
astronomical data at different stages of the receiver chain.

Digital signal processing can help improve the data signal quality effectively by removing
RFI without much loss of quality.

1.3 VHDL Implementation of RFI Filter
As shown in figure 1.2, the block takes signed 8-bit quantized data from the ADC of the
ROACH board and performs the Histogram method to find the median of the window data.
The calculated median is subtracted from each element of the window, and the element is
then converted into an unsigned integer. Again the median of the updated window is
calculated, which is the Median Absolute Deviation (MAD) value for the data window.
Median and MAD values coming from the Median and MAD calculation block are used for
the calculation of the threshold value of the signal. For that, the MAD value is multiplied by
the constant value of 1.4826 to decide the window's variance. The Median value is added and
subtracted from the output in deciding the positive and negative threshold, respectively. After
obtaining the threshold values for one channel, data from all the channels are compared and
flagged. The replacement in place of the flagged data is user-defined.

The other design in which the Median of MAD values has been carried out is called Median
of MAD (MoM). This MoM value is used to compute threshold values.

The design is implemented using Xilinx Vivado software and on the Xilinx Kintex Ultrascale
(XCKU series) FPGA board. MATLAB software is used to implement the same algorithm for
functional verification.

9

Figure 1.2 Flowchart of MAD-based filtering algorithm

10

Chapter 02: Histogram-based Median & MAD
computation

2.1 Median computation
There are many techniques to compute the median, like heap sort, bubble sort, Histogram,
etc., but for meeting real-time processing requirements, Histogram-based Median
computation is the optimal choice. The architecture of Histogram-based Median computation
is shown in figure 2.1. The cumulative distribution is computed with the help of a comparator
and accumulator block. First, the data are given to the comparator block and, based on
compare value, generate the enable signal for the accumulator. At every high enable signal,
the accumulator is increased by one value. For n bit sign numbers, there is a need for 2n

comparators, and comparison happens in the range of -2(n-1) to 2(n-1) -1.

Figure 2.1 Block diagram of Histogram based Median computation method

11

For continuous operation on subsequent windows, the accumulator needs to be reset, which
requires one clock cycle. To achieve real-time processing, an auxiliary accumulator is used to
compute accumulation for the last window cycle, and the main accumulator gets reset on that
cycle. So there is a need for a 2n main accumulator and 2n auxiliary accumulator. The output
of the accumulator is given to the priority encoder, which finds the first value for which the
accumulator output is greater than or equal to half of the window size, and the corresponding
comparison value is the median of that particular window.

Along with the median, one control signal indicates a new Median value is computed. The
current value gets registered till the new median value is calculated.

2.2 MAD Computation
The first Median value is subtracted from the input data value. The absolute value of this
difference is taken. If the difference is negative, then two’s complement is taken for
conversing to absolute value. Then the second median of these absolute values is computed
using the same algorithm, and it is called Median Absolute Deviation (MAD).

MAD = Median(| Xi - X̅ |)

Figure 2.2 Block diagram of Median Absolute Deviation (MAD) computation

The median computation takes a W clock cycle, and here MAD requires two median
computations, so there is a need to buffer the data for 2W clock cycles. For this purpose, two
Block RAM IPs are used.

2.3 Implementation details
This section discusses the block level interface of Median, Subtraction Absolute deviation,
and Block RAM IP. Each table is shown below consists of I/O ports and its description. The
Block diagram view of Histogram based median block is shown in figure 2.3.

12

Figure 2.3 Block diagram of Median

Table 2.1 VHDL interface of Histogram based Median

Signal Description

clk Input clock

rst Active high, Synchronous reset

rst_comp Active high, Synchronous reset for comparator block

rst_count Active high, Synchronous reset for counter block which
generates reset signal for main accumulator and auxiliary
accumulator

data_in [7 downto 0] Input data

median_out [7 downto 0] Output Median value

median_valid Output Median valid control signal

Table 2.2 VHDL interface of Subtraction and Absolute Deviation

Signal Description

clk Input clock

rst Active high, Synchronous reset

data_in [7 downto 0] Input data

median [7 downto 0] Input Median value

13

median_valid Input Median valid control signal

data_out [7 downto 0] Output = Absolute (data_in - median)

Table 2.3 VHDL interface of Block RAM

Signal Description

BRAM_PORTA_0_addr [13 downto 0] Writing port address

BRAM_PORTA_0_clk Port A clock

BRAM_PORTA_0_din [7 downto 0] PortA - input writing data

BRAM_PORTA_0_we PortA - write enable signal

BRAM_PORTB_0_addr [13 downto 0] Reading port address

BRAM_PORTB_0_clk Port A clock

BRAM_PORTB_0_dout [7 downto 0] PortB - output read data

14

Chapter 03: MoM computation

3.1 Algorithm
This technique is most preferable for longer bursts of RFI. In this technique, the Median of
MAD values is carried out, called the Median of MAD - MoM.

MoM = Median(MAD1,MAD2,MAD3,.....MADn)
where n = window size

For MoM computation, three Median computations are required. For real-time performance,
it is challenging to buffer these data values. So, the calculated current MoM value is applied
to the next cycle. Also, to optimize median computation, the third median computation is
multiplexed with the second median computation. The MAD value is stored in Block
memory for the W window cycle. At the last MoM window cycle, the primary data path for
the MAD computation block is switched to provide the initially stored MAD value, and the
median of these values has been computed. This median value is called as Median of MAD -
MoM. For the same window cycle, W samples are not considered for computing the MAD
value and do not affect the overall performance. The current calculated MoM value is
registered till the new value is calculated. Control signals for this switching are given for one
clock cycle.

Figure 3.1 Block diagram of Median of MAD - MoM computation method

3.2 Implementation details
This section discusses the MoM computation block's block diagram interface with its I/O
interface.

15

Figure 3.2 Block diagram view of MoM computation block

Table 3.1 VHDL interface of MoM computation block

Signal Description

clk Input clock

rst Active high, Synchronous reset

rst_ram2_counter Active high, Synchronous reset for address generating counter of
Block RAM2 which stores the MAD values

rst_comp_median Active high, Synchronous reset for comparator block of median

rst_count_median Active high, Synchronous reset for counter block of median which
generates reset signal for main accumulator and auxiliary
accumulator

rst_comp_mad Active high, Synchronous reset for comparator block of mad

rst_count_mad Active high, Synchronous reset for counter block of mad which
generates reset signal for main accumulator and auxiliary
accumulator

data_in [7 downto 0] Input data

mom_out [7 downto 0] Output MoM value

mom_valid Output MoM valid control signal

16

Chapter 04: Filtering

4.1 Algorithm
Filter block contains Threshold calculation, Detection, Filtering, and RFI and data counting
algorithm. The threshold is computed using the Median and MAD values in the threshold
calculate block. MAD value is scaled by 1.4826 to calculate the robust standard deviation (σ).
The threshold factor(n) is multiplied by the standard deviation. The product is added to the
median value to calculate the Upper Threshold and subtracted from the median value to
calculate the Lower Threshold value.

σ = 1.4826*MAD
Lower Threshold = X̅ - n*σ
Upper Threshold = X̅ + n*σ

The input data is compared with Lower and Upper Threshold values, and if data is beyond
the threshold boundary, then it is detected as RFI, and the flag is asserted. This flag is used as
a control signal for replacing multiplexers and counting the RFI. RFI samples are replaced by
Constant values, the Threshold value, or Digital Noise which is decided by the Replacement
mode control signal.

Figure 4.1 Block diagram of Histogram based Median computation method

17

Digital Noise is generated using Central Limit Theorem. Uniform Normal distribution is
generated by Linear Feedback Shift Register (LFSR) of different polynomials, which are then
added to generate Standard Normal distribution. This Standard Normal distribution is scaled
according to the estimated Median and MAD of the input data.

Moreover, there are two counters for counting the data samples and RFI samples for the
given time duration. Data count is incremented by one at every clock cycle, whereas the RFI
count is only incremented when the RFI flag generated by the comparator block is high.
There are two control signals: reset and hold. Reset is used to reset the counter and start
counting from the zero value. The assertion of the Hold signal stops the counting, and the
counting value is available at the output.

4.2 Implementation details
The block level diagram of Filter design is shown in Figure 4.2, and I/O interfaces of
Threshold calculation, comparator, counters, and Filter blocks are described in table 4.2, 4.3,
4.4, and 4.5, respectively. There are four replacement modes, as discussed in section 4.1.
Table 4.1 describes the control signals along with their description.

Figure 4.2 Block diagram of Filter design

18

Table 4.1 Filtering Replacement Modes

Select line
controls

Filtering Modes Description

00 Bypass mode Only flag is generated, RFI data is not filtered out

01 Constant replacement
mode

RFI data is replaced by constant values i.e, 0

10 Threshold replacement
mode

RFI data is replaced by Upper threshold value.

11 Digital Noise
replacement

RFI data is replaced by Digital Noise which is
generated by Digital Noise source.

Table 4.2 VHDL interface of Threshold Calculation block

Signal Description

clk Input clock

rst Active high, Synchronous reset

median [7 downto 0] Input Median value

mad [7 downto 0] Input MAD value

n [7 downto 0] Input Threshold factor

Sigma [7 downto 0] Output : Sigma = 1.4826*MAD

Lower_threshold [7 downto 0] Output : LT = median - n*Sigma

Upper_threshold [7 downto 0] Output : UT = median + n*Sigma

Table 4.3 VHDL interface of Comparator block

Signal Description

data_in [7 downto 0] Input data

Lower_threshold [7 downto 0] Input Lower Threshold

Upper_threshold [7 downto 0] Input Upper Threshold

data_out Output RFI flag

19

Table 4.3 VHDL interface of RFI and Data counter block

Signal total_data_count total_RFI_count

clk Input clock Input clock

rst Active high, Synchronous reset Active high, Synchronous reset

hold Control signal for enable output Control signal for enable output

data_in - Input RFI flag

out_total_count
[31 downto 0]

Total data count value Total RFI count value

Table 4.4 VHDL interface of RFI Filter block

Signal Description

clk Input clock

rst Active high, Synchronous reset

hold Control signal for enable counter output

median_valid Input Median valid signal

mad_valid Input MAD valid signal

data_in [7 downto 0] Input data

select_line [1 downto 0] Replacement mode control signal

median [7 downto 0] Input Median value

mad [7 downto 0] Input MAD value

n [7 downto 0] Input Threshold factor

total_count [31 downto 0] Output data count value

RFI_count [31 downto 0] Output RFI count value

data_out [7 downto 0] Filtered output

flag_out Output RFI flag

20

4.3 Synthesis and Implementation
In this section, Synthesis and Implementation details are mentioned. Section 4.3.1 contains
the FPGA Implementation view of the RFI Filter design. Timing and Area-Utilizations details
of the Implemented design are discussed in 4.3.2 and 4.3.3, respectively.

4.3.1 Implementation View

Figure 4.3 FPGA Implementation view of RFI Filter

21

4.3.2 Timing details
As shown in Figure 4.4, the Filter design works on 238.095 MHz frequency without any STA
violation.

Figure 4.4 Timing report of FPGA implementation of Filter

4.3.3 Utilization details
Figure 4.5 gives an overall idea about resource utilization. Also, we can say that arithmetic
inside the threshold calculation block infers the DSP block of FPGA, and there is a no
register as a latch.

22

Figure 4.5 Utilization report of FPGA implementation of RFI Filter

23

Chapter 05: Integration (MAD and MoM)

5.1 Algorithm
Figures 5.1 and 5.2 show that Median, MAD, or MoM computation blocks are integrated
with the Filter block. Further, for storing the data block, RAM is being used. Up counter is
used for providing the address for block RAM. In MAD-based filtering, data samples are
buffered for two window cycles using two BRAMs, whereas, in MoM-based filtering, one
BRAM is used for storing the data and another for MAD values.

Figure 5.1 Block diagram of MAD-based Filtering implementation

For MoM-based filtering, switching is required in the last MoM cycle to calculate the median
of the MAD values. As discussed in 3.1, Control logic for switching is required. The
multiplexer is used for selecting the proper data path, and select-lines for that are provided
from control logic. The counter is used for counting the window cycles, and a high signal is
asserted to select lines of two multiplexers.

Figure 5.2 Block diagram of MoM-based Filtering implementation

24

5.2 Implementation details
In table 5.1, the I/O interface of the top entity is described for both MAD and MoM-based
Filter. As two median is computed inside the MAD computation, there is 2W window cycle
initial latency. Also to buffer the data for 2W window cycle, buffer is used and is
implemented using BRAM blocks inside the FPGA.

Table 5.1 VHDL interface of MAD and MoM based RFI Filter

Signal Description

clk Input clock

rst Active high, Synchronous reset

hold Control signal for enable counter output

rst_ram2_counter Active high, Synchronous reset for address generating
counter of Block RAM2 which stores the MAD values

rst_comp_median Active high, Synchronous reset for comparator block of
median

rst_counter_median Active high, Synchronous reset for counter block of median
which generates reset signal for main accumulator and
auxiliary accumulator

rst_comp_mad Active high, Synchronous reset for comparator block of mad

rst_counter_mad Active high, Synchronous reset for counter block of mad
which generates reset signal for main accumulator and
auxiliary accumulator

rst_filter Active high, Synchronous reset for filter block

select_line [1 downto 0] Replacement mode control signal

n [7 downto 0] Input Threshold factor

data_in [7 downto 0] Input data

data_out [7 downto 0] Filtered output

total_count [31 downto 0] Output data count value

RFI_count [31 downto 0] Output RFI count value

flag_out Output RFI flag

25

5.3 Synthesis and Implementation
In this section, Synthesis and Implementation details are mentioned. Section 5.3.1 contains
the FPGA Implementation view of the MAD-based and MoM-based Filter. Moreover, the
Timing and Area-Utilizations details of Implemented designs are discussed in 5.3.2 and 5.3.3,
respectively.

5.3.1 Implementation View

Figure 5.3 FPGA Implementation view of MAD-based RFI Filter

26

Figure 5.4 FPGA Implementation view of MoM-based RFI Filter

5.3.2 Timing details

Figures 5.5 and 5.6 show that the MAD-based Filter design works on 240.964 MHz
frequency and the MoM-based Filter design works on 238.095 MHz frequency without any
STA violation on 16384 window size. Moreover, a comparison between both designs on
different window sizes is shown in Table 5.2. From the table, we can see that delay is
increasing by increasing the window size.

27

Figure 5.5 Timing report of FPGA implementation of MAD-based RFI Filter of 16k window

Figure 5.6 Timing report of FPGA implementation of MoM-based RFI Filter of 16k window

Table 5.2 Frequency comparison of MAD and MoM based Filter on different window size

Window Size
Maximum Operating Frequency (MHz)

MAD Filter MoM Filter

1024 246.914 250

2048 246.914 240.964

4096 246.914 238.095

8192 243.902 239.234

16384 240.964 238.095

28

5.3.3 Utilization details
Figure 4.4 gives an overall idea about resource utilization. Also, we can say that arithmetic
operations inside the threshold calculation block infer the DSP block of the FPGA, and there
is no register as a latch.

29

Figure 5.7 Utilization report of FPGA implementation of MAD-based RFI Filter

30

31

Figure 5.8 Utilization report of FPGA implementation of MoM-based RFI Filter

32

5.4 Verification Environment
For all the designs, functional verification has been carried out. The Golden model for
functional verification has been implemented in MATLAB.

For VHDL design, all the parameters, like threshold factor, replacement mode, window size,
etc., are declared in the VHDL testbench. The testbench is capable of reading and writing text
files. The same file generates stimulus using the input text file, i.e., raw voltage data for the
DUT - Design Under Test block. The DUT block consists of the main design file. Output is
generated by the DUT block using behavioral simulation, which is faded to testbench for
converting the text file. The block diagram of the Verification Environment is shown in figure
5.9.

Figure 5.9 Verification Environment used for Functional Verification

The- diff command compares both files generated by the Golden reference model and DUT.
There are some mismatches in comparison because MATLAB works on full precision values,
whereas VHDL works only on integer values.

Further, Functional Coverage is carried out of all the RAW Voltage data using the System
Verilog script. The result of Functional Coverage is shown in Figure 5.10.

33

Figure 5.10 Functional Coverage result of GMRT RAW Voltage data samples

5.5 Results
In the following section, the result of MAD-based filtering and MoM-based filtering is
shown. A comparison between original data and output of VHDL designs has been carried
out, and MATLAB overlay plots have been plotted. The unfiltered signal is shown in red, and
its filtered output is shown in green. The result of 1k window size is shown with different
threshold factors, i.e.,1,2,3 and 3σ filtering with all the replacement modes.

5.5.1 MAD based filtering plots

34

35

Figure 5.11 Filter output of MAD-based RFI Filter

5.5.2 MoM based filtering plots
The result of MoM-based RFI filter design is shown in figure 5.12. As discussed in section
3.1, the value of corresponding MoM value is applied in the following MoM cycle. So, initial
latency has been found during the first MoM cycle. This fact is clearly seen in the below
figure.

36

Figure 5.12 Filter output of MoM-based RFI Filter

37

5.5.3 Functional Verification
As discussed in section 5.4, Functional verification is carried out by comparing the result of
the VHDL design and the golden reference-MATLAB. The overlay plot is shown in figure
5.13. The plots look almost similar. There are some mismatches in comparison because
MATLAB works on full precision values, whereas VHDL works only on integer values.

Figure 5.13 Functional Verification of VHDL implementation with golden model-MATLAB

38

Chapter 06: Power detection

6.1 Algorithm
The power detection technique uses power domain signals for detecting RFI samples. The
sample values in the voltage domain are squared and accumulated. Accumulating samples
improves the detection performance, reduces noise variance, and makes the RFI samples
distinct.

The detector operates on chi-squared distribution (sum of the square of Gaussian distributed
samples). The squaring and accumulation operation on the data results in a central chi-square
distribution whose mean and variance depend on the voltage domain data and the number of
samples accumulated.

Figure 6.1 Block diagram of Filtering in Power domain

The relationship between the mean and standard deviation in the chi-square domain as
computed from the respective mean and standard deviation in the time-domain is given by

μp = nσ2

σp = √(2n)σ2

Threshold in terms of μp and σp

Threshold = 𝜆*σ2 (n+√(2n))

If the accumulation of square values for subwindow size is greater than the threshold value,
then it is detected as RFI, and the entire block of subwindow size samples is flagged as RFI.

39

6.2 Implementation details
Table 6.1 describes the I/O interface of the top entity for RFI Filter design in the Power
domain. Moreover, squares of data samples are getting accumulated and then being replaced
based on threshold comparison, there is a need of buffering the data till sub-window cycles
and that is being done by BRAM inside the FPGA.

Table 6.1 VHDL interface of RFI Filter in Power domain

Signal Description

clk Input clock

rst Active high, Synchronous reset

hold Control signal for enable counter output

rst_sub_win_count Active high, Synchronous reset for counter block which
generates reset signal for main accumulator and auxiliary
accumulator

rst_addr_count Active high, Synchronous reset for RAM address generating
counter

rst_counter Active high, Synchronous reset for counter

median_valid Input Median valid signal

mad_valid Input MAD valid signal

data_in [7 downto 0] Input data

select_line [1 downto 0] Replacement mode control signal

median [7 downto 0] Input Median value

mad [7 downto 0] Input MAD value

scaling_factor [7 downto 0] Input Scaling factor

total_count [31 downto 0] Output data count value

RFI_count [31 downto 0] Output RFI count value

data_out [7 downto 0] Filtered output

flag_out Output RFI flag

40

6.3 Synthesis and Implementation
In this section, Synthesis and Implementation details are mentioned. Section 6.3.1 contains
the FPGA Implementation view of the RFI Filter design in the power domain. Timing and
Area-Utilizations details of the Implemented design are discussed in 6.3.2 and 6.3.3,
respectively.

6.3.1 Implementation View

Figure 6.2 FPGA Implementation view of MAD based RFI Filter in Power domain

41

6.3.2 Timing details
Figure 6.3 shows that the Filter design works on 264.550 MHz frequency without any STA
violation.

Figure 6.3 Timing report of FPGA implementation of MAD-based Power domain Filter

6.3.3 Utilization details
Figure 6.4 gives an overall idea about resource utilization. Also, we can say that arithmetic
operations inside the threshold calculation block infer the DSP block of the FPGA, and there
is no register as a latch. Moreover, subwindow size data buffers infer RAMB18.

42

43

Figure 6.4 Utilization report of FPGA implementation of MAD-based Power domain Filter

44

Conclusion and Future Scope

MAD-based RFI filtering algorithm is implemented using VHDL on the Xilinx Kintex
Ultrascale FPGA device. Different variants like MoM-based filtering and Power domain
filtering are also implemented. By comparing the results of VHDL designs with MATLAB
golden reference, we can see minor differences in the output values because MATLAB works
on full precision, whereas VHDL works on integer values. All the designs are working on
238 to 300 MHz synthesis frequency.

45

References

[1] https://en.wikipedia.org/wiki/Giant_Metrewave_Radio_Telescope

[2] https://public.nrao.edu/telescopes/radio-frequency-interference/

[3] https://github.com/casper-astro/hdl_devel/wiki/Verilog-coding-guidelines

[4] K. D. Buch, Y. Gupta, S. Bhatporia, S. Nalawade, K. Naik and B. Ajithkumar, "Real-time
RFI excision for the GMRT wideband correlator," 2016 Radio Frequency Interference (RFI),
2016, pp. 11-15, doi: 10.1109/RFINT.2016.7833523.

[5] Buch, Kaushal & Naik, Kishor & Nalawade, Swapnil & Bhatporia, Shruti & Gupta,
Yashwant & Ajithkumar, B.. (2019). Real-time Implementation of MAD-based RFI Excision
on FPGA. Journal of Astronomical Instrumentation. 08. 10.1142/S2251171719400063.

[6] Buch, Kaushal & Gupta, Yashwant & Kumar, B.. (2014). Variable Correlation Digital
Noise Source on FPGA — A Versatile Tool for Debugging Radio Telescope Backends.
Journal of Astronomical Instrumentation. 03. 1450007. 10.1142/S225117171450007X.

[7] Chu, P. & Jones, R. [1999] Design techniques of FPGA based random number generator,
Military and Programmable Logic Devices (MAPLD) Conf., pp. 1–6.

[8] https://casper.astro.berkeley.edu/wiki/Tutorial_-_Noise_Source

[9] https://web.mit.edu/6.111/volume2/www/f2019/handouts/labs/lab3_19/rom_vivado.html

[10] https://vlsiverify.com/system-verilog/functional-coverage/functional-coverage

46

https://en.wikipedia.org/wiki/Giant_Metrewave_Radio_Telescope
https://public.nrao.edu/telescopes/radio-frequency-interference/
https://github.com/casper-astro/hdl_devel/wiki/Verilog-coding-guidelines
https://casper.astro.berkeley.edu/wiki/Tutorial_-_Noise_Source
https://web.mit.edu/6.111/volume2/www/f2019/handouts/labs/lab3_19/rom_vivado.html
https://vlsiverify.com/system-verilog/functional-coverage/functional-coverage

Appendix

A.1 Generics value to be define in top entity
Table A.1 Generic Description

Generic name Value Description

data_width 8 8 bit signed integer data

reg_width 10 to 14 Window size varies from 1024 to 16384

count_width 32 Counter width

mode_select 2 4 different filtering options

A.2 Datasets used for testing
Table A.2 Details of Datasets used for testing

Category Name Data length Data length
(condensed)

Small Sample data
data16300.txt 16300 16 KB
c11A.txt 327680 320 KB

Simulator data 1us.txt 1632256 1.5 MB

Band 2 Antenna Data
B2_C11_1.txt 4194304 4 MB
B2_C12_1.txt 4194304 5 MB

Band 3 Antenna Data
B3_C11_1.txt 4194304 6 MB
B3_C12_1.txt 4194304 7 MB

Band 4 Antenna Data
B4_C11_1.txt 4194304 8 MB
B4_C12_1.txt 4194304 9 MB

Band 5 Antenna Data
B5_C11_1.txt 4194304 10 MB
B5_C12_1.txt 4194304 11 MB

4 Bit Data
4bit_C01_short.txt 327680 320 KB
4bit_C01.txt 16384000 16 MB
4bit_C11.txt 16384002 16 MB

Long Data for MOM
1g.txt 449998848 430 MB
2g.txt 999997440 953 MB

47

