
IMPLEMENTATION OF MAD-BASED

RFI FILTERING ALGORITHM ON

CPU AND GPU

Student Project

By

Shubham Balte

Electronics And Communication Engineering,
Sardar Vallabhbhai National Institute of Technology,

Surat

Under the Guidance of
Mr. Kaushal Buch

GIANT METREWAVE RADIO TELESCOPE

NATIONAL CENTER FOR RADIO ASTROPHYSICS

TATA INSTITUTE OF FUNDAMENTAL RESEARCH
P.B. 6, Narayangaon P.O., Tal-Junnar,Dist-Pune 410504

Maharashtra

May 2022 - July 2022
0

ABSTRACT

This project looks into a software implementation of the MAD-based RFI filtering
algorithm on the uGMRT system. The filtering is currently being done on FPGAs,
where the customizability is low. Shifting the filtration on software with the GWB
compute nodes will help free up space on the FPGA for more exploration and
provide an easier path for alteration and experimentation with the RFI filtering
algorithms.

The project explores the implementation being computed on the CPU and the
GPU. It looks at the pros and cons in terms of performance, customizability,
resource usage, and the integration potential in the current system.

Multiple implementations are done on both platforms while looking at different
assumptions that can be considered to improve performance and their impact. The
ways to implement the software system were also highlighted and tested for
potential compatibility problems.

1

Acknowledgments

I would like to express my gratitude to Mr. Kaushal Buch for giving me this
opportunity to explore my interests in the practical world. His helpfulness and
passion to make me interested not just in my own work but in the surrounding
work being done to make the observations at GMRT possible have been an
outstanding experience. I would also like to thank the group head, Mr. Ajith
Kumar, for his motivation and suggestions during the work.

I want to thank Mr. Harshavardhan Reddy for his help with setting up the GPB test
machine and helping to test the code on the snode machine, and everyone who
helped me understand and explained to me the various components and their inner
workings that make up the GMRT antenna as a whole.

I would also like to thank Prof. Yashwant Gupta, Centre Director, and Prof.
Jayaram Chengalur, Director, TIFR, for allowing me to work on the Upgraded
GMRT project at GMRT.

I would also like to thank my parents and fellow STP students for supporting me
during this project.

Shubham Balte

2

Contents

Abstract 1

Acknowledgements 2

List of Figures and Tables 4

Chapter 01: Introduction

1.1 Overview of uGMRT 6

1.2 RFI issues at GMRT 7

1.3 GWB correlator and current RFI mitigation method: 8

Chapter 02: Histogram-based algorithm

2.1 Need for the histogram method 10

2.2 Algorithm for histogram method 10

2.3 Comparison of different median algorithms over multiple datasets 11

2.4 Computational estimates for different histogram methods 12

Chapter 03: Implementation on CPU

3.1 Algorithm: 14

3.2 Functional Testing 16

3.3 Benchmarking of MAD filter 17

3.4 Visualization of the CPU MAD filter 19

3.5 Different compiler versions 20

3.6 Benchmarking of MOM code on different compilers 21

3.7 Timing analysis of different functions of MOM code 22

3

Chapter 04: Implementation on GPU

4.1 Basic architectural differences between GPU and CPU 23

4.2 Algorithm 24

4.3 Benchmarking of MOM filter 25

Chapter 05: Integrating with GWB

5.1 Structure of current GWB code 26

5.2 Benchmarks of integration code 27

Conclusions 29

Future Scope 30

References 31

Appendix 32

4

List of Figures and Tables

Figure 1.1.1 GMRT Antenna being taken down for maintenance
Figure 1.2.1 - An illustration of the RFI received from various sources
Figure 1.3.1 - Block Diagram for GWB correlator
Figure 2.2.1 - Visualization of histogram
Figure 2.3.1 - Different median algorithms
Figure 3.1.1 - CPU MOM Implementation algorithm
Figure 3.2.1 - Functional testing block diagram
Figure 3.3.1 - MAD filter time per window for different assumptions
Figure 3.3.2 - Median calculation time per window for different assumptions
Figure 3.4.1 - 3-sigma MAD Filtering in replacement mode
Figure 3.4.2 - 3-sigma MAD Filtering in threshold mode
Figure 3.6.1 - Worst case performance of MOM filter on GPU
Figure 4.1.1 - Comparison of typical CPU and GPU architecture
Figure 4.2.1 - Detailed illustration of histogram kernel function
Figure 4.2.2 - Algorithm of MOM filter on GPU
Figure 4.3.1 - MOM filtering on GPU at different threshold levels
Figure 4.3.2 - Comparison of different GPU MOM algorithms
Figure 5.1.1 - Structure of the FPGA + Compute Node
Figure 5.2.1 - Utilization of all CPU cores during online snode testing
Figure A.1 - Function to read header files

Table 2.3.1 - Comparison of different median algorithms
Table 2.4.1 - Computational estimates for different histogram methods
Table 3.7.1 - Function wise timing distribution
Table A.1 - Details of benchmarked datasets

5

Chapter 01: Introduction

1.1 Overview of uGMRT
Giant Metrewave Radio Telescope is an observatory which explores the metre
wavelength range of the radio spectrum. It is set up by the National Centre for
Radio Astrophysics (NCRA). GMRT consists of 30 fully steerable gigantic
parabolic dishes of 45m in diameter which are spread over distances of up to 25
km. The site was selected because it fulfills the following important criteria such as
1) Low man-made radio noise.
2) Low wind speed.
3) It has a geographical latitude which is sufficiently north of the geomagnetic
equator in order to have a reasonably quiet ionosphere and yet be able to observe a
good part of the southern sky as well.

Figure 1.1.1 GMRT Antenna (C03) being taken down for maintenance

In the electromagnetic spectrum, the metre wavelength range of spectrum has been
particularly chosen for study with GMRT because man-made radio interference is
quite less in this part of the spectrum in India and there are many outstanding
astrophysical phenomena which are best studied at metre wavelengths.

6

1.2 RFI issues at GMRT
Radio Frequency Interference (RFI) is the ‘unwanted signal’ produced due to
Natural and Man-made activities. Television transmissions, RADAR, Satellite
communication, Wi-Fi networking power-line radiation, spark ignition noise and
radiation due to electronic devices are considered as man-made radio interference.
Radio astronomical signals are very weak (typically -110 dBm at the input of the
radio telescope receiver). Thus radio telescopes are very sensitive to capturing such
weak signals here and are more prone to interference. RFI can damage the quality
of the data severely and excision of it can cause loss of data also.

There are two methods for handling the RFI situation
1. Proactive methods - Prevention of RFI by establishing ‘Radio Quiet Zones’
2. Reactive methods – Signal processing for RFI mitigation after reception of the
astronomical data at different stages of the receiver chain.

Digital signal processing can help improve the data signal quality effectively by
removing RFI without much loss of quality. Figure 1.2.1 illustrates the RFI and
noise signals in a time series signal received at GMRT.

Figure 1.2.1 - An illustration of the RFI received from various sources

7

1.3 GWB correlator and current RFI mitigation method:

The current digital backend system of the Upgraded GMRT (uGMRT) is known as
the GMRT Wideband Backend (GWB). When the time series raw voltage data is
provided at the ADC of the system, an FPGA node is configured to perform a
16x16 MOM filtration on 4 antennas at once. Then this digitized and filtered data
is sent to the CPU + GPU compute node for further processing and data storage.

MAD is defined as

MAD = medianj[|x − median(xi)|]

and for a normal distribution, the standard deviation is related to this as

σ = 1.4826 × MAD

This sigma value is computed for a window of size ‘W’ and is used to eventually
compute a threshold value where:

upper threshold = medianj + N*σ
lower threshold = medianj - N*σ

Here, N is the threshold level, usually set at N = 3. These values are used to flag
and filter every element in the window, and can do 3 things with the RFI values:

1. Do nothing and just flag the value
2. Replace RFI with a constant
3. Replace with the threshold
4. Replace with digital noise

8

The GWB system consists of 16 FPGA + Compute nodes, each receiving 2
polarizations of 2 antennas through 2 ADC units attached to them. This filtering
method, while fast, consumes an entire FPGA unit and is difficult to reconfigure.
Hence the project tries to look into a software implementation to try and perform
the RFI filtering on the Compute nodes with CPU and/or GPU power to make
room for more complex filters on the FPGAs and provide more flexibility for the
MOM-based software implementation. Figure 1.3.1 shows of the block diagram of
the GWB backend system.

Figure 1.3.1 - Block Diagram for GWB correlator [1]

9

Chapter 02: Histogram-based Median
Computation

2.1 Need for the histogram method
The general method to compute the median is to sort the window of size and find
the center element, but the sorting is generally computationally expensive and
doesn’t provide significant benefit over the cost.

Different sorting algorithms have varying time complexities, but as we only need
the N/2th largest element in our array for our calculations, we can just avoid
sorting entirely. The histogram method for median calculation is one such
algorithm that can be used to find the median of a dataset without sorting the array
without extensive computational cost and hence saving us time.

2.2 Algorithm for histogram method
Here, we first construct the histogram of the window of size say, n. To find the
median, we find the cumulative sum until the sum is equal to or greater than
(n+1)/2 for odd n and n/2 for even n. The bin number when this condition is
satisfied is the median. An example of a histogram is shown in Figure 2.2.1

Figure 2.2.1 - Visualization of histogram

10

2.3 Comparison of different median algorithms over multiple datasets
● Table 2.3.1 shows the timings taken to perform MAD-based filtering with

different algorithms used to compute the median, with Figure 2.3.1 helping
with its visualization in a line chart.

● The Real Time column pertains to how much time every data point in the
window arrives in, which is 2.5 microseconds at 400 MHz sampling rate for
the first 1024 window size. Other columns represent the time taken in
microseconds for each window to be completely filtered.

● Hence for a software implementation, the code needs to be faster than real
time, ie. below the real time line in the chart shown in Figure 2.3.1

● As seen from the data, we can see that the histogram method has the best bet
at coming close to real-time for the implementation of MAD-based filtering.

Window size Real Time Histogram Quicksort Heapsort Bubble Sort
1024 2.5 65 220 1014 4399
2048 5 118 452 2040 17943
4096 10 235 955 4430 75089
8192 20 460 1971 9474 317732
16384 40 911 4184 19952 2133515

Table 2.3.1 - Comparison of different median algorithms

Figure 2.3.1 - Different median algorithms

11

2.4 Computational estimates for different histogram methods
As the histogram method is the fastest median algorithm but still not meeting
real-time requirements, there are multiple assumptions that can be made to get us
closer to real-time. Some of these have been used in the FPGA design as well and
are tested in the system over a long period of time.

Table 2.2 shows the computational estimates for these different assumptions, and
also adds a column to do MOM-based filtering (Median of MAD) to see how much
different it is going to be from MAD filtering in terms of computation.

Step MAD First median = 0 MAD estimations of
every 4th sample

MOM

1.
Copy data into
array

W (copy operation)
W (iterator
increment)

W (copy operation)
W (iterator
increment)

W (copy operation)
W (iterator increment)

W (copy operation)
W (iterator
increment)

2. Calculating
first median

256 (making the
histogram array)
W (offset)
W (histogram
increment)
W (iterator
increment)
256 (calculating
sum)
256 (iterator
increment)

N/A 256 (making the
histogram array)
W/4 (offset)
W/4 (histogram
increment)
W/4 (iterator
increment)
256 (calculating sum)
256 (iterator increment)

256 (making the
histogram array)
W (offset)
W (histogram
increment)
W (iterator
increment)
256 (calculating
sum)
256 (iterator
increment)

3.
Making array
of absolute
deviation

W (deviation)
W (absolute)
W(iterator
increment)

W(absolute)
**no iterator as it
was done during step
1

W (deviation)
W (absolute)
W(iterator increment)

W (deviation)
W (absolute)
W(iterator
increment)

12

4.
Calculating
MAD

256 (making the
histogram array)
W (offset)
W (histogram
increment)
W (iterator
increment)
256 (calculating
sum)
256 (iterator
increment)

256 (making the
histogram array)
W (offset)
W (histogram
increment)
W (iterator
increment)
256 (calculating
sum)
256 (iterator
increment)

256 (making the
histogram array)
W/4 (offset)
W/4 (histogram
increment)
W/4 (iterator
increment)
256 (calculating sum)
256 (iterator increment)

256 (making the
histogram array)
W (offset)
W (histogram
increment)
W (iterator
increment)
256 (calculating
sum)
256 (iterator
increment)

5.
Calculating
MOM (occurs
1/M times)

N/A N/A N/A 4M (making the
array of medians)
M (iterator
increment)
3M + 768 (Median
calculation)
8 (Updating
thresholds)

6.
Updating
thresholds

1 (sigma)
3 (upper th)
3 (lower th)

1 (sigma)
3 (upper th)
3 (lower th)

1 (sigma)
3 (upper th)
3 (lower th)

**occurs during step
5

7.
Filtering data

W (output vector
assign)
W (flag vector
assign)
W (iterator
increment)

F (flag counter
increment)

W (output vector
assign)
W (flag vector
assign)
W (iterator
increment)

F (flag counter
increment)

W (output vector
assign)
W (flag vector assign)
W (iterator increment)

F (flag counter
increment)

W (output vector
assign)
W (flag vector
assign)
W (iterator
increment)

F (flag counter
increment)

Total
Operations per
second

14W + F + 1543 9W + F + 1031 11W + F + 1543 14W + F + 1544 +
776/M

Table 2.4.1 - Computational estimates for different histogram methods

13

Chapter 03: Implementation on CPU

3.1 Algorithm:

The MOM filtering algorithm for the code flow is shown in Figure 3.1.1. The code
takes the following parameters as input:

1. Input data - A .txt file containing signed 8 bit signed integers
2. Window size (W)
3. MOM Size (M)
4. Threshold - The N value to filter (N-sigma filtering)
5. RPL Option (Digital noise, Constant, Threshold, Bypass)

According to whether the filewriting option is commented out or not in th code, the
code after running will provide the following output:

1. Average time taken for each window
2. Total data points filtered
3. Total RFI points flagged
4. Percentage filtering
5. Ouput .txt file of filtered data (optional)
6. Output .txt file of flagging data (optional)

All benchmarking is done on the snode machine with the following specifications:

model name : Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20GHz
stepping : 2
microcode : 0x3d
cpu MHz : 3195.976
cache size : 20480 KB
cpu cores : 8
cpu threads : 16

14

Figure 3.1.1 - CPU MOM Implementation algorithm

15

3.2 Functional Testing
Every version of code is tested with the methods provided in Figure 3.2 to make
sure that the program is accurate as per expectations before any benchmarking is
done.

Figure 3.2.1 - Functional testing block diagram

Design Under Test -
● The DUT is the C++ algorithm that is being profiled. These are the multiple

algorithms for computing the MAD filter. The different algorithms tested
under this are the multiple ways to calculate the median for filtering, ie.
median through quicksort, heap sort, bubble sort, and the histogram method.

Test Parameters -
● The test parameters are the window size, threshold value, replacement

options, and the reference data to be filtered. These options are passed as
command line arguments to the DUT which then proceeds to read the data
and filter it according to the given parameters.

16

MATLAB -
● The MAD filtering algorithm is also implemented in MATLAB software and

used to generate the output files to be used as a golden reference to verify
the functionality of the design, and find out the rate of errors that occur by
the assumptions and limitations of the histogram algorithm.

Reference Data -
● The reference data is data from multiple sources that need to be filtered. We

are currently working with raw input voltage data that is in the form of a
time series of signed 8-bit integers. The current sources of data are :

○ Simulation data
○ Antenna data (B2, B3, B4, B5 bands from the antennas C11 and C12

taken simultaneously)
○ Digital generated noise
○ 4-bit data

Verification -
● Verification is the C++ diff algorithm called ‘filereader’ which takes two .txt

files and compares the data between them, listing out the points at which the
files are different, the number and percentage of differences.

● This is used to compare the reference output from MATLAB against the
output generated by the DUT to analyze both outputs.

3.3 Benchmarking of MAD filter

● The different assumptions of the histogram method were profiled on
multiple datasets, and more probes were added for getting separate timings
for median calculations and the filtering part.

● All the assumptions were compared against a MATLAB reference to verify
that the error rate they introduce due to the differences is within acceptable
levels.

● The various set of assumptions we have for improving the code is:
○ Keeping the 1st median as 0
○ Sampling every 4th data point for median
○ Both assumptions together

17

Figure 3.3.1 - MAD filter time per window for different assumptions

Figure 3.3.2 - Median calculation time per window for different assumptions

18

3.4 Visualization of the CPU MAD filter
● Data - B3_C11_1, Window size = 16384, N = 3
● The data is taken by the C11 antenna from the Band 3 spectrum

(250-300MHz) and filtered at 16384 window size and 3 sigma filtering
● Histogram method is used as it is considered for further optimizations.

Figure 3.4.1 - 3-sigma MAD Filtering in replacement mode

Figure 3.4.2 - 3-sigma MAD Filtering in threshold mode

19

3.5 Different compiler versions:
After multiple revisions and optimization improvements to the algorithms,
compiler-based commands, a performance difference between two different
compiler versions. Based on this assumption, some versions of the filtering
algorithm were tested with different compiler versions on the GPB machine -
identical to the snode machine (Intel Xeon 2667 v3 with CentOS 7). Right now we
haven’t added the header file reading functionality because the exact format isn’t
known, but the basic function is made and is ready to be put whenever the format
is finalized.

The default gcc compiler version coming with the machines is GCC 4.8.5:

The different gcc version installed was GCC 11.2.1 from devtoolset-11:

The new GCC version was installed separately and is invoked within a different
command to ensure that it does not interfere with the default GCC version or
commands.

Installation command for the different compiler -
$ sudo yum install devtoolset-11

Command to call the different compiler -
$ scl enable devtoolset-11 “any usual gcc command”

As we can see, the different gcc compiler is called as part of a different tool, and
hence can be called separately but identically enough.

20

3.6 Benchmarking of MOM code on different compilers:
This technique is most preferable for longer bursts of RFI. In this technique the
Median of MAD values is carried out and that is called Median of MAD - MoM.

MoM = Median(MAD1 ,MAD2 ,MAD3 ,.....MADn)
-where n = window size

For MoM computation, three Median computations are required. For real-time
performance, it is difficult to buffer these data values. So, the calculated current
MoM value is applied to the next cycle. Also in order to optimize median
computation, third median computation is multiplexed with second median
computation. The MAD value is stored in Block memory for W window cycle. At
the last MoM window cycle, the main data path for MAD computation block is
switched to provide initially stored MAD value and median of these values has
been computed and this median value is called as Median of MAD - MoM.

Hence, we add another parameter called a MOM window size (M) which
represents the number of windows (of size W) used to calculate an MOM value
from. That is, an MxW MOM would be computing the MAD value of M windows
each of size W, and then taking the median of those M values is used to compute
the sigma value, and hence the threshold, which in turn is used to filter out the next
window.

The 3 versions used for performance testing are (with compilation instructions):
1. Basic (Using first median = 0)
2. 4th sample (Uses only every 4th sample for median calculation)
3. openMP (Uses 4 cores to filter the data faster)

The results are the deviation from real-time in seconds (Compute time - 1) done on
16x16 MOM with Digital Noise as RPL Option to show the worst case
performance with both compiler versions. Real-time is the horizontal axis.

21

Figure 3.6.1 - Worst case performance of MOM filter on GPU

As we can see, the MOM filtering with optimized code barely passes the real-time
barrier at the 3-sigma filtering threshold for one antenna per core, with the 4th
sampling observations. This comparison is with data where the RFI is barely
1-1.5%. If the RFI increases further, let’s say 2-5% which usually happens on Band
2 observations, the filter cannot keep up (this is seen in the 2 sigma threshold level
which shows about 5-6%% RFI at this threshold). This presents a highly dicey
situation and it is apparent that this sort of filter cannot be kept in a release.

22

3.7 Timing analysis of different functions of MOM code:

The best code sample we have written as of yet is the MOM code using every 4th
sample for histogram calculation, compiled by GCC 11. This code was probed with
more timing calculations to get an idea of how much time every section of the code
takes. The table below depicts the acquired results for different window sizes. The
RPL option is taken as replacement with digital noise to show worst case
performance.

Timing is represented in microseconds

RPL N Window Size MOM Size
Each MAD
Calculation

Threshold +
overhead Filtering

Avg
Time/Window

3 3 8192 8192 1.08 1.64 12.1 14.82

3 3 16384 8192 2.17 3.19 24.8 30.16

3 3 16384 16384 2.17 3.36 23.38 28.91

3 2 8192 8192 1.08 1.62 24.55 27.25

3 2 16384 8192 2.19 3.15 46.66 52

3 2 16384 16384 2.43 3.48 45.06 50.97

3 1 8192 8192 1.17 2.11 75.19 78.47

3 1 16384 8192 2.13 3.34 129.32 134.79

3 1 16384 16384 2.19 3.78 115.71 121.68

Table 3.7.1 - Function wise timing distribution

A counter-intuitive result, as the expectation was that the MAD, ie. median
calculations would take longer than the filtering + RPL time, but the results were
re-ran and the code was checked multiple times. The best explanation for this that
can be thought of is the branch prediction performance of the CPU. In both cases,
we look at every data point in the window and do a task with it, hence both
functions are O(N) in time complexity as seen from window sizes. But there are
multiple branches taken which aren’t consistent. Usually the CPU pipeline is
loaded with a branch predicted result to improve performance, which turns out
great in histogram as it’s a simple loop with less branches; but having an if-else
ladder inside a loop likely causes the branch prediction to be thrown off and results
in slower performance due increased pipeline flushes. However, this is just
speculation, and actual reason might be different.

23

Chapter 04: Implementation on GPU

4.1 Basic architectural differences between GPU and CPU
The GPU is highly parallel, with thousands of CUDA cores in a single chip. While
the per-core performance in terms of clock speed is only about a fourth compared
to a CPU core, due to the immense number of cores available, the GPU can
compute repetitive tasks with very high throughput.

Figure 4.1.1 - Comparison of typical CPU and GPU architecture [9]

The programming model for the GPU is centered around blocks and threads, where
the developer initiates functions called CUDA kernels to be run on the device
(GPU) with a certain number of blocks having a certain number of threads per
block. Every thread in every block executes the algorithm inside a kernel function.
This doesn’t depend on the structure of the GPU cores, for the most part, to keep
the program portable across different models of GPUs and to make it easy to write
a CUDA program. The nvcc compiler with the Cuda toolkit takes care of the
hardware organization of the blocks and threads.

24

4.2 Algorithm
The GPU algorithm works mostly on a fork-join architecture : The CPU acts as the
host which calls kernel functions that act on the GPU, with pointers to the data
that exists on the GPU itself given to the kernel function. For example, the
histogram generation function takes in pointers to the input data which is organized
in time slices of M windows of W size each. It also takes the pointer to the
histogram output array which is organized as an array with sequential histograms
corresponding to every window. There are M blocks initialized with T threads
each. The code in the kernel function is executed by every thread, hence each
thread needs to be pointed correctly to the section of the input and output data
arrays. The thread compute the histogram for the elements for each section and
store it into the histogram array. Other kernel functions operate similarly. An
illustration for the detailed histogram kernel is shown in Figure 4.2.1 and an
overall summary of the complete algorithm is given in Figure 4.2.2.

Figure 4.2.1 - Detailed illustration of histogram kernel function

25

Figure 4.2.2 - Algorithm of MOM filter on GPU

26

4.3 Benchmarking of MOM filter:
The next two plots (Figure 4.3.1 and 4.3.2) Provide the illustrations of the MOM
filtering algorithm as benchmarked on the snode machine. The snode machine is
equipped with the Nvidia Tesla K40c GPUs, which were the devices the cuda
kernels in the code were executed on. As we can see from 4.3.1, the time taken to
compute a MOM window is independent of the RPL option chosen. The compute
time is also in a linear relation to the window size, ie. the algorithm is in O(n).
Figure 4.3.2 shows that if we adopt the 4th sample histogram assumption used in
the current FPGA system, we can almost get twice as fast as real time for a 16x16
window (real time for a 16x16 window is 671 milliseconds.

Figure 4.3.1 - MOM filtering on GPU at different threshold levels

Figure 4.3.2 - Comparison of different GPU MOM algorithms

27

Chapter 05: Integrating with GWB

5.1 Structure of current GWB code:
The current way the filtering works is with an FPGA before the data is sent to the
correlator. At the correlator, the CPU is the best place the current code could be
integrated with the least modifications to the system.

Figure 5.1.1 - Structure of the FPGA + Compute Node [2]

28

5.2 Benchmarks of integration code:
The CPU code works linearly on sequential raw voltage data. This code currently
works for a single data stream (ie. one antenna) but initializing instances of this
algorithm on different cores is equivalent to working on multiple antennas at the
same time in terms of benchmarking. Hence the code was initialized in that manner
on different cores using the ‘taskset’ command during execution while the snode
correlator was running.
As seen from the terminal instances and the core utilization in Fig 7.2.1, the
algorithm runs on one core per stream and is not bottlenecked by the snode
correlator running in parallel. This means that if the CPU code is optimized further
and starts working in real-time, then integration with the current GWB system will
be a trivial task.

Figure 5.2.1 - Utilization of all CPU cores during online snode testing

The GPU code is a different situation. The algorithm is implemented assuming that
the raw voltage data will be on the GPU as a single stream, but the GWB structure
shows that the current GPU memory buffer contains smaller streams from multiple

29

antennas at a time and not a single stream. Hence the algorithm will need to be
rewritten to accommodate testing and integration of the GPU code into the GWB
machine.

30

Conclusions

● From this attempt at the software implementation of the RFI filtering
algorithm, we can say that a software implementation is possible and more
reconfigurable than the FPGA-based implementation.

● The CPU can filter a single stream of raw voltage data in near real-time
under ideal conditions, while the GPU can filter a raw voltage chunk under
any conditions consistently at about twice the real-time.

● The CPU has the limitations of having to rely on the assumptions currently
existing in the FPGA system, and it cannot provide filtration on higher RFI
levels in real-time.

● The GPU version has the potential of beating real time requirements, and not
being dependant on the level of RFI or the replacement option asked for by
the user.

● The GPU version has a structural mismatch with the currently implemented
code and the way the data on the GWB is structured and fed in; while also
having the issue of having to compute power available to spare for the
implementation and no pipelining possibilities.

31

Future Scope

● While there are hurdles of available GPU compute power or upgradation of
the CPU compiler and software versions, this project serves as a baseline
and gives a path to a completely integrated implementation in the future. T

● he CPU code was tested with the current GWB system running in parallel
fashion on the snode machine, and it performed without trouble. Hence by
improvements to the code or hardware upgrades, it provides the easiest
integration path by taking the continuous data stream coming from each
antenna and filtering it.

● The GPU code has a preliminary implementation of the appropriate GWB
structure already written in this project which can be verified with a standard
reference and implemented without issues as a standalone filter.

● The code can be optimized further by initializing arrays in multiple
dimensions for the GPU to work on together. For the GPU integration, even
a minor hardware upgrade could be considered as it would greatly provide
more compute power to help run the filter alongside other applications.

● Hence through some more optimization and upgrades, a complete
software-based RFI filtration algorithm at GMRT is achievable.

32

References

[1] S. H. Reddy et al., “A Wideband Digital Back-End for the Upgraded GMRT,” Journal of
Astronomical Instrumentation, vol. 06, no. 01, Mar. 2017, doi: 10.1142/s2251171716410117.

[2] K. D. Buch, K. Naik, S. Nalawade, S. Bhatporia, Y. Gupta, and B. Ajithkumar, “Real-Time
Implementation of MAD-Based RFI Excision on FPGA,” Journal of Astronomical
Instrumentation, vol. 08, no. 01, Mar. 2019, doi: 10.1142/s2251171719400063.

[3] R. Joshi, “rohinijoshi06/mad-filter-gpu,” GitHub, Apr. 18, 2020.
https://github.com/rohinijoshi06/mad-filter-gpu

[4] GeeksForGeeks, “Inter Process Communication (IPC),” GeeksforGeeks, Jan. 24, 2017.
https://www.geeksforgeeks.org/inter-process-communication-ipc/

[5]“std::normal_distribution - cppreference.com,” en.cppreference.com.
https://en.cppreference.com/w/cpp/numeric/random/normal_distribution

[6] “c++ - Performance of built-in types : char vs short vs int vs. float vs. double,” Stack
Overflow.
https://stackoverflow.com/questions/5069489/performance-of-built-in-types-char-vs-short-vs-int-
vs-float-vs-double

[7] “linux - How to change the default GCC compiler in Ubuntu?,” Stack Overflow.
https://stackoverflow.com/questions/7832892/how-to-change-the-default-gcc-compiler-in-ubuntu
/7834049#7834049

[8] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips, “GPU Computing
Graphics Processing UnitsVpowerful, programmable, and highly parallelVare increasingly
targeting general-purpose computing applications,” doi: 10.1109/JPROC.2008.917757.

[9] “CUDA C++ Programming Guide,” docs.nvidia.com.
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

33

https://github.com/rohinijoshi06/mad-filter-gpu
https://www.geeksforgeeks.org/inter-process-communication-ipc/
https://en.cppreference.com/w/cpp/numeric/random/normal_distribution
https://stackoverflow.com/questions/5069489/performance-of-built-in-types-char-vs-short-vs-int-vs-float-vs-double
https://stackoverflow.com/questions/5069489/performance-of-built-in-types-char-vs-short-vs-int-vs-float-vs-double
https://stackoverflow.com/questions/7832892/how-to-change-the-default-gcc-compiler-in-ubuntu/7834049#7834049
https://stackoverflow.com/questions/7832892/how-to-change-the-default-gcc-compiler-in-ubuntu/7834049#7834049
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Appendix

A.1 Reading header files:
The settings for the filter, like window size, threshold level, replacement option,
etc are currently being given by a command line argument while initializing
program execution. The readhdr.cpp file contains a function to address this and
implement the reading and parsing of a header file provided by the observer to get
these settings.

Figure A.1 shows the format of the header file alongside the cpp code to read it.
The final version of the software implementation would have this function
formatted according to the finalized header file format, the current implementation
is just for demonstration.

Figure A.1 - Function to read header files

34

A.2 Datasets used for testing:
These are the details of all the datasets that were used for testing the MAD and
MOM filtering code:

Category Name Data length Data length
(condensed)

Small Sample
data

data16300.txt 16300 16 KB

c11A.txt 327680 320 KB

Simulator data 1us.txt 1632256 1.5 MB

Band 2
Antenna Data

B2_C11_1.txt 4194304 4 MB

B2_C12_1.txt 4194304 5 MB

Band 3
Antenna Data

B3_C11_1.txt 4194304 6 MB

B3_C12_1.txt 4194304 7 MB

Band 4
Antenna Data

B4_C11_1.txt 4194304 8 MB

B4_C12_1.txt 4194304 9 MB

Band 5
Antenna Data

B5_C11_1.txt 4194304 10 MB

B5_C12_1.txt 4194304 11 MB

4 Bit Data

4bit_C01_short
.txt 327680 320 KB

4bit_C01.txt 16384000 16 MB

4bit_C11.txt 16384002 16 MB

Long Data for
MOM

1g.txt 449998848 430 MB

2g.txt 999997440 953 MB

Simulated
Noise data noise_ascii1.txt 268435456 256 MB

Table A.1 - Details of benchmarked datasets

35

