
National Centre for Radio Astrophysics
Student Training Program 2024 Report

GMRT/TGC/001- Jun 2024

NCRA 15M Control Monitoring System (CMS)
Software Build Using Docker

(Duration: Jun-Aug, 2024)

By

Setu Sameer Fulawade.
Under Supervision of:

Mr. Jitendra Kodilkar, Mr. Anil Raut

Objective: The legacy software for the NCRA 15m Radio Telescope Control and
Monitoring System (CMS) operates on the RHEL 6 OS with Firefox version 57.3.2 for the
user interface (UI). Due to the outdated OS and associated software components or libraries,
the CMS is currently experiencing usage issues and several software upgrade problems. To
address these issues and facilitate future software system upgrades and maintenance, it is
essential to rebuild and containerize the software system using Docker.

This technical report details the implementation and testing of the NCRA 15m Radio
Telescope Control and Monitoring System on CentOS 7, utilizing Docker.

Revision Date Modification/Change

Ver. 9 23/07/2024 Initial Draft Version

Ver : 1.0 07/08/2024 Reviewed Version

Ver : 1.1 12/08/2024 Final Version

1

Acknowledgement

I would like to express my profound gratitude to Mr. Jitendra Kodilar for giving me
the opportunity to work on the ‘NCRA 15M Control Monitoring System (CMS)
Software Build Using Docker’ project. I also extend my heartfelt thanks to Mr. Anant
Khatri, the head of the department, for allowing me to undertake this project.

I am deeply grateful to the NCRA Director, Prof. Y. Gupta, the GMRT Dean, Prof.
Ishwar Chandra, the Telemetry & Operation Group Coordinator, Mr. Anil Raut, and
Dr. Yogesh Maan (for availing the Linux Machine ‘padma’) . I would also like to
thank the NCRA and GMRT staff, including Mrs. Deshmukh, who assisted me
throughout my project.

Working at GMRT was a wonderful experience. I had the opportunity to learn more
about GMRT’s work culture and to interact with the amazing people there. Through
this project, I gained valuable insights into the control and monitoring systems of the
15-meter radio telescope and the DevOps tool such as DOCKER containerisation
software for compilation and deployment. This experience has significantly enhanced
my technical skills and understanding of real-world applications in radio astronomy.

2

Executive Summary

NCRA 15m Radio Telescope Control & Monitoring System : The NCRA 15m
Radio Telescope Control & Monitoring System (CMS) controls and monitors the 15m
antenna Subsystems ranging from the Front-end Common-Box, Servo, Analog chain
and Digital backend receiver systems to perform the radio astronomical observation
by configuring or setting the RF-receiving chain systems and tracking a celestial
source using the Servo-subsystem. This system runs presently using the PowerEdge
R310 DELL server with RHEL 6 operating system. The system was commissioned
around 2011, and in use since the past decade.

Objective : The 15m CMS system is supported by the GMRT staff located at the
Khodad, hence upgradation of the CMS on the latest OS has not been possible in the
past due to GMRT responsibilities and other jobs at higher priorities.

Recently one of the CMS supporting Dell-Server crashed in Feb 2024, also the
maintaining and upgrading of the CMS became a difficult task as machines are old
and RHEL 6 platform is no longer supported. The CMS web-based UI was running on
the old version of the browser with Flash-player plugins which are not supported in
the new browsers after 2020.

Therefore to upkeep the system for future use, and also to preserve the CMS
code-base where efforts and cost have been put in the past, it was essential to deploy
this system on the latest Linux OS. However, the latest Linux OS (Fedora, CentOS,
and Ubuntu) repositories are by far upgraded with latest versions of tools and libraries
which are not matching any more with the RHEL-6 OS , CMS software code-base and
required compilers, associated libraries etc. Hence, the primary objective of this
project is to containarise the CMS software using Docker.

Docker : DevOps (Development Operation) is one of the important buzzwords in the
current trends of s/w technology. DevOps combines Developments and Operations
aspects of the SDLC to improve efficiency, security, and help in faster delivery of the
software compared to traditional processes. Docker is a key DevOps tool that
improves software efficiency by enhancing portability and deployment. It is an open
platform for developing, packaging, shipping, and running applications, using
OS-independent virtualization. The Docker engine on the host machine supports
containerization, allowing software packages to run seamlessly on various systems.

Project Implementation : The 15m CMS system and Web-based UI is successfully
built under the docker using the CentOS-7 base-image. The CMS system
implementation under docker enabled the system for future use, and can be evolvable
or modifiable for the telescope control and monitoring requirements. The CMS system
is validated to be working under docker, and tested for performance which shows that

3

both the UI and CMS system can be deployed on the latest Linux OS versions, and
usable in an efficient manner much like the legacy system.

Findings:

1. Improved Efficiency: The implementation of Docker significantly improved
the efficiency of software deployment, reducing the time and effort required for
setup and configuration.

2. Enhanced Control Systems: The newly developed control systems provided
more precise and reliable control over the telescope’s operations.

3. Robust Monitoring: The monitoring systems effectively tracked the
telescope’s performance, allowing for early detection and resolution of any
issues.

4. Reproducibility and Consistency: Docker ensured a consistent software
environment, which was crucial for maintaining the reliability of the control
and monitoring systems.

4

Acronyms :

ActiveMQ ActiveMQ is an open source protocol developed by Apache which
functions as an implementation of message-oriented middleware. Its
basic function is to send messages between different applications.

Apache-ant Apache Ant is a software tool for automating software build processes
for Java applications

Apache-Maven Maven is a build automation tool used primarily for Java projects

CentOS Community Enterprise Operating System Linux OS

CMS Central Control and Monitoring system

DevOps DevOps is the combination of cultural philosophies, practices, and tools
that increases an organization's ability to deliver applications and
services at high velocity

DOCKER Docker is a set of platform as a service (PaaS) products that use OS-level
virtualization to deliver software in packages called containers
https://docs.docker.com/guides/docker-overview/

DOM The Document Object Model (DOM) is the data representation of the
objects that comprise the structure and content of a document on the
web.

Eclipse Eclipse is an integrated development environment used in computer
programming. It contains a base workspace and an extensible plug-in
system for customizing the environment.

jar A JAR file is a package file format typically used to aggregate many Java
class files and associated metadata and resources into one file for
distribution.

JDE The Java Development Kit (JDK) is a software development
environment used for developing Java applications and applets

JRE The Java Runtime Environment, or JRE, is a software layer that runs on
top of a computer's operating system software and provides the class
libraries and other resources that a specific Java program requires to
run

Mysql MySQL is an open-source relational database management system.

NCRA National Centre For Radio Astrophysics, Pune, India

NCRA 15m NCRA 15 Meter Radio Telescope

Pom A Project Object Model or POM is the fundamental unit of work in
Maven. It is an XML file that contains information about the project and
configuration details used by Maven to build the project. It contains
default values for most projects

RHEL Red Hat Enterprise Linux is a commercial open-source Linux

5

distribution developed by Red Hat for the commercial market.

XML Extensible Markup Language (XML) is a markup language that
provides rules to define any data

Table no.1

6

INDEX

Acknowledgement...1

Executive Summary... 2

1 . Introduction..8

1.1 About the NCRA 15m Radio Telescope:..8

1.2 User Requirement Specifications, and S/w Requirement Specifications:...........9

1.3 Objectives:..10

1.4 Report Structure:..11

2 . Feasibility Study..12

2.1 Aim:.. 12

2.2 RHEL 6 Docker Compatibility:... 12

2.3 A Feasibility Study of the CMS UI and CMS Framework implementation:....... 12

2.3.1 Flash-Player Extension:.. 12

2.3.2 Feasibility check of The CMS Implementation:..14

2.4 Docker:... 15

2.5 Why Docker?.. 16

2.6 Solution Proposal:.. 17

3 . Implementation.. 19

3.1 About Web based NCRA 15m Control & Monitoring System (CMS):................19

3.2 Docker Installation:...20

3.3 Implementation of Firefox 52.7.3 and flash player:...22

3.4 Deployment of the CMS Software:...24

3.4.1 Software tools and Libraries required for the CMS software:..................24

3.4.2 Steps to compile CMS software in docker:...26

3.5 Production version :... 29

3.5.1 The Web-based (Firefox) CMS UI:... 29

3.5.2 CMS-Web Software Deployment:.. 34

4. Validation Testing.. 36

4.1 Aim:.. 36

4.2 Test Environment:...36

4.2.1 Hardware Configuration :...36

4.2.2 Software Configuration :.. 36

4.3 Functional Testing of the CMS running under Docker :.................................... 37

7

4.3.1 Test Cases :...37

4.3.2 Functional Test Details :... 40

4.3.3 Non-Functional Testing :.. 45

8

1 . Introduction

1.1 About the NCRA 15m Radio Telescope:

The NCRA has built a 15 meter Radio Antenna in the East-Campus of NCRA, Pune . The
Antenna observing Frequency range is from 1000 to 1450 MHz with five sub-bands of 100
MHz each. The telescope is Alt-Azimuth mounted, the upgraded data processing analog
backend and digital backend can process the 200 MHz bandwidth RF-signals with Max 2K
channels. The visible Sky coverage is from ~ 54 to 90 degrees of declination. The User

Figure-1 shows the NCRA 15m Radio Telescope.

Interface is provided over a web to control the telescope remotely for performing the
astronomical observations.

The telescope Control and Monitoring System (CMS) is a configurable system which is
developed based on the Java web-based Spring framework and Tomcat web-server. A generic

9

and specification driven CMS was developed around 2008-2009 in collaboration with PSPL
(Persistent System Private Limited) and IUCAA (Inter University Centre for Astronomy &
Astrophysics) which can be configured for the optical and radio telescope. At present the
CMS software runs on RHEL 6 Operating system with PowerEdge R310 Dell server
machine which has completed its End of Life. Since the system of 15m antenna is supported
partially by the GMRT staff located at khodad, Pune, the telescoped software upgradation has
not been done on a routine basis. Therefore, running of the CMS on the latest Linux based
OS version is difficult because many of the s/w components, spring-framework dependencies
are no longer supported. Hence, in case of machine malfunctioning, RHEL 6 supports
unavailability; it is essential to port the CMS software on a new machine with the latest OS
version. To address this issue, we explore various solutions and propose a software
containerisation for running the CMS software on the current generation of Linux OS based
machines.

1.2 User Requirement Specifications, and S/w Requirement Specifications:

The user and software requirement specifications analysis was the first task taken for the
project on “15m Control and Monitoring System software compilation using docker” to
analyze and plan the design and development for the project. After discussing with users of
15m CMS and s/w development & maintenance stake-holders, following user requirements
are listed.

URS ID System User Requirement Stakeholder

URS001 UI
(Front-end)

The existing Web based User Interface of 15m
antenna shall run on a remote machine to access the
control and monitoring of 15m antenna.

Astronomer,
Engineer,
Students

URS002 CMS
Back-end

The RHEL 6 license and support has EoL, the CMS
backend shall run on the Linux system other than
RHEL 6.

CMS developer
and
maintenance

Table no.2

After analysing the URS, Software Requirement specifications deduced are as follows:

SRS ID URS ID Software Specification Requirements Feasibility analysis and
Constraints

SRS001 URS001

User Interface shall run on the latest
browsers with the same GUI components
appearance on the web as it runs on the
legacy system.

The latest browsers such as
Firefox, google-chrome etc.
do not support Flash-player.
Hence running on the legacy
Firefox old ver 52.7.3 may be
possible.

SRS002 URS001 The Web-interface shall run on the latest
Linux and Windows OS

The porting of old
firefox-version (52.7.3),
flash-player plugins are not

10

possible to port on the latest
Linux or OS windows version
because s/w support is not
available.

SRS003 URS002 CMS Software shall run on the latest
Linux OS

(1) The CMS s/w uses a
Tomcat 6, Apache ActiveMQ
(Message Queue) <Ver> , and
technologies associated with
Java JDK version 1.6.0_30.
The s/w support is already
EoL and outdated. Hence, the
CentOS 7 (compatible to
RHEL 6 and available) can be
tried to compile the s/w.
(2) The Docker
containerisation of CentOS 7
can be made to run and
support maintenance on the
new Linux OS systems

SRS004 URS002 It shall be possible to modify, compile and
port the CMS software on latest Linux OS

Table no.3

1.3 Objectives:

At present the CMS system of 15m antenna facing the following issues :

● RHEL 6 EOL:

○ The 15-meter radio telescope at the National Centre for Radio Astrophysics
(NCRA) relies on a Control and Management System (CMS) version 3.3.7 to
oversee and coordinate its operations. This CMS is currently running on Red
Hat Enterprise Linux (RHEL) 6. However, RHEL 6 reached its end of life on
November 30, 2020 and is no longer supported, creating significant risks for
the telescope’s operations.

● CMS Compatibility Issue:

○ The end-of-life status of RHEL 6 necessitates an urgent migration to a
supported operating system to ensure the security and operational integrity of
the telescope. However, migrating the CMS to RHEL 9 has encountered
significant compatibility issues, including deprecated dependencies and
configuration conflicts. These issues prevent the CMS from functioning
correctly on the newer OS, presenting a substantial challenge in maintaining
the telescope's control and management capabilities.

● Firefox Compatibility Issue:

○ The 15-meter radio telescope relies on a monitor and control (CMS) system
that utilizes outdated technology, posing significant challenges and risks to its
functionality and sustainability. The current M&C system operates on Firefox
52.7.3, a version lacking critical updates and features.

11

● Flash-Player Compatibility Issue:

○ The 15-meter radio telescope at the National Centre for Radio Astrophysics
(NCRA) currently relies on a Control and Management System (CMS)
running on Red Hat Enterprise Linux (RHEL) 6, using Firefox version 52.7.3
that requires Flash Player for its display functionalities. With RHEL 6 and
Firefox 52.7.3 being outdated and unsupported, and Flash Player no longer
being supported in modern browsers.

1.4 Report Structure:

● 1. Introduction:

○ The introduction section outlines the 15m radio telescope at NCRA's

Pune campus and the development of a generic web-based Monitoring

and Control (M&C) system. It highlights the need to modernize the

M&C system due to the end-of-life status of Red Hat Enterprise Linux

(RHEL) 6, which poses risks from outdated software dependencies such

as Firefox and Flash Player.

● 2. Feasibility Study:

○ This chapter evaluates the technical and operational feasibility of

modernizing the 15m radio telescope's M&C system. It assesses the

compatibility of existing software and hardware, explores potential

solutions for overcoming identified challenges, and determines the

practicality of implementing Docker technology.

● 3. Implementation:

○ This chapter outlines the step-by-step process of implementing the

proposed solution. It details the configuration and deployment of

Docker containers, the setup of necessary software components, and

the integration with existing systems.

● 4. Validation Testing:

○ This chapter describes the validation and testing procedures carried out

to ensure the successful deployment of the new system. It includes test

cases, results, and an analysis of the system's performance and

reliability.

12

2 . Feasibility Study

2.1 Aim:

The aim of this chapter is to evaluate the technical and operational feasibility of
modernizing the 15m radio telescope's Monitoring and Control (M&C) system. This
includes assessing the compatibility of existing software and hardware, exploring
potential solutions for overcoming identified challenges, and determining the
practicality of implementing Docker technology to achieve a stable and maintainable
environment for the system.

2.2 RHEL 6 Docker Compatibility:

Based on our thorough investigation, it has been conclusively determined that
installing Docker on RHEL 6 for the CMS of the 15-meter radio telescope is not
feasible due to compatibility constraints. The Docker engine and its dependencies
require newer versions of system libraries and kernel features that are not available in
RHEL 6.

2.3 A Feasibility Study of the CMS UI and CMS Framework implementation:

2.3.1 Flash-Player Extension:

A Flash Player emulator is a software tool or system designed to replicate the
functionality of Adobe Flash Player in environments where the original Flash
Player is no longer supported or available. This is particularly relevant since
Adobe officially ended support for Flash Player at the end of 2020, leading to
widespread incompatibility with modern web browsers and operating systems.

Flash Player emulators typically aim to provide the ability to run Flash content,
such as animations, games, and interactive applications, in a controlled
environment that mimics the behaviour of the original Flash Player.

● Examples:

○ Ruffle: An open-source Flash Player emulator written in Rust, which
aims to provide support for both older and newer Flash content by
translating it to HTML5 and modern web technologies.

○ CheerpleX: A commercial solution that runs Flash applications within a
virtualized environment, allowing businesses to continue using legacy
Flash-based software.

○ Lightspark: An open-source project that focuses on supporting newer
Flash formats and features.(add more about light spark)

13

● Problem with Flash-Player extension and engines:

The Flash Player extension currently in use is incompatible with the CMS
website, causing significant issues in functionality. Despite being installed
and enabled, the extension fails to load or display Flash content correctly,
leading to a disrupted user experience. This incompatibility could stem from
outdated software, security restrictions, or the declining support for Flash
technology. As a result, users encounter errors or blank spaces where
interactive elements should appear, hindering the website's overall
effectiveness and usability. It is crucial to explore alternative solutions.

Figure-2: Ruffle Compatibility Issue

Figure-3: Ruffle Compatibility Issue

14

Figure-4: LightSpark Support issue

● Conclusion:

Most Flash Player emulators are only supported on the latest versions of web
browsers and are designed to emulate newer versions of Flash Player. However,
according to tests conducted, these emulators do not work with the Control and
Monitoring System (CMS) web interface, which relies on Flash Player 10.

2.3.2 Feasibility check of The CMS Implementation:

The CMS s/w comprises a java based SPRING framework, and many s/w components
or Java libraries which are more than ~ 15 packages. An implementation of these with
latest upgraded packages available on new Linux OS versions using Redhat Package
Manager (RPM) or debian packages repositories (apt) is almost difficult due to no
more support availability. Hence, one of the viable options was to implement these
software on the available Linux OS version which is close to the contemporary RHEL
6 packages. After exploring many available Linux flavours such as Fedora and
CentOS, we selected the CentOS-7 version of Linux OS which is still available.

The CentOS-7 OS version was installed on a new machine named ‘padma’ and
compatible packages such as mysql 5.5.31 , Tomcat 6.0.35, ActiveMQ 5.5.1, Apache

15

Maven 3.0.4, Ant Version 1.7.1 and Java 1.6.0_30 installed on it with Eclipse Helios
3.6.1. All the requisite dependencies Java Jar files, s/w code for the cms-core,
cms-state, cms-batch-processing, cms-validator, cms-web were copied to this
machine.

After configuring the Eclipse, and compiling using the Eclipse and Apache maven and
cms-war file to run under the Tomcat 6 version is installed. The CMS was tested for
its working on the CMS. And then it was decided to create a CentOS 7 docker image
for deploying the CMS software.

2.4 Docker:

Docker is an open-source platform that automates the deployment, scaling, and
management of applications within containers. Containers are lightweight, standalone,
and executable packages that include everything needed to run a piece of software,
including the code, runtime, libraries, and system tools. Docker streamlines the
development-to-production workflow by providing a consistent environment across
different stages of the application lifecycle. Here are some key aspects of Docker:

Figure-5: Docker block Diagram

● Key features and concepts :

1. Containers: Docker containers are isolated environments that package
software and its dependencies. Unlike virtual machines, containers share the
host system's kernel, making them more lightweight and efficient.

2. Docker Engine: The core component of Docker, the Docker Engine, is
responsible for creating and running Docker containers. It includes a
daemon (dockerd), a REST API, and a command-line interface (CLI).

16

3. Docker Images: Images are read-only templates used to create containers.
They include the application code and the necessary runtime environment.
Images are built from Dockerfiles, which contain instructions for
assembling the image.

4. Dockerfile: A text file that contains a set of instructions to build a Docker
image. It specifies the base image, application code, dependencies, and
commands to run the application.

5. Docker Hub: A cloud-based repository where Docker users can share and
distribute Docker images. It hosts official images, community images, and
user-contributed images.

6. Docker Compose: A tool for defining and running multi-container Docker
applications. Using a YAML file, Docker Compose allows you to specify
how containers should be configured, linked, and orchestrated.

7. Docker Swarm: A native clustering and orchestration tool for Docker. It
allows you to create and manage a cluster of Docker nodes as a single
virtual system.

8. Kubernetes: Although not a part of Docker, Kubernetes is often used in
conjunction with Docker for container orchestration, providing features like
automated deployment, scaling, and management of containerized
applications.

2.5 Why Docker?

We have chosen to use Docker to run Firefox version 52.7.3 for several compelling
reasons that enhance our development and deployment processes. Docker offers a
containerization solution that ensures consistency across various environments,
enabling developers to replicate the same conditions from development to production.
This consistency is particularly important when dealing with specific software
versions, such as Firefox 52.7.3, ensuring compatibility and eliminating the "works on
my machine" problem.

Docker containers are lightweight and efficient, allowing us to bundle all necessary
dependencies and configurations with Firefox, creating an isolated environment that
runs seamlessly on any system with Docker installed. This approach simplifies the
management of dependencies and mitigates potential conflicts that could arise from
differing software environments. Additionally, Docker's portability facilitates easy
scaling and deployment, enabling us to quickly spin up multiple instances of Firefox
for testing or scaling purposes without the overhead of traditional virtual machines.

Moreover, Docker enhances security by isolating applications, reducing the risk of
interference from other processes on the host system. This isolation is crucial for

17

maintaining the integrity and security of our CMS website, especially when dealing
with outdated or legacy software like Flash Player.

In summary, using Docker to run Firefox 52.7.3 provides a robust, consistent, and
efficient solution that streamlines our development workflow, enhances security, and
ensures compatibility, ultimately improving the overall stability and performance of
our CMS website.

● Difference Between Docker and Virtualization:

Docker Virtualization

It boots in a few seconds. It takes a few minutes for VMs to boot.

Pre-built docker containers are readily
available.

Ready-made VMs are challenging to find.

Docker has a complex usage mechanism
consisting of both third-party and

docker-managed tools.

Tools are easy to use and more straightforward
to work with. third-party.

Limited to Linux. Can run a variety of guest OS.

Dockers make use of the execution
engine.

VMs make use of the hypervisor.

It is lightweight. It is heavyweight.

Host OS can be different from container
OS.

Host OS can be different from guest OS.

Can run many docker containers on a
laptop.

Cannot run more than a couple of VMS on an
average laptop.

Docker can get a virtual network
adapter. It can have separate IPs ad

Ports.

Each VMS gets its virtual network adapter.

Sharing of files is possible. Sharing library and files are not possible.

Lacks security measures. Security depends on the hypervisor.

A container is portable. VMS is dependent on a hypervisor.

It allows running an application in an
isolated environment known as a

container

It provides easiness in managing applications,
recovery mechanisms, and isolation from the

host operating system

Table no - 4

18

2.6 Solution Proposal:

To Address the challenges posed by the outdated technology used in the 15m
Telescope monitor and control (CMS) system, a modernization strategy leveraging
Docker technology can be implemented. Docker provides a lightweight, portable, and
scalable solution for packaging, distributing, and running applications across different
environments. Centos 7 can be used because it is derived from the sources of Red Hat
Enterprise Linux (RHEL) and has docker compatibility.

● Modernizing the Firefox and Flash Components: Docker can be utilized to
containerize the Firefox browser along with the required Flash components.
This approach allows Firefox and Flash to run consistently across different
operating systems without dependencies on the host system's environment. By
encapsulating Firefox and Flash within Docker containers, compatibility issues
and dependency concerns are minimized, ensuring a seamless and reliable
browsing experience for the M&C system.

● Compiling the CMS System Using Docker: The CMS system can be
compiled within a Docker container, providing a standardized and reproducible
build environment. By creating a Docker image with the necessary build tools,
libraries, and dependencies, the compilation process becomes
platform-independent. This Docker image can then be used to compile the
CMS system on any server, regardless of the underlying operating system.
Additionally, Docker's layering mechanism facilitates efficient caching of build
artifacts, speeding up the compilation process and enhancing development
productivity.

● Deployment and Distribution: Once the CMS system is compiled and
packaged using Docker, the resulting artifacts can be deployed to any server
with Docker installed. Docker images provide a consistent deployment
environment, ensuring that the CMS system runs reliably across diverse
infrastructure setups. Furthermore, Docker Hub or a private Docker registry
can be utilized for storing and distributing the Docker images, enabling
seamless deployment and updates across multiple servers.

By leveraging Docker for both running the Firefox browser with Flash and compiling
the CMS system, the 15M CMS system can overcome the limitations imposed by
outdated technology. This modernization approach enhances flexibility, scalability,
and maintainability, ultimately contributing to the efficiency and effectiveness of the
15m operations for astronomical research and observation.

19

3 . Implementation

3.1 About Web based NCRA 15m Control & Monitoring System (CMS):

The NCRA 15m antenna is an Alt-Azimuth mounted parabolic dish located at Pune.
The web-based CMS is suitable for this antenna and as well as for the 2 Meter Optical
telescope of IUCAA (Inter University Centre for Astronomy & Astrophysics). The
CMS is based on an architecture which is sufficiently generic to cater to both types of
telescopes with most of the differences in specification captured as configuration
parameters. The system was developed around 2011.

Figure 2 shows a high level architecture diagram of the 15m antenna CMS system.
The spring frame-work, used along with the web container, provides a runtime
environment for the web functionalities like security, concurrency, life-cycle
management, transaction and other services. The spring web controllers route the
request from the C&M System user interface (CMS-UI) to the Core System Services.
The CMS-UI display web-page consists of HTML and Flex components which handle
the HTTP requests and responses from the telescope users. The web-server application
consists of core system services that accept and validate the requests from the
controller, and pass them to the appropriate service components such as batch
processing, state-machine and data layer objects. The core system also provides
dynamic service level integration and implementation such as user and user-group or
role management, catalog management etc. The state-manager is responsible for
overall behaviour of the M&C system and keeps updates of live status of all the
telescope sub-systems like servo, signal conditioning, sentinel and back-end
processing units. Upon raising of alarms or exceeding the threshold levels of telescope
parameters, state-machine takes corrective actions to restore the telescope to normal
operations.

The core-system services & state machine uses XML specifications, self-description
and rule files which increase the level of configurability of the M&C system. The
communication and messaging layers mainly handle the requests / responses,
asynchronous events and monitoring data between the CMS and telescope subsystems
wrappers using message queues and socket communication. The wrapper software is
generic and configurable, and communicates to all subsystems of the telescopes. The
wrapper decodes the XML packets received from the CMS, passes to hardware
devices to take action, and after gathering the responses from devices, converts them
to XML packets to send to the CMS.

20

Figure 6 : The high level architecture of Control & Monitoring System of NCRA 15m Antenna

Salient Features: Our web-based CMS frame-work is an end-to-end software solution
for the radio and optical telescopes M&C system which has the salient features like-

I. Context based web-browser interface
II. Modular and allow easier hardware/software upgrades

III. Scalable and configurable (via xml-DTD specification)
IV. Automatic state-restoration, exception handling using the batch/scripts
V. Gives alarms notifications through the audio, visual and emails.

At present the CMS system runs on the PowerEdge Dell 310 servers with RHEL 6
OS. The CMS has been in usage since past decades, both the Server and OS has
reached its end of life, and hence raise the risk of machine failure and no more support
of RHEL 6 is available. Therefore, we chose the CentOS 7 operating system on a new
machine to implement the CMS. First the all spring frame required software like
Tomcat web-server, ActiveMQ message passing system, Apache Maven , ant compiler
and Java (1.6.0_30) were installed on the CenOS 7. Along with this all requisite
system jar libraries along with Eclipse were installed on CentOS 7 were ensured to be
working.

The platform CentOS 7 as a basic image for the docker then finalized, and centOS 7
Docker image from the available open-source repository system was installed. The
following section gives the docker image installation details for a Linux and Windows
OS platform.

3.2 Docker Installation:

Docker is an open platform for developing, shipping, and running applications.

21

Docker allows you to separate your applications from your infrastructure so you can
deliver software quickly. With Docker, you can manage your infrastructure in the
same ways you manage your applications.

By taking advantage of Docker’s methodologies for shipping, testing, and deploying
code quickly, you can significantly reduce the delay between writing code and running
it in production.

Docker can be downloaded by following the steps mention on the official docker
website : https://docs.docker.com/get-docker/

Docker System Requirements:

1. Linux:

a. 64-bit kernel and CPU support for virtualization.

b. KVM virtualization support. Follow the KVM virtualization
support instructions to check if the KVM kernel modules are
enabled and how to provide access to the KVM device.

c. QEMU must be version 5.2 or later. We recommend upgrading to
the latest version.

d. systemd init system.

e. Gnome, KDE, or MATE Desktop environment.

i. For many Linux distros, the Gnome environment does not
support tray icons. To add support for tray icons, you need
to install a Gnome extension. For example, AppIndicator.

f. At least 4 GB of RAM.

g. Enable configuring ID mapping in user namespaces, see File
sharing.

h. Recommended: Initialize pass for credentials management.

2. Windows:

a. WSL version 1.1.3.0 or later.

b. Windows 11 64-bit: Home or Pro version 21H2 or higher, or
Enterprise or Education version 21H2 or higher.

c. Windows 10 64-bit:

i. We recommend Home or Pro 22H2 (build 19045) or
higher, or Enterprise or Education 22H2 (build 19045) or
higher.

https://docs.docker.com/get-docker/
https://docs.docker.com/desktop/faqs/linuxfaqs/#how-do-i-enable-file-sharing
https://docs.docker.com/desktop/faqs/linuxfaqs/#how-do-i-enable-file-sharing
https://docs.docker.com/desktop/get-started/#credentials-management-for-linux-users

22

ii. Minimum required is Home or Pro 21H2 (build 19044) or
higher, or Enterprise or Education 21H2 (build 19044) or
higher.

d. Turn on the WSL 2 feature on Windows. For detailed
instructions, refer to the Microsoft documentation.

e. The following hardware prerequisites are required to successfully
run WSL 2 on Windows 10 or Windows 11:

i. 64-bit processor with Second Level Address Translation
(SLAT)

ii. 4GB system RAM
iii. Enable hardware virtualization in BIOS. For more

information, see Virtualization.

3.3 Implementation of Firefox 52.7.3 and flash player:

● Objective :
The objective of this setup was to create a CentOS 7 environment within a
Docker container, install Firefox version 52.7.3 with all necessary
dependencies, and configure Flash Player to enable the use of a web-based
control and monitoring system for a 15-meter radio telescope.

● Step-by-Step Process:

● Step 1: Download Docker Image of CentOS 7:

1. A Docker image of CentOS 7 was downloaded from a reliable
repository.

2. This provides a lightweight and isolated environment for running
applications.

3. Centos 7 docker images can be installed using the command
Docker pull command.

4. Command executed: sudo docker pull centos:7

● Step 2: Update Yum Package in CentOS 7 Docker Image:

1. The Yum package manager was updated to ensure all system packages
were current.

2. Commands executed: sudo yum update

● Step 3: Installing Latest Firefox and Uninstalling:

https://learn.microsoft.com/en-us/windows/wsl/install
https://en.wikipedia.org/wiki/Second_Level_Address_Translation
https://docs.docker.com/desktop/troubleshoot/topics/#virtualization

23

This step is done to ensure that all the libraries needed to run the Firefox
browser are installed automatically.

1. Command Executed:
i. >sudo yum install firefox
ii. >sudo yum remove firefox

● Step 4: Install Firefox 52.7.3 with Dependencies:

1. Firefox version 52.7.3 was chosen due to its compatibility with Flash
Player.

2. Necessary dependencies were identified and installed to ensure proper
functionality.

3. Firefox 52.7.3 can be installed using the rpm package .
4. Commands executed:
5. >sudo yum install Firefox_52_7_3.rpm .

● Step 5: Add Flash Player Plugins to Firefox:

1. Adobe Flash Player plugins were downloaded and installed to enable Flash
content in Firefox.

2. The flash player plugins then were copied inside the plugins folder of the
browser:

3. >root/.mozilla/plugins
4. If the plugins folder is not present inside the .mozilla folder it can be

created by using the command.
5. >mkdir -p /root/.mozilla/plugins
6. Flash Player was then configured within Firefox to ensure it was recognized

and enabled.

● Step 6: Access and Use Control and Monitoring System:

1. The web-based control and monitoring system for the 15-meter radio
telescope was accessed via Firefox.

2. This system relies on Flash Player for its graphical user interface (GUI).
3. Firefox successfully opened the system, allowing full functionality for

control and monitoring tasks.

● Conclusion:
The setup was completed successfully, allowing the control and monitoring
system of the 15-meter radio telescope to function as intended within a CentOS
7 Docker environment. The use of Firefox 52.7.3, combined with the Flash
Player plugin, facilitated the GUI-based operations required for the system.

24

This setup ensures a stable and isolated environment for managing the radio
telescope, leveraging Docker's containerization capabilities.

3.4 Deployment of the CMS Software:

The 15m telescope CMS uses a java based SPRING framework along with a Tomcat
Web-application server, ActiveMQ message passing system along with the many
dependencies components. The description of required software components, libraries are
mentioned as below :

3.4.1 Software tools and Libraries required for the CMS software:

1) Spring framework(2.5):

a) a. Used as MVC framework for web based application
development Various spring based web controllers are the entry
point for processing of a user request. Following are few
controllers CMS have used –

2) Blaze DS (4.0):

a) Used to integrate flex with java based web applications and is
used to update the data on various flex based widgets in CMS.
This library is used only for integration purposes and does not
generate any output files as such. Refer to following link for step
by step guide about integrating BlazeDS into web application –

3) Hibernate (3.2.6):

a) ORM framework, used for rapid development of database
interactions with applications. This framework is used to hide the
database level complexities from application, facilitating rapid
application development. This acts as an interface between
application and actual database. Various DAO classes in CMS
make use of this framework.

b) Following are few configuration files used in CMS along with
brief usage description –

i) Alarm.hbm.xml – Maps the Alarm object from application
domain to “t_alarm” table on database side

ii) User.hbm.xml - Maps the User object from application
domain to “t_alarm” table on database side

4) Flex (4.0):

25

a) It is used to create various widgets on CMS UI, which are then
updated with dynamic data using push technology provided by
BlazeDS

5) Sleep Utility:

a) A customized batch scripting framework. Modified to suit CMS
requirements like

i) Executing commands from batch file

ii) Conditional, looping logic

6) Physhun (0.5.1):

a) Used for building and executing processes as finite State Models
in J2SE and J2EE environments in CMS.

7) MySQL (5.1):

a) Used as a persistent store by CMS. CMS interacts with databases
via the Hibernate framework through various DAO (Data Access
Object) classes in CMS. Following are few DAOs used in CMS

8) Maven (3.0):

a) Build tool to build entire application. Maven is an open-source
build automation and project management tool widely used for
Java applications.

9) Active MQ (5.4.3):

a) Messaging framework used to enqueue and dequeue the
messages to increase the scalability of overall CMS. Please refer
to the following URL for step by step information about Spring
ActiveMQ configuration.

10) Tomcat (6.0.35):

a) Tomcat is an open-source web server and servlet.It is used widely
for hosting Java-based applications on the web.

11)Java (1.6.30):

a) Java platform to develop java based application

12)Style-sheet transformation (XSLT):

26

a) To transform XML documents into HTML web page, thus adding
capability to modify the page contents by simple change in XML
document. Please refer to the “Dynamic UI Generation” section
in Developer Guide for further details about this.

13)Castor (1.3.2):

a) a. It is an XML data binding framework, to convert xml to java
objects and vice versa. It uses xml configuration files to convert a
java object into xml and vice versa. Following are few of such
files used in CMS –

14)JNA – Java Native Access:

a) Used to invoke native APIs from java, this is used in CMS to call
various apis in tact calculation library.

3.4.2 Steps to compile CMS software in docker:

1. Objective:

a. Create a Docker image that contains the necessary environment and
compiled CMS software, ensuring it is portable and can run on any
system that supports Docker.

2. Prerequisites:

a. Operating System:

i. CentOS 7 : The base operating system for the Docker host.

b. Docker:

i. Docker: Platform for developing, shipping, and running
applications inside containers.

ii. Centos7

c. Software Packages and Libraries:

i. Apache Maven 3.0.4: A build automation tool primarily used for
Java projects. Install using the package manager or download
from the official website.

ii. Apache ActiveMQ 5.5.1: A message broker written in Java
together with a full JMS client.

iii. Apache Ant 1.7.1: A Java-based build tool used for automating
software build processes.

27

iv. Apache Tomcat 6.0.35: An open-source implementation of the
Java Servlet, JavaServer Pages, and Java Expression Language
technologies.

v. Spring Framework 3.1.0: A comprehensive programming and
configuration model for modern Java-based enterprise
applications.

vi. Eclipse 3.6.1: An integrated development environment (IDE)
used in computer programming.

vii. Drools 2.5: A business rule management system (BRMS)
solution.

viii. Java Runtime Environment (JRE) 1.6.30: A prerequisite for
running Java applications.

ix. Java Development Kit (JDK) 1.6.30: A software development
environment for developing Java applications and applets.

x. MySQL Client: Command-line tool for connecting to MySQL
databases. Ensure the client is installed to facilitate database
operations.

xi. GCC-G++ 4.4.6: The GNU Compiler Collection, including the
C++ compiler.

xii. GCC Fortran: The GNU Fortran compiler, part of the GNU
Compiler Collection.

xiii. Memory Analyser: A tool for analyzing memory usage and
detecting memory leaks.

xiv. Physhun: Used for building and executing processes as finite
State Models in J2SE and J2EE environments in CMS.

xv. JDOM: A Java-based document object model for XML parsing

xvi. M2 Repository: A repository for Maven dependencies.

d. Hardware Requirements:

i. 64-bit Processor: Ensure the system has a 64-bit processor to
support CentOS 7 and Docker.

ii. 4GB RAM: Minimum of 4GB of RAM to ensure smooth
operation.

28

iii. 20GB Free Disk Space: At least 20GB of free disk space to
accommodate CentOS 7, Docker, and all necessary software
packages and libraries.

3. Steps to Compile the Software into Docker:

a. Pull a CentOS 7 Docker Image:

i. >docker pull centos:7

b. Create a Docker Container from the CentOS 7 Image:

i. >sudo docker run -it --net host --ulimit
nofile=300000:300000 -m 3g --env="DISPLAY"
--volume="/tmp/.X11-unix:/tmp/.X11-unix:rw"
cmssoft:v2.0

c. Update the Mirrorlist as CentOS 7 Has Reached End of Life (EOL):

i. >sed -i s/mirror.centos.org/vault.centos.org/g
/etc/yum.repos.d/*.repo

ii. >sed -i s/^#.*baseurl=http/baseurl=http/g
/etc/yum.repos.d/*.repo

iii. >sed -i s/^mirrorlist=http/#mirrorlist=http/g
/etc/yum.repos.d/*.repo

d. Install the Required Packages and Software Referenced in
Prerequisites Inside the /opt Directory in the Docker Container

e. Create the Required System Links:

i. >ln -s /opt/ncra/sharedlib /usr/ncra/sharedlib

ii. >ln -s /opt/ncra/lib /usr/ncra/lib

iii. >ln -s /opt/apache-tomcat-6.0.35
/usr/share/tomcat

f. Source the PATH File in /opt Directory:

i. >source /opt/PATH

g. Run Eclipse and Compile the CMS Software:

i. >eclipse

ii. create a workspace

29

iii. Open the project Folder and make a clean build

h. Copy the CMS.war File Inside the Tomcat Using copy.sh Scrip :

i. >cd /opt

ii. >./copy.sh

i. Run the startupshellscript.sh Script to Start Tomcat, ActiveMQ,
and CMS Web App :

i. >startupshellscript

j. Assign the Servo, Antenna Frontend, Antenna Backend, and
Antenna Server IP to the Container :

i. Replace hardcoded IP addresses with container IP within the
frontend, backend, antenna server, and MySQL scripts to enable
proper communication between Docker containers.

3.5 Production version :

3.5.1 The Web-based (Firefox) CMS UI:

Scripts have been developed for Linux that automate the process of downloading
Docker, installing an image containing Firefox 52.7.3 with Flash Player, and running
it. These scripts streamline the setup by eliminating manual installation steps, ensuring
a consistent and efficient environment for our CMS website. By leveraging Docker,
the scripts create isolated containers that encapsulate Firefox and its dependencies,
maintaining compatibility and stability across different systems. This automation not
only saves time but also reduces potential errors, enhancing the reliability of our web
applications and providing a seamless user experience.

3.5.1.1 For linux :

● How to use

1. Open the terminal in linux-script folder and run the following command
>chmod +x runfirefoxdocker.sh

2. after executing the above command execute the script using the
following command inside the terminal-
>./runfirefoxdocker.sh

● Logic of scripts
1. runfirefoxdocker.sh - Check whether docker is running or not. if

docker is not running redirects to packagechecker.sh else loads the
cms15m:v1 image and redirects to cmsfirefox.sh

30

2. cmsfirefox.sh - terminate the container and starts a new container
with firefox

3. packagechecker.sh - its checks which package manager the linux
machine is running, apt or yum and redirects to aptinstaller.sh or
yuminstaller.sh accordingly.

4. aptinstaller.sh - installs docker and installs the docker image
present inside the folder then redirects to docker_status.sh

5. yuminstaller.sh - installs docker and installs the docker image
present inside the folder then redirects to docker_status.sh

31

Figure-7:

32

3.5.1.2 For Windows :

● How to use

1. Run the cmsfirefox.bat file inside the folder.

● Logic of script :

1. runfirefox.bat - Set PowerShell execution policy to unrestricted for the
current user and run (rundocker.ps1).

2. check_docker_running.ps1 - Checks if docker daemon is running.
3. checkwsl.ps1 - Checks if WSL is installed and determines whether the

default version is set to 1 or 2. If WSL is not installed, attempts to install it
and sets the default version to 2.

4. rundocker.ps1 - uses (check_docker_running.ps)1 to verify if the
Docker daemon is running. If the daemon is not running, it attempts to start
it. If starting the daemon fails, it runs (dockerinstaller.ps1) to
download and install Docker. Once the Docker daemon is running, it checks
if the csm15m/v_1.0:v1.0 image exists. If the image is not found, it loads
the image and then runs (runxming.ps1.)

5. dockerinstaller.ps1 - attempts to install docker from the
(Docker_Desktop_Installer.exe) and redirect to the (rundocker.ps1).

6. runxming.ps1 - checks if Xming is running. If Xming is not running, it
attempts to start it. If starting Xming fails, it redirects to
(xminginstaller.ps1) to install Xming. Once Xming starts
successfully, it redirects to (cmsfirefox.ps1.)

7. xminginstaller.ps1 - attempts to install xming from the
(Xming-6-9-0-31-setup.exe) and redirects to (runxming.ps1).

8. cmsfirefox.ps1 - removes any previously running from image
csm15m/v_1.0:v1.0 and starts a new container.

33

Figure-8: Logic Diagram of Script to run firefox with flash on windows.

34

3.5.2 CMS-Web Software Deployment:

To deploy the CMS-Web software, a Dockerfile is utilized to create a minimal Docker
image. This image can be built using the following command:

> docker build -t [imagename]:[tag] .

Once the image is successfully built, a Docker container can be created and run with
the following command:

> sudo docker run -it --net host -e TZ=Asia/Kolkata --ulimit
nofile=300000:300000 -m 3g --name [CONTAINER_NAME]
--env="DISPLAY" --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw”
[imagename]:[tag]

This process ensures a consistent and efficient deployment of the CMS-Web software,
encapsulating all necessary dependencies and configurations within the Docker
container. The use of Docker simplifies the deployment process, providing an isolated
environment that is easy to manage and maintain.

35

Figure-9 : Dockerfile

36

4. Validation Testing

4.1 Aim:

The purpose of this validation testing document is to verify that the NCRA 15m
Control Monitoring System (CMS) software meets the specified requirements and
functions correctly within the Docker container environment. This document outlines
the testing methodology, test cases, expected results, and actual results.

4.2 Test Environment:

4.2.1 Hardware Configuration :

● Processor : intel i7 64-bit
● RAM : 16GB
● Disk Space : 30 GB free space

4.2.2 Software Configuration :

● Operating System : CentOS 7
● Docker : Latest version compatible with CentOS 7
● Software Packages : As listed in the prerequisites section

4.2.3 Network Configuration :

Name IP Address Ports

Servo 192.168.160.2 9000

testservo 192.168.160.2 9005

Sentinel 192.168.160.3 8000

frontend 192.168.160.3 8571

nbackend 192.168.160.8 9571

backend 192.168.160.6 9571

sigcon 192.168.160.3 7570

dataserver 192.168.160.6 9572

tomcat 192.168.160.33 8080

37

activemq 192.168.160.33 8161

Table no-5

4.3 Functional Testing of the CMS running under Docker :

4.3.1 Test Cases :

1. Test Case 1 : Running cms-web application

a. Objective: Verify the running of Tomcat, ActiveMQ, and CMS web app.

b. Steps:

i. Run the startupshell.sh script.

c. Expected Result: Tomcat, ActiveMQ, and CMS web app start without

issues.

d. Actual Result: [Pass] - Comments if any.

2. Test Case 2 : Network Configuration

a. Objective: Verify the network configuration of the Docker container.

b. Steps :

i. Assign the servo, antenna frontend, antenna backend, and

antenna server IPs to the container.

c. Expected Result: Container is correctly configured with the necessary IP

addresses.

d. Actual Result: [Pass] - Comments if any.

3. Test Case 3 : Basic Functionality of CMS-Web:

a. Objective: Verify the basic functionality of the CMS-web application.

b. Steps :

i. Access the CMS-web application via a web browser.

ii. Navigate through various sections of the application.

c. Expected Result: CMS-web application functions correctly with all basic

features working.

d. Actual Result: [Pass] - Comments if any.

4. Test Case 4 : Connectivity with MySQL :

a. Objective : Verify if the docker container is able to connect with the

MySQL server.

b. Step :

i. Install the MySQL client in the docker image

ii. Check if it is possible to login on the web app

c. Expected Result : Login in to the cms-web is successful and the app can

connect with the database.

d. Actual result : [PASS]

5. Test Case 5 : Time and Date :

38

a. Objectives : Verify if container’s time and date is similar to the Host

System

b. Steps :

i. Check the date and time and container with respect to the host

machine.

ii. Use -e TZ=Asia/Kolkata flag while running a docker
container.

c. Expected Result : The container time matches the host time
d. Actual Result : [Pass]

6. Test Case 6 : Antenna Movement :
a. Objective : Verify the functionality of the antenna motors and brakes.
b. Steps:

i. Initiate the antenna movement commands from the control
interface.

ii. Observe the physical movement of the antenna.
c. Expected Results : Antenna motors and brakes operate correctly

without issues.
d. Actual Results : [Pass]

7. Test Case 7 : Antenna Tracking :
a. Objectives : Verify the antenna's ability to track objects correctly.
b. Steps :

i. Select a known celestial object or test signal.
ii. Command the antenna to track the object.

iii. Monitor the tracking accuracy and response.
c. Expected Result: Antenna tracks the object correctly and maintains

accurate alignment.
d. Actual Result : [Pass]

8. Test Case 8 : Sub-systems Connectivity
a. Objective: Verify connectivity and communication with all relevant

subsystems.

b. Steps :

i. Establish connections with the Servo, Common-Box, Digital
Backend, and Data server.

ii. Issue commands and monitor responses.

iii. Verify data flow and communication stability.

c. Expected Result: All subsystems communicate successfully and
commands are executed within ~3 seconds.

d. Actual Result: [Pass]

9. Test Case 9 : Receiver Settings

39

a. Objectives : Verify the receiver settings for the frontend and backend
systems.

b. Steps :

i. Set the Frontend Radio Frequency to 1400 MHz.

ii. Set the Common-Box attenuation to 15 dB and 0 dB.

iii. Configure the GAB Local Oscillator to 1330 MHz.

iv. Set the Digital Backend sampling to 1 second.

v. Observe the spectrum plot.

c. Expected Results : Receiver settings are applied correctly, and the
spectrum plot displays expected results.

d. Actual Result : [Pass]

Test
Case

Objective Expected Result
Actual
Result

TC1 Running cms-web

application

Tomcat, ActiveMQ, and CMS web app starts

without issues. PASS

TC2 Network Configuration Container is correctly configured with the

necessary IP addresses. PASS

TC3 Basic Functionality of

CMS-Web:

CMS-web application functions correctly

with all basic features working. PASS

TC4 Connectivity with MySQL Successful connection with MySQL database PASS

TC5 Time and Date System time and date are correct. PASS

TC6 Antenna Movement Antenna motors and Brakes work correctly. PASS

TC7 Antenna Tracking Antenna tracks correctly on .

TC8 Sub-systems Connectivity Servo, Common-Box, Digital Backend, Data

server communicating .

Sentinel system networking problem.
PASS

40

Table no - 6

4.3.2 Functional Test Details :

1. CMS Status :

The CMS running in ‘cmssoft V2.0’ docker container shows all sub-systems are

connected except Sentinel and SigCON (15m Signal Conditioning Analog

Backend).

Figure-10

GAB Configured to connect other system

- Command issued are successful

within a ~ 3 seconds of time

- All Engineering parameters of the

subsystems are being monitored.

TC9 Receiver Settings Frontend Radio Freq = 1400 MHz

Common-Box Atten = 15 dB, 0 dB

GAB Local Oscillator = 1330 MHz

Digital Backend 1 sec sampling

● Spectrum plot seen

PASS

41

2. Equatorial to Horizon Coordinate conversion verification for the Source

Tracking :

a. Because of Docker Image was booting with the UTC time, the Equatorial

to Horizontal (Azimuth and Elevation) values were showing difference :

Figure-11:

b. After correcting options for Booting the Docker image in the container

source, Conversion is taking correctly -

42

Antenna Tracking Status :

Figure-13

43

Engineering Sub-system Parameters Monitoring Display :

Figure-14

44

Receiver Settings and Band-plot :

Figure-15:

45

Figure-16:

4.3.3 Non-Functional Testing :

Type Legacy System New System running under
Docker

1 Machine PowerEdge R310 (™) Dell
Rack-Server

HP Compaq 8200 (Mini Tower
Computer)

2 CPU Intel(R) Xeon(R) Quad-core
CPU X3430 @ 2.40GHz

RAM : 16 GB

Intel(R) Core(TM) i7-2600 CPU
@ 3.40GHz

RAM : 16 GB

3 OS RHEL 6 Docker Image - CentOS 7
Host OS - CentOS 7

4 Average CPU
Consumption

for 1 hour

6.9 12.48

5 Average 3.9 4.6

46

Mem in %
Consumption

Table no -7

(1) CPU Consumption by the CMS Process over 1 hour :

Figure-17:

(2) Memory Consumption by the CMS Process over 1 hour :

Figure-18:

47

Containers generally have access to the full CPU and RAM resources of the host
system, with only minimal overhead. The CPU overhead for running a container is
negligible, often considered close to zero. Similarly, RAM usage for containers is very
efficient. While the Docker daemon itself does consume some CPU and RAM, these
requirements are minimal compared to the resources needed to run applications in a
virtual machine.

