
Page 1

                                                   

National Centre for Radio Astrophysics
                                                                             Internal Technical Report 

                                                                      GMRT/TGC/001-Jul 2024

Reducing the TGC System dead-time between consecutive 

Observing data-scans

                                                            

                                      Author : Jitendra Kodilkar, Deepak Bhong, Ishwara Chandra

                                          Email : jitendra@ncra.tifr.res.in, deepak@ncra.tifr.res.in,

                                                       ishwar@ncra.tifr.res.in

 Objective: Based  on the NCRA internal users’ feedback, the necessity of reducing the TGC system dead-

time between consecutive GMRT LTA and Beam-former data-scans acquired using the GMRT backend was 

expressed. The varying dead-time of around ~3 to 4 minutes between two consecutive data-scans was putting 

constraints on covering the expected number of target-sources for data-acqusition in general or pulsar survey kind

of observations, and was also restricting to cover total number of points specified in the grid-pointing and 

holography kind of experiments. 

The extensive modifications in the TGC code was done to implement the broad-cast DAS (Data Acquisition 

System) commands, also implement the single command for starting the astronomical data acqusition 

(‘fstartscan’ or single DAS-commands like ‘startscan’/’stopscan’ for multiple subarrays). This drastically 

reduced the command turn-around time by 50% and effectively helped in reducing  the dead time between 

consecutive data-scans up to ~ 1 to 1.5 minutes for normal observations, and 0.3 to 0.7 minutes in case of 

grid-pointing and holography kind of observing sessions. Thus, it is effectively now possible to conduct the 

survey observations, holography and grid-pointing kind of experiments using the TGC system with expected 

number of celestial sources within a allocated time of observation.

Revision Date Modification/ Change

Ver. 0.9 2024/03/21 Initial Draft Version

Ver. 1.0 2024/07/30
Report accepted in the TGC

meeting

mailto:jitendra@ncra.tifr.res.in
mailto:ishwar@ncra.tifr.res.in
mailto:deepak@ncra.tifr.res.in


Page 2

Reducing the TGC System dead-time between 
consecutive Observing data-scans

                                                           Jitendra Kodilkar, Deepak Bhong, Ishwara Chandra 
                                                                 $ Ver 1.0, July 2024 $

1 Introduction : 

Based  on the NCRA internal users’ feedback ( reference emails Nov 2020, Mar 20211), necessity of 
reducing the TGC system dead-time between consecutive GMRT LTA2 and Beam-former data-scans 
acquired using the GMRT backend was expressed. The varying dead-time around ~3 to 5 minutes 
between two consecutive data-scans was putting constraints on covering the expected number of target-
sources for data-acqusition in general survey/pulsar search kind of observations, and was also restricting 
to cover of total number of points specified in the grid-pointing and holography kind of experiments. 

In the feedback Control-systems, the ‘Dead-time’ represents the amount of time between the change in 
controller-ouput and the initial reponse of associated process variables (PV) is visible. And the ‘lag-time’ 
is defined as the time elapsed after Process Variables starts to change until it reaches around 0.63 (1 - 
1/6) of total change of the PV value. But in the software-programming paradigm,  ‘dead-time’ refers to 
periods when a program is idle or not actively performing useful work due to various reasons such as 
waiting for the I/O operation, synchronisation of different tasks and event handling. Hence minimizing 
dead-time in general is critical for optimizing the performance in many types of applications.  

1.1 Various delays in the TGC system : Processing-time/lag-time, delay-time, and dead-
time

Time span required to cover the observation of desired number of target sources was more in the 
upgraded Tango based GMRT Control (TGC) system as compared to the legacy ONLINE control system. 
The command/observation execution time was lesser in ONLINE system because the Master-slave 
architecture of the ONLINE system is tighly coupled to the GMRT hardware systems. The data-
communication packet exchange between the GMRT hardware I/O system and the Central M&C system  
for command execution & monitoring GMRT systems are hardcoded in the source-code it self. 
Whereas, the TGC system is realised using a hierarchical compoisiton of generic (or identical) control 
nodes which identify their role based on the configuration specified externally. In a hierarchy the Ceneral 
M&C (CMC) is at the top, the antenna Local M&C (LMC) system is in the middle-layer and the I/O device 
servers at the bottom which control the actual GMRT hardware/subsystems. TGC system is also 
developed as an exploratory prototype with aim to explore the architectue and TANGO [1] technology 
which is planned to be used in SKA Telescope control & monitoring system. 

The loosely coupled TGC architecture which balances trade-off between developing a generic monitor & 
control system which can be implemented rapidly for any new-subsystems/antenna to be added in the 
radio telescope, and intrinsic processing-time, lag-time delay. Therefore, the intrinsic processing-time 

1 Emails received from Prof. Ishwara Chandra based on the academic feedback meetings, and the TGC Bi-weekly
meetings.

2 LTA – Long Term Acqusition is a standard format used to acquire the interferometry science-data on target-
sources at the GMRT.



Page 3

delay and lag-time is inevitable in the TGC system because of various reasons, some of them are 
described as follows :
 
(i) The every identical control-node (like pipe-filter architecture) in the hierarchy realised its role as a 
Central/Local M&C system (CMC/LMC) or IO control-device by reading the external configuration 
database and files for the commands, monitoring, and warning/alarm parameters. The control-nodes also 
performs additional functions such as user-authentication and authorisation (based on user-role as 
astronomer/engineer/observer), command-validation, reading default values for the command arguments, 
self network IP/socket addresses, antenna and configured device names, and parent/child nodes network-
addresses from the external database. Thus, the intrinsic delay is introduced for reading information from 
the external devices such as file-system, network-sockets, and database.

(ii) The TGC control nodes uses the Linux OS, therefore number of open-source s/w packges available in 
the TANGO framework (C++/Java/Python) and the supportive network, databases s/w packaes are used 
in the TGC system for the network-calling, data-parsing, and thread-synchronisation. The lag-time delay 
can occur in used open-source multi-threaded or multi-process s/w components to achive the 
synchroization by using the primitive locks or semaphores to be released by other threads and processes.

(iii) TGC system provide additional GUI and Scripting environment facility at the CMC and the LMC level 
for independent control. The command-flow uses the Tango event-driven system for broad-casting the 
command to the antenna and backend-systems in the CEB. Therefore, the event driven communication 
system may contribute the additional processing-delay for waiting events to be triggered from the python 
scripting/GUI to execute the commands in the command-flow chain from CMC-LMC to I/O devices.

Also, the CMC/LMC control-nodes are developed in the Java language, the I/O Tango devices are 
developed in C++, and Scripting-Manager is developed in the Python to achieve higher-level modifiable 
algorithms for the command implementation. Thus, command-response conversion between child-parent 
nodes, propogating the system monitoring/alarm parameters up to the CMC involves processing-delay in 
the TGC which is unavoidable at the movement.

1.2 Dead-scan Time :

Here, we consider the pure dead-time from the time when the target-source is specified in the observing 
command-file for a observation up to the time when the astronomical science data-acqusition is triggered 
for the given target-source. Therefore, overall dead-time in observing the target-source includes delay-
time  for positioning and ensuring that all the working antennas grouped under a given subarray are 
tracking the target-source. The dead-time also includes the process-time for multiple backend 
commands to get successfully executed for triggerring the data scan such as adding the target-source to 
observing project source-catalog in the Local M&C system (LMC) catalog-database, setting the phase-
center source for the fringe-stopping, and then sending start data-acqusition (start-scan) command to the
GSB/GWB backend(s) along with the required arguments ( target-source mean RA-DEC, observing-
frequency and side-band information parameters). 



Page 4

1.3 TAT and dead (Slew) scan-time Optimization :

For the changed algorithms and new s/w modules developed in the TGC system, two kind of methods are
used to check it’s effect on dead-time optimization.  One is to note the Turn-Around-Time (TAT) using a 
python-module3 which measure total time required from the time when command is issued from the TGC 
CMC (Central Monitoring & Control) node to the LMC node, and response of that command is received at 
the CMC. Another method used in validation testing is to measure the dead scan-time  which is the time 
between previous data-scan stopped and the time when next  data-scan started. The dead (slew) scan-

time is measured using the lta_time.pl4 perl script. 
Test observations are conducted on the close celestial sources or the same-source with 30’ shift in the 
declination. This avoided the delay-time in antenna positioning between the target-sources that are distant
apart due to the large celestial coordinates differences. For the grid-pointing and holography experiments,
the target points specified by the grid-pointing/holography model were used. However, this report doesn’t 
address the science results like expected sensitivity, measured primary beam etc., but timely feedback on
the science-data validation were received from the concern users. Hence scope of the testing is 
constrainted only to the results from the TGC validation tests like TAT and dead scan-times.

The new developed modules or modifications done in the TGC system effectively reduced the variable 
dead-time between consecutive data-scans from 3 - 5 minutes to 1.3 - 1.6 minutes (Mar-June, 2021). 

The dead-time is optimized by omiting faulty antennas from the ‘gotosrc()’ waiting loop which ensures 
that every antenna in the subarray is tracking correct source. Previous algorithm was waiting for those 
antennas which were having problems such as the antenna/servo is in manual mode, servo system AZ/EL
brakes are not releasing, and Servo computer malfunctioning etc. The antenna tracking algorithm is also 
optimized by internally sending a servo-system ‘abort’ command before issuing the new ‘track’ command 
to the servo-system. The use of ‘abort’ command helped in removing the stale-source coordinates of the 
previously tracking source in the servo-system and saved time up to ~30 seconds. Thus, the latest lag-
time for tracking subarray of thirty antennas is around ~20 to 30 seconds. 

The further scope of this report is more focussed on summarising the changes or new development done 
in the command execution algorithms of the TGC system to reduce the Turn-Around-Time and thereby 
reducing the dead-scan time between consecutive data-scans taken using the GMRT backends 
(GSB/GWB). The total ~18 or more than that tests were conducted, results were shared timely over
the email and summary was discussed in the group-discussion to get further inputs from the 
academic and senior members.

To minimize the dead-time from ~1.6 minutes to ~0.4 to 0.7 minutes in case of the holography & grid-
pointing experiments respectively, and up to ~1 minutes in case of the multi-subarrays observation using 
both the correlator GSB and GWB, we applied various techniques such as : (i) Asynchronous execution
to efficiently schedule tasks of antenna-tracking and backend-commands.  (ii) Instead of serially sending 
the TGC commands to GSB and GWB, broadcast commands at a time, and aggregate the response.

3 Module for TAT for every required command is incorporated in the scripting-manager developed by shri. Deepak 
Bhong. 

4 lta_time.pl perl script developed by shri. Santaji Katore. Furhter modified to skip the bad-scans by Jitendra 
Kodilkar 



Page 5

(iii) Making a provision of time (hr:min:sec) argument for the start data-acqusition command so that the 
TGC command can be executed in advance but the data-acqusition trigger will take place in the 
future time specified by the the time argument. (iv) Optimizing the multiple data-acqusiton commands 
into a single ‘fstartscanproj’ (fast scan-project) for adding the source , setting the phase-center source at 
the LMC, and then finally starting of the data-acqusition.

Section-2 mainly addresses the new development/modifications in the TGC , section-3 gives details of 
the test experiments and results validation, section-4 describes details of the functional problems 
occurred in the TGC and how it is resolved, and the last section-5 gives summary and conclusions.    

2 New developments and Modifications in the TGC-system  

The back-end Configuration and Data Acqusition System (DAS) commands in the TGC system for the 
GSB and GWB were use to be issued serially due to inherent different arguments required for individual 
DAS commands. The serial execution of DAS commands introduced the unwanted dead scan-time in 
survey, grid-pointing, and holography kind of observations. The TGC codes at the CMC, LMC ( Java, 
Python API), Tango I/O control-nodes servers (C++),  and Client-programs running on the GSB/GWB 
machines  (C++) are extensively modified to incorporate the new algorithms developed in order to reduce 
the dead-time between the two consequent scans in the LTA data and the TAT (Turn-Around-Time) for 
the backend commands in the TGC.

Annexure-I tables gives the details of new developments and code modifications. The subsections given 
below briefly mention the functional changes done in the TGC code.
  

2.1 Asynchronous Task-scheduling  :
 

The addition of source-catalog, digital-backend  (GSB/GWB) configuration for the scheduled observation, 
observing project creation, and tuning of the receiver-chain systems of the antenna (Front-end Common-
Box, GAB, Optical-Fiber etc) in general  is done at the begining of observing session. Whereas the 
execution block for observing source called ‘scan’ is iterated with a pre-defined number of commands 
which mainly track the antennas on given target-source, and send commands to the backend systems for 
startinng/stopping acquisition of the science data. Hence, the dead-scan time optimization is done by 
asynchronously scheduling and executing commands.

The asynchronous task-scheduling is acheived in two ways :
 
(i) The observing batch-script in Python environment do not wait for the response of issued command 
beyond the predefined command timeout period is over. Therefore, the track_array() command for a 
given sub-array in the observing batch-script is specified with time-out argument having a limited pre-
defined period of ~ 5 to 10 seconds. In this case, the observing script do-not wait for the response of 
given command but antennas continue its processing like antenna positioning & tracking. The CMC 
receives only final aggregated response from all antennas. While the antennas are positioning on target-
source, the preparatory commands for starting the data-scan like adding and setting of the phase-center 
for a given project are issued and executed at the backend/correlator LMC system. And after checking 



Page 6

that working antennas are tracking correct-source, the TGC system issue the start-scan command to the 
GSB/GWB backend immediately.

(ii) In case of the VLBI (Very Long Baseline Interferometry) observing sessions, it is critical to synchronise
the time of starting of the data-acqusition scan at the correct time in order to align the data taken with the 
other telescopes.  For this purpose, the start_proj() or fstartscan() commands accept the “time_str” 
argument in HH:MM:SS format so that the data acquisition command gets executed in advance but the 
acqusition trigger of the science data take place at the given ‘time_str’ argument. By executing the 
start_proj/fstartscan command with the future expected time to trigger the data acqusition, rest of the time 
can be reschedule to position and track the array on a given target-source. Thus, this kind of 
asynchronous execution also help in reducing the dead-time between two consecutive data-scans.

The command for starting/triggering the data-scan commands with the ‘time_str’ arguments has multiple 
options such as post-pone or prepone the command-execution, and abort the data acqusition command 
as well. The standard operating procedure for starting the data scan is as given below : 

 start_proj (‘BOTH/GSB/GWB’, <Sub-array No.>, time_str=”HH:MM:SS”) 
// "time_str" argument is optional, if not given, command is executed like any other normal   
// command which start the data-acqusition instantly when command received.

// The ‘time_str’ argument is also in a similar manner for the ‘fstartscan’ command described in 
the section 2.2

 If the ‘time_str’ option is given, then the ‘start_proj’ command gets buffered in ‘deviceclient’ 
program running on the digital backend machines, it’s execution behavior is as follows :

 (i) if ‘time_str’ > current_time : Backend will send success response to the CMC of TGC, and 
trigger the command when current_time <= 'time_str'.
 
(ii) if ‘time_str’ <= current_time :  start data-acqusition command executes immediately, as if no 
time_str argument is given.

 If the 'start_proj' Command is repeated with the new "time_str_next" again :

         (a) if time_str_next > time_str_stored , then it will overwrite the time, and execute whenever
           time_str_next <= current_time.

         (b) if "time_str" argument not given OR  ‘time_str_next’ < time_str_stored, command will be 
               executed when the current_time >= time_str_next.

 Upon issuing correlator ‘halt’ command or command with ‘abort’ option i.e.
       

           execute_command(‘GSB/GWB’, corrctl1, ‘abort’);  // All the buffered/planned 'start_proj'
                                                                                                // command will be canceled.



Page 7

2.2 Single fast data-scan command - “fstartscanproj” :

To trigger the data acqusition-scan on target-source, TGC system comprises serial execution of 
subsequent three commands such as (i) Add phase-center source in the backend LMC catalog, (ii) 
Configure the fringe-stop parameters by selecting the phase-center source information from the already 
added backend LMC-catalog along with the frequency parameters. (iii) And finally issue a ‘startscan’ 
command. 
The required total turn-around time (TAT) for ‘add-project source’, ‘set phase center source’, and the 
‘startscan’ command execution is ~ 50 seconds. Whereas, if the phase-center source is already present 
in the LMC-catalog, then the configuring the phase-center by the ‘set phase center souce’  command and 
issuing ‘startscan’ command i.e. only two commands execution TAT takes only ~36 seconds.
 
Instead of executing two to three commands serially for starting the data-acqusition per subarray, a single 
command is created in the TGC system named ‘fstartscanproj’. This single command perform addition 
and setting of the phase-center, and issuing of ‘startscan’ command in one go which takes only ~ 18 
seconds. Thus, using the ‘fstartscan’ command , turn-around-time for starting the data-acqusition is 
reduced by 50 %.  The Figure-1 shows measured Turn-around-time (TAT) with two to three serial DAS-
command execution for the data taken in Apr-May 2023 is comparied with the Turn-around-Time (TAT) of 
‘fstartscan’ command for the data taken in Sep-Aug 2023. The consistent data taken over long duration 
shows that ~40 to 50 seconds of TAT required for the default serial das-commands has been reduced to  
~20 seconds only for the ‘fstartscan’ command.
 

 The syntax for ‘fstartscanproj’  is as follows : 
    

   fstartscanproj   < subarray id > , op_short=0 (0=default-source, 1=setphase_source, 
    2=add+setphase)  <source_name> op_short=0 (1=set-TPA frequency )  <RF1> <RF2>
   <FIRST_LO1> <FIRST_LO2> <BB_LO1> <BB_LO2> <bandmask> <rest_freq1> <rest_freq2>
  <ch_width> <qual> <integ> <time_str> (for advance command in hh:mm:ss) <draddec_reftime>       
   (in hrs for planetary object tracking)

  (i)  op_short = 2  //  Automatically select to 2 if phase-center source is not added in the
                             // backend ‘LMC-catalog’.
                   = 1  //  Automatically select to 1 if phase-center need to be configured
                   = 0 // If the same phase-center is repeated for the starting the data-acqusiton scan 
                         // i.e. no need to configure.

  (ii) op_short = 0 // No need to configure the fringe-stop RF frequency to the correlator
                       = 1 // Set the fringe-stop RF frequency and other parameters 
 
  (iii) time_str = ‘HH:MM:SS’ // Optional - argument to trigger the data-acqusition scan in expected time.
  
  (iv) dradec_reftime = <hrs> // Optional - Reference time for ∆Ra, ∆Dec for planetory objects.



Page 8

2.3 Broad-cast DAS command implementation :

The legacy ONLINE system issue the data-acquisition system (DAS) commands serially to the GSB and 
GWB backends, and even for each subarray separate commands are issued in case of multi-subarray 
observation. This is because DAS command from the ONLINE were issued to the correlator using the 
client-server synchronous communication. Therefore, initial development of the TGC also followed the 
same logic mainly because two backends (GSB and GWB) takes different types of fringe-stop arguments.
In case of multi-subarray observation (two subarrays), the turn-around-time (TAT) in the TGC system was 
around ~2 to 3 minutes. 

To reduce the command TAT and dead-time between two scans, the TGC software modified so that the 
correlator commands can be broad-casted simultaneously to both the correlator, and also instead of 
issuing separate start/stop-acqusition commands to each subarray, only one command is implemented in 
the TGC to start/stop the data-acqusition for the more than two subarrays.  Thus, the parallelism in 
command execution reduced the Turn-around time from 135 - 174 seconds to ~70 seconds. 
Figure-2 shows the average statistics of turn-around time measured in the TGC system for data-
acqusition commands issued to the backend system. 

To implement the broad-cast command method, the CMC, LMC , IO device-server code and the 
deviceClients programs running on the backend-machine are modified. Table-1 A and Table-2 B describe
the functional changes done in the TGC backend related commands which are as follows : 

Figure 1: Command Turn-Around-Time (TAT) in Apr-May (Serial commands) and Sep-Aug ('fstartscan') 2023



Page 9

TABLE-1 A:  The data-acqusition commands to both the backends are broad-casted in the TGC using a 
Single command with multiple arguments for each subarray :

#  Command TGC Implementation

1  getpsource

//  Broad-cast the set phase-center source command to both the GSB and 
// GWB backend using a 'getpsource'  which can take arguments for two or three
// subarrays simultaneously  i.e. subarray numbers separated by ‘#’ character 
// i.e. '1#2', and phase-center  source-name '3C48’ and ‘3C286’ respectively.

execute_command('GSB,GWB', 'getpsource', "1#2, 3C48#3C286" )

2 setfreq

// Set the fringe-stop frequency parameters to the individual correlator but 
// simultaneously for two or three subarrays. Example given below set the 
// frequency parameters for two subarray (1 and 2 ) in one go using a single 
// command.

execute_command('GWB','setfreq','1#2','1460#500','1460#500','-1460#-
500','-1460#-500','0.0#0.0','0.0#0.0','12#12','0.0#0.0','0.0#0.0','1#1','0#0','1#1')

3 startscanproj

// Broad-cast command to start data-acqusition for both the GSB and GWB
// correlator, and two sub-array (subarray 1 and 2) simultaneously.

 execute_command('GSB,GWB', 'startscanproj', '1#2' ,  
'00h00m00s#00h00m00s','0.0#0.0')

4 stopproj 

// Broad-cast command to start data-acqusition for both the GSB and GWB
// correlator, and two sub-array (subarray 1 and 2) simultaneously.

execute_command('GWB,GWB', 'corrctl1','stopproj','1#2')

TABLE-1 B :  Scripting APIs to be used in the observing file at user level are developed by shri. Deepak 
Bhong for the above commands, which are as follows        

#  Scripting Command Example  Description

1  set_source_corr([1,2],'3C286,3C123','GSB,GWB')
Add and configure the phase-center source for 
Subarray-1 and 2 of both GSB and LMC backend.

2  strtndas('GSB,GWB','1,2') 
start the data-scan for multiple subarrays and 
multiple backends in one go.

3 stpndas('GWB,GWB', '1,2')
stop the data-scan for multiple subarrays and 
multiple backends in one go.

4
fstart_proj('GSB,GWB',<subarray No>,<source-

name>) 
fast-start scan interface with broad-cast facility for
single-subarray.



Page 10

Figure 2: Comparison of Turn-around time for data-acqusition commands in serial/default mode, Broad-cast 
(parallel) and fstartscan 

2.3.1 Effectively handling of the Command-failure : 

The CMC , LMC level codes modified to aggregate the response for data-acqusition broad-cast command
which is issued to the multiple projects running for both the backends. Effectively, using the scripting 
modules it became possible to check the failure responses from the project running under individual sub-
array(s) and backend(s) so that the command can be retried only to the failed sub-array of particular 
backend. 
If the aggregate response of broad-casted  command is received failed, then the data-acqusition status of 
individual project is checked (which is already updated by the LMC system), and command is retried only 
for the project for which command to start/stop the data-acqusition is failed.

3. DAS Command Testing and Dead-scan optimization Results : 
  

In the TGC system, number of tests were conducted to measure dead-scan optimization time and 
Command turn around time (TAT) before and after the code modifications implemented for the Data 
Acqusition System (DAS) commands viz. ‘addproject’, ‘setpsource’, ‘setfreq’ , ‘startscan’, and 
‘stopscan’.

The dead-scan time between the two data-scan is measured using the ‘lta_time.pl’ script which measure 
the time-difference between the when scan was stopped and next consequent data-scan recording 
started at actual in the LTA file. Whereas the command turn around time (TAT) is measured using the 
‘gettime()’ python module in the MNCScripting manager which measure the total execution time of the 
DAS command i.e. total time required when the command is issued from the Central Node to the bottom 
level correlator DAS program which executes that command and send the response back to the CMC 
node.



Page 11

The subsequent sub-sections give details of various experiments conducted which show the fullfillment of 
the various objectives of science and engineering experiments which requires the time optimization.
   

3.1 Grid-pointing and Holography Experiments using the ‘fstartscan’ command :

3.1.1 ‘fstartscan’ command TAT optimization, and time-saving in the grid-pointing 
antenna procedure :

In this sub-section, total four experiments were conducted from Jan 11 to Mar 13, 2023 to validate the 
dead scan-time optimization and the Turn-around-time command reduction by comparing the dead-time 
and TAT required for the default serial commands ( ‘addprojsrc’ + ‘setpsource’ + ‘startscan’) and the dead-
time, TAT required using the new single command ‘fstartscan’. 

From experiments conducted shown in Table-2 , the resultant TAT for default serial commands and the 
‘fstartscan’ command for single backend (GSB or GWB) are noted. 

TABLE - 2 : System test and grid-pointing experiments test using the single Backend 

#     Date Experiment Type  Description 
Turn around time, and Dead-

scan optimization time

1 11 Jan 2023 System Test 
The TAT measuring for the 
GSB backend using single sub-
array

(i) TAT = 40 seconds for startscan
command  addproject + 
setpsource + startscan.
(ii) TAT = 29 seconds without 
addproject command.
(iii) TAT = 13 seconds using the 
‘fstartscan’ 

2 08 Mar 2023 System Test

‘fstartscan’ command options 
enabled for (i) addproject + 
setproject, op_short=2 
(ii) setproject only, opt_short = 
1
(iii) setfrequency, op_short = 
1 / 0

TAT is ~13 to 15 seconds with all 
possible options selected for 
‘fstartscan’ command

3 10 Mar 2023 System Test
Turn around time measurement
with both the backend GSB & 
GWB, fstartscan serially.

Individual backends 
(i) (addproject ~16 sec + setphase
~ 18 sec + start-scan ~ 13 sec) 
TAT takes 44 to 47 seconds. 
(ii) ‘Fstartscan’ command TAT = 
12-13 seconds

4 13 Mar 2023 grid-pointing Grid-pointing with the default 
backend commands 
(addproject + setphase-source 
+ start-scan) and using the 
‘fstartscan’ executed.

(i) Default command TAT = 26 
seconds per scan. 
   ‘fstartscan’ command TAT = 
13 seconds to 18 seconds. Thus, 
50%  TAT is reduced.



Page 12

#     Date Experiment Type  Description 
Turn around time, and Dead-

scan optimization time

(ii) Total dead-scan time for 
both the axis :
 (a) Default total 16.5 min 
 (b) ‘fstartscan’ total ~ 12 min.
 
(iii) For both the AZ and EL axis, 
  (a) Total pointing time is ~26
     minutes in default mode.
  (b) Total pointing time is ~ 21 
    minutes Using the  ‘fstartscan’
     command 
Thus, 4 to 5 minutes are saved 
in pointing using both the axis.

Figure 3: Dead scan-time per scan for three grid pointing in both the axis using data taken on Mar 13, 2023

 Validation test results   : 

(1) With the help of ‘fstartscan’ we could reduce the TAT by 50 % . The TAT for the default-serial 
commands use to take ~40 seconds ( ~29 seconds without ‘addproject’ command). Whereas using the 
‘fstartscan’ command, the TAT is found to be ~13 to 15 seconds.
(2) The dead scan-time in the default serial mode command is ~ 54 to 60 seconds per scan, whereas for 
the ‘fstartscan’ it is 36 to 40 seconds. Figure-3 show the dead scan-time per point using the three grid-
scans across both the axis (AZ and EL) of antenna.



Page 13

(3) The total grid-pointing time for both the AZ and EL axis using the GSB or GWB backend reduced by 4 
to 5 minutes using the ‘fstartscan’ command. Thus, total time for the pointing takes ~ 26 minutes whereas 
the ‘fstartscan’ command takes ~ 21 minutes. 

3.1.2 Grid-pointings on Multiple Hour-angle sources for the pointing Model :

To measure the Azimuth-Elevation dependent pointing model, it is required to do continuous grid-pointing 
experiments on multiple sources of various transit-times using different calibrator sources with multiple HA
and varying declination from north to south. The long-term grid-pointing observation consists of more than
200 pointings, and hence time reduction of completing such observation was a crucial requirement.

Table-3 gives details of such experiment conducted as an example where TGC system faced missing 
scan problem on May 29, 2023 (Observation no. 5), after modifying to handle the scan-failure, no missing 
scan was noticed in May 30, 2023 data ( Observation no. 6).
 
TABLE - 3 : Long term grid-pointing experiments with multiple HA sources for the pointing model 
(Experiments by S. Roy)

#     Date Experiment Type  Description 
Turn around time, and Dead-

scan optimization time

5 29 May 2023

Grid-pointing  on
multiple sources for

pointing model.
Total scans : 279 

The grid-pointings on multiple
sources with different (HA) for
the pointing model. 
The data is taken using the 
GSB backend & ‘fstartscan’ 
command. 

(i) For the command 
‘fstartscan’, average dead-scan
time is ~0.6 to 0.8 minutes
(ii) Problem : Out of total 279 
pointings in grid procedure, 7 
scans are missing. 

6 30 May 2023
Grid-pointing  on

multiple sources for
pointing model 

The grid-pointings on multiple
sources with different (HA) for
the pointing model. 
The data is taken using the 
GSB backend & ‘fstartscan’ 
command.

(i) After fixing the missing scan 
problem in the PyScripting API,
no missing scan found in 
total 206 pointings.
(ii) ‘fstartscan’  TAT is less 
than one second.

 Validation test results   : 

(1) Using the ‘fstartscan’ command, the dead-time reduced up to 0.6 to 0.8 minutes. Thus over all, for 
large number of pointings, the total experiment time at least is reduced by 1 to 1.25 hrs (Refer 
Figure-4, Plot-1)
(2) For the pointing model experiments, out of large number of pointings (~200 to 279) five to seven scans
were missing in the TGC system, this problem resolved and no missing scan found in the experiments 
conducted with large number of grid-pointing experiments (Refer Figure – 4, Plot-2)
  



Page 14

Figure 4 : Long -term grid pointing experiments depcting the dead-scan per pointings, and missing scan 
problem resolved

3.1.3 Holography Experiment :

The Holography experiment is conducted to measure the GMRT antenna beam-pattern by taking the 
visibility data on calibrator at predefined grid-pointing location. This experiment use to be conducted in the
legacy ONLINE which was executing the Servo-slewing command per grid-pointing and recording at least 
~36 to 42 seconds of LTA data with 6 to 7 records within a one minute of boundry i.e. total one minute for 
the grid-pointing. The TGC system previously use to take more than one minutes of time (~ 1.5 to 2 
minutes), hence the holography experiment was unable to conduct within a given allocated time for the 
experiments. To resolve this problem various tests are conducted to optimize the time, mainly  (i) use the 
‘fstartscan’ command, execute the track and DAS commands asynchronously. Table-4 gives the details of
these experiments with details of problem faced, and time optimized in terms of dead-scan time and TAT.

TABLE - 4 : Holographys experiment to measure the beam-pattern of the GMRT Antenna (By Dharam V 
Lal/S. Katore/JPK)

#     Date Experiment Type  Description 
Turn around time, and Dead-scan

optimization time

7 04-05 July
2023

Holography
experiment  

 

Holography compatability 
test with the legacy 
ONLINE system using two 
methods : 
(i) ‘fstartscan’ command 
with advance time to trigger
the scan, and then give 
array-track command. 

(i) As compared to method-1 
(‘fstartscan’ command first and then 
array-track), method-2 has less noisy 
data.
(ii) In both the case, number of 
records collected per scan are 
compatible with the legacy online i.e. 
In total 1 minutes spend per-grid 



Page 15

#     Date Experiment Type  Description 
Turn around time, and Dead-scan

optimization time

(ii) Array track command 
first, and then ‘fstartscan’ 
command without advance 
time.

point, total recording-time is 36-42 
seconds and dead-time scan-time 
of 18 to 24 seconds.
(iii) 4 July 2023 data problem – 
Pointing name is correct but 
coordinates of previous pointing is 
repeated.

8 10 July 2023
Holography
experiment 

Holography test to check 
compatibility with the 
ONLINE for total 1 minute 
per scan-point

(i) TAT for ‘fstartscan’ 17-19 seconds 
+ 2 seconds for ‘stopscan’.
(ii) Dead-time is 0.3 to 0.4 minute
(iii) Number of records are 6 to 7 
i.e. 36 to 42 seconds . recording. 
Scan execution happening per one 
minute.

9
21-22 July

2023
Holography
experiment

Holography test with 2 
minute per pointing.

(i) Dead-scan time is 0.3 to 0.4 
minute, Total-Recording time is 1.6 
to 1.7 minutes.
(ii) Scan execution trigger 2 
minutes exactly.

(iii) Source-coordinate repeatation 
occurred on July 4, 2023 is 
resolved.

 
resolved. resolved.

10 25 Aug 2023
Holography
experiment

Holography test with 2 
minute per pointing.

 Validation test results   : 

(1) Using the TGC system with ‘fstartscan’ command, the holography experiment could conducted 
successfully with the 1 minute of boundry per grid-pointing along with the ~36 to 42 seconds of recording 
time and dead-time 0.3 to 0.4 minute. Thus, dependancy of conducting the holography experiments using 
the legacy ONLINE is removed. Figure-5 shows the test results conducted on July 10, 2023 (Observation 
no. 8) .
(2) To increase the sensitivity per grid-pointing, holography experiments were conducted with the 2 
minutes of execution time of boundry per point. Figure-6 depicts the dead-time is ~0.3 to 0.4 minutes, and
recording time ~1.6 to 1.7 minutes with 2 minutes of boundry for execution per grid-pointing. The data 
used for this plot was taken on July 21st, 22nd, and Aug 25th , 2023 (Observation no. 9 and 10 ).
(3) The Holography experiments science test results are accepted using the TGC system, and no need to 
use the legacy ONLINE system.



Page 16

 Figure 5 : Compatibility of the TGC system with the Legacy Online (Mar 10, 2023 data):   1 minute of execution 
per grid-pointing with dead-time 0.3 to 0.4 minutes, and number of LTA records of 6 to 7 (~36 to 42 seconds). 
Note that 3 minutes of dead-time after fixed interval require to servo-positioning of antenna while starting the next 
grid-array

Figure 6 : Holography tests ( July 21, 22, Aug 25, 2023) with 2 minutes boundry per grid-pointing. Dead-time is 
~0.3  to 0.4 minutes, and recording time is ~1.6 to 1.7 minutes. 



Page 17

3.2  Broad-cast Command Execution for pulsar and survey kind of observations :

      During the pulsar, pulsar-survey or general survey kind of observations, it is essential to cover number
target-sources within a allocated time for observation. In case of pulsar survey observations, both the 
backends and beam-formers are used with the multiple projects (for e.g. subar-1 and subar-2 projects for 
each backend). In this case, the serial execution of the DAS-commands in the TGC system per project 
use to take more time with dead scan-time in range of ~2 to 2.4 minutes of time.  Due to this number of 
scheduled target sources were not able to complete within a allocated time of observation using the TGC 
system was reported by the NCRA users.

 To reduce the dead scan-time, TGC DAS-commands are implemented in broad-cast mode for both the 
correlator (GSB/GWB), as well as parallel execution of data-acqusitions commands for multiple 
subarray(s) is achived using the single command. Broad-cast method used to send data-scan command 
for both the correlator started/stopped data-scan simultaneously ( as opposed to the time-lag of ~ 20 
seconds due to serial command execution per backend). Also, time-lag between two sub-arrays for 
starting the data-acqusition is also reduced due to the single command usage for multiple project running 
under the single backend. Thus, the dead-scan time is reduced by ~ 1 to 1.2 minutes.

For this purpose, TGC CMC, LMC code modified, scripting APIs modified to check status of DAS-
command execution for the individual project so that failure-handling can be done by retrying the DAS-
command to only failed command. In the TGC code new attributes (Phase-center for each project) are 
introduced to track the status of each project. 

For validation testing purposes, test-observation are done either using the source(s) having the same RA-
DEC but with nomenclarue of source(s) differentiated by letter ‘A’ and ‘B’, or two target-source 
observation separated by  30’ or 5 deg in declination. Close sources selection helped in measuing the 
TAT and dead-scan time in realistic manner so that time-estimation for pulsar or survey kind of 
observation can be given. Total seven to eight tests were conducted, Table-5 gives the details of test 
conducted in the TGC using broad-cast execution of DAS-commands. 

Mainly three kind of test-observations were done using the two backends (GSB and GWB) , and two 
subarrays (i.e. total four projects) : 
(i) Default-mode in use -  serial DAS-command execution per backend and per sub-array.

(ii) ‘fstartscan’ command in the broad-cast mode, but serially executed for subarray-1 and subaray-2.    

 fstart_proj('GSB,GWB',1,<source-name>)
 fstart_proj('GSB,GWB',2,<source-name>)

fast-start scan interface with broad-cast facility for 
single-subarray.

 
(iii) Single Broad-cast command das-command using the single command for multiple sub-arrays.. 

 set_source_corr([1,2],'3C286,3C123','GSB,GWB')
Add and configure the phase-center source for 
Subarray-1 and 2 of both GSB and LMC backend.

 strtndas('GSB,GWB','1,2') 
start the data-scan for multiple subarrays and multiple 
backends in one go.

stpndas('GWB,GWB', '1,2')
stop the data-scan for multiple subarrays and multiple 
backends in one go.



Page 18

TABLE – 5 :  Test observations to validate the Broad-cast and parallel execution of DAS-commands using 
a single command in the TGC system 

#     Date Experiment Type  Description 
Turn around time, and Dead-scan

optimization time

11 21 Jun 2023
Multi-subarray

broad-cast
functional test

Time comparison for 
command execution 
(Turn-around-time) :
 
(i) Default das-commands in
serial mode for the GSB and
GWB, and serial separate 
commands for sub-1 and 
sub-2.
(ii) Default das-commands 
in broad-cast mode for the 
GSB, GWB and sub-1 and 
sub-2
(iii) Broad-cast command 
‘fstartscan’ for the GSB and 
GWB but serialy for sub-1 
and sub-2

TAT is reduced by 50 % in broad-
cast method.
(i) For subar-1 and subar-2, 
the Serial execution of das-
commands  takes 
TAT ~ 95 seconds.
(ii) In broad-cast mode, default-das 
commands takes 
TAT  ~ 38 to 43 seconds.
(iii) Using the ‘fstartscan’ in 
broadcast, 
TAT ~ 38 to 40 seconds.
(iv) In serial mode, stopscan for two 
subarrays takes 
TAT = 32 seconds.
In Parallel mode, ‘stopscan’ takes 
TAT = 15 seconds only.

12 05 July 2023

Source : 
3C147/3C147-
OFF (by 5 degree)
Total scan:   7
Recording  : 
2 min per scan

Time comparison for 
Time-lag for the starting 
project-scans between 
Subar-1 and Subar-2 :
(i) Default das-commands in
serial mode for the GSB and
GWB, and serial separate 
commands for sub-1 and 
sub-2.
(ii) Default das-commands 
in broad-cast mode for the 
GSB, GWB and sub-1 and 
sub-2
(iii) Broad-cast command 
‘fstartscan’ for the GSB and 
GWB but serialy for sub-1 
and sub-2

 Time-lag for starting the project 
between subarray-1 and 2 for 
each correlator is :

Default = ~33 seconds
fstartscan = ~23 seconds
Broad-cast = ~ 2-3 seconds. 
(ii) Dead-scan time is reduced by 
~30 seconds.

13 10 July 2023
Source : 
3C286/3C286-
OFF (by 5 degree)

Broad-cast method, 
fstartscan in serial for subar 
1 and subaray 2, and 
default (complete serial 

Dead scan-time for 
(i) Default ~ 2 to 2.5 minutes
(ii) Broad-cast ~ 1.3 to 1.5 minutes



Page 19

Total scan:   5
Recording  : 
2 min per scan

mode) functional testing 
using the GSB and GWB 
with subarray-1 and 2

14 12 July 2023

 

Source : 
3A286/3B286 
(RA-DEC of 
3C286)
Total scan:   20
Recording  : 
2 min per scan

Broad-cast method, 
fstartscan in serial for subar 
1 and subaray 2, and 
default (complete serial 
mode) functional testing 
using the GSB and GWB 
with subarray-1 and 2

(i) Total Dead time in test  
reduced by 20% for subar-1 and 
10% for subar-2
(ii)  In default serial mode, each 
scan started with ~ 20 seconds 
separation in time. 
Whereas in Broadcost mode each
scan started without any delay ~ 0
to 2 seconds only.

15 15 July 2023

Source : 
3C48A/3C48B
(RA-DEC of 
3C48)
Total scan:   20
Recording  : 
1.5 min per scan

(i) Default Serial Method – 
each DAS command to the 
backend and subarray(s) 
execute serially.
(ii) ‘fstartscan’ command to 
each single subarray but in 
broad-cast mode for both 
the correlator
(iii) Default-das command in
complete parallel mode for 
both the backend(s) and 
subarrays.

(i) TGC time-delay for das-
command execution to each 
subarray     : 
(a) Default Serial mode ~ 35 (+/- 3 
seconds)
(b) Subarray-wise ‘fstrtdas’ 
command ~ 23 seconds (+/- 3 
seconds)
(c) Broad-cast, parallel execution for
subarray(s) ~ 0 to 3 seconds.
(ii) Dead-scan time per scan is 
reduced by 50 % : 
(a) Default serial mode ~ 2 min +/- 
0.3 min
(b) ‘fstartdas’ and complete 
‘parallel’ mode ~ 1 min +/- 0.3 min.

16 18 July 2023

Source : 
3C147A/3C147B
(RA-DEC of 
3C147)
Total scan:   48
Recording  : 
1.5 min per scan

Multi-subarray (sub-1 and 
sub-2) , and both the 
backend (GSB/GWB), 
broad-cast command with 
parallel das-command 
execution.

Consistent  ~1 minute per dead-
scan time over 47 scans.

Total time 170 min, with ~1.7 min 
recording per scan. 
dead-time is ~ 35% and recording 
65 %

17
29 July 2023-
01 Aug 2023

Source : 
3C48A/3C48B
(RA-DEC of 
3C48)
Total scan:   20-
48
Recording  : 
1 min per scan

Multi-subarray (sub-1 and 
Sub-2), and both the 
backend (GSB/GWB).
Broad-cast command with 
parallel-das command 
execution, and sub-array 
wise ‘fstartscan’ command.

(i) TAT for parallel das-command 
execution is ~ 67 to 70 seconds
(ii) TAT for ‘fstartscan’ subarraywise
in broad-cast mode is ~ 68 to 70 
seconds



Page 20

 Validation test results   :

(1) Dead scan-time measured in the test data of four to six experiments conducted during July 10, 
12, 15, 18, and Aug 1, 2023 (Figure 7-A and 7-B) show that dead scan-time reduced by 50% due 
to the implementation of broad-cast command for both the correlator and single command usage 
for multi-subarray projects. This can help in effectively observing more number of targets during 
the pulsar survey and general survey kind of observations.
(2) The default serial DAS commands execution (old method) takes total Turn-around time ~ 2.2 to
2.9 minutes for one data-acqusition scan starting ( Figure 8-A Mar 23, 2023) . The turn-around 
time measured on 3C48A-B for 20 to 48 scan blocks on July 29th, and Aug 1st, 2023 (Table 5 : 
Observation no.17) is depicted in Figure 8-B (using broad-cast ‘fstartscan’ method), and Figure 
8-C (using broad-cast, single command for multiple subarrays both correlator). Both the methods 
using broad-cast commands show that the Turn around time is reduced by 50% ( i.e. ~ 1 to 1 
minutes).
(3) The default serial DAS command execution previously was introducing the time-lag for starting 
the multiple sub-array scans due to the command execution was in serially to each correlator, and 
was introducing ~ 17 seconds of delay for starting the scan between to correlators (GSB and 
GWB). Also, due to  serial execution subarray-wise, the data-acqusition starting between 
subarray-1 and subarray-2 for each backend was taking around ~ 35 seconds. Using the 
broadcast mode and parallelization using the single command, this time is reduced to less than 5   
seconds for all subarrays of both the backend. Figure 9-A and 9-B shows the data plotted for 
tests condcuted on July 15, 2023 ( Table-5 , Observation no. 15) using the broad-cast methods.



Page 21

Figure 7-A : Dead scan-time comparison between ‘default-serial’ (def) mode and ‘fstartscan’ broad-cast mode 
(Fstrt : ‘fstartscan’ command separate for each sub-array). Dead scan-time reduced from 2 to 2.3 minutes to 1 to 
1.3 minutes for subarray-2 and 0.6 to 0.8 minutes for subarray-1

Figure 7-B : Dead scan-time comparison between ‘default-serial’ (def) mode and  broad-cast mode using single 
command (strt)  10 Jul to 01 aug, 2023. Dead scan-time reduced from 2 to 2.3 minutes to 1 to 1.3 minutes.



Page 22

Figure 8-A : Default serial mode multi-subarray data of the GTAC obs 43_022 (Mar 21, 2023), Turn-around time 
is ~ 2.2 to 2.9 minutes

 Figure 8-B : Broad-cast mode using ‘fstartscan’ for sub-1 & 2 (Aug 1, 2023), TAT is ~ 1 m. 

Figure 8-C : Broad-cast DAS command for multi-subarray ( Jul 29, 2023), dead-scan time is ~ 1.1 m 



Page 23

Figure 9-A :  start-scan time difference between the two GSB and GWB for subarray-1 and subarray-2 broad-
cast mode (strt/fstrt) takes less than 2 seconds as compared to default (def).

Figure 9-B : start-scan time difference between subarray 1 and 2 ( Jul 15, 2023), default (def) ~ 35 sec, fstartsan 
(fstrt) ~ 24 seconds, broadcast (strt) ~ 0 to 3 seconds. 

3.2.1  Broad-cast Command Execution Test using three subarrays per Backend :

The broad-cast command with multiple sub-array projects also tested using the three sub-arrays per 
backend (GSB and GWB). Thus total six projects were run successfully for reliability check using the 
single command for starting and stopping the data acqusition on Aug 10, 2023 ( Refer Table -6 ).

 Validation and reliability test results   :

(1) We could run total three subarrays per backend (GSB and GWB), with total six projects successfully 
where data-acqusition start and stop in the TGC system uses single command. In the reliability test 
described in Table-6, total 10 scans for each project using the source 3C286A, 3C286B and 3C286 tried.



Page 24

Testing ran successfully without failure of any DAS commands, and phase-centre were updating 
succesfully per project.
(2) The total average Turn-around time for the default DAS commands for three sub-arrays takes around 
~ 50 seconds, whereas using the ‘fstartscan’ in broad-cast mode but separate command for the 
subarrays in series takes total average Turn-around time ~ 70 seconds. See Figure 10-A.
(3) The average dead scan-time using the ‘fstartscan’ command in broad-cast mode but separate sub-
array wise for three subarrays takes 1.3 to 2 minutes of time. Whereas for broad-cast mode with three 
sub-arrays per backend i.e. total six projects takes only ~1.1 to 1.5 minutes. The sub-array wise dead-
scan times is shown in Figure 10-B for both the methods. 
(4) Thus, whenever there are multiple subarrays observation, the default DAS commands in broad-cast 
mode with parallel execution of sub-array commands is effective in time optimization. Therefore, 
‘fstartscan’ command is not recommended for the multiple sub-array mode. The ‘fstartscan’ command 
shall be used in case of single sub-array observations like grid-pointing, holography, and continuum/line 
observation with the single sub-array.

TABLE – 6 :  Test observations to check the reliabiliy of  the Broad-cast and parallel execution of DAS-
commands using a single command with total three sub-arrays per backend in the TGC.

    Date Experiment Type  Description 
Turn around time, and Dead-

scan optimization time

10 aug 2023 Source : 
3C286[A,B,C]
(RA-DEC of 3C286)
Total scan:   10
Total project : 6 ( 3
for each backend)
Recording  : 
1 min per scan

Multi-subarray (Sub-1, Sub-2 and 
Sub-3) and both the backend 
(GSB/GWB).
Broad-cast command with 
parallel-das command execution, 
and sub-array wise ‘fstartscan’ 
command.

(A) DEAD-TIME : 
(i) Subarray-wise ‘fstartscan’ in 
broad-cast mode : 
Subar 1 : 1.1 to 1.4 min
Subar 2 : 1.5 min
Subar 3 : 1.8 to 2 min 
(ii) Broad-cast command with the
das-command in parallel 
execution : 
All-subarray(s) of both the 
backends : 1.1 to 1.4 min 

(B) Turn-Around Time (TAT) : 
(i) Total Subarray-wise 
‘fstartscan’ in broad-cast mode 
for 3 subarrays  of both the 
backends :
~ 93 seconds
(ii)   Broad-cast command with 
the das-command in parallel 
execution : ~ 90 seconds

(C) Time-delay between two 
subarrays ( Sub3 – Sub-1, 
Sub2 – Sub1) :
(i) Total Subarray-wise 
‘fstartscan’ in broad-cast mode 



Page 25

for 3 subarrays  of both the 
backends :
Subar 3- Subary 1 ~ 55 
seconds
Subar 2 – Subar 1 ~ 24 
seconds 
(ii)   Broad-cast command with 
the das-command in parallel 
execution :
Subar 3 – Subar 1 = Subar 2 – 
Subar 1 ~ 2 to 5 seconds

Figure 10-A : Average Turn-around time for three subarrays per backend (Total six projects) shows 
comparable time for the broad-cast commands for the ‘fstartscan’ and default das-commands with parallel 
execution (Data taken on Aug 10, 2023).



Page 26

Figure 10-B : Dead scan times for three subarrays per backend (Total six projects) show that ‘fstartscan’ per 
subarray takes more dead-time than the single broad-cast command for three subarrays in parallel execution 
(Data taken on Aug 10, 2023).

4. The TGC problems resolved in dead scan-time optimization work : 

(a) Target-source for the sub-array tracking was appearing wrongly as a phase-centre source. The GUI 
python and Java Aggregation code modified to introduce separate phase-centre dynamic attributes per 
backend (PhaseCentreA for GSB and PhaseCentreB for GWB) and for each subarray number.
 
(b) During the holography experiment, if the given source name (for e.g. PN002) is same in the data-base 
then the 'fstartscan' command was picking up the old coordinates. The problem was occurring due to the 
thread concurrency issue which has been resolved by concurrency locking mechanism ( Data Analysis : 
July 4-5, 2023 , 26 Jul 2023 confirmed that no problem reocurrence further).

(c) During the grid-pointing execution on multiple sources with diffrent HA for pointing model experiment, 
occasional missing scan is fixed in the Python Script-Manager by reissuing the command again if the start
data-acqusition command is failed.

(d) If the multiple-subarray/Backend single-command failed for a particular sub-array , it used to re-try the 
command again for all the backend and subarray. This has been handled by issuing commands to only 
specific sub-array for which the command is failed.

(e) Some das-command was failing if the Operator-workstation ownership of the Backend (GSB or GWB) 
is different than the work-station in which the project is triggered. This has been resolved by reconfiguring 
the data-base.

(f) The antenna tracking algorithm is also optimized by internally sending a servo-system ‘abort’ 
command before issuing the new ‘track’ command to the servo-system. The use of ‘abort’ command 
helped in removing the stale-source coordinates of the previously tracking source in the servo-system and
saved time up to ~30 seconds. 



Page 27

(g) The dead-time is optimized by omiting faulty antennas from the ‘gotosrc()’ waiting loop which ensures
that every antenna in the subarray is tracking correct source. Previous algorithm was waiting for those 
antennas which were having problems such as the antenna/servo is in manual mode, servo system AZ/EL
brakes are not releasing, and Servo computer malfunctioning etc. 

5 Summary and Conclusion :

(i) The TGC serial implementation of the multiple DAS commands was causing the dead scan-time from 2
to 3.5 minutes. The extensive modification in the TGC code was done to implement the broad-cast DAS 
command, also use single command for starting the scan (‘fstartscan’ or single DAS-commands like 
‘startscan’/’stopscan’ for multiple subarrays) drastically reduced the command turn-around time. Thus, the
dead-scan time is reduce to ~ 1 to 1.5 minutes in case of normal observations, and 0.3 to 0.7 minutes in 
case of grid-pointing and holography kind of observing sessions.

(ii) In case of grid-pointing and holography experiment, compatibility of the command execution with the 
legacy ONLINE is required to cover number of pointings (and one minutes execution per pointing in case 
of holography experiment). The time optimization is achived in the TGC by implementing the single 
‘fstartscan’ command instead of multiple das-command and algorithm changes in command sequence 
execution. Hence dependency on the legacy ONLINE is no more required. Also, as compared to previous 
multiple serial DAS command execution method, it became possible to save 1 to 1.25 hrs of time per 200 
pointings of observation.

(iii) The turn-around time reduction and dead-scan time reduction is achived by 50% using the broad-cast 
command method and parallel execution of command. In case of multi-subarray pulsar survey or general 
survey kind of observation it is possible to cover observation of number of expected celestial sources.
 
(iv) For observations using the multiple subarrays, the default DAS commands in broad-cast mode with 
parallel execution for sub-array is more effective in time optimization. Therefore, ‘fstartscan’ command is 
not recommended for observations in the multiple sub-array mode. The ‘fstartscan’ command shall be 
used in case of single sub-array observations like grid-pointing, holography, and continuum/line 
observation.



Page 28

APPENDIX-I 
Detail of modifications done in the TGC code for the dead-time reduction in consecutive astronomical data 
scan is as follows : 

#   Description
Node
Type

  Files and Modules 

1
New ‘fstartscan’ 
command 
implementation

CMC+
LMC 

mnc_custom_db, lmc_custom_db (mysql) : 
‘fstartscan’ command with 18 arguments incorporated with valid 
argument ranges and IO device node-association.

CMC

CommandFormation.java : New module replaceFstartscanproj() 
(i) replaceFstartscanproj() - Method replaces the project code, 
antmask, get source fields for respective subarray from database 
in command (Feb 10, 2023)
(ii)  replaceFstartscanproj() - modified for broadcast Backend 
command (May 29-31, 2023)

CMC
CmcConstants.java : ENTITY_[NAME, PROPERTY, 
OP_SHORT] attributes for the ‘fstartscan’ command

CMC

corrapi.py :  fstart_proj() API module for ‘fstartscanproj’ 
command. If the phase-centre source is new or already set then 
change ‘op_short’ argument accordingly, broad-cast command to 
both the correlator, and retry the command if it is failed to one of 
the correlator is incorporated in the ‘fstart_proj() command. 
userproc.py : ‘fstrtndas’ simplified command to use-at scripting 
terminal and in observing ‘batch’.

LMC

CmdProcessingFunctions.java / CmdProcessingFunctions() : 
source-catalog and database interface related function added 
(dbCustomIF) (ii) Based on ‘Op_Short_FRQ’ (frequency)  
argument value set ( 0 or 1)  set fringe-stop RF-LO parameters for 
the correlator. Similarly argument ‘Op_short_SRC’  values (2,1,0) 
add source to project catalog,set phase-center source , or do 
nothing if phase-center source is already set. 

2

Broad-cast command  
with multiple subarrays : 
Problem : phase center 
name is wrongly  
assigned the celestial 
source-name which is 
given for the sub-array 
tracking.

CMC

PostProcessing.java : new case for starproj, startscanproj, 
fstartscanproj introduced in the post-processing thread to update 
the ‘phase-center-A/B’ for the GWB and GWB (April-May 2023).
Multi-subarray project implementation for the phase-center for 
each backend-wise subarray ( Jun 16, 2023)

CMC
CMCConstant.java : Phase Centre attributes ‘APHASECENTRE,
BPHASECENTRE’ added for two types of correlator (At present 
GSB and GWB), 

CMC
SkyPlot.py : addProjectDetails() : Logic to configure 
PhaseCentre[A,B] is added for the GSB, GWB.

LMC
PostProcessing.java : Update multiple subarray project status 
(running or stopped), phase-center name and dynamic attributes 
for ‘startscanproj’ and ‘fstartscanproj’.

3 Problem : Project CMC CommandBuffer.java : run() thread to resolve project can be 



Page 29

configured by non-owner
of the backend 
(GSB/GWB) can not 
start or stop.

configured by any operator work-station irrespective of the 
Backend GSB/GWB ownership

4
Broad-cast command 
with multiple 
subarrays

CMC

CommandFormation.java : 
(i) replaceSubarrayWithPrjCode() - For each Backendwise 
replace each subarray number with project code define. (May 29, 
2023)

CMC

corrapi.py : start_proj(), stop_proj() modules modified to cater : 
(i) the broad-cast command to both the GSB and GWB and 
multiple subarray arguments for parallel command execution. 
(ii)  Check the status of start or stop data aquisition commands, 
and if it is failed to one of the project among multiple projects then 
reissue the command again.

CMC
userproc.py :  User level easy to use and optimized command 
such as strtndas/stpndas(‘BOTH’ ,‘1,2’)

LMC

commandFormation.java :  formCommandForStartProj() 
modified to accept given hash-separated arguments for multiple 
subarrays and pass the multiple arguments for ‘startproj’ 
command which is based on projects (as opposed to subarray 
number, Jun14, 2023) 

LMC

gmrtServer[.cpp,.h] IO das-device server modifications :
(i) New logic implemented to avoid the race-condition between 
nonPeriodicCommand  thread (Subsystem_DS) and GMRTServer
threads. 
(ii) ‘multipleCommandFlag’ logic developed to handle multiple-
subarray command responses from the GSB or GWB device-
client(s) and sending it to the parent node (CMC/AGN nodes) by 
copying multiple responses to form the aggregate response. 
(iii) Reporting response-status (Success / Failed) of individual 
command issued in parallel mode to the subarrays of each 
backend. 

LMC
Subsystem.cpp  IO das-device server modifications :
Enabled generic group-command implementation in the tango I/O 
device server. 

GSB/
GWB

DeviceClient.cpp : formDeviceResp() - Synchronise command 
logic changed.

5 Asynchronous DAS-
command 
implementation 
(startdas) for the VLBI

CMC/
LMC

mnc_custom_db/lmc_custom_db (mysql) : modified to 
incorporate time_str argument for the command ‘startproj’, 
‘startscanproj’ , ‘startscanbeam’, and ‘fstartscanproj’.

CMC
CommandFormation.java: replaceSubarrayWithProjCode() -  
incorproated time_str argument in the ‘startscan’ command.

LMC CommandFormation.java:  formCommandForstartproj() 
formCommandForstartBeam : time_str argument send to the 
GSB/GWB deviceclient. 



Page 30

LMCConstant.java : Introduced new variable for expected time 
argument (time_str)

CMC
corrapy.py : start_proj, fstart_proj() module modified to take 
optional time_str argument in HH:MM:SS to trigger the 
astronomical data scan at expected time. 

GSB/
GWB

DeviceClient.cpp : (i) checkBufExec() Check previous project 
command time threshold (difference between stored trigger time 
and current-time) is <= 0 then execute the command, otherwise 
store the command with expected time (time_str argument). 
(ii) Command synchronisation logic changed in 
formDeviceResponse() module to handle multiple-subarray 
commands.


