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Abstract

The report presents a comprehensive analysis of implementing different optimisation
methods for real-time radio frequency interference (RFI) mitigation in the context of the
Giant Metrewave Radio Telescope (GMRT) and the GMRT Wideband Backend (GWB)
processing system. The goal is to improve RFI mitigation techniques' real-time performance
and efficiency by leveraging the Intel Streaming SIMD Extension (SSE) instructions, AVX
instructions and other optimisations like in-place memory swapping for filtering, using
separate memory for parallel processing and optimising the OpenMP loop. The report
outlines the benchmarking results and functional testing carried out as part of this project.
Additionally, it explores the power detection technique and its optimisation using SSE
instructions, AVX instructions and several other optimisation methods like in-place swapping
and look-up tables. The report concludes with an overview of the improvements and outlines
future directions for further enhancements.
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Chapter 1: Introduction

1.1 Brief on GMRT Array and uGMRT
The GMRT, or the Giant Metrewave Radio Telescope, is an impressive radio telescope near
Pune, India. It is managed by the National Centre for Radio Astrophysics (NCRA) of the Tata
Institute of Fundamental Research (TIFR). The GMRT is renowned worldwide as one of the
largest and most sensitive radio telescopes at metre wavelengths. The GMRT comprises a
group of 30 antennas (Figure 1.1.1), each with a diameter of 45 metres. These antennas
function at various frequencies ranging from 150 MHz to 1450 MHz. The GMRT employs an
innovative antenna construction method called SMART to achieve a lightweight and
wind-resistant design. This approach involves wire mesh panels and rope trusses, making the
entire array cost-effective.

Figure 1.1.1 - A few GMRT antennas (Source: GMRT official website) [1]
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1.2 A brief on Radio Frequency Interference (RFI)

RFI, or Radio Frequency Interference, refers to unwanted electromagnetic signals or noise
that can disrupt or degrade the quality of radio frequency signals used in communication
systems, including wireless devices, radios, and radar systems. RFI can originate from
various sources, such as power lines, electrical equipment, electronic devices, and even
natural phenomena like lightning. The presence of RFI can lead to signal distortion, reduced
range, and increased error rates in communication systems.

1.3 A brief introduction to GMRT Wideband Backend

The GMRT Wideband Backend (GWB) comprises 16 FPGA + Compute nodes, each
equipped with 2 ADC units receiving 2 polarisations from 2 antennas. Initially implemented
on FPGA, the filtering method is being reconsidered for migration to CPU due to additional
backend feature requirements on FPGA. Consequently, the project aims to develop and
optimise a software-based approach for RFI filtering on the Compute nodes using CPU
resources. This transition from FPGA to CPU is required to free up resource availability on
FPGA which is a requirement for upcoming parallel backend and Spotlight cluster. Refer to
Figure 1.3.1 for the block diagram of the GWB backend system.

Figure 1.3.1 - Block diagram for GWB correlator (Source: report of Shubham Balte) [2]
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1.4 Current RFI mitigation method

When the time series raw voltage data is provided at the ADC of the system, an FPGA node
is configured to perform a 16x16 MoM(median of MADs) filtration on four antennas. Then
the digitised and filtered data is sent to the CPU + GPU compute node for further processing
and data storage. [3]

MAD(median absolute deviation) is defined as
MAD = medianj[|x − median(xi)|]

For a normal distribution, the standard deviation is related to this as

σ = 1.4826 × MAD

However, for longer bursts of RFI, having a median of several MAD values called the
Median-of-MAD(MoM) is preferred.

In that case, σ = 1.4826 × MoM.

The sigma value is computed for a window of size ‘W’ and is used to eventually
compute a threshold value where:

upper threshold = medianj + N*σ
lower threshold = medianj - N*σ

Here, N is the threshold level, usually set at N = 3. These values are used to flag.

and filter every element in the window, and can do four things with the RFI values:

1. Do nothing and just generate a flag
2. Replace RFI with a constant
3. Replace with the threshold
4. Replace with digital noise
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1.5 Previous Work

The goal was to create a CPU-based real-time RFI filtering algorithm. The 1st approach was
to create a C program for RFI filtering. However, it was not fast and optimised enough to
filter in real-time. Also, it was not integrated with GWB. In the 2nd iteration, the program was
optimised with SSE instructions and AVX instructions. Also, some other approaches like Double
buffer and openmp loop were utilised after that.

1.5.1 Double buffer
A robust RFI filtering algorithm was developed, leveraging a double buffer setup to execute
distinct filters concurrently, enhancing processing speed and efficiency. It has four different
sections, each with 256 rows and 220 columns. Each of these sections is used for running a
separate filter, and all four filters work simultaneously. This configuration allows
simultaneous reading and filtering of signal to occur in separate buffers, contributing to
optimised performance and throughput.

1.5.2 OpenMP loop
OpenMP (Open Multi-Processing) is an API (Application Programming Interface) that
supports multi-platform shared memory multiprocessing programming in C, C++, and
Fortran. One of its primary features is the ability to parallelise loops efficiently. [4]

By adding OpenMP directives to a loop, the compiler can automatically distribute iterations
of the loop across multiple threads, thereby enabling concurrent execution on multi-core
processors. It can lead to significant performance improvements for computationally
intensive tasks.

OpenMP loop was used to simplify the process of parallelising loops, allowing developers to
harness the computational power of modern multi-core architectures more efficiently.

1.5.3 SIMD, SSE and AVX instructions
SIMD (Single Instruction, Multiple Data) is a computer architecture paradigm that enables
parallel data processing. It allows a single instruction to operate on multiple data elements
simultaneously [5,6].
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SSE (Streaming SIMD Extensions) extends the x86 instruction set architecture that
introduces SIMD instructions. SSE enhances performance by enabling parallel operations on
multiple data elements within a single CPU cycle [5,6].

AVX (Advanced Vector Extensions) is an expansion of SSE that further enhances SIMD
capabilities in x86 processors. AVX introduces wider vector registers and additional
instructions, enabling even greater parallelism and performance improvements in tasks that
can be parallelised [6,7].

The previous algorithm utilised AVX over SSE AVX instructions. By leveraging AVX, we
can efficiently handle 32 8-bit numbers and execute operations more effectively, resulting in
improved performance and faster execution times.

1.5.4 Flowchart for previous algorithms

The old program begins by parsing command-line arguments to obtain input parameters,
including the input filename, window size, MoM window size, threshold factor, replacement
option, and replacement constant. It then reads the input file into a vector and determines the
number of slices based on the window size and data count.

To record the time with arguments, a file is opened. Average time, average filter time, and
average median time variables are initialised to calculate the average times per window. A
flag count variable is also initialised to keep track of the number of flags.

Arrays for filtered output, flag output, and noise generation are created. The program then
iterates through each window, performing the following steps:

a. Slicing the input vector into a smaller window.
b. Calculating the median of the window using the HistoMedian function.
c. Updating the threshold based on the calculated median.
d. Applying threshold-based filtering using SIMD instructions and the chosen replacement
option.
e. Updating the flag count based on the flagged elements.
f. Measuring the time taken for filtering and median calculation.
g. Storing the filtered output and flags in vectors.

After processing all windows, the program calculates and prints the average times per
window for total time, filtering time, and median time. The filtered output and flag vectors
are written to output files. Finally, the file recording time with arguments is closed. [3]

The flowchart for C++ code is given in figure 1.5.4.1
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Figure 1.5.4.1 - Flowchart of AVX instruction-based filter (Source: Project Report of
Satyarth Gupta) [3]
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During the integration stage of the AVX-optimised C++ code for the RFI filter, the following
challenges were encountered:

1. Compatibility with GWB Library: The GWB library or code was originally written in
C and compiled using the gcc compiler, while our AVX-optimised code was written in
C++ and compiled using the g++ compiler. There was a need to ensure compatibility
between the two by making any necessary adjustments or modifications to the code or
build process.

2. Double Buffer System: To optimise the performance of the filter, a double buffer
system was implemented. This system allowed for simultaneous reading of the input
signal from one buffer while writing the filtered signal to another buffer. Suppose we
have a counter or clock or some loop iterator variable, when a read occurs in
(count%2)th buffer, filter and write occur in (count+1 %2)th buffer. This approach
minimised the data dependency and improved overall efficiency.

3. OpenMP Implementation: To simulate filtering on multiple antennas simultaneously,
OpenMP, a parallel programming framework was utilised. By incorporating OpenMP
directives into the code, the filter execution was parallelized and it helped to
distribute the workload across multiple threads. This resulted in improved
performance by leveraging the available processing resources effectively.

Additionally, as part of the integration stage, The RFI filter was designed to be implemented
as a function. This function takes input arguments, such as the input signal and filter
parameters, and returns the filtered signal as output. Encapsulating the filter logic within a
function, promotes code modularity and reusability, allowing the filter to be easily integrated
into larger software systems or used in different contexts with varying input data and
parameters. This approach enhances the flexibility and maintainability of the RFI filter
implementation.

Overall, these challenges were successfully addressed during the integration stage, ensuring
compatibility with the GWB library, implementing a double buffer system, and incorporating
OpenMP for parallel execution on multiple instances of the filter. Figure 1.5.4.2 shows the
flow of program execution.[3]
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Figure 1.5.4.2 - Flowchart of execution sequence in the code for GWB integration
(Source: Report of Satyarth Gupta) [3]

1.6 Challenges in previous implementation

1.6.1 Machine specification
This is the specification of the snode machine which is obtained using the lscpu command

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 16
On-line CPU(s) list: 0-15
Thread(s) per core: 1
Core(s) per socket: 8
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
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Model: 63
Model name: Intel(R) Xeon(R) CPU E5-2667 v3 @
3.20GHz
Stepping: 2
CPU MHz: 3196.600
BogoMIPS: 6393.20
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 20480K
NUMA node0 CPU(s): 0,2,4,6,8,10,12,14
NUMA node1 CPU(s): 1,3,5,7,9,11,13,15
Flags: fpu vme de pse tsc msr pae mce cx8
apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr
sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm
constant_tsc arch_perfmon pebs bts rep_good nopl xtopology
nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor
ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca
sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave
avx f16c rdrand lahf_lm abm epb ssbd ibrs ibpb stibp
tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1
avx2 smep bmi2 erms invpcid cqm xsaveopt cqm_llc cqm_occup_llc
dtherm ida arat pln pts spec_ctrl intel_stibp flush_l1d

For this program execution, the CPU cores 8,9,14,15 were pinned. This number has been
chosen as the rest of the cores are being used for the GWB system.

1.6.2 Program execution time higher than real-time
The main issue of the previously implemented code was it was not working in real-time. It
means that input signals will not be filtered. A large amount of data might be lost because of
this. Due to this reason, the filtering algorithm could not be integrated into the GWB.

The code worked well in real time when it used a single core for RFI filtering. It took around
25% of real-time, as seen in the graph below (Figure 1.6.2.1)

Calculation of real-time
For single-core, 16k MoM, the real-time calculation is 16k * 2.5 ns = 40.96 μs
For multi-core, 16k MoM, 16k window size, the real-time calculation is 16k * 16k* 2.5ns =
0.671s = 671ms (200 MHz bandwidth mode)
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Figure 1.6.2.1 - Filtering time of the previous implementation in single-core

But when it was integrated with GWB, it took more time despite using 4 cores parallelly. As
seen in the graph below (Figure 1.6.1.2), the filtering algorithm takes more than 90% of
real-time and crosses the threshold multiple times.

Figure 1.6.2.2 - Filtering time of the previous implementation in multi-core. The X-axis is the
number of iterations, each iteration is 0.671s (16k MoM)
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1.6.3 Automated verification and benchmarking
In the past implementation, there were no automated verification and benchmarking methods
that posed challenges. Even minor modifications needed extensive testing, making the
development process complex and longer. Additionally, there was a lack of a comprehensive
testing approach to assess multiple programs simultaneously. Furthermore, a streamlined
benchmarking method was absent as well. These deficiencies hampered efficiency and
accuracy in the development and evaluation phases. As a result, the process encountered
delays and inefficiencies, impeding progress and potentially compromising the quality of the
outcomes. Implementing robust automated verification and benchmarking procedures could
alleviate these issues, enhancing workflow efficiency, reducing testing overhead, and
ensuring the reliability and performance of the developed solutions.
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Chapter 2: Optimisation for real-time
performance

In this chapter, we will provide different optimisation techniques used in the RFI filtering
algorithm and discuss the improvement achieved using those methods. We will also explore
the effect of compiler versions, operating systems and machines on optimisation. As
discussed before in section 1.6.1 about the specification for the GWB system, It has gcc
version 4.8.5. So, all optimisation methods and benchmarking in this chapter used gcc
version 4.8.5 on snode if not mentioned explicitly.

2.1 Overview of the integrated code and performance
benchmarks
The previously implemented code was optimised using a double buffer to read input data and
execute distinct filters concurrently. AVX instructions were used for CPU
architecture-specific optimisations. An OpenMP loop was used for efficient parallel
processing. But still, more than these implementations were needed to achieve real-time
performance. It had some room for improvement. As seen in the graph below (Figure 2.1.1),
the filtering algorithm takes 95% of real-time on average. On multiple occasions, it crosses
the real-time threshold.

Figure 2.1.1 - Filtering time of unoptimised code in percentage of real-time in multicore
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2.2 In-place optimisation
optimising the RFI (Radio Frequency Interference) filtering algorithm by implementing
in-place swapping, where the filtered version is written back to the input array, offers several
performance benefits:

1. Reduced Memory Usage: In-place swapping eliminates the need for allocating
additional memory for the filtered array, thereby reducing memory consumption. It is
particularly advantageous when dealing with large datasets or limited memory
environments.

2. Cache Efficiency: By operating directly on the input array, in-place swapping
enhances cache efficiency. It reduces cache misses by ensuring that the processed data
remains in the cache, which can lead to significant performance improvements,
especially on modern processors with hierarchical caching systems.

3. Lower Overhead: In-place swapping avoids the overhead associated with memory
allocation and deallocation and copying data between arrays. It can result in faster
execution times and reduced computational overhead.

4. Improved Locality of Reference: In-place swapping promotes better locality of
reference, as the data being accessed and modified is contiguous in memory. It
enhances data access patterns and can lead to more predictable and efficient memory
access.

Optimising RFI filtering algorithms with in-place swapping improves performance by
leveraging memory efficiency, cache optimisation, and reduced overhead, resulting in faster
and more efficient data processing.

Figure 2.2.1 - Old approach to storing filtered data

Figure 2.2.2 - Inplace swapping to store filtered data

The following graph (Figure 2.2.3) shows the timing seen in the single-core implementation
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Figure 2.2.3 - Filtering time of the in-place swapping in single-core

Table 2.2.1 - Flagging percentage

The graph below (Figure 2.2.4) shows the comparison and improvement between the
previous implementation and optimized version using in-place swapping when constant
replacement is used.
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Figure 2.2.4 - Filtering time comparison in single-core

This implementation improves the integrated version. As seen in the graph below (Figure
2.2.5), it takes 93% of real-time. Although not much, it is still an improvement. However, the
problem of filtering time going outside the real-time limit still needs to be solved.

Figure 2.2.5 - Filtering time of the in-place swapping in multi-core
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2.3 Four separate memory in double buffer
Implementing four separate memory buffers for each of the sections in the double buffer
setup can significantly aid in parallel processing for the following reasons:

1. Reduced Conflicts: With dedicated memory for each buffer, concurrent processing
operations encounter fewer clashes for memory access. Conflicts occur when multiple
processes attempt to access or modify the same memory location simultaneously,
potentially leading to delays. Separate memory spaces mitigate such conflicts,
allowing for smoother parallel processing.

2. Enhanced Parallelism: By allocating distinct memory regions for each buffer, parallel
processing operations can execute independently without waiting to access shared
memory resources. This independence improves parallelism, where multiple filters
can simultaneously read, process, and write data without conflict or interference.

3. Improved Throughput: Dedicated memory for each buffer facilitates efficient data
movement and processing, improving throughput. Each filter can operate on its
designated data segment without waiting to access shared resources and maximising
overall system throughput and performance.

4. Simplified Management: Allocating separate memory for each buffer simplifies
memory management and reduces the complexity of data handling. It eliminates the
need for intricate synchronisation mechanisms or resource-sharing protocols,
streamlining the implementation and maintenance of the parallel processing
algorithm.

In summary, employing separate memory buffers for parallel processing in the RFI filtering
algorithm enhances performance, throughput, and efficiency by minimising conflicts,
maximising parallelism, improving data throughput, and simplifying memory management.

In the previous algorithm, the double buffer was implemented by using two buffers of 1GB
each. It was modified and instead of one large 1GB buffer, four smaller 256MB buffers were
used. The diagram below (Figure 2.3.3) explains the architecture.

Before the pointer was accessed like this “(count + 1) % 2 + (i*chunk_size)” (i = 0,1,2,3
chunk size = MOM window size X MAD window size)
Now it is accessed like this “(((count + 1) * 4) % 8) + i” (i = 0,1,2,3)
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Figure 2.3.1 - Pointer offset in original code

Figure 2.3.2 - Pointer offset in modified code

Figure 2.3.3 - Double buffer architecture
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As seen in the graph below (Figure 2.3.4) this approach reduced filtering time and in this
approach number of values more than real-time was significantly reduced. The average
filtering time was 94%.

Figure 2.3.4 - Filtering time of 4 separate memory in the buffer in multi-core

2.4 Converting the absolute function to AVX

In the program, there is an absolute calculation that is called every time data is filtered.
Previously it was implemented using the in-built abs() function in the `<math.h>` header file.
But it is replaced using the avx command. It improved performance significantly.

The performance improvement achieved by replacing the absolute calculation function from
the `<math.h>` header with the AVX command stems from several factors: [6]

1. Vectorisation: AVX (Advanced Vector Extensions) instructions enable SIMD (Single
Instruction, Multiple Data) operations, allowing the CPU to perform multiple absolute
calculations simultaneously on a single instruction. This contrasts with the scalar
operation in the standard `<math.h>` function, where each absolute calculation would
be executed sequentially.

2. Parallelism: AVX instructions process data in parallel, exploiting the CPU's
capabilities to execute multiple operations concurrently. By utilising AVX commands,
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the absolute calculations can be executed efficiently across multiple data elements
simultaneously, leveraging the CPU's parallel processing capabilities.

3. Data Movement Efficiency: AVX instructions facilitate efficient data movement
between memory and CPU registers. The use of AVX commands such as
`_mm256_loadu_si256` and `_mm256_storeu_si256` enables efficient loading and
storing of data from memory to CPU registers, minimising data transfer overhead and
enhancing overall performance.

4. Optimised Hardware Support: Modern CPUs are optimised to efficiently execute
AVX instructions, leveraging specialised hardware units designed to handle SIMD
operations effectively. As a result, using AVX commands can leverage the underlying
hardware capabilities more efficiently compared to using standard library functions.

5. Reduced Function Call Overhead: By directly implementing the absolute calculation
using AVX commands within the loop, the program avoids the overhead associated
with function calls to the standard library function from `<math.h>`. This reduction in
function call overhead can contribute to improved performance, especially when the
function is called repeatedly in performance-critical code sections.

In summary, the use of AVX commands for absolute calculation improves performance by
leveraging vectorisation, parallelism, efficient data movement, optimised hardware support,
and reduced function call overhead, resulting in faster execution of the absolute calculation
algorithm.

Figure 2.4.1 - Absolute function written in AVX

This approach significantly improves performance. In the following graph (Figure 2.4.2) the
single-core performance is shown.
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Figure 2.4.2 - Filtering time of the absolute function in AVX in single-core

The graph below (Figure 2.4.3) shows the comparison and improvement between the
previous implementation and the optimised version using the absolute function in AVX when
constant replacement is used.

Figure 2.4.3 - Filtering time comparison in single-core
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Table 2.4.1 - Flagging percentage

As this implementation improved the single-core performance, it was implemented together
with 4 separate memory for buffers. As seen in the graph below (Figure 2.4.4), it takes 83%
of real-time on average. In this iteration, the performance is much better. Also, no values
crossed the real-time value.

Figure 2.4.4 - Filtering time of the absolute function in AVX in multi-core

2.5 Combined performance: Four separate memory in
double buffer + absolute function in AVX

In this approach 4 separate memory and absolute function in avx are used together as these
two approaches give the most optimised performance. The outcome is rigorously tested with
multiple iterations. Here are the output graphs (Figure 2.5.1.1 to 2.5.1.3).
The average filtering time is written below the graphs.
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Figure 2.5.1 - Filtering time of 4 different memory + abs function in AVX in multi-core (1)

Average filtering time: 86.6% of real-time
No values outside real-time boundary

Figure 2.5.2 - Filtering time of 4 different memory + abs function in AVX in multi-core (2)

Average filtering time: 81.5% of real-time
Initially 5 values are outside the real-time boundary and then all values are under real-time
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Figure 2.5.3 - Filtering time of 4 different memory + abs function in AVX in multi-core (3)

Average filtering time: 87.1% of real-time
Initially 5 values are outside the real-time boundary and then again 2 values crossed
real-time.

This approach gives the most consistent result. Some initial values cross the real-time
threshold, but they stay within 85% of the real-time value on average after some iterations

Figure 2.5.4 - Overlay plot of filtered over unfiltered signal, N =0.5, threshold replacement
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To further test this method different buffer sizes and window sizes were used. All previous
buffers were 256MB in size and window size was 16k x 16k. Now it is benchmarked with
4k x 4k, 6k x 6k, 12k x 12k, 18k x 18k, 24k x 24k, 32k x 32k, 44k x 44k window sizes.

Figure 2.5.5 - Filtering time in 16MB chunk size and 4k x 4k window size
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Figure 2.5.6 - Filtering time in 36MB chunk size and 6k x 6k window size

Figure 2.5.7 - Filtering time in 144MB chunk size and 12k x 12k window size

As seen from the graphs, reducing chunk size and window size increases filtering time by a
large margin. All iterations went beyond the real-time threshold.
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Figure 2.5.8 - Filtering time in 324MB chunk size and 18k x 18k window size

Figure 2.5.9 - Filtering time in 576MB chunk size and 24k x 24k window size
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Figure 2.5.10 - Filtering time in 1024MB chunk size and 32k x 32k window size

Figure 2.5.11 - Filtering time in 1936MB chunk size and 44k x 44k window size

As seen from the graph, increasing the chunk size decreases filtering time by a large margin
and improves performance.
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Here is a table that contains the filtering time of various window sizes in terms of the
percentage of real-time.

MAD Window Size MOM window size Chunk size Average filtering
time (percentage of
real-time)

4k 4k 16MB 312.7%

6k 6k 36MB 209.5%

12k 12k 144MB 98.8%

16k 16k 256MB 86%

18k 18k 324MB 81.1%

24k 24k 576MB 66.6%

32k 32k 1024MB 53.6%

44k 44k 1936MB 57.6%

Table 2.5.1 - Filtering time comparison of different window size

From the graphs and table, it is seen that increasing MOM window size and MAD window
size decreases filtering time. But the improvement is seen up to a certain size, currently
which is 32k x 32k window size. Beyond that, the filtering time starts to increase again.

To further check this, the 32k window size can be checked using gcc version11.x.

2.6 Effect of compiler versions and machines on
optimisation

The optimisation of code can be significantly influenced by various factors including
compiler versions and underlying hardware characteristics. Different compiler versions may
offer varying optimisation levels, ranging from minimal optimisation to aggressive
optimisation techniques. Higher optimisation levels can result in more efficient code
generation but may also increase compilation time and code size. Here are different
optimisation methods on gcc version 11.x on the gpbcorr6 machine.
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Figure 2.6.1 - Filtering time of unoptimised code in multicore using gcc - 11.x

Average filtering time: 91% real-time, which is an improvement of 4% over the previous
implementation using gcc 4.8.5. However, in this case, on multiple iterations, the filtering
time crosses the real-time threshold.
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Figure 2.6.2 - Filtering time of inplace-swapping in multicore using gcc - 11.x

Average filtering time: 93% real-time, which is the same as the previous implementation
using gcc 4.8.5. But here also on multiple iterations filtering time crosses the real-time
threshold.

Figure 2.6.3 - Filtering time of 4 different memory in the buffer in multicore using gcc - 11.x
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Average filtering time: 89% of real-time, which is an improvement of 5% over the previous
implementation using gcc 4.8.5
But here also on multiple iterations filtering time crosses the real-time threshold.

Figure 2.6.4 - Filtering time of 4 different memory in buffer + absolute function in avx in
multicore using gcc - 11.x

Average filtering time: 86% real-time, which is the same as the previous implementation
using gcc 4.8.5
But here also on multiple iterations filtering time crosses the real-time threshold.

So it is seen that in general using gcc compiler version 11 improves performance by reducing
filtering time to some degree.
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2.7 Other approaches

2.7.1 OpenMP optimisation and its combinations

In the previous approach, the openmp loop had some redundant calculations which have been
optimised to reduce time. The modification and benchmarking are shown below.

Figure 2.7.1.1 - Optimised openmp loop in multicore

Figure 2.7.1.2 - Filtering time of openmp optimisation in multicore

Average filtering time: 86% of real-time
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Here on some iterations filtering time crosses the real-time threshold. otherwise, most values
are well under the real-time threshold.

In the previous approach the pointer for input, filtered data and flags were calculated
whenever calling the “filter” function. But in the modification, these pointer values are
calculated once inside the loop and used in the function call

This optimised openmp loop was used in combination with other approaches as well.
1. OpenMP optimisation + 4 different memory in the buffer

Figure 2.7.1.3 - Filtering time of openmp optimisation + 4 different memory in
multicore

Average filtering time: 89.5% of real-time
Here also we can see spikes that crossed real-time percentages during filtering
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2. OpenMP optimisation + 4 different memory in buffer + abs function in avx

Figure 2.7.1.4 - Filtering time of openmp optimisation + 4 different memory + abs
function in avx in multicore

Average filtering time: 96.8% of real-time
This approach is noticed to be very poor in filtering and time taken to filter is very
high. Also on multiple occasions, the filtering time is more than the real-time limit

As seen from the graphs, individually the optimised openmp loop reduces filtering time, but
if combined with other approaches then the performance becomes worse.
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2.7.2 Using pthread for parallelisation

Pthreads (POSIX threads) is a threading library available on Unix-like operating systems,
including Linux and macOS. Pthreads provides a standardised API for creating and managing
threads in a multithreaded application. [8]

Pthread optimisation refers to the techniques and practices used to improve the performance
and efficiency of multithreaded programs developed using the pthreads library. Here are some
common pthread optimisation techniques: [9]

1. Thread Pooling: Reusing threads from a pre-allocated pool instead of creating and
destroying threads dynamically can reduce the overhead associated with thread creation and
termination.

2. Lock-Free Data Structures: Using lock-free data structures and algorithms can eliminate
the need for traditional locking mechanisms like mutexes and reduce contention among
threads, improving scalability and performance.

3. Thread Affinity: Assigning specific threads to execute on specific CPU cores can reduce
cache thrashing and improve cache locality, leading to better performance, especially on
multicore systems.

4. Fine-grained locking: Minimising the scope and duration of locks by using fine-grained
locking techniques can reduce contention and improve concurrency in multithreaded
programs.

Comparison of pthreads with OpenMP

● Benefits of Pthreads over OpenMP:

1. Fine-Grained Control: Pthreads provide fine-grained control over thread creation,
management, and synchronisation, allowing developers to optimise performance
based on application-specific requirements.

2. Platform Independence: Pthreads are a standardised API available on various
Unix-like operating systems, making it easier to write portable multithreaded code
that can run across different platforms.

3. Low-Level Optimisation: Pthreads allow developers to implement low-level
optimisations tailored to the specific characteristics of the target hardware and
workload, providing greater flexibility and control compared to higher-level threading
models like OpenMP.
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● Drawbacks of Pthreads compared to OpenMP:

1. Complexity: Multithreaded programming with Pthreads can be more complex and
error-prone compared to higher-level threading models like OpenMP, as developers
are responsible for managing thread creation, synchronisation, and communication
explicitly.

2. Verbose Syntax: Pthreads require more lines of code and boilerplate to accomplish
common threading tasks compared to OpenMP, which provides a simpler and more
concise syntax for parallelising loops and regions of code.

3. Potential for Deadlocks and Race Conditions: Pthreads programming requires careful
attention to synchronisation and locking mechanisms to prevent race conditions,
deadlocks, and other concurrency-related issues, which can be challenging to debug
and diagnose.

Benchmarking of pthread is shown below in Figure 2.7.2.1.

Figure 2.7.2.1 - Filtering time of pthread optimisation in multicore

Average filtering time: 94.2% of real-time

In summary, while pthreads offer greater flexibility and control over thread management and
optimisation, they also require more effort and expertise to use effectively compared to
higher-level threading models like OpenMP. The choice between pthreads and OpenMP
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depends on factors such as the level of control and optimisation required, programming
complexity, and portability considerations.
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Chapter 3: Automated verification of the
code

Another essential part of this project was to automate the testing and benchmarking.
Simplifying these processes helps to further modify the program. It prevents extensive
manual testing. A streamlined benchmarking method is created to improve efficiency.

3.1 Automating the process of verification
Currently, the verification needs manual labour and individually checking each output with
the original one. Shell scripts for testing and benchmarking the outputs of single-core and
multi-core codes with both small and large datasets are created for this purpose.

Steps for verification:
1. Run the reference code. Here the final code of Satyarth Gupta was used as a golden

reference. This program generates .out files for filtered data and flagged data which is
used for verification.

2. Compile all C codes that need to be verified
3. Then execute the programs one by one.
4. Each program generates .out files for filtered data and flags. These outputs are

compared with the reference outputs with the “diff -s” command.

Details of which shell script to use for each scenario are attached in the appendix.

3.2 Plotting options
A c program file named “2.1.2_rfi_filter_omp_4_memory_abs_avx_plotting.c” is created
which is used for plotting filtered data over unfiltered data. It is a slightly modified version of
the final code which is used to generate .out files as output. Samples from that output can be
taken for plotting the data in Gnuplot. Plotting these data gives output like this (Figure 3.2.1)
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Figure 3.2.1 - Overlay plot of filtered over unfiltered signal, N =0.5, threshold replacement

3.3 Features of testing
Another C program file named “final_2.1_rfi_filter_omp_4_memory_abs_avx_csv.c” is
created which gives flagging percentage along with other essential parameters including
window size, MOM window, sigma, replacement option, replacement constant, average
filtering time.
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Chapter 4: Power Detection Technique

The power detection technique operates by leveraging an improved signal-to-noise ratio
(SNR), achieved through the process of squaring and averaging the time-domain signal. This
method enables decisions to be made based on the averaged power signal, which helps in
better detection of weak RFI signals.
In determining the optimal number of samples for averaging, careful consideration is given to
the typical duration of RFI (Radio Frequency Interference) bursts resulting from power-line
sparking instances. By selecting an appropriate number of samples, the technique aims to
capture the characteristics of these bursts effectively, ensuring accurate detection and analysis
of RFI events originating from power-line disturbances.

4.1 Power detection code basics
Figure 4.1.1 shows the basic flow of execution of the code. The parameters included file
address, MAD computation window length, MoM computation window length, subwindow
size, scaling factor (determines the aggressiveness of filter), replacement option and
replacement constant for constant replacement.

47



Figure 4.1.1 Basic working of power detection (Source: Report of Satyarth Gupta)

4.2 Previous work
Previously the power detection code was implemented with AVX instructions and a C++
program was created as a golden reference. That C program was not integrated with GWB.
Also, there was some scope for improvement (Inplace swapping, AVX instruction for
absolute function) and some other approaches (look-up table) needed to be tested.

Previous C and C++ programs had two filtering approaches - Threshold filtering and Noise
replacement.

4.3 Finding an appropriate threshold
To find the value of the chi-square (χ²) statistic given the degrees of freedom and probability
(or significance level), we typically refer to a chi-square distribution table (Figure 4.2.1) or
use statistical software (see reference for source and Figure 4.2.2). The chi-square
distribution is a probability distribution that depends on the degrees of freedom.
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A chi-square distribution table provides critical values of the chi-square statistic for various
degrees of freedom and probability levels.

To use the table, locate the row corresponding to the degrees of freedom and find the column
corresponding to the probability level (or significance level). The value at the intersection of
the row and column is the chi-square statistic.

It's important to note that the chi-square distribution is right-skewed, so the probability value
corresponds to the right tail of the distribution. Therefore complement of the probability (1 -
probability) needs to be considered when using the table or software function.
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Figure 4.3.1 - Chi-square distribution table [10]
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Figure 4.3.2 - Chi-square value calculation using an online tool [11]

Subwindow size Chi-square value

2048 2228.25

1024 1152.75

512 604.3125

256 322.5625

128 176.34375

64 99.46875

Table 4.3.1 - Table for Chi-square value for each subwindow

4.4 Benchmarking and functional testing
Similar to the voltage detection technique, here also optimisation techniques are used. These
are absolute calculations with the avx command, inplace swapping and Lookup table.

This benchmarking is done on a MOMWindow size of 16384B
The table for flagging percentage is attached below (Table 4.4.1)

51



The expected filtering time is same as voltage detection, 40.96 μs for single core, and 671ms
for multicore.

Optimisation Technique Sub window size Average time (μs) Flagging percentage

No optimisation 1024 13.122559 57.858467

Abs in AVX 1024 10.681152 57.858467

LU Table 1024 73.242187 57.858467

Inplace 1024 17.39502 57.858467

Table 4.4.1 - Flagging percentage in different optimisations in the same subwindow

Here, is the plot (Figure 4.4.1) comparing the outcomes

Figure 4.4.1 - Comparing different optimisations in the same subwindow

From the graph (Figure 4.4.1) it is seen that converting the absolute function to AVX gives
the best result. Also using the lookup table is not a good approach as the time taken is
extremely high and it takes almost twice the real time requirement (40.96 μs).

Considering this outcome, the program where the absolute function is written in avx is
rigorously checked in different subwindows to see the effect of subwindow size on filtering
time.
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Changing the subwindow size changes the flagging percentage. Table 4.4.2 describes that
output.

Subwindow size Average time (μs) optimisation technique Flagging percentage

2048 10.986328 abs avx 68.470764

1024 10.681152 abs avx 57.858467

512 10.070801 abs avx 53.361797

256 8.544922 abs avx 51.665974

128 10.070801 abs avx 50.942493

64 9.460449 abs avx 50.629761

Table 4.4.2 - The flagging percentage of abs in avx optimisation in the different subwindow

Figure 4.4.2 - Comparing abs in avx optimisation in the different subwindow

4.5 Integration with GWB
Currently, integration with GWB is a work in progress.
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Conclusion and future scopes

● This project provided optimisation real-time performance enhancements to the
MoM-based real-time radio frequency interference (RFI) mitigation algorithm for the
GMRT Wideband Backend (GWB) processing system.

● The project contributed to improving the real-time performance of the MoM-based
RFI filtering technique through the use of SSE instructions and the implementation of
various optimisations. The report outlines the outcomes of benchmarking, functional
testing, and the integration of these techniques into the GWB processing system.

● Currently, the best approach is 4 separate memory in buffer and absolute function
(implemented as AVX instructions).

● Code optimisation also depends on a variety of variables, including compiler versions
and underlying hardware specs. As we've discussed, it's clear that machine
architectures and compiler versions have a significant impact on how well-optimised
code performs.

● Increasing the MOM window size and MAD window size improves performance
significantly.

● Upgrading to GCC 11 from GCC 4.8.5 improves performance by 4 to 5%
● In the future, performance can be improved by upgrading the hardware and using

GPU.
● Power detection implementation can be integrated with GWB.
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Appendix

Modified versions of the voltage detection

Program name Changes Outcome
1.0_rfi_filter_omp_original.c Final code by Satyarth Original
2.0_rfi_filter_omp_4_memo
ry.c

4 different memory locations in
buffer improvement

final_2.1_rfi_filter_omp_4_
memory_abs_avx.c

4 separate memory for buffers +
avx instruction for absolute
function

most improvement

2.1.1_rfi_filter_omp_4_mem
ory_abs_avx_flag_percenta
ge.c

4 memory + abs() AVX + flag
percentage

added some features
on the final version

2.1.2_rfi_filter_omp_4_mem
ory_abs_avx_plotting.c

4 memory + abs() AVX + flag
percentage + output files for
plotting filtered and unfiltered
data

added some features
on the final version

3.0_rfi_filter_omp_inplace.c Same array for input and output improvement
4.0_rfi_filter_omp_omp_opti
mization.c Optimizes openmp loop improvement

5.0_rfi_filter_omp_multi_opt
imization_1.c

4 seperate memory for buffers +
optimised openmp loop improvement

5.0.1_rfi_filter_omp_multi_o
ptimization_1_ABS_AVX.c

4 seperate memory for buffers +
optimised openmp loop + avx
instruction for absolute function

much improvement

5.1_rfi_filter_omp_multi_opt
imization_2.c

Inplace swapping for input and
filtered output + 4 separate
memory for buffers + optimised
openmp loop

improvement
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6.0_rfi_filter_omp_pthread.c Used pthread similar

Final versions of the power detection
optimised_power_sse.c C program for power detection using avx.

Includes bypass, constant replacement, noise
replacement

optimised_power_sse_2.c C program for power detection using avx. Does
not bypass. Only Constant and noise
replacement

List of generic parameters

Parameter Data type Range or
constraints

Usual values

MAD window size int > 32 32768, 16384, less
common - 1024,
4096

MoM window size int >1 32768, 16384

Threshold factor float > 0 3, 2, 1, 0.5

Replacement option int {0, 1, 2, 3} 1, 3

Replacement
constant

int - 8 bit -128 to 127 0

Subwindow size for
power detection

int Should divide MAD
window and > 1

16, 32, 64, 128, 256,
512, 1024
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AVX instructions and their usage

AVX Instruction Description

_mm256_loadu_si256 Loads 256 bits (32 bytes) of integer values from memory into an AVX register.

_mm256_storeu_si256 Stores 256 bits (32 bytes) of integer values from an AVX register into memory.

_mm256_abs_epi8 Calculates the absolute values of 8-bit integers in the AVX register.

The AVX instructions in the abs_avx2 function achieve two main jobs:

● Vectorized Loading and Storing:
_mm256_loadu_si256((__m256i *)&a[j]): This instruction loads 16 int8_t elements
from the address a[j] into an AVX register named a_values. The __m256i type
indicates a 256-bit AVX register that can hold 16 signed 8-bit integers. The & before
a[j] ensures the address points to the memory location of the first element in the
chunk.

_mm256_storeu_si256((__m256i *)&arr[j], abs_values): This instruction stores the
content of the AVX register abs_values back into the memory starting at address
arr[j]. Similar to loading, & ensures the address points to the first element where
absolute values need to be stored.

● Vectorized Absolute Value Calculation:
_mm256_abs_epi8(a_values): This instruction performs a single operation on all 16
elements within the AVX register a_values. It calculates the absolute value of each
int8_t element and stores the results back in the same register abs_values. This single
instruction efficiently replaces 16 separate absolute value calculations typically done
in a loop.

58



In essence, these AVX instructions significantly improve performance by processing 16
elements simultaneously compared to a traditional loop that would process each element
individually.

Final C code for RFI filtering optimisation

/********************************

Version Information:

- This version is built on top of rfi_filter_omp_4_memory.c.

- It uses 4 separate memory buffers and a modified AVX abs()

function.

********************************/

/********************************

Major Features:

- Assumes the first median to be 0 for computational efficiency.

- Configuration options are loaded from a header file instead of

the command line.

- Optimized with OpenMP and -O3 level compiler optimizations.

- Filtering loop utilizes SSE and AVX instructions for real-time

performance.

- Implements a double buffer strategy.

- Inside the buffers, memory locations are not contiguous which

increases read and write time in parallel processing

- abs() function is written in AVX instruction to increase

efficiency

********************************/

/********************************

Code Sections:

1. Reading Parameters from .hdr File:

- Reads and parses configuration parameters from the specified .hdr

file.

2. Filtering Function:

- The core filtering function using AVX instructions to achieve

real time performance of the filter.

3. AVX-based absolute value calculation:

- AVX instruction is used for efficient filtering
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4. OpenMP Section for 4 Antenna Inputs:

- Utilizes OpenMP parallelization for processing data from 4

antenna inputs.

********************************/

/********************************

Compilation Instructions:

- Compile: gcc <.c filename> -o <object filename> -lm -O3 -mavx

-mavx2 -std=c99 -lgomp -fopenmp

Running Instructions:

- Run: ./<object filename> <.bin file>

********************************/

/********************************

Other versions info:

- version 1.0: Final code by Satyarth

- version 2.0: 4 different memory locations in buffer

- version 2.1: **THIS VERSION** (4 memory + abs() in AVX - Final)

- version 3.0: Same array for input and output

- version 4.0: Optimizes openmp loop

- version 5.0: 4 seperate memory for buffers + optimised openmp

loop

- version 5.0.1: 4 seperate memory for buffers + optimised openmp

loop + avx instruction for absolute function

- version 5.1: Inplace swapping for input and filtered output + 4

seperate memory for buffers + optimised openmp loop

- version 6.0: Used pthread

********************************/

/********************************

Release Information:

- Release 2.1 (4 memory + abs() in AVX - Final)

********************************/

#define _POSIX_C_SOURCE 199309L // Define _POSIX_C_SOURCE to specify

adherence to POSIX.1b-1993 standard

#include <stdio.h>

#include <smmintrin.h>

#include <immintrin.h>

#include <emmintrin.h>

#include <stdlib.h>
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#include <math.h>

#include <time.h>

#include <omp.h>

#include <string.h>

#include <ctype.h>

#include <sys/time.h>

#define CLOCK_PER_MICRO ((double)CLOCKS_PER_SEC) / (1000000.0)

#define MAX_LINE_LENGTH 256

typedef signed char int8_t; // Typedefinition for an 8-bit signed

integer.

/*********************************** SIMD multiplication of 8-bit

integers ***********************************/

/*

Function: _mm256_mullo_epi8

Description:

Multiplies the corresponding packed 8-bit integers of two 256-bit

integer vectors element-wise, producing a vector of 16-bit results.

Parameters:

- __A: A 256-bit integer vector.

- __B: Another 256-bit integer vector.

Returns:

- A 256-bit integer vector containing the element-wise product of

corresponding 8-bit integers from __A and __B.

Usage:

- This function is an intrinsic provided by certain compilers for

SIMD (Single Instruction, Multiple Data) operations on 256-bit

integers.

Note:

- __m256i: This type represents a 256-bit integer vector.

- __v32qs: This is a type definition using the

__attribute__((__vector_size__(32)) attribute, indicating a vector of

32 bytes (256 bits).

- __attribute__((__gnu_inline__, __always_inline__,

__artificial__)): These attributes provide hints to the compiler for

inlining and other optimizations.
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- The actual multiplication operation is performed with (__v32qs)__A

* (__v32qs)__B. The result is cast back to __m256i to match the

expected return type.

*/

typedef signed char __v32qs __attribute__((__vector_size__(32)));

extern __inline __m256i

__attribute__((__gnu_inline__, __always_inline__, __artificial__))

_mm256_mullo_epi8(__m256i __A, __m256i __B)

{

return (__m256i)((__v32qs)__A * (__v32qs)__B);

}

/***************************************** Structure containing header

file information *******************************/

/*

Structure: RfiFilterSettings

Description:

Represents a structure containing information parsed from an

RFIFilter settings header file.

Members:

- gwbVersion: Array to store the version of the GWB (Graphical User

Interface).

- filteredSignals: Array to store the type of signals to be

filtered.

- externalMedian: Integer to store the external median value.

- thresholdValue: Float to store the threshold value.

- constantValue: Integer to store the constant value.

- filteringOption: Integer to store the filtering option (0: BYPASS,

1: CONSTANT, 2: THRESHOLD, 3: DIGITAL_NOISE).

- ddcStatus: Array to store the status of the DDC (Digital

Down-Converter).

- mom_win: Integer to store the MOM (Method of Moments) window size.

- mad_win: Integer to store the MAD (Median Absolute Deviation)

window size.

Note:

This structure is designed to hold settings information parsed from

an RFIFilter header file.
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The member types and names correspond to the settings provided in

the header file.

*/

typedef struct

{

char gwbVersion[500];

char filteredSignals[500];

int externalMedian;

float thresholdValue;

int constantValue;

int filteringOption;

char ddcStatus[500];

int mom_win;

int mad_win;

} RfiFilterSettings;

/***************************************** Function to truncate

whitespace from a string *******************************/

/*

Function: truncateWhitespace

Description:

Truncates leading and trailing whitespaces from a string.

Parameters:

- input: Pointer to the input string.

Returns:

- Pointer to the truncated string (allocated in dynamic memory).

Note:

This function takes a pointer to a string as input and dynamically

allocates memory for a new string.

It removes leading and trailing whitespaces from the original

string, creating a truncated version.

The input string is expected to be null-terminated. The function

allocates memory for the truncated string,

and the caller is responsible for freeing this memory when it is no

longer needed.
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The resulting truncated string is returned, and if the input string

is NULL or memory allocation fails,

the function returns NULL.

Example:

If input = " example ", the function returns "example".

Usage:

char *truncatedString = truncateWhitespace(input);

*/

char *truncateWhitespace(const char *input)

{

// Return NULL if the input string is NULL

if (input == NULL)

{

return NULL;

}

size_t length = strlen(input);

// Allocate memory for the result string

char *result = (char *)malloc((length + 1) * sizeof(char));

if (result == NULL)

{

return NULL; // Memory allocation failed

}

size_t i, j = 0;

// Iterate through the input string, omitting leading and trailing

whitespaces

for (i = 0; i < length; i++)

{

if (!isspace(input[i]))

{

result[j++] = input[i]; // Copy non-whitespace characters

to the result string

}

}

result[j] = '\0'; // Null-terminate the result string
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// Return the truncated string

return result;

}

/************************************ Header Reader Function

*************************************/

/*

Function: readRfiFilterSettings

Description:

Reads the header (.hdr) file and populates the RfiFilterSettings

structure with the specified configuration.

Parameters:

- filename: Path to the header file.

Returns:

- RfiFilterSettings structure containing the parsed configuration.

Note:

This function opens the specified header file, reads each line, and

extracts key-value pairs. It then

populates the fields of the RfiFilterSettings structure based on the

parsed information. The header file

follows a specific format where keys and values are separated by ':'

and comments start with '#'. The

function also handles specific key-value mappings and conversions,

such as converting string representations

of numbers to their respective data types. The resulting

RfiFilterSettings structure holds the configuration

information for RFI filtering.

The structure RfiFilterSettings includes the following fields:

- gwbVersion: Version of the GUI.

- filteredSignals: Type of signals to be filtered.

- externalMedian: External median value.

- thresholdValue: Threshold value for filtering.

- constantValue: Constant value for replacement.

- filteringOption: Filtering option (BYPASS, THRESHOLD,

DIGITAL_NOISE, CONSTANT).

- ddcStatus: DDC status (ON/OFF).
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- mom_win: MOM window size.

- mad_win: MAD window size.

*/

RfiFilterSettings readRfiFilterSettings(const char *filename)

{

RfiFilterSettings settings; // Structure to store

configuration settings

FILE *file = fopen(filename, "r"); // Open the specified header

file

// Check if the file was successfully opened

if (file == NULL)

{

printf("Failed to open the file '%s'.\n", filename);

exit(1);

}

char line[MAX_LINE_LENGTH];

// Read each line from the header file and extract key-value pairs

while (fgets(line, sizeof(line), file))

{

char *key = strtok(line, ":");

char *value = strtok(NULL, "#");

key = truncateWhitespace(key);

value = truncateWhitespace(value);

// Process each key-value pair and populate the settings

structure

if (key != NULL && value != NULL)

{

// Handle specific key-value mappings and conversions

if (strcmp(key, "GWB_VERSION") == 0)

{

strcpy(settings.gwbVersion, value);

}

else if (strcmp(key, "FILTERED_SIGNALS") == 0)

{

strcpy(settings.filteredSignals, value);

}

else if (strcmp(key, "EXTERNALMEDIAN") == 0)

{
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settings.externalMedian = atoi(value);

}

else if (strcmp(key, "THRESHOLDVALUE") == 0)

{

settings.thresholdValue = atof(value);

}

else if (strcmp(key, "CONSTANTVALUE") == 0)

{

settings.constantValue = atoi(value);

}

else if (strcmp(key, "FILTERINGOPTION") == 0)

{

if (strcmp(value, "BYPASS") == 0)

{

settings.filteringOption = 0;

}

else if (strcmp(value, "THRESHOLD") == 0)

{

settings.filteringOption = 2;

}

else if (strcmp(value, "DIGITAL_NOISE") == 0)

{

settings.filteringOption = 3;

}

else if (strcmp(value, "CONSTANT") == 0)

{

settings.filteringOption = 1;

}

}

else if (strcmp(key, "DDC_STATUS") == 0)

{

strcpy(settings.ddcStatus, value);

}

else if (strcmp(key, "MOM_WINDOW_SIZE") == 0)

{

settings.mom_win = atoi(value);

}

else if (strcmp(key, "MAD_WINDOW_SIZE") == 0)

{

settings.mad_win = atoi(value);

}

}

}
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// Close the header file

fclose(file);

// Return the populated configuration settings structure

return settings;

}

/********************************************* Dot Product Calculation

*************************************************/

/*

Function: horizontalSum

Description:

Computes the horizontal sum of 8-bit unsigned integers in an AVX2

register.

Parameters:

- vector: AVX2 register containing 32 unsigned 8-bit integers.

Returns:

- The horizontal sum of the 8-bit unsigned integers.

Note:

This function uses AVX2 instructions to calculate the horizontal sum

of 8-bit unsigned integers

stored in the provided AVX2 register. It performs the sum across 32

elements and returns the result

as a 32-bit integer. The algorithm involves using successive SIMD

instructions to accumulate the sum

efficiently.

*/

int horizontalSum(__m256i vector)

{

// Calculate the sum of absolute differences of packed unsigned

8-bit integers

__m256i sum = _mm256_sad_epu8(vector, _mm256_setzero_si256());

// Extract two 128-bit lanes from the 256-bit sum

__m128i sum128 = _mm_add_epi32(_mm256_extractf128_si256(sum, 0),

_mm256_extractf128_si256(sum, 1));
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// Perform horizontal addition to get a 128-bit sum

__m128i sum64 = _mm_add_epi32(sum128, _mm_unpackhi_epi64(sum128,

sum128));

// Perform additional horizontal addition to get a 32-bit sum

__m128i sum32 = _mm_add_epi32(sum64, _mm_shuffle_epi32(sum64,

_MM_SHUFFLE(2, 3, 0, 1)));

// Extract the 32-bit sum as an integer

int sumf = _mm_cvtsi128_si32(sum32);

return sumf;

}

/******************************************* Counting Integers in

Binary File ******************************************/

/*

Function: countIntegersInBinary

Description:

Counts the number of 8-bit integers in a binary file.

Parameters:

- fileName: Path to the binary file.

Returns:

- Number of 8-bit integers in the binary file.

Note:

This function opens the specified binary file in "read" mode and

seeks to the end of the file

to determine its size in bytes. It then calculates the number of

8-bit integers in the file

by dividing the total size by the size of each integer

(sizeof(int8_t)). The result represents

the count of 8-bit integers in the binary file.

*/

long countIntegersInBinary(const char *fileName)

{

FILE *file = fopen(fileName, "rb");
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// Check if the file was successfully opened

if (file == NULL)

{

printf("Failed to open the binary file.\n");

return -1;

}

// Seek to the end of the file

fseek(file, 0, SEEK_END);

// Get the size of the file in bytes

long fileSize = ftell(file);

// Calculate the number of integers (assuming each integer is

sizeof(int) bytes)

long integerCount = fileSize / sizeof(int8_t);

// Close the file

fclose(file);

return integerCount;

}

/*********************************************** File Reading Function

************************************************/

/*

Function: ReadFile

Description:

Reads integers from a text file and returns them as an array of

8-bit integers.

Parameters:

- filename: Path to the text file to be read.

- size: Pointer to the variable where the size of the array will be

stored.

Returns:

- Pointer to the dynamically allocated array of 8-bit integers.

Note:

This function opens the specified file in "read" mode and counts the

number of lines in the file.
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It then allocates memory for the array, resets the file pointer to

the beginning, reads the lines,

converts them to integers, and stores them in the array. The size of

the array is stored in the

variable pointed to by 'size'. Memory is allocated dynamically and

should be freed by the caller

after use.

*/

int8_t *ReadFile(char *filename, int *size)

{

FILE *file = fopen(filename, "r");

// Check if the file was successfully opened

if (file == NULL)

{

printf("Failed to open the file.\n");

return NULL;

}

// Count the number of lines in the file

int count = 0;

char buffer[10];

while (fgets(buffer, sizeof(buffer), file) != NULL)

{

count++;

}

// Allocate memory for the array

int8_t *data = (int8_t *)malloc(count * sizeof(int8_t));

// Check if memory allocation was successful

if (data == NULL)

{

printf("Memory allocation failed.\n");

return NULL;

}

// Reset the file pointer to the beginning

fseek(file, 0, SEEK_SET);

// Read the lines and convert them to integers
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int i = 0;

while (fgets(buffer, sizeof(buffer), file) != NULL)

{

int num = atoi(buffer);

data[i] = (int8_t)num;

i++;

}

// Set the size of the array

*size = count;

// Close the file

fclose(file);

return data;

}

/***************** WriteFile Function to Write 8-bit Integer Array into

a Text File *****************/

/*

Function: WriteFile

Description:

Writes an 8-bit integer array into a text file.

Parameters:

- filename: Path to the text file where data will be written.

- data: Pointer to the 8-bit integer array to be written.

- length: Number of elements in the array.

Note:

This function opens the specified file in "append" mode and writes

each element

of the 8-bit integer array on a new line using the fprintf function.

It then

closes the file.

*/

void WriteFile(const char *filename, int8_t *data, int length)

{

FILE *file = fopen(filename, "a");
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// Check if the file was successfully opened

if (file == NULL)

{

printf("Failed to open the file.\n");

return;

}

// Iterate through the array and write each element on a new line

for (int i = 0; i < length; i++)

{

fprintf(file, "%d\n", (int)data[i]);

}

// Close the file after writing

fclose(file);

}

/**************************** Gaussian Noise Generator based on CLT

**********************************/

/*

Function: generateGaussianNoise

Description:

Generates Gaussian noise based on the Central Limit Theorem.

Parameters:

- arr: Pointer to the array where Gaussian noise will be stored.

- size: Size of the array.

- sigma: Standard deviation of the Gaussian distribution.

Note:

This function generates Gaussian noise using the Central Limit

Theorem (CLT),

summing 24 uniformly distributed random numbers and applying mean

and standard deviation.

It uses the rand() function for random number generation.

*/

void generateGaussianNoise(int8_t arr[], int size, double sigma)

{

srand(time(NULL)); // Seed the random number generator
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for (int i = 0; i < size; i++)

{

double sum = 0.0;

// Sum 24 uniformly distributed random numbers between 0 and 1

for (int j = 0; j < 24; j++)

{

sum += (double)rand() / RAND_MAX; // Generate 12 random

numbers between 0 and 1

}

// Apply the mean and standard deviation to generate Gaussian

noise

double gaussian = (sum - 12) * sigma;

// Round and cast the result to an 8-bit integer

arr[i] = (int8_t)(floor(gaussian + 0.5));

}

}

/****************************** Calculates median

**************************************/

/*

Function: HistoMedian

Description:

Calculates the median of the input array using a histogram-based

approach.

Parameters:

- input_arr: Pointer to the input array.

- len: Length of the input array.

Returns:

- Calculated median.

Note:

This function assumes that the input array contains signed 8-bit

data.

It uses a histogram array to count the frequency of each data point

and
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calculates the median based on the cumulative sum of the histogram

array.

*/

int8_t HistoMedian(int8_t input_arr[], int len)

{

// Making an array to store frequencies, using indexes as data

points (0-128 as it's absolutes of signed 8 bit data)

int histo_array[129] = {};

// Sifting through the input array and incrementing histogram array

counters

for (int i = 0; i < len; i = i + 4)

{

// Increasing the frequency counter of the histogram array acc

to input

histo_array[(int)input_arr[i]]++;

}

// Calculating the median from the histogram array

int sum = 0;

for (int i = 0; i < 129; i++)

{

sum = sum + histo_array[i];

// Return median if the cumulative sum >= len/2 and break the

loop

if (sum > len / 8)

{

return (int8_t)i;

}

}

// Default return if the loop does not break (should not happen

under normal conditions)

return 0;

}

/************************** Some Vector functions from c++

***************************/

/*

Function: push_back
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Description:

Appends elements to the end of an array.

Parameters:

- array: Pointer to the original array.

- size: Pointer to the current size of the array.

- element: Pointer to the elements to be appended.

- push_size: Number of elements to append.

Returns:

- Pointer to the modified array.

Note:

This function assumes that the original array has enough space

to accommodate the additional elements.

*/

int8_t *push_back(int8_t *array, long *size, int8_t *element, int

push_size)

{

// Copy elements from 'element' to the end of 'array'

for (int i = 0; i < push_size; i++)

{

array[*size + i] = element[i];

}

// Update the size of the array

*size += push_size;

// Return a pointer to the modified array

return array;

}

/*

Function: VectorSlice

Description:

Creates a new vector by slicing a portion of an existing vector.

Parameters:

- v: Pointer to the original vector.

- X: Starting index for the slice.

- Y: Ending index for the slice.
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Returns:

- Pointer to the newly created sliced vector.

*/

int8_t *VectorSlice(int8_t *v, int X, int Y)

{

// Calculate pointers to the first and last elements of the slice

int8_t *first = v + X;

int8_t *last = v + Y + 1;

// Allocate memory for the sliced vector

int8_t *vec = (int8_t *)malloc((last - first) * sizeof(int8_t));

if (vec == NULL)

{

printf("Memory allocation failed.\n");

return NULL;

}

// Copy elements from the original vector to the sliced vector

int8_t *p = vec;

while (first != last)

{

*p = *first;

++p;

++first;

}

// Return a pointer to the newly created sliced vector

return vec;

}

//************* Absolute calculation using avx instruction

******************//

/*

Function: abs_avx2

Description:

Calculates the absolute values of elements in an array using AVX2

instructions.

Parameters:
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- arr: Pointer to the destination array where absolute values will

be stored.

- a: Pointer to the source array containing input values.

- WINDOW_SIZE: Number of elements to process in the arrays.

Note:

This function assumes that 'arr' and 'a' have sufficient memory

allocated.

It utilizes AVX2 instructions to process elements efficiently in

chunks of 16.

outputArray will contain absolute values of corresponding elements

in inputArray

*/

void abs_avx2(int8_t *arr, const int8_t *a, int WINDOW_SIZE)

{

// Process the array in chunks of 16 elements (AVX2 registers hold

16 values)

for (int j = 0; j < WINDOW_SIZE; j += 16)

{

// Load 16 integer values from the 'a' array into an AVX2

register

__m256i a_values = _mm256_loadu_si256((__m256i *)&a[j]);

// Calculate the absolute values of the 16 elements in the AVX2

register

__m256i abs_values = _mm256_abs_epi8(a_values);

// Store the result (absolute values) back into the 'arr' array

_mm256_storeu_si256((__m256i *)&arr[j], abs_values);

}

}

//************************************ RFI FILTER

************************************//

/*

Function: filter

Description:

Applies a filtering algorithm to an array of numbers based on

specified parameters.
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Parameters:

- numbers: Input array of integers to be filtered.

- filtered: Pointer to the destination array where filtered values

will be stored.

- data_count: Total number of elements in the 'numbers' array.

- WINDOW_SIZE: Size of the window used for filtering.

- MOM_WIN: Size of the window used for calculating the MOM.

- N: Scaling factor for filtering.

- RPL_OPTION: Option for replacement during filtering.

- RPL_CONST: Constant value used for replacement (if RPL_OPTION is

enabled).

- thres: Pointer to an int8_t value representing the threshold for

filtering.

- flags: Pointer to an array of flags.

Note:

- The 'filtered' and 'flags' array should have sufficient memory

allocated.

- The filtering algorithm uses the specified parameters to process

the 'numbers' array.

- Replacement of values during filtering can be controlled by

'RPL_OPTION' and 'RPL_CONST'.

- The 'thres' parameter is a pointer to an int8_t value representing

the threshold for filtering.

*/

void filter(int8_t numbers[], int8_t *filtered, int data_count, int

WINDOW_SIZE, int MOM_WIN, float N, int RPL_OPTION, int8_t RPL_CONST,

int8_t *thres, int8_t flags[])

{

long double avg_time = 0, avg_filter = 0, avg_mediantime = 0;

long int flag_count = 0;

int n_slices = data_count / WINDOW_SIZE;

int8_t *filtered_output;

int8_t *flag_output;

filtered_output = (int8_t *)malloc(WINDOW_SIZE * sizeof(int8_t));

flag_output = (int8_t *)malloc(WINDOW_SIZE * sizeof(int8_t));

long filtered_size = 0;

long flags_size = 0;

// Making the MAD buffer array to calculate MOM value
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int8_t mad_buffer[n_slices];

int start = 0;

int8_t integer_noise[WINDOW_SIZE];

float sigma;

float upper_th;

upper_th = 127;

int8_t THRES = *thres;

for (int i = 0; i < n_slices; i++)

{

int8_t *a;

a = VectorSlice(numbers, start, start + WINDOW_SIZE - 1);

// Starting the stopwatch for timer of current window

clock_t start_time = clock();

// Making the array to pass for median (directly taking

absolutes as first median is 0)

int8_t arr[WINDOW_SIZE];

abs_avx2(arr, a, WINDOW_SIZE);

// Starting stopwatch for median calculation

clock_t start_med = clock();

// Adding the MAD value into buffer

mad_buffer[i] = (int8_t)HistoMedian(arr, WINDOW_SIZE);

clock_t stop_med = clock();

// Updating the sigma value for threshold calculations, if we

reach the next MOM window

if ((i + 1) % MOM_WIN == 0)

{

// Making an array for MOM calculation from mad_buffer (in

short, slicing)

int8_t mom_buffer[MOM_WIN];

for (int m = 0; m < MOM_WIN; m++)

{

mom_buffer[m] = mad_buffer[i + 1 - MOM_WIN + m];

}
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// Getting MOM value

// Calculating the median of the data

int mom_value = HistoMedian(mom_buffer, MOM_WIN);

// Calculating the thresholds

sigma = 1.4826 * mom_value;

generateGaussianNoise(integer_noise, WINDOW_SIZE, sigma);

}

// Updating the upper and lower thresholds according to the

last MOM sigma

// Done after the first MOM window has passed, to apply these

to second one.

if (i + 1 >= MOM_WIN)

{

upper_th = +N * sigma;

}

// Starting filtering timer

clock_t start_filter = clock();

//************** Filtering with switch case *****************//

switch (RPL_OPTION)

{

case 0: // BYPASS

{

int vector_iterator = 0; //

iterator is incremented by 32 in each iteration

__m256i threshold = _mm256_set1_epi8(THRES); //

constant vector of threshold values

__m256i th_neg = _mm256_set1_epi8((THRES * (-1))); //

Constant vector of negative threshold values

// Iterate over the input array in chunks of 32 (AVX2

register size)

for (int8_t *p = a; p < a + WINDOW_SIZE; p = p + 32)

{

__m256i v = _mm256_loadu_si256((__m256i *)(p)); // load

32 numbers in v[iterator:iterator+31]

// Compare each element in 'v' with the threshold,

generating masks
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__m256i cmp_gt = _mm256_cmpgt_epi8(v, threshold); //

mask, of comparing values of v with threshold

__m256i cmp_lt = _mm256_cmpgt_epi8(th_neg, v); //

mask, of comparing values of v with threshold

// Combine the masks using logical OR

__m256i cmp = _mm256_or_si256(cmp_gt, cmp_lt);

// Square the mask values using multiplication

cmp = _mm256_mullo_epi8(cmp, cmp);

// Store the flags and the filtered output

_mm256_storeu_si256((__m256i *)(flag_output +

vector_iterator), cmp); // storing flags

_mm256_storeu_si256((__m256i *)(filtered_output +

vector_iterator), v); // storing filtered output

vector_iterator += 32;

// incrementing counter by 32 for the next iteration

}

}

break;

case 1: // CONSTANT REPLACEMENT

{

int vector_iterator = 0;

// iterator is incremented by 32 in each iteration

__m256i threshold = _mm256_set1_epi8(THRES);

// constant vector of threshold values

__m256i th_neg = _mm256_set1_epi8((int8_t)(THRES * (-1)));

// Constant vector of negative threshold values

__m256i constant = _mm256_set1_epi8(RPL_CONST);

// constant vector of replacement constant values

// Iterate over the input array in chunks of 32 (AVX2

register size)

for (int8_t *p = a; p < a + WINDOW_SIZE; p = p + 32)

{

// cout<<_mm256_extract_epi8(constant,0);

__m256i v = _mm256_loadu_si256((__m256i *)(p)); // load

32 numbers in v[iterator:iterator+31]

// Compare each element in 'v' with the threshold,

generating masks

82



__m256i cmp_gt = _mm256_cmpgt_epi8(v, threshold); //

mask, of comparing values of v with threshold

__m256i cmp_lt = _mm256_cmpgt_epi8(th_neg, v); //

mask, of comparing values of v with threshold

// Combine the masks using logical OR

__m256i cmp = _mm256_or_si256(cmp_gt, cmp_lt);

// Blend 'v' and 'constant' based on the mask

__m256i result = _mm256_blendv_epi8(v, constant, cmp);

// Square the mask values using multiplication

cmp = _mm256_mullo_epi8(cmp, cmp);

// Store the flags and the filtered output

_mm256_storeu_si256((__m256i *)(flag_output +

vector_iterator), cmp); // storing flags

_mm256_storeu_si256((__m256i *)(filtered_output +

vector_iterator), result); // storing filtered output

vector_iterator += 32;

// incrementing counter by 32 for the next iteration

}

}

break;

case 2: // THRESHOLD REPLACEMENT

{

int vector_iterator = 0;

// iterator is incremented by 32 in each iteration

__m256i threshold = _mm256_set1_epi8(THRES);

// constant vector of threshold values

__m256i th_neg = _mm256_set1_epi8((int8_t)(THRES * (-1)));

// constant vector of negative threshold values

// Iterate over the input array in chunks of 32 (AVX2

register size)

for (int8_t *p = a; p < a + WINDOW_SIZE; p = p + 32)

{

__m256i v = _mm256_loadu_si256((__m256i *)(p)); // load

32 numbers in v[iterator:iterator+31]

// Compare each element in 'v' with the threshold,

generating masks
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__m256i cmp_gt = _mm256_cmpgt_epi8(v, threshold); //

mask, of comparing values of v with threshold

__m256i cmp_lt = _mm256_cmpgt_epi8(th_neg, v); //

mask, of comparing values of v with threshold

// Combine the masks using logical OR

__m256i cmp = _mm256_or_si256(cmp_gt, cmp_lt);

// Blend 'v', 'threshold', and 'th_neg' based on the

masks

__m256i result = _mm256_blendv_epi8(v, threshold,

cmp_gt);

result = _mm256_blendv_epi8(result, th_neg, cmp_lt);

// Square the mask values using multiplication

cmp = _mm256_mullo_epi8(cmp, cmp);

// Store the flags and the filtered output

_mm256_storeu_si256((__m256i *)(flag_output +

vector_iterator), cmp); // storing flags

_mm256_storeu_si256((__m256i *)(filtered_output +

vector_iterator), result); // storing filtered output

vector_iterator += 32; // incrementing counter by 32

for the next iteration

}

}

break;

case 3: // NOISE REPLACEMENT

{

int vector_iterator = 0;

// iterator is incremented by 32 in each iteration

__m256i threshold = _mm256_set1_epi8(THRES);

// constant vector of threshold values

__m256i th_neg = _mm256_set1_epi8((int8_t)(THRES * (-1)));

// constant vector of negative threshold values

// Iterate over the input array in chunks of 32 (AVX2

register size)

for (int8_t *p = a; p < a + WINDOW_SIZE; p = p + 32)

{
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// Load pregenerated noise and 32 numbers from the

input array into AVX2 registers

__m256i noise_v = _mm256_loadu_si256((__m256i

*)(integer_noise + vector_iterator)); // loading pregenerated noise

__m256i v = _mm256_loadu_si256((__m256i *)(p));

// load 32 numbers in v[iterator:iterator+31]

// Compare each element in 'v' with the threshold,

generating masks

__m256i cmp_gt = _mm256_cmpgt_epi8(v, threshold); //

mask, of comparing values of v with threshold

__m256i cmp_lt = _mm256_cmpgt_epi8(th_neg, v); //

mask, of comparing values of v with threshold

// Combine the masks using logical OR

__m256i cmp = _mm256_or_si256(cmp_gt, cmp_lt);

// Blend 'v' and 'noise_v' based on the mask

__m256i result = _mm256_blendv_epi8(v, noise_v, cmp);

// Square the mask values using multiplication

cmp = _mm256_mullo_epi8(cmp, cmp);

// Store the flags and the filtered output

_mm256_storeu_si256((__m256i *)(flag_output +

vector_iterator), cmp); // storing flags

_mm256_storeu_si256((__m256i *)(filtered_output +

vector_iterator), result); // storing filtered output

vector_iterator += 32;

// incrementing counter by 32 for the next iteration

}

}

break;

}

// Increasing the slicing position

start = start + WINDOW_SIZE;

for (int8_t *m = flag_output; m < flag_output + WINDOW_SIZE; m

= m + 32)

{

__m256i v2 = _mm256_loadu_si256((__m256i *)m);

flag_count += horizontalSum(v2);

}
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// Stopping timer for filtering

clock_t stop_filter = clock();

// Stopping the timer for total time

clock_t stop_time = clock();

// Getting average times for the window

double duration = (double)((stop_time - start_time)) /

((double)(1));

avg_time = ((avg_time * i) + duration) / (i + 1);

double duration_med = (stop_med - start_med);

avg_mediantime = ((avg_mediantime * i) + duration_med) / (i +

1);

double duration_filter = (stop_filter - start_filter);

avg_filter = ((avg_filter * i) + duration_filter) / (i + 1);

*thres = upper_th;

// Use push_back function to append 'WINDOW_SIZE' elements from

'filtered_output' to 'filtered' array

push_back(filtered, &filtered_size, filtered_output,

WINDOW_SIZE);

// Use push_back function to append 'WINDOW_SIZE' elements from

'flag_output' to 'flags' array

push_back(flags, &flags_size, flag_output, WINDOW_SIZE);

free(a);

}

free(flag_output);

free(filtered_output);

}

/*********************** Main function responsible for signal

processing and filtering ***********************/

int main(int argc, char *argv[])

{

const char *filename = "rfi_settings.hdr"; // Path to the settings

file
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RfiFilterSettings settings = readRfiFilterSettings(filename); //

Read RFI filter settings from the header file

char *INPUT_FILENAME = argv[1];

// Extract specific settings from the RFI filter configuration

const int WINDOW_SIZE = settings.mad_win; // Window Size for

all methods

const int MOM_WIN = settings.mom_win; // Number of

windows for MOM calculation

const float N = settings.thresholdValue; // Scaling factor

for filtering

const int RPL_OPTION = settings.filteringOption; // Filtering

option (BYPASS, CONSTANT, THRESHOLD, DIGITAL_NOISE)

const int RPL_CONST = settings.constantValue; // Constant value

used for replacement (if RPL_OPTION is enabled)

// OUTPUT FILE NAMES

char op_flname1[50];

sprintf(op_flname1, "d1_output_%d_%d_%d_4_mem_abs_avx.out", (N *

10), RPL_OPTION, RPL_CONST);

char op_flname2[50];

sprintf(op_flname2, "d2_output_%d_%d_%d_4_mem_abs_avx.out", (N *

10), RPL_OPTION, RPL_CONST);

char op_flname3[50];

sprintf(op_flname3, "d3_output_%d_%d_%d_4_mem_abs_avx.out", (N *

10), RPL_OPTION, RPL_CONST);

char op_flname4[50];

sprintf(op_flname4, "d4_output_%d_%d_%d_4_mem_abs_avx.out", (N *

10), RPL_OPTION, RPL_CONST);

struct timespec start2, end2;

int count = 0; // COUNT Variable

// CALCULATE DATA LENGTH OF INPUT FILES TO BE FED

long data_len1 = countIntegersInBinary(INPUT_FILENAME);

long data_len2 = countIntegersInBinary(INPUT_FILENAME);

long data_len3 = countIntegersInBinary(INPUT_FILENAME);

long data_len4 = countIntegersInBinary(INPUT_FILENAME);

const long chunk_size = WINDOW_SIZE * MOM_WIN; // CHUNK SIZE
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int chunk_n = (long)data_len1 / chunk_size; // NUMBER OF CHUNKS IN

BINARY FILE

//************************** Input buffer

*************************//

// DECLARATION OF INPUT BUFFER

int8_t **numbers;

numbers = (int8_t **)malloc(8 * sizeof(int8_t *));

// Allocate memory for each sub-array in 'numbers'

numbers[0] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

numbers[1] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

numbers[2] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

numbers[3] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

numbers[4] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

numbers[5] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

numbers[6] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

numbers[7] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

//************************** Output buffer

************************//

int8_t **filtered; // DECLARATION OF OUTPUT BUFFER OF SIZE

2x(4*256M)

filtered = (int8_t **)malloc(8 * sizeof(int8_t *));

// Allocate memory for each sub-array in 'filtered'

filtered[0] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

filtered[1] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

filtered[2] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

filtered[3] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

filtered[4] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

filtered[5] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

filtered[6] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

filtered[7] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

//************************** Flag buffer

**************************//

int8_t **flags; // DECLARATION OF Flag BUFFER OF SIZE 2x(4*256M)

flags = (int8_t **)malloc(8 * sizeof(int8_t *));

// Allocate memory for each sub-array in 'flags'

flags[0] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

flags[1] = (int8_t *)malloc(chunk_size * sizeof(int8_t));
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flags[2] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

flags[3] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

flags[4] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

flags[5] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

flags[6] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

flags[7] = (int8_t *)malloc(chunk_size * sizeof(int8_t));

// Open the binary file multiple times for parallel processing

FILE *binaryFile1 = fopen(INPUT_FILENAME, "rb"); // File pointer 1

FILE *binaryFile2 = fopen(INPUT_FILENAME, "rb"); // File pointer 2

FILE *binaryFile3 = fopen(INPUT_FILENAME, "rb"); // File pointer 3

FILE *binaryFile4 = fopen(INPUT_FILENAME, "rb"); // File pointer 4

// Check if any of the file pointers is equal to zero, indicating a

file opening error

if (binaryFile1 == 0 || binaryFile2 == 0 || binaryFile3 == 0 ||

binaryFile4 == 0)

{

fputs("File error", stderr);

exit(1);

}

// Variables to store the result of fread for each file

int result1, result2, result3, result4;

// Read data from binary files into different sections of the

'numbers' array

result1 = fread(numbers[4], sizeof(int8_t), chunk_size,

binaryFile1);

result2 = fread(numbers[5], sizeof(int8_t), chunk_size,

binaryFile2);

result3 = fread(numbers[6], sizeof(int8_t), chunk_size,

binaryFile3);

result4 = fread(numbers[7], sizeof(int8_t), chunk_size,

binaryFile4);

// Check if the number of elements read is less than the expected

'chunk_size' for any file

if (result1 < chunk_size || result2 < chunk_size || result3 <

chunk_size || result4 < chunk_size)

{

fprintf(stderr, "File end reached\n");

exit(1);
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}

// DECLARING THRESHOLDS AND INITIALISING THEM

int8_t threshold1 = 127;

int8_t threshold2 = 127;

int8_t threshold3 = 127;

int8_t threshold4 = 127;

// Print a message to the standard output indicating the number of

iterations

fprintf(stdout, "Near OMP threads. Number of iterations %d\n",

chunk_n);

// Initialize variables for measuring time

double avg_time = 0;

clock_t start1 = clock();

struct timeval shr1, shr2;

float comp_time;

int cr;

for (int i = 0; i < 1000; i++)

{

// Read data from binary files into different sections of the

'numbers' array based on the value of 'count'

result1 = fread(numbers[((count * 4) % 8)], sizeof(int8_t),

chunk_size, binaryFile1);

result2 = fread(numbers[((count * 4) % 8) + 1], sizeof(int8_t),

chunk_size, binaryFile2);

result3 = fread(numbers[((count * 4) % 8) + 2], sizeof(int8_t),

chunk_size, binaryFile3);

result4 = fread(numbers[((count * 4) % 8) + 3], sizeof(int8_t),

chunk_size, binaryFile4);

// Check if the number of elements read is less than the

expected 'chunk_size' for any file

if (result1 < chunk_size || result2 < chunk_size || result3 <

chunk_size || result4 < chunk_size)

{

fprintf(stderr, "File end reached\n");

exit(1);

}

comp_time = 0;

// Stores current time at starting of pragma loop
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gettimeofday(&shr1, 0);

// Set the number of OpenMP threads to 4

omp_set_num_threads(4);

#pragma omp parallel for private(cr) schedule(static)

for (cr = 0; cr < 4; cr++)

{

// Conditional statements for different values of 'cr'

if (cr == 0)

{

filter(numbers[((count + 1) * 4) % 8], filtered[((count

+ 1) * 4) % 8], chunk_size, WINDOW_SIZE, MOM_WIN, N, RPL_OPTION,

RPL_CONST, &threshold1, flags[(count + 1) % 8]);

}

if (cr == 1)

{

filter((numbers[(((count + 1) * 4) % 8) + 1]),

(filtered[(((count + 1) * 4) % 8) + 1]), chunk_size, WINDOW_SIZE,

MOM_WIN, N, RPL_OPTION, RPL_CONST, &threshold2, (flags[(((count + 1) *

4) % 8) + 1]));

}

if (cr == 2)

{

filter((numbers[(((count + 1) * 4) % 8) + 2]),

(filtered[(((count + 1) * 4) % 8) + 2]), chunk_size, WINDOW_SIZE,

MOM_WIN, N, RPL_OPTION, RPL_CONST, &threshold3, (flags[(((count + 1) *

4) % 8) + 2]));

}

if (cr == 3)

{

filter((numbers[(((count + 1) * 4) % 8) + 3]),

(filtered[(((count + 1) * 4) % 8 + 3)]), chunk_size, WINDOW_SIZE,

MOM_WIN, N, RPL_OPTION, RPL_CONST, &threshold4, (flags[(((count + 1) *

4) % 8) + 3]));

}

}

// Stores time at the end of pragma loop

gettimeofday(&shr2, 0);

// Calculate the total computation time in milliseconds
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comp_time = (float)(1000.0 * (shr2.tv_sec - shr1.tv_sec) +

(0.001 * (shr2.tv_usec - shr1.tv_usec)));

//**************************** Uncomment this commented section to

get the outputfiles**************************//

/***********

// Write filtered data into text files using WriteFile function

WriteFile(op_flname1, (filtered[(((count + 1) * 4) % 8)]),

chunk_size); // WRITES THE FILTERED DATA INTO TEXT FILES

WriteFile(op_flname2, (filtered[((((count + 1) * 4) % 8) +

1)]), chunk_size);

WriteFile(op_flname3, (filtered[((((count + 1) * 4) % 8) +

2)]), chunk_size);

WriteFile(op_flname4, (filtered[((((count + 1) * 4) % 8) +

3)]), chunk_size);

// Write flags data into text files using WriteFile function

WriteFile(op_flname1, (flags[((count + 1) % 8)]), chunk_size);

// WRITES THE FLAGS DATA INTO TEXT FILES

WriteFile(op_flname2, (flags[((((count + 1) * 4) % 8) + 1)]),

chunk_size);

WriteFile(op_flname3, (flags[((((count + 1) * 4) % 8) + 2)]),

chunk_size);

WriteFile(op_flname4, (flags[((((count + 1) * 4) % 8) + 3)]),

chunk_size);

***********/

// Increment the count of outer loop

count++;

// Print information to the standard output

fprintf(stdout, "%d\t%f\n", count, comp_time);

}

// Record the time at the end of the section

clock_t stop1 = clock();

// Calculate the duration of the section in clock cycles

double duration1 = (double)(stop1 - start1);

// Free memory for 'numbers' array

for (int i = 0; i < 8; i++)

{

92



free(numbers[i]);

}

// Free memory for 'filtered' array

for (int i = 0; i < 8; i++)

{

free(filtered[i]);

}

// Free memory for 'flags' array

for (int i = 0; i < 8; i++)

{

free(flags[i]);

}

// Free the memory for the arrays of pointers

free(numbers);

free(filtered);

free(flags);

return 0;

}
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