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Abstract

The report presents a comprehensive analysis of the implementation and optimization of
real-time radio frequency interference (RFI) mitigation algorithms in the context of the Giant
Metrewave Radio Telescope (GMRT) and the GMRT Wideband Backend (GWB) processing
system. The goal is to improve the real-time performance and efficiency of RFI mitigation
techniques by leveraging SSE instructions and other optimizations. The report outlines the
benchmarking results, functional testing, and integration with the GWB processing system.
Additionally, it explores the power detection technique and its optimization using SSE
instructions. The report concludes with an overview of the achieved improvements and
outlines future directions for further enhancements.
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Chapter 1 : Introduction

1.1 Brief on GMRT Array and uGMRT
The GMRT, or the Great Metrewave Radio Telescope, is an impressive radio telescope
located near Pune, India. It's managed by the National Centre for Radio Astrophysics
(NCRA) at the Tata Institute of Fundamental Research (TIFR). The GMRT is renowned
worldwide as one of the biggest and most sensitive radio telescopes that operates at metre
wavelengths. The GMRT comprises a group of 30 antennas (figure 1.1.1), each with a
diameter of 45 metres. These antennas function at various frequencies ranging from 150 MHz
to 1450 MHz. To achieve a lightweight and wind-resistant design, the GMRT employs an
innovative antenna construction method called SMART. This approach involves using wire
mesh panels and rope trusses, making the entire array cost-effective to build [1].

Figure 1.1.1 GMRT Antenna (courtesy GMRT archives)

1.2 Digital Backend
The backend systems are housed at the CEB, with separate systems for processing the legacy
and upgraded GMRT signals. The first stage of these systems is the analog processing chain



that provides the final baseband signals, which are then digitised and processed by the digital
backend systems – the GMRT Software Backend (GSB) for the legacy GMRT, and the
GMRT Wideband Backend (GWB) for the upgraded GMRT. The GWB processes a
maximum of 400 MHz band for each of two polarisations for all the GMRT antennas.

1.3 A brief on Radio Frequency Interference

RFI, or Radio Frequency Interference, refers to unwanted electromagnetic signals or noise
that can disrupt or degrade the quality of radio frequency signals used in communication
systems, including wireless devices, radios, and radar systems [2]. RFI can originate from
various sources, such as power lines, electrical equipment, electronic devices, and even
natural phenomena like lightning. The presence of RFI can lead to signal distortion, reduced
range, and increased error rates in communication systems.

1.3.1 Narrowband RFI

Narrowband RFI refers to radio frequency interference that occurs within a limited portion of
the spectrum. These signals typically exhibit consistency over an extended period and
generally do not cause permanent harm to the system. The occurrence of narrowband RFI is
often attributed to frequency overlap from sources such as mobile towers and other
communication devices. Figure 1.3.1 illustrates narrowband RFI observed at GMRT, where
the distinct peaks in the image represent narrowband RFI within the 325 MHz observing band
of GMRT.

Figure 1.3.1 - Narrowband RFI at GMRT Courtesy: Mayuresh Surnis

1.3.2 Broadband RFI

Broadband RFI, on the other hand, manifests as impulsive signals with high energy content
capable of overpowering the underlying astronomical signals. This type of interference



occurs over short durations and has the potential to cause permanent damage to electronic
receiver systems due to its intense nature. Figure 1.3.2 showcases broadband RFI observed at
GMRT, predominantly caused by high voltage power lines, which is why it is commonly
referred to as powerline RFI.

Figure 1.3.2 - Broadband RFI in band 2 at GMRT

Figure 1.3.3 shows the log-periodic antenna setup to measure RFI from the powerline at
GMRT Main electric Supply, and figure 1.3.4 shows detected RFI on the spectrum analyser.

Figure 1.3.3 RFI Detection setup Figure 1.3.4 Spectrum analyser

The radio signals received from outer space are often assumed to follow a normal
distribution, as depicted in the figure 1.3.5. However, these signals are susceptible to
interference from RFI, which is primarily a local phenomenon. The amplitude of RFI is
typically stronger than that of the original signal, resulting in the useful signal being
concentrated primarily within the range of three standard deviations, at the centre of the
distribution curve. So the signals out of this range which have high amplitude are mitigated
using different algorithms.



Figure 1.3.5 - Distribution of radio signals (courtesy - Bonnie Baker)

1.4 A brief introduction to GMRT Wideband Backend

The GWB system consists of 16 FPGA + Compute nodes, each receiving 2 polarizations of 2
antennas through 2 ADC units attached to them. This filtering method is currently
implemented on FPGA {provide a citation to my paper}. However, due to certain other
backend feature requirements on FPGA, the filter needs to be moved to CPU. Hence the
project tries to look into a software implementation to try and perform the RFI filtering on the
Compute nodes with CPU to make room for more complex filters on the FPGAs and provide
more flexibility for the MoM-based software implementation. Figure 1.4.1 shows the block
diagram of the GWB backend system [3].

Figure 1.4.1 - Block diagram for GWB correlator



1.5 Current RFI mitigation method

When the time series raw voltage data is provided at the ADC of the system, an FPGA node
is configured to perform a 16x16 MoM(median of MADs) filtration on 4 antennas. Then this
digitised and filtered data is sent to the CPU + GPU compute node for further processing and
data storage.
Earlier, the MoM_4thsample.cpp code(refer appendix) computed MoM via Histogram
Method over every 4th sample, to optimise performance.

MAD(median absolute deviation) is defined as [4]
MAD = medianj[|x − median(xi)|]

and for a normal distribution, the standard deviation is related to this as

σ = 1.4826 × MAD
However, for longer bursts of RFI, having a median of several MAD values called the
Median-of-MAD(MoM) is preferred. In that case,

σ = 1.4826 × MoM
This sigma value is computed for a window of size ‘W’ and is used to eventually
compute a threshold value where:

upper threshold = medianj + N*σ
lower threshold = medianj - N*σ

Here, N is the threshold level, usually set at N = 3. These values are used to flag
and filter every element in the window, and can do 3 things with the RFI values:

1. Do nothing and just flag the value
2. Replace RFI with a constant
3. Replace with the threshold
4. Replace with digital noise



Chapter 2 : Overview and benchmarking
of the previous versions on CPU

In this chapter, we will provide an overview of the MoM_4thsample.cpp code and discuss the
benchmarking process based on the average deviation per second of data. We will explore the
functionality of the code and present the benchmarking results.

2.1 RFI filter C++ code based on median calculation
optimisation
The initial code, named MoM_4thsample.cpp, of the RFI filter, was based on calculating
median and MAD from histogram sort. To optimise histogram sorting, median was calculated
using every 4th sample after sorting. Also in the noise replacement, the noise was generated
at every sample which contributed to increase in calculation time, affecting real time
performance. Overall, the code was far from real time performance.

For benchmarking, the data used was a long data set (1g.txt) containing around 449 million
samples, each of them being of 1 byte (from -128 to 127). It was collected at a bandwidth of
200 MHz and it is of band 3.

For 200 MHz bandwidth, the Nyquist sampling criterion sets the sampling frequency to be

Sampling frequency, fs = 2 x 200 MHz = 400 MHz

Samples come at a time interval of

1/fs = 1/400 MHz = 2.5 ns

For a 16K (16,384) window of samples, we get a time of

16,384 x 2.5 ns = 40.96 μs ≈ 40 μs

We are required to be able to process 1 signal window of 16 K (filter it), within 40
microseconds.

Filter time for cpp code was calculated using high_resolution_clock::now() from
chrono library



The code of MoM_4thsample.cpp is present in the appendix.
Figure 2.1.1 shows a snippet of Noise replacement mode, figure 2.1.2 shows flow of
execution of MoM_4thsample.cpp

Figure 2.1.1 noise replacement mode

Figure 2.1.2 Flowchart of MoM_4thsample.cpp



2.2 Benchmarking results of MoM_4th sample

We ran the code on rfiuser@snode (specifications in appendix) machine and tracked the time
taken for it to run on different modes with different values of threshold factor n. We then
calculated deviation of actual time taken to filter vs the time it takes 1 MAD window to arrive
(around 40 microseconds).

Deviation = (actual filtering time/real sampling time) - 1

The deviation should be less than 0 for the filtration to occur in less than 1 MAD window
sampling time.
Plots of benchmarking are in figure 2.2.1

Figure 2.2.1 Benchmarking plots for 1g.txt on MoM_4thsample.cpp

We can see that threshold and noise replacement are falling way before real time
requirements especially for lower threshold factors. Also for bypass and constant replacement
the deviation is still not enough below real time requirements.

For noise replacement, we can see that the noise samples are generated at every MAD
window, which could suggest the extreme deviation from real time.



2.3 MoM 4th sample with pre-generated noise

To reduce the time from generation of noise samples at each MoM window, a different
approach of pre-generating the noise in an array(figure 2.3.1) and storing it(figure 2.3.2), was
followed. Figure 3.2.3 shows the noise replacement mode utilising pre generated noise.

Figure 2.3.1 - pre generation of noise - module

Figure 2.3.2 - noise populated in the array

Figure 2.3.3 - Pre generated noise used in noise replacement

This approach reduces the time overhead from generation of noise at every MoM window. At
different instances of running this program noise generated is different, hence each antenna



would have its own pre generated noise window randomly generated and different from
others.

2.4 Benchmarking results from pre-generated noise
approach

Benchmarking results from this approach for 1g.txt(band 3 data) are given in figure 2.4.1 and
table 2.4.1

Figure 2.4.1 - Comparison of deviation of from real time pre generated noise against
generating at every MoM window

N

Avg time per MAD window
(microseconds)(noise
replacement)
for non-pre generated noise

Avg time per MAD window
(microseconds)(noise
replacement)
for pre generated noise

Percentage
improvement

3 39.647916 36.795704 7.2

2 53.03834 40.215656 24.2

1 112.702931 58.264191 48

Table 2.4.1 - Quantitative data for snode, mode - noise replacement

We can see that there is significant improvement made by this approach at lower threshold
factors as shown in table 2.4.1. This approach of generating noise has been later used with
AVX (Advanced Vector Extensions) instructions.



Plot for 2g.txt is shown in figure 2.4.2.

Figure 2.4.2 - Benchmarking results and comparison with 2g.txt

We can see that noise replacement with pre generated noise works better than threshold
replacement.

2.5 Major bottlenecks and possible optimisations
In both of the previous codes, there is a common pattern where each element encountered in a
window undergoes branch prediction based on whether it surpasses a threshold or not. The
execution time of the if-else blocks varies in different replacement modes, depending on
whether the element exceeds the threshold or not. Consequently, there is a reliance on the
threshold factor N, introducing performance dependencies.

Branch prediction can lead to pipeline stalls, while inefficient memory access patterns and
loop structures can result in significant overhead. To mitigate these issues, several
optimizations can be implemented. These include code restructuring to minimise branch
mispredictions, leveraging parallel computation techniques, optimising memory access by
aligning data and enhancing data locality, and applying loop unrolling techniques to optimise
loops. Compiler optimizations, such as utilising aggressive optimization flags, can further
improve performance. By addressing these bottlenecks and employing suitable optimizations,
it is possible to reduce overhead and enhance the code's execution speed.



Chapter 3 : SSE and AVX instructions
based optimisations

In this chapter, we explore the use of SIMD (Single Instruction, Multiple Data), SSE
(Streaming SIMD Extensions), and AVX (Advanced Vector Extensions) instructions for
optimising the real-time radio frequency interference (RFI) mitigation algorithms in the
context of the Giant Metrewave Radio Telescope (GMRT) and the GMRT Wideband
Backend (GWB) processing system. SIMD instructions enable parallel processing by
applying a single instruction to multiple data elements simultaneously, thereby improving
performance by performing operations in parallel.

3.1 SIMD,SSE and AVX instructions - an overview
SIMD (Single Instruction, Multiple Data), SSE (Streaming SIMD Extensions), and AVX
(Advanced Vector Extensions) are instruction sets that enable parallel processing on modern
processors. SIMD is a programming paradigm that allows a single instruction to be applied to
multiple data elements simultaneously. SSE introduced 128-bit registers for simultaneous
operations on multiple data elements. AVX extended SSE by introducing wider 256-bit
registers and additional instructions, and AVX-512 further extended it to 512 bits. These
instructions enhance performance in various applications by executing operations on multiple
data elements in parallel [5].

3.1.1 SSE supported by snode
In figure 3.1.1 and 3.1.2 we get output of $ cat /proc/cpuinfo | grep sse and $ cat
/proc/cpuinfo | grep avx respectively

Figure 3.1.1 - SSE flags in cpu

Figure 3.1.2 - AVX flags in cpu



3.1.2 AVX over SSE
For our implementation, we opted for AVX instructions due to their ability to work with 256
bits [5] or 32 bytes at a time. By leveraging AVX, we can efficiently handle 32 8-bit numbers
and execute operations more effectively, resulting in improved performance and faster
execution times.

3.2 Converting C++ code to use AVX instructions for
filtering
In this conversion, the original code snippet has been modified to utilise AVX instructions for
improved performance (shown in figure 3.2.1). The purpose of the code remains the same,
which is to filter and process 1 MAD window of data based on the given threshold value. The
array a is a vector slice of length 1 MAD window. Major changes made are highlighted in
figure 3.2.2.

Figure 3.2.1 - Changes made to achieve same functionality as previous C++ code



Figure 3.2.2 - Converted constant replacement mode

The optimised code uses 256-bit wide AVX registers (__m256i) to process 32 elements (8-bit
numbers) in parallel [6]. Here's an explanation of the AVX implementation:

Initialization:
1. vector_iterator is an iterator variable used to track the current position within the

arrays a, flag_output, and filtered_output.
2. threshold is a vector that holds the threshold value (THRES), broadcasting it to all

elements of the vector.
3. th_neg is a vector that holds the negation of the threshold value (upper_th * -1), used

for the lower threshold comparison.
4. constant is a vector that holds the replacement constant value (RPL_CONST),

broadcasting it to all elements of the vector.

Looping: The loop iterates over the array a in steps of 32 (the width of the AVX registers).
Each statement is described in table 3.2.1

Code Description

__m256i v =
_mm256_loadu_si256((__m256i*) (p))

Loads 32 elements from the array
starting at the current position

__m256i cmp_gt =
_mm256_cmpgt_epi8(v, threshold)

Compares each element of v with the
threshold value

__m256i cmp_lt =
_mm256_cmpgt_epi8(th_neg, v)

Compares each element of v with the
negated threshold value



__m256i cmp =
_mm256_or_si256(cmp_gt, cmp_lt)

Combines the masks from the
greater-than and less-than
comparisons

__m256i result =
_mm256_blendv_epi8(v, constant, cmp)

Replaces the elements in v with the
corresponding elements

_mm256_storeu_si256((__m256i*)
(flag_output+vector_iterator), cmp)

Stores the cmp mask values in the
flag_output array

_mm256_storeu_si256((__m256i*)
(filtered_output+vector_iterator),
result)

Stores the filtered output values in
the filtered_output array

vector_iterator += 32 Advances the vector_iterator by 32
to process the next set of elements

Table 3.2.1 - Description of each line and function inside loop
Similar changes have been made for other replacement modes and are shown below(figure
3.2.3, 3.2.4, 3.2.5).

Figure 3.2.3 - Converted bypass mode



Figure 3.2.4 - Converted threshold replacement mode

Figure 3.2.5 - Noise replacement mode, pregenerated noise

3.3 Flow of the overall code with flowchart
The program begins by parsing command-line arguments to obtain input parameters,
including the input filename, window size, MoM window size, threshold factor, replacement
option, and replacement constant. It then reads the input file into a vector and determines the
number of slices based on the window size and data count.



To record the time with arguments, a file is opened. Average time, average filter time, and
average median time variables are initialised to calculate the average times per window. A
flag count variable is also initialised to keep track of the number of flags.

Arrays for filtered output, flag output, and noise generation are created. The program then
iterates through each window, performing the following steps:

a. Slicing the input vector into a smaller window.
b. Calculating the median of the window using the HistoMedian function.
c. Updating the threshold based on the calculated median.
d. Applying threshold-based filtering using SIMD instructions and the chosen replacement
option.
e. Updating the flag count based on the flagged elements.
f. Measuring the time taken for filtering and median calculation.
g. Storing the filtered output and flags in vectors.

After processing all windows, the program calculates and prints the average times per
window for total time, filtering time, and median time. The filtered output and flags vectors
are written to output files. Finally, the file recording time with arguments is closed.

The flowchart for C++ code is given in figure 3.3.1



Figure 3.3.1 - Flowchart of AVX instruction based filter



3.4 Benchmarking on sample datasets
Here is a benchmarking result on 2g.txt in figure 3.4.1

Figure 3.4.1 Benchmarking plots of 2g.txt. All other curves overlap with green one

N

Avg time taken for 1 MAD
window

(microsecond)(noise with
AVX)

Avg time taken for 1 MAD
window

(microsecond)(noise without
AVX)

Speedup

3 17.199279 37.111084 2.16

2 17.366871 42.654362 2.46

1 17.536086 72.543278 4.14

0.5 17.174638 NA NA

Table 3.4.1 - Time taken for 1 MAD window for each replacement option
We can see that the improvement is drastic, with the filtering time being around 14-15
microsecond for 1 MAD window. Also we see that the dependence on threshold factor and
replacement option has disappeared.

Benchmarking results on other datasets are shown in figure 3.4.2, 3.4.3, 3.4.4, 3.4.5. The
bandwidth is 200MHz, that gives us a sampling rate of 400 MHz

Band 2 : 130 - 260 MHz



Figure 3.4.2 - Band 2 data deviation plot

Band 3 : 250 - 500 MHz

Figure 3.4.3 - Band 3 data deviation plot

Band 4 : 550 - 850 MHz



Figure 3.4.4 - Band 4 data deviation plot

Band 5: 1050 - 1450 MHz

Figure 3.4.5 - Band 5 data deviation plot

The plots exhibit consistent behaviour across all frequency bands, indicating reliability in the
filtering process. Additionally, the filtering operation is performed at a significantly faster



rate than real-time, showcasing its efficiency. Moreover, there is a notable independence from
both the filtering option and the threshold factor, suggesting that the filtering results remain
consistent regardless of the chosen parameters.

3.5 Error in previous pre generating noise function
In the noise generating function of MoM_4th sample(MoM filtering function without AVX)
with pre-generated noise(figure 3.5.1), there was an error in noise generating functions,
which first created noise of standard deviation 1, truncated it to integer, then scale by
calculated standard deviation. This led the noise to take some discrete integer values, of non
gaussian nature (figure 3.5.2).

Figure 3.5.1 - Previous noiseMaker with stddev declared to 1 and type cast to int

Figure 3.5.2 - Histogram of noise generated by earlier NoiseMaker function



To solve this, the noise generating function was modified such that it took the value of sigma
as argument and generated the noise for each MoM window as shown in figure 3.5.3.

Figure 3.5.3 - Modified noise function with sigma as an argument

The noise generated (figure 3.5.4) by this noise function was much more similar to Gaussian
noise as verified by the kurtosis(figure 3.5.5 and figure 3.5.6).

Figure 3.5.4 - Histogram of noise generated by modified NoiseMaker



Figure 3.5.5 kurtosis of noise2(unmodified) Figure 3.5.6 kurtosis of noise1(modified)

3.6 Functional results
● The output of AVX code was tested against golden reference and for windows with

the same threshold, the filtered data was perfectly aligning(figure 3.6.1).

Here are some plots of filtered data against raw data in figure 3.6.2 and 3.6.3

Figure 3.6.1 - Functional verification flowchart

Figure 3.6.2 - Overlay plots for filtered over unfiltered signal, N =3, zero replacement



Figure 3.6.3 - Overlay plots for filtered over unfiltered signal, N =2, threshold replacement

3.7 Running on four cores via taskset

Figure 3.7.1 - CPU and memory utilisation during running with taskset

We employed the "taskset" instruction, which enabled us to run the program concurrently on
four different cores. Specifically, we pinned the program to cores 8, 9, 14, and 15, utilising
the available resources optimally. By leveraging the "taskset" instruction, we were able to
harness the parallel processing capabilities of these cores(figure 3.7.1).



Chapter 4 : Preparing the code for
integration with GWB

4.1 GWB processing requirement
During the integration stage of the AVX-optimised C++ code for the RFI filter, we
encountered the following challenges:

1. Compatibility with GWB Library: The GWB library or code was originally written in
C and compiled using the gcc compiler, while our AVX-optimised code was written in
C++ and compiled using the g++ compiler. We had to ensure compatibility between
the two by making any necessary adjustments or modifications to the code or build
process.

2. Double Buffer System: To optimise the performance of the filter, we implemented a
double buffer system. This system allowed for simultaneous reading of the input
signal from one buffer while writing the filtered signal to another buffer. Suppose we
have a counter or clock or some loop iterator variable, when read occurs in
(count%2)th buffer, filter and write occurs in (count+1 %2)th buffer. This approach
minimised the data dependency and improved overall efficiency.

3. OpenMP Implementation: To simulate filtering on multiple antennas simultaneously,
we utilised OpenMP, a parallel programming framework. By incorporating OpenMP
directives into the code, we were able to parallelize the filter execution and distribute
the workload across multiple threads. This resulted in improved performance by
leveraging the available processing resources effectively.

Additionally, as part of the integration stage, we designed the RFI filter to be implemented as
a function. This function takes input arguments, such as the input signal and filter parameters,
and returns the filtered signal as output. By encapsulating the filter logic within a function, it
promotes code modularity and reusability, allowing the filter to be easily integrated into
larger software systems or used in different contexts with varying input data and parameters.
This approach enhances the flexibility and maintainability of the RFI filter implementation.

Overall, these challenges were successfully addressed during the integration stage, ensuring
compatibility with the GWB library, implementing a double buffer system, and incorporating
OpenMP for parallel execution on multiple instances of the filter. Figure 4.1.1 shows the flow
of program execution.



Figure 4.1.1 - Flowchart of execution sequence in the code for GWB integration

4.2 Converting C++ code to C code
The C++ code was converted to C code to ensure compatibility with a C environment and
remove dependencies on C++ features.

● In order to convert the code, the C++ functions were replaced with their C equivalents
and modified to work with arrays instead of vectors.

● Several helper functions, such as push_back, ReadFile, WriteFile, HistoMedian, and
VectorSlice, were added and implemented to provide the required functionality.

● Dynamic memory allocation was used to create and manage arrays instead of vectors.
● Time benchmarking was performed using functions like timeval or clock() from the

time.h header.

The resulting C code retains the core functionality of the original C++ code and can be
compiled and executed in a C programming environment.



4.3 Reading .hdr header file to pass parameters
When working with a filtering process, the .hdr file contains the essential parameters required
for the filtration. These parameters include information about input parameters for filtration
like window size, threshold factor etc.

4.3.1 About.hdr file
The .hdr file serves as a container for the necessary parameters used in the filtering process.
Figure 4.3.1 presents an example of the content typically found within a .hdr file.

Figure 4.3.1 - a typical .hdr file

4.3.2 Reading the parameters from .hdr file and the code

Figure 4.3.2 - structure of RfiFilterSettings

The code snippet of reader function is as follows:

RfiFilterSettings readRfiFilterSettings(const char* filename) {

RfiFilterSettings settings;

FILE* file = fopen(filename, "r");

if (file == NULL) {

printf("Failed to open the file '%s'.\n", filename);

exit(1);

}

char line[MAX_LINE_LENGTH];

while (fgets(line, sizeof(line), file)) {



char* key = strtok(line, ":");

char* value = strtok(NULL, "#");

key = truncateWhitespace(key);

value = truncateWhitespace(value);

if (key != NULL && value != NULL) {

if (strcmp(key, "GWB_VERSION") == 0)

strcpy(settings.gwbVersion, value);

else if (strcmp(key, "FILTERED_SIGNALS") == 0)

strcpy(settings.filteredSignals, value);

else if (strcmp(key, "EXTERNALMEDIAN") == 0)

settings.externalMedian = atoi(value);

else if (strcmp(key, "THRESHOLDVALUE") == 0)

settings.thresholdValue = atof(value);

else if (strcmp(key, "CONSTANTVALUE") == 0)

settings.constantValue = atoi(value);

else if (strcmp(key, "FILTERINGOPTION") == 0) {

if (strcmp(value, "BYPASS") == 0)

settings.filteringOption = 0;

else if (strcmp(value, "THRESHOLD") == 0)

settings.filteringOption = 2;

else if (strcmp(value, "DIGITAL_NOISE") == 0)

settings.filteringOption = 3;

else if (strcmp(value, "CONSTANT") == 0)

settings.filteringOption = 1;

}

else if (strcmp(key, "DDC_STATUS") == 0)

strcpy(settings.ddcStatus, value);

else if (strcmp(key, "MoM_WINDOW_SIZE") == 0)

settings.mom_win = atoi(value);

else if (strcmp(key, "MAD_WINDOW_SIZE") == 0)

settings.mad_win = atoi(value);

}

}

fclose(file);

return settings;

}

Explanation to the code :

The readRfiFilterSettings function is designed to read a .hdr file containing filtering
parameters and extract the information into a RfiFilterSettings structure shown in figure
4.3.2. Here's an explanation of its functioning:



1. The function takes the filename of the .hdr file as input and returns a RfiFilterSettings
structure containing the extracted parameters.

2. It opens the .hdr file using the provided filename and checks if the file was
successfully opened. If not, it displays an error message and exits.

3. The function reads the .hdr file line by line using fgets and stores each line in the line
variable.

4. For each line, it tokenizes the line based on the ":" delimiter using strtok.
5. The key and value tokens are extracted using strtok, and any leading or trailing

whitespace is removed using the truncateWhitespace function.
6. The extracted key-value pair is then processed based on the key.
7. If the key matches a specific parameter (e.g., "GWB_VERSION"), the corresponding

value is assigned to the appropriate field in the RfiFilterSettings structure.
8. The process continues for each key-value pair in the .hdr file.
9. After processing all the lines, the file is closed, and the populated RfiFilterSettings

structure is returned.
10. The caller can now access the extracted filtering parameters from the returned

structure.

The truncateWhitespace function is a helper function used by readRfiFilterSettings to remove
any whitespace characters from a given string. It iterates through the characters in the input
string, copying only the non-whitespace characters to the result string. The resulting string is
then null-terminated and returned.

By using the readRfiFilterSettings function, the program can easily read and extract the
filtering parameters from a .hdr file, enabling the customization and configuration of the
filtering process based on the specified parameters.

4.4 Double buffering of input and output buffers
In Figure 4.4.1, you can see the design of something called a double buffer. It's represented as
a big array with a size of 2 times (4 times 256 times 220). This means it has four different
sections, and each section has 256 rows and 220 columns. Each of these sections is used for
running a separate filter, and all four filters work at the same time. This arrangement helps
make the processing faster and more efficient. With this setup, the filters can simultaneously
analyse and process signals within the buffer. Reading and filtering occurs in separate buffers.
Suppose we have a counter or clock or some loop iterator variable, when read occurs in
(count%2)th buffer, filter and write occurs in (count+1 %2)th buffer.



Figure 4.4.1 structure of a double buffer

The double buffering in C code is used for input and output of the signals. Figure 4.4.2 shows
the snippet for allocation of memory for input and output which is double buffered. Numbers
is input buffer and filtered is output buffer.

Figure 4.4.2 - double buffer allocation

4.5 Implementing OpenMP for parallel filtering
Figure 4.5.1 shows the OpenMP implementation of the RFI filter. Before implementing,
inside the ‘.bashrc’ file, the GOMP_CPU_AFFINITY was added/set to 8, 9, 14, 15 to give
preference to these cores as per availability. The OMP_PROC_BIND was set to true, then
this ‘.bashrc’ was sourced.

export GOMP_CPU_AFFINITY=”8 9 14 15”
export OMP_PROC_BIND=true



Figure 4.5.1 - OpenMP implementation

The explanation to the above implementation is given as follows.

1. #pragma omp parallel for private(cr) schedule(static): This pragma directive indicates
that the following for-loop should be executed in parallel using multiple threads. The
loop iterator variable cr is declared private to each thread, meaning that each thread
will have its own copy of this variable. The schedule(static) clause specifies that the
loop iterations should be evenly distributed among the threads.

2. The subsequent code within the for-loop corresponds to different statements executed
by each thread:
a. Statement 1: The thread with cr value 0 reads a binary file (binaryFile1) into the
numbers array and performs filtering operations on the data, storing the filtered results
in the filtered array.
b. Statement 2: The thread with cr value 1 reads a different section of the binary file
(binaryFile2) into the numbers array and performs filtering operations on this section,
storing the filtered results in the corresponding section of the filtered array.
c. Statement 3: The thread with cr value 2 reads another section of the binary file
(binaryFile3) into the numbers array and performs filtering operations on this section,
storing the filtered results in the corresponding section of the filtered array.
d. Statement 4: The thread with cr value 3 reads the remaining section of the binary
file (binaryFile4) into the numbers array and performs filtering operations on this
section, storing the filtered results in the corresponding section of the filtered array.



3. The code then proceeds to write the filtered data from the filtered array into separate
output files (op_flname1, op_flname2, op_flname3, op_flname4) using the WriteFile
function.

4. The loop continues until the condition count<chunk_n is met, where chunk_n
represents the number of iterations predicted in the data(this is later replaced by a
subroutine which exits the program at the end of input). This ensures that all data
chunks are processed.

4.6 Functional test results
The output of openMP code was tested with MATLAB golden reference and it was plotted
against it for 3 sigma zero replacement(Figure 4.6.1) and 2 sigma threshold
replacement(Figure 4.6.2).

Figure 4.6.1 - Functional results with constant replacement, N = 3



Figure 4.6.2 - Functional results with threshold replacement, N = 2

The flags are also being compared with golden reference apart from the filtered data.

Figure 4.6.3 - Flowchart of functional verification procedure [4]

Verification is done using C++ diff algorithm called ‘filereader’ which takes two .txt files and
compares the data between them, listing out the points at which the files are different.This is
used to compare the reference output and flags from MATLAB against the output and flags
generated by the design under test to analyse both outputs (figure 4.6.3).



Chapter 5 : Exploring Power Detection
Technique

The power detection technique works on improved SNR as it squares and averages the
time-domain signal and decision is made on the averaged power signal. The number of
samples to be averaged are optimally arrived at considering the typical duration of RFI burst
from the power-line sparking instances.

5.1 Working of the code

Figure 5.1.1 basic working of power detection

Figure 5.1.1 shows the basic flow of execution of the code. The parameters included file
address, MAD computation window length, MoM computation window length, subwindow
size, scaling factor (determines aggressiveness of filter) , replacement option and replacement
constant for constant replacement.



5.2 Earlier implementation - with pre generated noise

Figure 5.2.1 shows the implementation, with noise replacement. The code, based on the
replacement option, performs filtering on sub-windows within the current window. If the
accumulated power in a sub-window exceeds the upper threshold, the code replaces the
sub-window values with the replacement constant and sets the flag output accordingly. The
flag count is updated accordingly.

Figure 5.2.1 - Noise replacement in power detection technique

5.3 Functional testing - against voltage based MoM
filter

The filtered data was compared with the data filtered by voltage based MoM filter for
different subwindows and a window size of 1024 (figure 5.3.1). Also, it was benchmarked
with a window size of 16384 and different subwindows for noise replacement.



Figure 5.3.1 - Flagging percentage for various threshold factor of power detection filter
compared against voltage based filter

The detector operates on chi-squared distribution (sum of square of Gaussian distributed
samples). The squaring and accumulation operation on raw voltage samples results in a
central chi-square distribution whose mean and variance would depend on that of the voltage
domain data and the number of samples accumulated. For a large number of samples (n), the
distribution converges towards the Gaussian distribution.

The relationship between the mean (μp) and standard deviation (σp) in the chi-square domain
as computed from the respective mean (μ) and standard deviation (σ) in the time-domain is
given by

μp = nσ2



σp = √(2n).σ2

Thus the detection threshold (γ) in terms of μp and σp can be given as
γ = λσ2(n + √(2n))

where λ is the aggressiveness parameter. This form can also be arrived at by referring to the
chi-square statistics table for a given n and λ. Thus if the square and accumulated sample is
greater than γ, it is detected as RFI and the entire block of n samples is flagged as RFI.

The value of n depends on the number of samples that a typical RFI burst corrupts
(depending on the duration of burst and the sampling rate of the system).

5.4 Benchmarking results
The code was benchmarked using GMRT band-3 data(1g.txt). The window size used was
16384 with the option of noise replacement. Figure 5.4.1 demonstrates the plots of deviation
from real time in 1 second versus sigma.

Figure 5.4.1 - Comparison of deviation with N for subwindow of 16,32,64,128,256. Window
size is 1024.

As we can see this code runs much slower than the pre-generated noise version, for all
threshold factors. This can be accounted for squaring the signal multiple times and adding all
those values, in a subwindow; along with replacing all values in the sub window in case the
accumulated sum turns out to be greater than threshold.



Chapter 6 : Power Detection Technique
using SSE and AVX instructions

The preceding approach to noise filtration, which utilises power for its implementation, can
be enhanced in CPU performance by incorporating AVX instructions. This optimization
closely resembles the methodology employed in the earlier chapters for voltage-based noise
filters.

6.1 Converting the code

Figure 6.1.1 Snippet of code highlighting the data accumulation part in a subwindow

In contrast to the previous iteration of power-based noise detection, the data accumulation
segment of the code has evolved into a more intricate set of instructions. In each cycle of the
for loop illustrated in Figure 6.1.1, the code now operates on 16 numbers simultaneously.
Each cycle of the for loop in figure 6.1.1 works on 16 numbers at a time.

Unlike our earlier approach in the voltage-based noise filter, we refrained from processing 32
numbers. Instead, we opted for a different strategy, aiming to accumulate 16-bit squares of
numbers within a 256-bit AVX vector. Additionally, there has been a shift in using the "long"
data type for the variable "data_accum."



Figure 6.1.2 - Noise filter with constant replacement snippet

The filter and replacement part is comparatively simpler, as we do not need to compare each
data point and we can replace entire subwindows at once.

6.2 Functional test results
Extensive testing was conducted on the code using established datasets, and a comprehensive
side-by-side comparison was performed with the earlier C++ code. The results from both
implementations were found to be precisely identical, affirming the consistency of the newer
version with its predecessor in C++.



Conclusions and future scope

● This project provided a comprehensive examination of the implementation and
real-time performance enhancement of real-time radio frequency interference (RFI)
mitigation algorithms within the Giant Metrewave Radio Telescope (GMRT) and the
GMRT Wideband Backend (GWB) processing system.

● The project helped in enhancing the real-time efficiency and performance of RFI
mitigation techniques by leveraging SSE instructions and other optimizations. The
report presents the results of benchmarking, functional testing, and the integration of
these techniques with the GWB processing system.

● However, the integration process has posed challenges, particularly regarding the
inability to fully utilise cores with OpenMP. Nonetheless, there is ample room for
improvement in this aspect.

● We observed that upgrading the compiler from version 4.8.5 to gcc 11 yielded
significantly better performance, with the filtering time for a single MAD window
dropping to less than 5 microseconds, compared to 17 microseconds in gcc 4.8.5.
Upgrading the compiler can bring benefits to filtering and other operations.

● The next steps would be to successfully integrate the design with the GWB and carry
out detailed testing. Also, the mechanism of treating the flags can be looked at.
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Appendix

Final versions

File Names Description

c_version_rfi.c Runs on single core, without any double
buffering

double_buff_rfi.c Single core, uses double buffer

5_release… Has.hdr reader implemented, double
buffer, with openMP , to run on 4 cores

simultaneously

rfiuser@snode specifications

List of generic parameters



Parameter Data type Range or
constraints

Usual values

MAD window size int > 32 16384, less common
- 1024, 4096

MoM window size int >1 16384

Threshold factor float > 0 3, 2, 1, 0.5

Replacement option int {0, 1, 2, 3} 1, 3

Replacement
constant

Int - 8 bit -128 to 127 0

Subwindow size for
power detection

int Should divide MAD
window and > 1

16, 32, 64, 128, 256

Codes (C++ and C)

MoM_4thsample.cpp
/*

This code does MOM filtering while assuming the first median to be zero

to save computation

*/

/*

This version will be assuming first median to be 0 always.

It also includes the configuration options being given from a header

file instead of the command line.

It will be optimized with OpenMP and -O3 level ove optimizations from

the compiler directives.

export GOMP_CPU_AFFINITY="2 3 11 12 4 5 6 7 13 5"

*/

#include<iostream>

#include<bits/stdc++.h>

#include<chrono>

#include<fstream>

#include<vector>

#include<iterator>

#include<random>



using namespace std;

using namespace std::chrono;

//************************ File reader and writer functions

*****************************************//

vector<int> ReadFile(string &name,int &cnt) {

//Making an fstream object

fstream myFile;

//Generating input data vector

vector<int> input_data;

//Opening the file in input mode

myFile.open(name,ios::in);

//Checking if file is open, and then storing it into the vector

if(myFile.is_open()) {

int input_buffer;

//getline() only stores in strings, hence the conversion

while(myFile >> input_buffer) {

input_data.push_back(input_buffer);

cnt++;

}

}

myFile.close();

return input_data;

}

void WriteFile(vector<int> &write_data,string name,int &data_length) {

//Making an fstream object

fstream myFile;

//Opening the file in write mode

myFile.open(name,ios::out);

//Checking if file is open, then writing to it

if(myFile.is_open()) {

for(int i = 0; i < data_length;i++) {

myFile << write_data.at(i) << endl;

}

}

myFile.close();

}

//*********************** Slicing the vector into windows

*****************************************//



vector<int> VectorSlice(vector<int> &v,int X, int Y) {

auto first = v.cbegin() + X;

auto last = v.cbegin() + Y + 1;

std::vector<int> vec(first, last);

return vec;

}

// ********************* Histogram method for median calculation

*******************************//

//Function to calculate the median through histogram - inputs are the

array and it's length

int HistoMedian(int input_arr[], int len) {

//Making an array to store frequencies, using indexes as data

points (0-128 as it's absolutes of signed 8 bit data)

int histo_array[129] = {};

//Sifting through the input array and incrementing histogram array

counters

for(int i = 0; i < len; i = i + 4) {

//Increasing the frequency counter of the histogram array acc

to input

histo_array[input_arr[i]]++;

}

//Calculating the median from the histogram array

int sum = 0;

for (int i = 0; i < 129; i++) {

sum = sum + histo_array[i];

//Return median if the cumulative sum >= len/2 and break the

loop

if(sum > len/8) {

return i;

}

}

return 0;

}

//************************ MAD Calculation

**********************************//

int main(int argc, char *argv[]) {



//************************* Getting input parameters from command

line ********************************//

string INPUT_FILENAME = argv[1]; //Name of the file with data

const int WINDOW_SIZE = stoi(argv[2]); //Window Size for all

methods

const int MOM_WIN = stoi(argv[3]); //Number of windows for

MOM calculation

const int N = stoi(argv[4]); //Threshold factor (th

= sigma*N)

const int RPL_OPTION = stoi(argv[5]); //% 0 = bypass; 1 =

constant; 2 = threshold; 3 = digital noise

const int RPL_CONST = stoi(argv[6]); //Constant to be

replaced by in rpl = 1

//Getting the whole data vector

vector<int> numbers;

int data_count = 0;

numbers = ReadFile(INPUT_FILENAME,data_count);

//Getting a variable for avg time

long double avg_time = 0, avg_filter =0, avg_mediantime = 0;

//Getting a count for number of flags

long int flag_count = 0;

//Calculating number of slices

int n_slices = data_count/WINDOW_SIZE;

//Making a filtered output and flagging array

int filtered_output[WINDOW_SIZE];

int flag_output[WINDOW_SIZE];

//Making a vector for writing to file

vector<int> filtered;

//Making the MAD buffer array to calculate MOM value

int mad_buffer[n_slices];

//Initiating a counter for slicing

int start = 0;



//Declaring threshold variables for the windows without MOM filter

(first MOM_WIN windows)

float sigma;

float upper_th,lower_th;

upper_th = 127;

//Main loop for iterating through each window

for(int i = 0;i < n_slices ; i++) {

//Making a vector for the window

vector<int> ans;

//cout << "start value is - " << start << "---------------||"

<< endl;

//cout << "End value is - " << start + WINDOW_SIZE - 1 <<

"---------"<< i + 1 << "------||" << endl;

ans = VectorSlice(numbers,start,start + WINDOW_SIZE - 1);

//Starting the stopwatch for timer of current window

auto start_time = high_resolution_clock::now();

//Making the array to pass for median (directly taking

absolutes as first median is 0)

int arr[WINDOW_SIZE];

for(int j = 0; j < WINDOW_SIZE; j++) {

arr[j] = abs(ans[j]);

}

//Starting stopwatch for median calculation

//auto start_med = std::chrono::high_resolution_clock::now();

//Adding the MAD value into buffer

mad_buffer[i] = HistoMedian(arr,WINDOW_SIZE);

//Stopping timer and calculating median time required

//auto stop_med= std::chrono::high_resolution_clock::now();

//Updating the sigma value for threshold calculations, if we

reach the next MOM window

if((i+1)%MOM_WIN == 0) {

//Making an array for MOM calculation from mad_buffer (in

short, slicing)

int mom_buffer[MOM_WIN];

for(int m = 0; m < MOM_WIN; m++) {

mom_buffer[m] = mad_buffer[i + 1 - MOM_WIN + m];

}



//Getting MOM value

//Calculating the median of the data

int mom_value = HistoMedian(mom_buffer,MOM_WIN);

//Calculating the thresholds

sigma = 1.4826*mom_value;

}

//Updating the upper and lower thresholds according to the last

MOM sigma

//Done after the first MOM window has passed, to apply these to

second one.

if(i + 1 >= MOM_WIN) {

upper_th = + N*sigma;

}

//Starting filtering timer

//auto start_filter =

std::chrono::high_resolution_clock::now();

//************************* Filtering with switch case

**************************************//

switch(RPL_OPTION) {

case 0:

for(int k = 0; k < WINDOW_SIZE; k++) {

int ansk = ans[k];

if(abs(ansk) <= upper_th) {

//Adding the filtered value to the output array

filtered_output[k] = ansk;

flag_output[k] = 0;

} else {

//Increasing flag counter

flag_count++;

//Adding the filtered value to the output array

filtered_output[k] = ansk;

flag_output[k] = 1;

}

}

break;

case 1:

for(int k = 0; k < WINDOW_SIZE; k++) {

int ansk = ans[k];

if(abs(ansk) <= upper_th) {



//Adding the filtered value to the output array

filtered_output[k] = ansk;

flag_output[k] = 0;

} else {

//Increasing flag counter

flag_count++;

//Adding the filtered value to the output array

filtered_output[k] = RPL_CONST;

flag_output[k] = 1;

}

}

break;

case 2:

for(int k = 0; k < WINDOW_SIZE; k++) {

int ansk = ans[k];

if(abs(ansk) <= upper_th) {

//Adding the filtered value to the output array

filtered_output[k] = ans[k];

flag_output[k] = 0;

} else {

//Increasing flag counter

flag_count++;

//Adding the filtered value to the output array

filtered_output[k] = (ansk/abs(ansk))*upper_th;

flag_output[k] = 1;

}

}

break;

case 3:

//Generating a gaussian noise distribution with 0 mean

and 1 std deviation

default_random_engine generator(time(0));

normal_distribution<float> dist(0,1);

for(int k = 0; k < WINDOW_SIZE; k++) {

int ansk = ans[k];

if(std::abs(ansk) <= upper_th) {

//Adding the filtered value to the output array

filtered_output[k] = ansk;

flag_output[k] = 0;

} else {

//Increasing flag counter

flag_count++;



//Adding the filtered value to the output array

int noise = dist(generator)*sigma;

filtered_output[k] = std::abs(noise) > 127 ?

(-1^k)*127 : noise;

flag_output[k] = 1;

}

}

break;

}

//Increasing the slicing position

start = start + WINDOW_SIZE;

//Stopping timer for filtering

//auto stop_filter = std::chrono::high_resolution_clock::now();

//Stopping the timer for total time

auto stop_time = high_resolution_clock::now();

//Getting average times for the window

auto duration = duration_cast<microseconds>(stop_time -

start_time);

avg_time = ((avg_time*i) + duration.count())/(i+1);

//auto duration_med = duration_cast<microseconds>(stop_med -

start_med);

//avg_mediantime = ((avg_mediantime*i) +

duration_med.count())/(i+1);

//auto duration_filter =

duration_cast<microseconds>(stop_filter - start_filter);

//avg_filter = ((avg_filter*i) +

duration_filter.count())/(i+1);

for(int f = 0; f < WINDOW_SIZE; f++) {

filtered.push_back(filtered_output[f]);

}

}

//Printing the statistics

cout << "Avg total time per window required (microsec) = " <<

avg_time << endl;



cout << "Avg filtering time per window required (microsec) = " <<

avg_filter << endl;

cout << "Avg median time per window required (microsec) = " <<

avg_mediantime << endl;

//float out_size = filtered_output.size();

//cout << "|||_____ Final output size - " << out_size << endl;

cout << "|||_____ Number of flags - " << flag_count << endl;

//float percentage = (flag_count/out_size)*100;

//cout << "|||_____ Percentage flagging - " << percentage << endl;

//Writing the output vector to the file

int out_sz = filtered.size();

cout << "|||_____ Final output size - " << out_sz << endl;

WriteFile(filtered,"output.txt",out_sz);

cout << "Done writing filtered output file" << endl;

/*

//Writing the flag vector to the file and getting a counter for

number of flags

out_sz = flag_output.size();

cout << "|||_____ Number of flags - " << flag_count << endl;

WriteFile(flag_output,"output_flags.txt",out_sz);

cout << "Done writing filtered output file" << endl;

*/

cout << endl;

return 0;

}

pwd_final_mod.cpp
/*

This code does MOM filtering while assuming the first median to be zero

to save computation

*/

/*

This version will be assuming first median to be 0 always.

It also includes the configuration options being given from a header

file instead of the command line.

It will be optimized with OpenMP and -O3 level ove optimizations from

the compiler directives.



*/

#include<iostream>

#include<bits/stdc++.h>

#include<chrono>

#include<fstream>

#include<vector>

#include<iterator>

#include<random>

using namespace std;

using namespace std::chrono;

//************************ File reader and writer functions

*****************************************//

vector<int> ReadFile(string &name,int &cnt) {

//Making an fstream object

fstream myFile;

//Generating input data vector

vector<int> input_data;

//Opening the file in input mode

myFile.open(name,ios::in);

//Checking if file is open, and then storing it into the vector

if(myFile.is_open()) {

int input_buffer;

//getline() only stores in strings, hence the conversion

while(myFile >> input_buffer) {

input_data.push_back(input_buffer);

cnt++;

}

}

myFile.close();

return input_data;

}

void WriteFile(vector<int> &write_data,string name,int &data_length) {

//Making an fstream object

fstream myFile;

//Opening the file in write mode

myFile.open(name,ios::out);

//Checking if file is open, then writing to it

if(myFile.is_open()) {



for(int i = 0; i < data_length;i++) {

myFile << write_data.at(i) << endl;

}

}

myFile.close();

}

//*********************** Slicing the vector into windows

*****************************************//

vector<int> VectorSlice(vector<int> &v,int X, int Y) {

auto first = v.cbegin() + X;

auto last = v.cbegin() + Y + 1;

std::vector<int> vec(first, last);

return vec;

}

//*********************** Noise Generation Module

*****************************************//

int* NoiseMaker(int arr[], int len) {

// Define random generator with Gaussian distribution

const double mean = 0.0;

const double stddev = 1.0;

std::default_random_engine generator(time(0));

std::normal_distribution<float> dist(mean, stddev);

// Add Gaussian noise

for (int i = 0; i < len; i++) {

arr[i] = dist(generator);

}

//std::cout << oper << std::endl;

return 0;

}

// ********************* Histogram method for median calculation

*******************************//

//Function to calculate the median through histogram - inputs are the

array and it's length

int HistoMedian(int input_arr[], int len) {



//Making an array to store frequencies, using indexes as data points

(0-128 as it's absolutes of signed 8 bit data)

int histo_array[129] = {};

//Sifting through the input array and incrementing histogram array

counters

for(int i = 0; i < len; i+=4) {

//Increasing the frequency counter of the histogram array acc to

input

histo_array[input_arr[i]]++;

}

//Calculating the median from the histogram array

int sum = 0;

for (int i = 0; i < 129; i++) {

sum = sum + histo_array[i];

//Return median if the cumulative sum >= len/2 and break the

loop

if(sum > len/8) {

return i;

}

}

return 0;

}

//************************ MAD Calculation

**********************************//

int main(int argc, char *argv[]) {

//************************* Getting input parameters from command

line ********************************//

string INPUT_FILENAME = argv[1]; //Name of the file with

data

const int WINDOW_SIZE = stoi(argv[2]); //Window Size for all

methods

const int MOM_WIN = stoi(argv[3]); //Number of windows for

MOM calculation

const int SUB_WIN = stoi(argv[4]); //Sub window size to

take for power detection

const int SCL_FCTR = stoi(argv[5]); //Threshold factor (th

= sigma*sigma*SCL_FCTR)



const int RPL_OPTION = stoi(argv[6]); // Replacement option (0

= rpl with const, 1 = rpl with noise)

const int RPL_CONST = stoi(argv[7]); // Replacement constant

for rpl = 0

//Getting the whole data vector

vector<int> numbers;

int data_count = 0;

numbers = ReadFile(INPUT_FILENAME,data_count);

//Getting a variable for avg time

long double avg_time = 0, avg_filter =0, avg_mediantime = 0;

//Getting a count for number of flags

long int flag_count = 0;

//Calculating number of slices

int n_slices = data_count/WINDOW_SIZE;

//Making a filtered output and flagging array

int filtered_output[WINDOW_SIZE];

int flag_output[WINDOW_SIZE];

//Making a vector for writing to file

vector<int> filtered;

vector<int> flags;

//Making the MAD buffer array to calculate MOM value

int mad_buffer[n_slices];

//Initiating a counter for slicing

int start = 0;

//Pregeneration of noise for the given window size

int noise_window[WINDOW_SIZE];

NoiseMaker(noise_window,WINDOW_SIZE);

//Declaring threshold variables for the windows without MOM filter

(first MOM_WIN windows)

float sigma;

float upper_th;

upper_th = 127;

FILE* fptr2=fopen("dacpp.txt","w");



//Main loop for iterating through each window

for(int i = 0;i < n_slices ; i++) {

//Making a vector for the window

vector<int> ans;

//cout << "start value is - " << start << "---------------||" <<

endl;

//cout << "End value is - " << start + WINDOW_SIZE - 1 <<

"---------"<< i + 1 << "------||" << endl;

ans = VectorSlice(numbers,start,start + WINDOW_SIZE - 1);

//Starting the stopwatch for timer of current window

auto start_time = high_resolution_clock::now();

//Making the array to pass for median (directly taking absolutes

as first median is 0)

int arr[WINDOW_SIZE];

for(int j = 0; j < WINDOW_SIZE; j++) {

arr[j] = abs(ans[j]);

}

//Starting stopwatch for median calculation

auto start_med = std::chrono::high_resolution_clock::now();

//Adding the MAD value into buffer

mad_buffer[i] = HistoMedian(arr,WINDOW_SIZE);

//Stopping timer and calculating median time required

auto stop_med= std::chrono::high_resolution_clock::now();

//Updating the sigma value for threshold calculations, if we

reach the next MOM window

if((i+1)%MOM_WIN == 0) {

//Making an array for MOM calculation from mad_buffer (in

short, slicing)

int mom_buffer[MOM_WIN];

for(int m = 0; m < MOM_WIN; m++) {

mom_buffer[m] = mad_buffer[i + 1 - MOM_WIN + m];

}

//Getting MOM value

//Calculating the median of the data

int mom_value = HistoMedian(mom_buffer,MOM_WIN);

cout << mom_value << endl;

//Calculating the thresholds



sigma = 1.4826*mom_value;

}

//Updating the upper and lower thresholds according to the last

MOM sigma

//Done after the first MOM window has passed, to apply these to

second one.

if(i + 1 >= MOM_WIN) {

upper_th = SCL_FCTR*sigma*sigma;

}

if(((i + 1) % MOM_WIN) ==0) {

printf("%f--> Threshold\n",upper_th);

}

//Starting filtering timer

auto start_filter = std::chrono::high_resolution_clock::now();

int n_sub = WINDOW_SIZE/SUB_WIN;

int sub_window_size = SUB_WIN;

//************************* Filtering with switch case

**************************************//

switch(RPL_OPTION) {

case 0:

for(int j = 0; j < n_sub; j++) {

//Going through every element in the sub window

int st_index = j*sub_window_size; //Points

to the starting value

//int16_t* b=&

int data_accum = 0;

//Applying power detection algorithm [getting

sum(x^2)]

for(int k = st_index; k < st_index +

sub_window_size; k++) {

data_accum += arr[k]*arr[k];

}

fprintf(fptr2,"%d\n",data_accum);

//Filtering out the window and adding flags if it's

out of threshold

if(data_accum > upper_th) {

for(int k = st_index; k < st_index +

sub_window_size; k++) {

filtered_output[k] = RPL_CONST;



flag_output[k] = 1;

}

//Updating the entire sub window's flag counter

at once

flag_count += sub_window_size;

} else {

for(int k = st_index; k < st_index +

sub_window_size; k++) {

filtered_output[k] = ans[k];

flag_output[k] = 0;

}

}

}

break;

case 1:

//Generating a gaussian noise distribution with 0 mean

and 1 std deviation

default_random_engine generator(time(0));

normal_distribution<float> dist(0,1);

for(int j = 0; j < n_sub; j++) {

//Going through every element in the sub window

int st_index = j*sub_window_size; //Points

to the starting value

int data_accum = 0;

//Applying power detection algorithm [getting

sum(x^2)]

for(int k = st_index; k < st_index +

sub_window_size; k++) {

data_accum += arr[k]*arr[k];

}

//Filtering out the window and adding flags if it's

out of threshold

if(data_accum > upper_th) {

for(int k = st_index; k < st_index +

sub_window_size; k++) {

//int noise = dist(generator)*sigma;

filtered_output[k] =

abs(noise_window[k]*sigma) > 127 ? (-1^k)*127 : noise_window[k]*sigma;;

flag_output[k] = 1;

}

//Updating the entire sub window's flag counter

at once



flag_count += sub_window_size;

} else {

for(int k = st_index; k < st_index +

sub_window_size; k++) {

filtered_output[k] = ans[k];

flag_output[k] = 0;

}

}

}

break;

}

//Increasing the slicing position

start = start + WINDOW_SIZE;

//Stopping timer for filtering

auto stop_filter = std::chrono::high_resolution_clock::now();

//Stopping the timer for total time

auto stop_time = high_resolution_clock::now();

//Getting average times for the window

auto duration = duration_cast<microseconds>(stop_time -

start_time);

avg_time = ((avg_time*i) + duration.count())/(i+1);

auto duration_med = duration_cast<microseconds>(stop_med -

start_med);

avg_mediantime = ((avg_mediantime*i) +

duration_med.count())/(i+1);

auto duration_filter = duration_cast<microseconds>(stop_filter -

start_filter);

avg_filter = ((avg_filter*i) + duration_filter.count())/(i+1);

for(int f = 0; f < WINDOW_SIZE; f++) {

filtered.push_back(filtered_output[f]);

flags.push_back(flag_output[f]);

}

}

//Printing the statistics



std::cout << "Avg total time per window required (microsec) = " <<

avg_time << endl;

std::cout << "Avg filtering time per window required (microsec) = "

<< avg_filter << endl;

std::cout << "Avg median time per window required (microsec) = " <<

avg_mediantime << endl;

float out_size = filtered.size();

std::cout << "|||_____ Final output size - " << out_size << endl;

std::cout << "|||_____ Number of flags - " << flag_count << endl;

float percentage = (flag_count/out_size)*100;

std::cout << "|||_____ Percentage flagging - " << percentage <<

endl;

//Writing the output vector to the file

int out_sz = filtered.size();

std::cout << "|||_____ Final output size - " << out_sz << endl;

WriteFile(filtered,"output_cpp.out",out_sz);

std::cout << "Done writing filtered output file" << endl;

//Writing the flag vector to the file and getting a counter for

number of flags

out_sz = flags.size();

cout << "|||_____ Number of flags - " << flag_count << endl;

WriteFile(flags,"flags_cpp.out",out_sz);

cout << "Done writing filtered output file" << endl;

std::cout << endl;

return 0;

}



SSE and AVX instructions, with their usage







AVX and SSE instructions used in Power Detection Code







SELF DECLARED SSE/AVX FUNCTIONS

typedef signed char __v32qs __attribute__ ((__vector_size__ (32)));

extern __inline __m256i

__attribute__ ((__gnu_inline__, __always_inline__, __artificial__))

_mm256_mullo_epi8 (__m256i __A, __m256i __B)

{

return (__m256i) ((__v32qs)__A * (__v32qs)__B);

}

To multiply and return lower order bits of 8-bit signed integers


