
National Centre for Radio Astrophysics

Student Training Program 2024-25 Report

STP/2024/022

"Upgrading the Python-Based GUI Framework for the TGC
(Tango based GMRT Control) System

(Duration: Dec 2024 -March 2025)

By

Mayur Jitendra Bhagade.
Under Supervision of:

Mr. Jitendra Kodilkar, Mr. Anil Raut

Objective of Project : The project "Upgrading the Python-Based GUI Framework for the

TGC (Tango-based GMRT Control) System" focuses on modernizing the existing GUI by

transitioning from Python 2 and PyQt4 to Python 3 and PyQt5. Since Python 2 reached its

end-of-life in 2020 and PyQt4 is no longer supported, this upgrade ensures long-term

stability, security, and compatibility with evolving technologies. The modernization will

enhance performance, usability, and maintainability, making the system more robust for

future developments. Key tasks include updating core libraries, refactoring the codebase,

and implementing improved features to meet current and future operational needs

Revision Date Modification/Change

Ver. 0.9 March 25, 2025 Initial Draft version

Ver. 1.0 April 11, 2025 Revised version with Validation
testing updates, and reviewed

Ver 1.1 April 16, 2025 Final Submission

Acknowledgement

I would like to express my profound gratitude to Mr. Jitendra Kodilar for giving me the
opportunity to work on the "Upgrading the Python-Based GUI Framework for the TGC
(Tango based GMRT Control) System" project. I also extend my heartfelt thanks to Mrs.
Shubhangi Said, the head of the department, for allowing me to undertake this project.

I am deeply grateful to the NCRA Director, Prof. Y. Gupta, the GMRT Dean, Prof. Ishwar
Chandra, and the Telemetry-Operation Group Coordinator, Mr. Anil Raut . I would also
like to thank the NCRA and GMRT staff, including Mrs. Deshmukh, who assisted me
throughout my project.

Working at GMRT was a wonderful experience. I had the opportunity to learn more about
GMRT’s work culture and to interact with the amazing people there. Through this project,
I gained valuable insights into the Local Monitoring and Control System (LMC) for the
GMRT Antenna. This experience has significantly enhanced my technical skills in
python, UI and UX. And it’s understanding of real-world applications in radio astronomy.

Executive Summary

● Feasibility Study: Upgrading the Python-Based GUI Framework for the Tango-based

GMRT Control (TGC) System

This feasibility study explores the modernization of the Python-Based GUI Framework for the
Tango-based GMRT Control (TGC) System. The current system uses outdated technologies,
including PyQt4 and Python 2.7, which have reached their end-of-life. Additionally, the GUI
framework was initially implemented using repositories from Ubuntu 16.04 LTS, while the
GMRT Local Monitoring Computers (LMCs) now operate on Ubuntu 20.04 LTS.

To ensure long-term support, improved security, and enhanced performance, this project
proposes upgrading the framework to the latest versions of PyQt5 or PyQt6 and Taurus using
Python 3. The upgrade will also facilitate compatibility with the upcoming transition to Ubuntu
22.04 LTS.

The modernization will involve refactoring the existing codebase, integrating updated libraries,
and ensuring seamless operation with the Tango-based control system. By achieving this, the
project will enhance system stability, maintainability, and user experience while extending the
system’s operational lifespan.

Objective: The project "Upgrading the Python-Based GUI Framework for the
Tango-based GMRT Control (TGC) System" focuses on modernizing the existing GUI by
transitioning from Python 2 and PyQt4 to Python 3 and PyQt5. Since Python 2 reached its
end-of-life in 2020, and PyQt4 is no longer supported, this upgrade ensures long-term
stability, security, and compatibility with evolving technologies. The modernization will
enhance performance, usability, and maintainability, making the system more robust for
future developments while ensuring seamless integration with the Tango-based GMRT
control system. Key tasks include updating core libraries, refactoring the codebase, and
implementing improved features to meet current and future operational needs.

● Methodology :

On the latest Ubuntu 22.04 LTS, a feasibility study was done using the Tango Tool‐kit based
framework using the TANGO (cpp and PyTango) 9.4.2 and JTango (java) 9.7.2 libraries installed
in the CONDA environment. Java Tango uses openjdk 21.1.0 for the Tango‐framework and
openjdk 1.8.0 for the LMC. For cpp‐tango gnu compiler 13.3.0 is used and for python 3.9.18 is
used. Using the PyQt 5.15.9 and the Taurus 5.2.0 framework based on PyQt5 is used for the GUI
realization of the LMC.

The Scripting environment from the python‐2 to python‐3 shifted using the tool ‘2to3‐3.9’
python converter, and then manually editing the sixty python files for PyScriptManager Tango
Device‐server for the scripting, and UploadBox which consist of various script‐files to be run for
the LMC Tango‐commands.

For the GUI environment, PyQt4 and Taurus5.2 python source‐code base are converted to
PyQt5 and Taurus‐5 using the pyqt4topyqt5 PyQt4 to PyQt5 valid‐source code converter. This
inevitably needed to change nearly 101 python‐codes and verified 61 UI files in the
PyQt5‐designer.

The major changes in the python, PyQt5 and Taurus5.2 after conversion was associated with
space/indentation, utf‐8 and python‐3 functionality changes, and the signal handling for PyQt4
to PyQt5 differences along with the Fully Qualified Domain Name related changes in the Taurus
Model.

● Findings:

1. LMC validation testing : Variety of the Python3, PyQt5 and Taurus-5.2 code
validation and functional testing performed which found to be working like the legacy
LMC code which was based on Python2 and PyQt4, Taurus 3.7.

Thus, the upgraded framework is fully compatible with Ubuntu 22.04 LTS, ensuring seamless
integration with the latest operating system updates.

2.Extended Support and Maintainability : Since PyQt5 and Python 3 are actively
supported and maintained, long-term software support and maintenance is now ensured.

3. User Experience Enhancement : A refined and modernized GUI with improved graphical
elements ensures that the LMC can be used in the new environment.

Acronyms

AN Aggregation Node

API Application Program Interface

CEB Central Electronic Building

CG Collaboration Group

CMC Central Monitoring and Control

CORBA Common Object Request Broker Architecture

CPP C++ Programming Language

CPU Command Processing Unit

DB Database

DPU Data Processing Unit

DS Device Server

EMF Eclipse Model Framework

EN Element Node

EPICS Experimental Physics and Industrial Control System

GAB GMRT Analog Backend

GMRT Giant Metrewave Radio Telescope

GSB GMRT Software Backend

GUI Graphical User interface

GWB GMRT Wideband Correlator

HDB Historic Database archiver

HTML Hypertext Mark-Up Language

I/O Input/Output

IDE Integrated Development Environment

LDAP Lightweight Directory Access Protocol

LMC Local Monitoring And Control

M&C Monitoring and Control

PANIC Package for Alarms and Notification of Incidences from Controls

PET Power Equalisation Tool

PoC Proof of Concept

POGO Programme Obviously used to Generate Objects

SCADA Supervisory Control and Data Acquisition

SKA Square Kilometre Array

SRS Software Requirement Specifications

TACO Telescope and Accelerator Controlled with Objects

TANGO TACO Next Generation Objects

TCS Tata Consultancy Services

TDB Temporary database

TGC Tango based GMRT Control System

TIFR Tata Institute of Fundamental Research

TM Telescope Manager

UI User Interface

UoP University of Pune

URS User Requirement Specifications

INDEX

Acknowledgement

Executive Summary

1. Introduction

1.1 About the GMRT

1.2 Tango Based GMRT Control System

1.3 What is Tango

1.4 Local Monitoring Control System - Generic Control Monitoring system

1.4.1 LMC Generic Control-node - components

1.5 GUI - Python

2. Objective of the project :

2.1 Why is Upgradation needed specifically python and PyQT ?

2.2 A feasibility study - Software Upgradation

2.3 Difference between Python2 & Python3

2.4 PyQT 4 to 5 upgradation

2.5 Taurus

3. Methodology for the upgradation :

3.1 Py2to3 _3.9

3.2 pyqt4topyqt5

4. Validation and Functional Testing :

4.1 Number of UIs validation testing.

4.2 Functional testing at the GMRT antenna.

https://docs.google.com/document/d/1Fnab-0txI7NNbS92uyPA-pFejimReXPMmjDyDIAhfxg/edit#heading=h.ln30qtmzgueh

5. Summary :

5.1 Future scope of the work

References

1. Introduction

1.1 About the GMRT

The Giant Metrewave Radio Telescope (GMRT) is the largest radio telescope at
metre-wavelength near Narayangaon, Pune in India. It's made up of thirty giant dishes, each of
45 meters in diameter, that can be moved in elevation and azimuth. The National Centre for
Radio Astrophysics (NCRA) of the Tata Institute of Fundamental Research (TIFR),Mumbai
founded and operates it. The telescope was designed and built under the leadership of Govind
Swarup between 1984 and 1996. The GMRT telescope uses all 30 dishes separated by 25 km
maximum distance for longer baselines, and less than 1 km for shorter baselines for earth
rotation aperture synthesis (Interferometry technique) for making the radio images of celestial
objects as well as study timing signals of celestial objects such as pulsars, quasars, high-gamma
ray burst and neutron stars. The TIFR GMRT Sky Survey (TGSS) is a major project that used
the Giant Metrewave Radio Telescope (GMRT) to map almost 90% of the sky at a frequency of
150 MHz (wavelength of 2 meters).

● Antennas and subsystem :-

The GMRT antennas receives Radio signal ranging from 150 to 1600 MHz signals in maximum
bandwidth of 400 MHz using five sub-bands (Band-2 150 MHz, Band-3 300 to 550 MHz,
Band-4 550 to 850 MHz , and Band-5 1000 to 1550 MHz) using variety of conical di-pole feeds.
The receiving chain processes this signal using the GMRT Analog backend (GAB)
system to make the signal at the operating region, select band-width filters from 100,
200 , and 400 MHz. The individual antenna spectrum signals are processed after
digitization to make correlation (antenna signal products) , and beam-formers (
addition of signal after putting delays) in the GMRT Wide-Backend (GWB) system.

The GMRT has a servo system with three layers of control to achieve very precise pointing, with
an accuracy of about 1 or 2 arc minutes. The elevation axis is placed on top of the azimuth drive,
which means the elevation drive can move the dish up and down, while the azimuth drive can
turn it left and right. This setup allows the antennas to point at any location in the sky.

At the antenna base, individual sub-systems ranging from Front-end electronic system
(at the turret associated with antenna-feeds), optical fiber, sentinel system and servo
system are monitored and controlled using a modern computer which operates on the
Linux operating system (Ubuntu). From the Central-control room, the Tango-based
system control system coordinates all antennas operation to conduct the science
observing and engineering experiments and testing sessions in an automatic way.

● Purpose of GMRT :

GMRT is a low-frequency radio telescope that helps investigate various radio astrophysical
problems ranging from nearby solar systems to the edge of the observable universe. Radio
telescopes detect and amplify radio waves from space, turning them into signals that astronomers
use to enhance our understanding of the Universe. To detect the highly red shifted spectral line
of neutral Hydrogen expected from protoclusters or proto-galaxies before they condensed to
form galaxies in the early phase of the Universe is one of the objectives as well as study the
variety of celestial objects such as pulsars , neutron stars, magnetic fields of galaxies and
intergalactic medium .

1.2 Tango Based GMRT Control System

The TANGO control system is a free open source device-oriented controls toolkit for
controlling any kind of hardware or software and building SCADA (Supervisory Control and
Data Acquisition) systems. It is used for controlling synchrotron accelerators, lasers physics
experiments. It is being actively developed by a consortium of more than 20 research institutes
across the globe. TANGO tool-kit is also adopted as modern control-system for the Square
Kilometer Array project (SKA) which is an international telescope build in Australia (Low
frequency Array), and South Africa (Mid-frequency dishes) by the international consortia where
the NCRA is play a key role in design and development of the Monitor and Control system for
the SKA.

TANGO is a distributed control system. It runs on a single machine as well as hundreds of
machines. TANGO uses two network protocols - the omniorb implementation of CORBA
(Common Object Request Broker Architecture) and Zeromq (Message Passing system). The
basic communication model is using the client-server. Communication between clients and
servers can be synchronous, asynchronous or event driven. CORBA is used for synchronous and
asynchronous communication, and Zeromq is used for event-driven communication.

The concept of Tango Controls was developed in the European Synchrotron Radiation Facility
(ESRF) in Grenoble, France about 20 years ago. Since then, the work on the core of the toolkit
has begun. Though Tango Controls has proven itself as a mature toolkit with many users, as an
open source Tango Controls toolkit is always being improved.
The software used in synchrotron facilities can be compared with the software for stock markets
– huge amounts of data must be displayed on the monitor in real time and being processed and
being saved in databases for post processing. As Tango Controls has existed for more than 20
years and becomes more and more popular among facilities, it has proved itself as a reliable
toolkit. So, the toolkit was mainly developed for research facilities needs, but the idea and
concept (philosophy) behind it was to create a framework. Tango Controls has been enriched
with many applications (desktop and web based) that can satisfy almost all instrumental control
and user needs. That means Tango Controls not only as a device-oriented controls toolkit and to
write applications but also use it as a final product. Among Tango Control-kit applications,
real-time alarm with alarm status, historical/real-time data monitoring , and Archiving is also
available with the Web based UI. Tango Controls is a hardware independent toolkit. That means
you can use your driver to connect hardware with Tango Controls. Taking that Tango Controls is

used in many facilities for many years, with high probability you can find the driver you need in
a special device catalogue and use it for free.

1.2.1 What is Tango ?

The TANGO was developed in 1999 based on TACO (Telescope and Accelerator Controlled Objects), the
next generation tool-kit based on object oriented is called Telescope and Accelerator Next generation
Objects i.e. TANGO. Every control system, whether it is hardware or software system , is considered as
an instance of a Tango Class (C++/Java or Python) where the instance/object is considered as a Tango
device server (Tango DS) which is nothing but the Class instance or object.

The Tango Device-server can be modelled at high level as a command (Methods) and attributes (
monitoring and control parameters) using a code-generation tool which generates a high level code
automatically based on user choice in C++, Java or Python language. Every device across is having a
unique name as Universal Resource locator across the network. The State of devices, monitoring
attributes and the command of devices are exposed over the network at high level where devices can be
fetched/accessed across the TANGO communication network based on CORBA. Figure 1.1 shows a

Figure 1.1 Tango Device Server Model

Tango device-server model , The Tango Device Class or its instances can expose commands (for e.g.
instrument ON or OFF) , attributes (Motor speed and encoder position as device’s attributes), and the
instrument states over a Tango software bus which can be accessed for the instrument control.

A Tango-device server can be modeled for the commands, attributes and state etc using a automatic code
generator tool (POGO), and lower level APIs to these device methods or attributes value set/read code
shall be inserted by the s/w developer to communicate to the instrument under control.

Figure 1.2 shows a Tango Client-Server Model working. The Tango device at high level has the
control-command along with the control-parameters (attributes), and the monitoring attributes
have to be realized by writing a low level interface code which can communicate to the hardware
instrument or software system.

The TANGO Client Server model work on following components :

(1) The Tango Database Device Server (DatabaseDS) :

The Tango Database server is nothing but the MySQL (Or Non MySQL File based also
possible) where one can register the TANGO device server with the unique name so that
the TANGO instance object reference is available over the TANGO communication bus.

(2) TANGO Device Server : Every Tango Device Server is nothing but the Object or
instance of Tango Class exposed over network using the registered unique TCP/IP with
fully qualified domain.

tango://<machine-name>:<Port>/Domain/Family/Device

For e.g. tango://e01:10000/MNC/LMC/E01

Where,

- “ e01” is host-name, network port is 1000,
- Domain is MNC - monitoring and Control Node
- Family is Local Monitoring Control (This can be regarded as a device type)
- E01 is device name, in this case testing antenna named ‘e01’
-

(3) TANGO Client : Tango Client can access the desired device using the Fully qualified
domain name of the server by queuring the Tango-device DATABASE server for the
resource locator ID of the desired device. Once it got the object reference of a
Tango-device , then it can communicate to the Tango device (h/w instrument or software
program/system) for monitoring parameters , knowing the operating state of the device,
and controlling the device using the command.

Figure 1.2 Tango Client-Server model.

Event-Based: Tango supports event-driven programming. Devices can send updates to clients
asynchronously, allowing for real-time monitoring of device states and attributes.

Example Use Case:

Tango is often used in large scientific experiments where multiple devices need to be controlled
and monitored from a central location, such as controlling and monitoring the operations of a
telescope array, like the GMRT (Giant Metrewave Radio Telescope).

1.2.2 TANGO Tool-Kit :

Tango is a comprehensive control system framework used to control and monitor hardware or
software systems in real-time, typically in scientific and industrial applications. The TANGO
system is a ready to use tool kit which comprises the generic tools required for the any SCADA
kind of system such as a thick and thin client user-interfaces, Control and Monitor h/w or s/w
system parameters it’s operation state, archive the data of system under control, and
Alarm-management system to notify the user about the warning/risk situations of the system.

Table-1 : Details Associated with the TANGO tool-kit .

SR
NO.

Tango Tool-kit
components

TANGO Tool Remarks

1. Alarms
Management

PANIC(Package for Alarms and
Notification of Incidents from

Controls) and TANGO Alarms Suit

PANIC alarms suit is found more suitable.

2. Data Archiving
and Retrieval

Historical Data-base (HDB++) It is used for data archiving in MySql as
well as it supports non-mysql data as well.

3. State Handling
and

Implementation

POGO (Program Obviously to
Generate Objects)

For addressing M&C configurability needs,
we need to adapt an alternate approach for
specifying the state transition and so on.

4. Command and
Response

TANGO Commands and Attributes Custom protocol is developed to address the
GMRT M&C specific needs.

5. Specification
Driven Approach

TANGO DB, POGO, JIVE Custom Database (DB) and configuration
files are also used.

6. Scripting PyTango (Python API to TANGO) Realised using Jython, Cython and
PyTANGO

7 GUI PyQT and Taurus frame-work for the
GUI based on PyQT

The GUI thick client application consists of
a variety of Widgets.

1.3 Local Monitoring Control (LMC) System - A Generic Control
Monitoring system

The TANGO based Local Monitoring Control (LMC) System runs on a Linux based PC at the
antenna base. The LMC system is designed as configuration or specification driven generic
control-node architecture. The configuration or specifications defined in the Tango database are

Figure 1.3 A Generic Control-Node Architecture.

used to realize the control-system for individual GMRT Antennas. The LMC s/w is same at
every antenna along with the antenna-wise different configurations such as Antenna-base PC
host-name and IP, Tango Fully qualified domain name and sub-systems configured under it.

The generic control-node software of the LMC read the TANGO database and identify the
control role such as for which antenna (for e.g. C00, C01, E02, E03, or S02,S03.. etc) it is
controlling. A Generic control node uses a various TANGO tool kit components to coordinate,
monitor and control the various subsystems at the antenna base viz Servo, Frontend
Commo-box (FECB), Optical-Fiber Sentinel System (FECB), Feed Positioning system (FPS),
and signal conditioning system (IF-LO). The LMC Control node acts as a perent while
controlling the child subsystems at antenna base, and communicates at the higher level Central
Tango control-system running in the GMRT Control-room. Thus, the LMC is running at middle
tier level in the GMRT architecture where it receives command from the Control-room and
these commands are parsed and sent to the actual sub-systems of the antenna such as servo,
FECB, OFCSNT etc. The LMC system also sends monitoring parameters , operational state,
events and the Alarm-data at the control-room.

A few important modules or component from a TANGO-toolkit used in the LMC and
antenna-base sub-system control & Monitoring are described here briefly as follows :

(a) Data Storage : Data storage uses MySQL database to store the three types of
database. (i) Tango Database - It is used to register the Tango Device-server IDS
running for the antenna, and its subsystems. Each Tango Device-server is registered
and declared across the tango-bus for a unique-name for accessing. (ii) LMC
Custom-database : This database mentions specification for command, monitoring
parameters, valid limits for control-parameters, alarming-rule the Antenna, servo,
FPS, FECB and OFCSNT system. (iii) Archiving database : The monitoring data,
command-response, and events are stored in the HDB++ archiving data for retrieval
purposes. For Archiving a separate HDB++ data-archive Tango device-server is
running.

(b) Alarm Management : The PANIC tool from the TANGO database is used to
define the Alarm-rules based on which alarms can be generated and notified to the
control-room for the antenna and individual subsystem for safety purposes. For this
purpose PyAlarm Tango-device server is run by the PANIC tool.

(c) Scripting Engine : Scripting engine uses Python script to execute the algorithm
required to realize the command. The MNCScriptManager Tango-device server
developed by the GMRT is running for each subsystem of the antenna, and antenna
LMC itself . The user level command in a batch kind of format using a python-file
or script can be executed using the MNCSCript Manager Device-server.

(d) Configuration Engine : Configuration engine module is responsible for reading the
configuration of TANGO, LMC_Custom_database to realize the LMC and

Sub-system I/O Tango device instances. Also, command & command arguments ,
monitoring limits are validated using the configuration engine.

(e) Validation Engine : Validation engine module uses command-syntax,
command-arguments etc to validate the received command.

(f) State-Engine : State Engine mainly responsible to declare the sub-system devices
or LMC device state whether it is initialized, running, maintenance, or shutdown. In
particular STATE, only some commands are allowed. Also valid state-transitions
like from init to run , run to maintenance or run to shutdown are allowed by the state
engine.

(g) Longevity Unit : This module keeps the life-cycle management of Tango devices
i.e. it starts or stops/shutdown the sub-system and LMC Tango-devices. Keep
checking the running state of the devices.

(h) Authentication & Authorisation : Based on the Kerberos library , users are validated
using the authentication, and for specific users (for e.g. servo engineer) only certain
system commands (e.g. servo) are allowed.

(i) External Tools or Libraries : This supports integration with external resources and
domain based s/w modules or libraries. Libraries such as Starlink ,and PET
(Performance Evaluation Tools) provide additional functionality for the antenna
operation. Pointing Models are used in systems like GMRT to ensure precise antenna
positioning.

(j) TANGO Client GUI and GUI Engine : At the top of the architecture is the TANGO
Client GUI and GUI Engine.It provides a graphical interface for users to monitor,
control, and interact with various subsystems.It sends and receives commands using the
TANGO Bus. The GUI engine ensures a seamless connection between the user interface
and the backend components. The GUI is developed using the Python based PyQt and
Taurus (PyQT based thick client GUI framework) .

Thus , based on generic configuration driven architecture (Figure 1.3), a Sub-system Tango
Device servers (FPS, FECB, Servo, SIGCON, OFCSNT, and GAB systems) are developed in
the C++ Tango framework, the LMC is developed in the JAVA Tango (JTango) Framework, and
the scripting environment, and GUI uses a PyTango (Python interface to c++ tango).

1.4 GUI and Scripting Environment (PyScriptManager) :

A Graphical User Interface (GUI) in Python is a user-friendly interface that allows users to
interact with applications using visual components like buttons, menus, windows, and text fields.
Python offers a variety of libraries and frameworks to create robust and interactive GUI
applications across different platforms.

● Python's Role in LMC System : Python plays a significant role in the development and
operation of the GMRT LMC system. In the beginning the LMC system was developed
on Ubuntu 16.04 LTS. The compatible python available in the Ubuntu repository was
Python 2.7.12 during that time (2016-17), also for the GUI PyQt4 4.8.7 and Taurus 3.7.0
were used. Also, python is used in the Scripting environment to run the algorithms
required for command via the python script or execute the batch of command using the
python scripting. For this purpose it uses a PyTango Python-Library to access the Tango
device. The MNCScriptManager scripting Tango-device itself uses PyTango 8.1.8
version. The PANIC alarming Device-server or tool is also based on python.

Therefore, as the LMC python based libraries are almost decade old, and either existing version
is not available on the new Ubuntu OS , or no more supported since 2019-20.

A feasibility study is taken to upgrade the python 2 to 3 , along with this PyQt5 and Taurus 5.2 is
also mandatory to change because PyQt4 GUI don’t support python-3 (or up to 3.6 only which
is deprecated version of Python-3 it self), also Taurus uses PyQt libraries for the API. Hence it
became mandatory to change PyQt4 to PyQt5 and the Taurus 5.2 version while shifting from
Python-2 to Python-3.

● Python based development for the GUI and Scripting -

Using Python is widely used in the many domain areas which includes data-analysis,
data-science, modeling, even in the Web-framework, and of course user-interface and for the
scripting. Thus main features of the Python is as follows :

- Simplicity and Readability: Python's clean and readable syntax makes it an excellent choice
for GUI development.It reduces development time and makes debugging easier compared to
other languages.

- Cross-Platform Support: Python is compatible with Windows, Linux, and macOS.Libraries
like PyQt and Tkinter ensure platform-independent GUI applications.

- Rich Set of Libraries : Python offers various GUI frameworks such as PyQt / PySide: Based
on Qt, ideal for building complex, professional-grade applications.

Tkinter: Lightweight and easy-to-learn, suitable for small applications.

Kivy: Supports multi-touch and cross-platform mobile development.

-Integration with Other Technologies: Python seamlessly integrates with databases (MySQL,
SQLite), APIs, and data visualization tools (Matplotlib, Plotly).It’s suitable for real-time
monitoring systems like the GMRT LMC.

2. Objective of the LMC Upgradation

The objective of the GMRT Python upgrade project is to modernize the Tango-based GMRT
Control (TGC) System by migrating it from Python 2 to Python 3, ensuring compatibility with
modern libraries and tools. This upgrade aims to enhance system performance, maintainability,
and security by addressing vulnerabilities associated with outdated software. It will ensure
seamless integration with the latest versions of the TANGO Control System, while also
improving the graphical user interface (GUI) for a better user experience. Additionally, the
project focuses on providing a scalable and future-proof architecture to support further
enhancements and minimize system downtime during astronomical observations.

2.1 Why Upgradation is needed specifically python and PyQT ?

The upgrade from Python 2 to Python 3 and PyQt5 (or later versions) is essential because
Python 2 reached its end of life in January 2020, meaning it no longer receives updates,
security patches, or support. Continuing to use Python 2 exposes the system to security
vulnerabilities and compatibility issues. Additionally, many modern libraries and tools are now
exclusively compatible with Python 3, offering better performance, improved memory
management, and new language features that enhance code efficiency and maintainability. PyQt
also requires upgrading since older versions may not be compatible with Python 3. Upgrading
to PyQt5 or PyQt6 ensures access to modern UI components, enhanced graphics rendering,
better cross-platform support, and long-term maintainability of the graphical user interface
(GUI). This upgrade also facilitates easier integration with other systems and future
technological advancements at GMRT.

1. End of Life Support: Python 2 reached its end of life in January 2020, meaning it no
longer receives security updates, bug fixes, or community support. Continuing to use it
increases the risk of security vulnerabilities and system failures.

2. Compatibility Issues: Most modern libraries and frameworks are now designed for
Python 3. Upgrading ensures compatibility with the latest tools, libraries, and
dependencies required for efficient software development and system integration.

3. Performance and Efficiency: Python 3 offers significant improvements in performance
and memory management. It includes optimized syntax, enhanced exception handling,
and better concurrency support, leading to faster and more efficient code execution.

4. Security Enhancements: With Python 3, security features are regularly updated. Using
outdated software like Python 2 exposes the system to potential cyber threats, while

Python 3 ensures improved protection through constant security patches.

5. Improved Maintainability: Modernizing the system with Python 3 ensures the codebase
remains maintainable and easier to manage. Developers can leverage modern coding
practices, write cleaner code, and reduce technical debt.

6. PyQt Upgradation: PyQt, a popular GUI library used for building graphical
applications, also requires an upgrade. PyQt5 or PyQt6 provides enhanced user interface
components, better rendering performance, cross-platform compatibility, and long-term
support.

7. Future-Proofing: Upgrading both Python and PyQt provides a stable foundation for
future enhancements and integrations. It ensures the system remains scalable, adaptable
to emerging technologies, and aligned with GMRT’s long-term operational goals.

8. Reduced Downtime: A well-planned migration to Python 3 and PyQt will minimize
system downtime and ensure uninterrupted operations during astronomical observations.
Thorough testing and validation during the upgrade process will ensure reliability and
system stability.

2.2 A feasibility study - Software Upgradation :

The feasibility study ensures the project is technically and practically possible to build and
deploy. While upgrading the Python 2 to Python 3, it is essential to study the change impact on
the existing LMC software component in terms of compatibility, and functionality. The Python
S/W Libraries and Tango web-sites are referred for the change impact of python-2 to Python-3,
and which tango components/tools are needed to change are evaluated. The software
compatibility study shows that for Python 2 to 3 changes, a complete Tango versions in C++,
Python are needed to change as well.

The cascading effect of Python 2 to 3 is as follows :

● Python 2.7.12 to Python 3.9 change shows that following s/w are need to upgrade :

(i) Python 3

=> PyTango >= 9.4

=> cpp Tango version >= 9.41

1https://tango-controls.readthedocs.io/projects/pytango/en/stable/versions/migration/to-9.4/deps-install.ht
ml

PyTango v9.4.0 is the first release which only supports Python 3.6 or higher. PyTango v9.4.0
moved from cppTango 9.3.x to at least cppTango 9.4.1. It will not run with cppTango 9.4.0 or
earlier.

(ii) Python-3

=> PyQt5

PyQt4 binding end of Life in Aug 2018, PyQt4 was compatible up to Python 3.7 which is
deprecated now, hence it is inevitable to change to PyQt5 for the Python version >= 3.7

(iii) Python-3

=> PyQt5

=> Taurus 5

Since PyQt5 is changed, it is mandatory to upgrade the Taurus, as the Taurus is a PyQt5 API
based GUI Framework. Taurus 4 is no longer supported, Taurus 5 also requires python-3 and is
generally integrated with PyQt5.

Thus, while shifting from the Python 2 to 3, it became mandatory to upgrade the libraries and
s/w repositories available on the Ubuntu 22.04 LTS. To study feasibility a Tango framework is
installed using the CONDA package environment2. Table 2.1 shows the LMC Tango framework
installed on machine 22.204 LTS.

Feasibility testing -
After installing the cpp Tango framework, Java framework, Python, Qt framework a basic testing
of the Tango Tool-kit was performed.

- Mysql with Tango database tested with the Jive interface to register and connect test
devices.

- Using a python shell, PyTango version, and a tango device such as DatabaseDS ping and
send a state/status command.

- PyQT , Taurus’s examples given in the tutorials on home-page of respective site ran and
code tried to understand.

2 Conda package environment installation work on the LMC machine is done by J. Kodilkar

Table 2.1 : The upgraded LMC Tango framework for Ubuntu 22.04 LTS

Package/OS/Tools New Mid old

OS Ubuntu 22.04.5 Ubuntu 18-20.04 LTS Ubuntu 16.04 LTS

MySQL 8.3.0 8.0.33 5.7.33 - 5.8

Tango-Controls (cpp) 9.4.2 9.2.5a , 9.3.3 9.2.5a

Omniorb (cpp) 4.2.5 4.3.0 4.2.1

zeromq 4.3.5 4.3.0 4.0.0

Python 3.9.18 2.7.18 2.7.15

PyTango 9.4.2 9.3.3 8.1.1

Boost, boost-cpp 1.78.0 1.76.0 1.58 - 1.65

Java open-jdk 21.0.2/
1.8.0 _432(LMC)

1.8.0_422 1.8.0_292

JTango, JTangoServer 9.7.3 9.5.0 9.5.0

Qt 5.12.8 4.8.7 4.8.7

PyQt 5.12.9 PyQT-4.12.1 PyQt-4.11.4

Taurus-core
Taurus-Qt

5.2.0 3.7.3 3.7.0

Technical Feasibility :

● Python 3 offers enhanced performance, security, and modern libraries, making it a robust
choice for future system sustainability. Migrating to Python 3 will involve refactoring
legacy code to ensure compatibility with updated libraries.

● PyQt 5.4 ensures better GUI support with improved performance, cross-platform
compatibility, and support for advanced UI components. Additionally, it supports the
latest C++ features, essential for integrating with Tango 9.4.

● Taurus 5.4 provides an up-to-date framework for building control and monitoring
applications, ensuring smooth interactions with the upgraded Tango control system.

● Tango 9.4 (C++) enhances system communication, device management, and real-time
monitoring capabilities, offering better scalability and stability.

● Java-Tango 5.7 will ensure compatibility with Java-based applications, providing a more
robust middleware for managing control commands and data flow.

2.3 Difference between python-2 & Python-3 :

The difference between Python 2 and Python 3 can have significant implications for the GMRT
TGC (Tango-based GMRT Control) system, especially when it comes to performance,
upgradation, and maintenance compatibility.

Upgrading the GMRT TGC system from Python 2 to Python 3 would offer several
advantages, including improved security, better performance, access to modern libraries,
enhanced string handling, and better compatibility with the Tango control system. The
migration to Python 3 is essential to ensure the long-term sustainability, reliability, and
security of the system, as Python 2 is no longer supported and its continued use could
expose the system to risks and limitations.

Here are the key differences and how they would impact the GMRT TGC system:

1. End of Life

Python 2: Python 2 reached its official end of life on January 1, 2020. No more updates, bug
fixes, or security patches are provided for Python 2.

Python 3: Python 3 is actively maintained and receives updates, security patches, and new
features. It is the recommended version for all new projects.

Impact on GMRT TGC: Since Python 2 is no longer supported, continuing to use it in the
GMRT TGC system poses security risks and could lead to difficulty in maintaining the system
over time.

2. Syntax Differences

(a) Print Statement vs Print Function :

Python 2: print "Hello" (Without parentheses)

Python 3: print("Hello") (With parentheses)

(b) Integer Division:

Python 2: 5 ∕ 2 = 2 (Returns Integer if both operands are integers)

Python 3: 5 ∕ 2 = 2.5 (Always returns a float)

Python 3 supports ∕ for integer division: 5 ∕ 2 = 2
(c) Unicode Handling:

Python 2: Strings are ASCII by default: str
Python 3: Strings are Unicode by default: str

○ UTF-8 vs ASCII vs Unicode and Python 3

(i) ASCII (American Standard Code for Information Interchange)
Definition: ASCII is a character encoding standard that represents English characters using 7 bits
(0 to 127). Hence, only supports 128 characters (including letters, numbers, punctuation, and
control characters). It is not suitable for representing characters from other languages. Example:

'A' = 65 in ASCII.

(ii) Unicode Definition: Unicode is a universal character encoding standard designed to
represent characters from all languages using a unique code point for each character.
Character Support: Supports 1.1 million characters across different languages, symbols, and
scripts.
Encoding Methods: Unicode can be represented using different encoding formats like UTF-8,
UTF-16, or UTF-32.

Example: 'अ' = U+0905 in Unicode.

(iii) UTF-8 (Unicode Transformation Format - 8 bit)
Definition: UTF-8 is a variable-length character encoding that uses 1 to 4 bytes to encode
Unicode characters. Efficient: It is backward compatible with ASCII since ASCII characters are
represented in 1 byte.
Character Support: Can encode all Unicode characters.
Advantages: Space-efficient for text with mainly ASCII characters and is widely used in web

pages, APIs, and file storage. Example: 'A' = 1 byte, 'अ' = 3 bytes in UTF-8.

(d) Python 3 and UTF-8

Python 2 used ASCII encoding by default, which often led to encoding errors when dealing with
non-English characters.
Python 3 uses UTF-8 as the default encoding for both source code and string handling. This
means Python 3 supports all Unicode characters seamlessly. It provides robust handling of
international text, supports multi-language applications, and is widely compatible with modern
systems and APIs.

(i) String Handling

Python 2: In Python 2, strings are ASCII by default. Unicode support is available but needs
explicit declaration (u"string").

Python 3: In Python 3, all strings are Unicode by default, which is important for handling
multilingual or special characters.

Impact on GMRT TGC: With Python 3, the GMRT TGC system would have better support for
handling non-ASCII characters, which can be crucial for processing diverse data sources.

(e) Performance Improvements:

Python 2: Python 2's performance is generally slower compared to Python 3 in many use cases,
due to older internal optimizations.

Python 3: Python 3 includes many performance improvements, such as better memory
management and more efficient handling of certain operations.

Impact on GMRT TGC: Python 3 would likely provide better performance for the GMRT TGC
system, particularly in areas that involve intensive data processing or real-time control tasks.

(f) Tango Controls Compatibility

Python 2: The Tango control system historically supported Python 2, with many older
implementations and libraries built on this version.

Python 3: Tango has since evolved to support Python 3, and newer versions of Tango libraries
and tools are designed for Python 3.

Impact on GMRT TGC: Since the future of Tango development is focused on Python 3,
upgrading the GMRT TGC system to Python 3 ensures continued compatibility with new Tango
features, bug fixes, and improvements.

Table 2.2 : Python-2 and Python-3 Difference

Aspect Python2 Python3 Difference

Support & Updates End of life, no updates Actively maintained
and updated

Python 3 ensures
long-term support

Performance Slower with limited
memory management

Improved memory
management and
speed

Faster and more
efficient code in
Python 3

Library
Compatibility

Many libraries no
longer supported

Most modern
libraries support
Python 3

Easier integration
with modern tools

Unicode Support Limited Unicode
support

Native Unicode
support

Better multilingual
data handling

Syntax
Improvements

Legacy syntax, e.g.,
print as statement

Improved, e.g., print
as function

Cleaner and more
readable code

Security Vulnerable with no
security patches

Regular security
updates

Improved security
and data protection

Ref : https://riverbankcomputing.com/software/pyqt/intro

2.4 PyQT4 to PyQT5 upgradation :

PyQt is a set of Python bindings for The Qt Company's Qt application framework. The bindings
are implemented as a set of Python modules and contain over 1,000 classes. PyQt5 supports Qt5
and runs on Windows (Intel), macOS (Intel and Apple Silicon), Android, iOS and Linux (Intel).
Existing Scenario (PyQt4) : PyQt4 was a set of Python bindings for the Qt4 application
framework. It was widely used for cross-platform GUI applications. Reached End-of-Life
(EOL) on Aug, 2018. Compatible only with Python 2 (limited support for Python 3).

PyQt4 :
PyQt4 is a set of Python bindings for the Qt cross-platform GUI toolkit, developed by Riverbank
Computing Limited, that allows developers to create graphical user interfaces (GUIs) in Python
using the Qt framework.
PyQt4 is a set of Python bindings for Qt 4, a popular cross-platform application development
framework that is primarily used for creating graphical user interfaces (GUIs). Qt 4 was a major
version of the Qt framework and was widely used for desktop application development.

PyQt 5 :
There are so many options provided by Python to develop GUI applications and PyQt5 is one of
them. PyQt5 is a cross-platform GUI toolkit, a set of python bindings for Qt v5. One can develop
an interactive desktop application with so much ease because of the tools and simplicity provided
by this library. A GUI application consists of Front-end and Back-end. PyQt5 has provided a tool
called ‘QtDesigner’ to design the front-end by drag and drop method so that development can
become faster and one can give more time on back-end stuff.

Upgrading from PyQt4 to PyQt5 is a significant step for modernizing Python-based GUI
applications. Since PyQt4 is deprecated and no longer supported, moving to PyQt5 ensures
better performance, security, and compatibility with current systems

Table 2.3 : PyQt4 and PyQt5 differences :

Aspect PyQt4 PyQt5 Difference

Support No longer supported Actively maintained Access to latest

Future-Proofing Deprecated Long-term stability Ensures system
longevity

https://riverbankcomputing.com/software/pyqt/intro
https://www.qt.io/

features and fixes

Widgets and
Components

Limited GUI
components

Enhanced UI
components

Improved UI
experience

Compatibility Not compatible
with Python 3

Fully compatible
with Python 3

Seamless upgrade
with modern Python
versions

Graphics and
Multimedia

Basic support Advanced support
for OpenGL and
multimedia

Improved rendering
and multimedia
applications

Cross-Platform
Support

Limited on some
platforms

Improved
cross-platform
compatibility

Easier deployment
across Linux,
Windows, macOS

Licensing GPL and
commercial licenses

Similar licensing No major licensing
concerns

2.5 Taurus 5.2 :

Taurus is a software framework designed for building graphical user interfaces (GUIs) for
controlling scientific instruments and systems, often used in complex research environments
such as telescopes, particle accelerators, and other large-scale experimental setups. Taurus is
built on top of PyQt, and is specifically designed for creating control and monitoring interfaces
in scientific systems. While PyQt is a general-purpose library for building GUIs in Python,
Taurus is specialized for control systems and integrates well with scientific hardware and
frameworks like Tango and EPICS.

● Key Features of Taurus:

Python 3 Support: Fully compatible with Python 3, unlike older versions.
PyQt5 Support: Integrates seamlessly with PyQt5, supporting modern UI development.
Enhanced Widgets: Provides improved Taurus widgets for visualization and control.
Improved Performance: Faster data handling and optimized UI components.
REST API Support: Can communicate with TANGO devices using REST APIs.
Backward Compatibility: Maintains support for older Taurus 4.x applications with minor
adjustments.

● Use Cases:

(a) Scientific Instrument Control: Taurus is commonly used to create interfaces for
controlling and monitoring scientific instruments like telescopes, accelerators, detectors,
etc.

(b) Data Acquisition: It is also used in data acquisition systems where the real-time
collection and visualization of sensor data is crucial.

(c) Laboratory Automation: Researchers use Taurus to automate experiments, monitor
equipment, and collect data from various devices in a lab.

Example of Using Taurus: A simple example of creating a graphical interface using Taurus to
control a device might involve setting up a control panel to adjust the settings of a motor or a
sensor in an experimental setup.

Taurus 5.2 Upgradation

Existing System: Taurus (Older version, Taurus 3.7)
Proposed System: Taurus 5.2 (Framework for creating control and monitoring GUIs using
TANGO)

Table 2.4 : Difference between Taurus 3 and Taurus 5

Aspect Older Taurus 3.x Taurus 5 Difference

Support Limited support Actively maintained Better community support
and updates

TANGO
Compatibility

Compatible with older
Tango versions

Fully compatible with
Tango 9.4

Seamless integration with
updated control system

GUI Features Basic UI components Enhanced UI for
complex systems

Improved visualization of
data

Performance Limited optimization Optimized for
large-scale systems

Faster and smoother
operation

Python Compatibility Python 2 support Python 3 compatible Modern software
development

Extensibility

Difficult to extend

Modular and extensible Easier to customize and
expand

3. Methodology for the upgradation

The methodology for upgrading the Python-based GUI framework for the LMC of

Tango-based GMRT Control (TGC) system involves a structured and systematic approach to
ensure a successful transition from Python 2 and PyQt4 to Python 3 and PyQt5. Steps followed
for the upgradation of python and PyQt4 for the LMC GUI are as follows :

1. Requirement Analysis : Analysed the functional and non-functional requirements of the
current GUI system. Identified limitations in the existing PyQt4 and Python 2 framework,
including deprecated functions and outdated libraries. Determined the key goals for the upgrade,
focusing on performance improvement, long-term support, and maintainability.

2. Environment Setup using the CONDA3 : Created a dedicated development environment
using the CONDA package on the Ubuntu 22.04 LTS. The MySql Database, Tango CPP ,
PyTango, and JTango along with the respective OMNIORB (used in the tango-bus
communication) and ZMQ Libraries of message parsing. Python 3.9 , PyQt5.15 , and Taurus
5.2 installed and tested using the examples.

Under the Conda environment for the TANGO installation, the LMC software for LMC, and
GUI, Scripting, and astronomical libraries were compiled.

3. Code Migration : Performed a code assessment to identify modules and dependencies
requiring modification.Upgraded code syntax from Python 2 to Python 3 using tools like
2to3-3.9.

Pyqt4to5 program used to transfer the GUI python programs, and later converted into the
Python3. Later many manual corrections were done in the python files.

4. Integration and Testing : Integrated the upgraded GUI with the Tango Control System for
real-time monitoring and control. Conducted unit testing using frameworks. Performed system
testing to ensure compatibility with the GMRT infrastructure.Simulated operational scenarios to
detect and resolve bugs.

5. Continuous Monitoring and Feedback : Monitored system performance during real-world
operations. Applied incremental updates and patches as needed.

3.1 Python-2 to Python-3 Code Conversion : Py2to3 _3.9 :

3 TANGO and LMC software installation was done by J Kodilkar under the CONDA package environment
on Ubuntu 22.04 LTS.

The python-2 to python-3 conversion program 2to3-3.9 is used to convert the
MNCScriptManager Tango Device-server code in
“/opt/tangoworkspace/ControlNode/Scripting” area using the command.

2to3-3.9 -W -o /opt/angoworkspace/ControlNode/Scripting

2to3-3.9 -W -o /opt/angoworkspace/ControlNode/GUI/src

The 2to3-3.9 program converts python-2 code to python-3 for the mentioned directory with
option “-o” whereas -W writes the backup files of the modified code.

After python3 code conversion there were many errors which were manually corrected and code
made python-3 compatible. Mainly, in many files indentation was not correctly put, hence each
python file reviewed, also some missing functions, method types , return data type examined
carefully which is debugging point of view hard task as to trace the errors. Major modifications
done in python-3 codes after conversion are as follows :

(i) indentation spaces and import libraries :

(a) Indentation and spaces were not correct in many created either logical execution errors or
misleading method errors. Hence, each python file is reviewed and compared with the old
to correct the spaces and indentation errors systematically.

(b) “from .import” for locally import file was not working, for local files “import
<modulename>” added correctly

(c) Comments with -- ’’’ -- replaced with -- ””” -- characters.

(ii) Data type errors, method APIs replacements :

(a) Default division() in python-3 return type is float, hence manually casted to int data-type
wherever it necessitates.

(b) filter() and map() not in python-3 list hence methods are replaced to work with the
filter() and map() functions.

(c) sort() method is not available for the dictionary data types, hence even in some
python-core libraries sort() is replaced by sorted() method.

(d) Log4py Class functionally are missing in python-3, hence log4py modules compatible
with python-3 re-written. I.e whole APIS for log4py class changed.

(e) iteritems() method for python-2 used in the dictionary was memory efficient, but not
available in the python-3 hence it is replaced by dict.items() methods.

(f) sys.stdout.encoding = sys.getdefaultencoding() This method was not working in the
python-3 as the sys.stdout.encoding is readonly. Hence, in the logger-class of
MNCScriptManager declared with sys.stdout.isatty = Lambda: False

(iii) Python-3 unicode - ‘utf-8’ data type related changes :

(a) MySQLDB for the POOLED connections (mysqldb threads for accessing the
MySQLDB in the python Interface) : used option use_unicode=’True’ made ‘utf-8’. At
some-places also the byte-conversion to utf-8 default for python-3 was removed
manually.

(b) For split(), find(), match() , bytecode comparison is required, hence argument of
str(“xxxx”) data type changed to b”xxx”

(c) str(obj).rstrip('\n') function was returned in byte-data type (i.e. utf-8) , hence data type
“str” given manually.

(d) /opt/conda/anaconda3/envs/tangoexp/lib/python3.9/site-packages/flake8/formatting/bas
e.py was not having “buffer” attributes in python-3 , hence it is removed in the library.

● Thus, while shifting from the python-2 to python-3, there were 20 python programs
changed in the PyScriptManager, and 46 scripting files changed in the UploadBox.

3.2 PyQt4 to PyQT5 code conversion using the code-converter tool
“pyqt4topyqt5” :

The pyqt4topyqt54 tool installed locally for the PyQt4 to PyQt5 code conversion of the GUI
which contains the Taurus framework call as well. First python-2 to python-3 code conversion
done for the GUI python-code, and then the ‘pyqt4topyqt5’ converter tool used.

> pyqt4topyqt5 --nolog ./<pyqt4_code> -o ./<pyqt5_code>

The pyqt4topyqt5 converter tool writes the PyQt5 code into a separate directory.

In addition to Python-2 to Python-3 code related changes described in the section 3.1. After
PyQt5 code was created, there were many errors related to functions, data-types, signal handling
, and FQDN (Fully Qualified Domain Name) related changes for the Taurus Model. A brief
summary for major changes in the PyQt5 code are as follows .

(i) PyQt4 to PyQt5 Signal Handling :

In PyQt4, signals were handled using the SIGNAL() and SLOT() macros. The method associated
with the GUI object (such as button) can be called using the connect call in the class.

from PyQt4.QtCore import SIGNAL

for the ‘button’ widget , upon clicked() event, on_button_click() method is called.
self.connect(self.pushButton, SIGNAL("clicked()"), self.on_button_click)

In PyQt5 new style of signal-slot connection is used.
self.pushButton.clicked.connect(self.on_button_click)

Major difference for the PyQt4 and PyQt5 signal handling are as follows :

4 https://github.com/rferrazz/pyqt4topyqt5

Table 3.1 Difference between PyQt4 and PyQt5 for the signal handling.

Feature PyQt4 PyQt5

Signal connect self.connect(obj, SIGNAL(...)) obj.signal.connect(...)

Signal emit self.emit(SIGNAL("sig"), args) self.signal.emit(args)

Signal declaration pyqtSignal(type) pyqtSignal(type) (unchanged)

Syntax style C-style macros, string-based Pythonic, object-oriented

Type safety Error-prone (string-based) Stronger type safety

Debugging & IDE
help

 No autocompletion, hard to
debug

 Autocompletion, easier to
debug

(ii) Phonon Library Removal in Qt5 :

Phonon was a multimedia framework originally used in the KDE and supported in PyQt4 for
audio and video playback. The Phonon module is completely removed in PyQt5. PyQt5
includes QtMultimedia and QtMultimediaWidgets for audio/video. Hence, in the GUI
B2/B2.py code , phonon related code is removed, and QtMultimedia code changes are done.

(iii) Widget SuperClass changed in the PyQt5 :

In converted PyQt5 many QtWidget objects were missing because their super/parent class from
which the QtWidget objects are derived were changed. Manually , the GUI widget objects parent
class found using the google-help or from the PyQt5 documents’ web-sites.

Table 3.2 PyQt4 to PyQt5 Widget super-class related changes :

PyQt4 PyQt5

QtGui.QDialog from PyQt5.QtWidgets import QDialog

QTableWidgetItem QtGui.QTableWidgetItem

QStringListModel() QtCore.QStringListModel()

self.lineEditSource.text().isEmpty() if not self.lineEditSource.text()

For message parsing on the GUI at many places
QString = unicode

self.plainTextEdit.appendHtml(“%1”).arg(Message)

self.labelValidationStatusMessage.setText(“<FON
T color=xxx>%1”).arg(Message)

self.plainTextEdit.appendHtml(
QString(“{}”).format(Message))

self.labelValidationStatusMessage.setText(“<FON
T color=xxx>{}”.format(str(Message))

attributeModel =
<hostname>:1000/domain/family/device/attri
bute_name

Attribute Model required FQDN name in PyQt5
Hence appended tango:// in many modules
wherever Taurus attribute model variables are.
attributeModel =
tango://<hostname>:1000/domain/family/dev
ice/attribute_name

● There were 37 PyQt5 , Taurus code files that were manually changed.

Details of the code modification in the Python-3 and PyQt5 after conversion is tabulated
in the Appendix-I.

4. Validation And Functional testing

The validation testing in the UI for the LMC of Tango based GMRT Control system was
performed by dry-running the GUI, and correcting the code wherever it failed to run. The
validation testing although the actual GMRT sub-system not connected was performed by login
to the GUI, checking catalog widget, message-console, and alarms widget working or not.

The Functional testing includes the testing of the UI features behave as expected based on the
software’s functional requirement. In this case , the Optical-fiber and Sentinel sub-system
(OFCSNT) was connected and actual monitoring attributes and commands were tried to send.

As the LMC of the TGC sub-system is a generic configuration software, only one system testing
in the telemetry Lab is considered to be sufficient for the testing.

4.1 Number of UIs validation testing

In validation testing total 12 Main-windows, and 45 UI were validated to test it run
properly. Following table shows the result of validation testing.

TABLE 4.1 : Validation Testing of the LMC GUI in PyQT5 and Python-3 Modified Code.

UI Category
UI-ID

UI Filename Description
Test

1 .Login-console

001 1.login.ui
User login page enters
username and password.

PASS

002 2.signUp.ui Fill all info and get to login NA

003 3. contactus.ui Contact information shows PASS

004 4.about.ui
Write to the destination and
small info of the centre

PASS

005 5.lock.ui
Getting a username and
password for the user to login.

PASS

006 6.R1.ui
LST,IST time zone and date
showing top layer.

PASS

007 7.gmrtVersion.ui To show the GMRT version PASS

2.
view->dashboard
->LMCStatus

008
8.pageSubsystemSt
atus.ui

Show drill-down monitoring of
the GMRT Sub-systems, at
first-page a high level

PASS

sub-system status, and alarm
for the systems (SERVO, FPS,
SIGNCON, FECB, OFCSNT
etc), and upon click, detailed
parameters for each
sub-system

009
9.pageSubsystemInt
rospect.ui

Show detailed configured
parameters for each
sub-system like hardware
interface(Rabbit, PC104 card),
hostname, IP, Sub-system
name, PORT connected etc.

PASS

010 10.help.ui
A Help dialog to give
information

PASS

011 11.titlebar.ui

Title bar shows LMC or
Sub-system name and updated
Time for the monitoring, and
button for ‘introspect’ and
navigation for drill-down or
going to the parent window

PASS

3 .
Control ->
TuneReceiver

011

11.tuneReceiver.ui
.

Get current input and execute
command-selection. The Input
can arguments (setup) for the
sub-system can be configured
either - (i) setup file (ii)
Band-centre (iii) From given
Task

PASS

012 12.selectTask.ui Not Applicable for the LMC NA

013 13.bandCenter.ui

Show and Load the
band-centre settings. (The
Tune-receiver code contains a
double-event and immit call
signal which is giving an error.)

FAILED

014
14.tuneReceiverTab
Container.ui

Shows the loaded parameters
for the sub-system

PASS

4. Control ->
Sub-system

015
15.subsystemWindo
w.ui
9.

LMC name selection and
frequently used commands PASS

016
16.subsytemWindow
TabContainer.ui

Shows the commands button
for the selected LMCsys or
Sub-system

PASS

017
17.subsytemPoupWi
ndowDailog.ui

Shows the command panel for
the command-click to get the
arguments

PASS

5. Control->
Common-Comma
nd-Environment

018
18.commonComman
dEnvironment.ui

Check antenna env. To select
them using a dropdown list and
type command in the console.

PASS

6. Control ->
Expert Console

019
19.expertConsoleBa
ckend.ui

Expert console is like a
command line interface where
upon selecting a sub-system a
list of associated commands
appear. Upon selecting and
executing, it shows the detailed
message of command and
response.

PASS

7. Control ->
Observation
Program

020

20.observationProgr
am.ui

Upload the scripting file,
validate it for the execution.
And start execution upon
‘execute’ button clicked.

PASS

021 21.scriptStatus.ui
check script status for name ,

id,status,user name,time .
PASS

8. Control ->
System Variables

022
22.systemVariables.
ui

Upload LMC or Subsystem
configuration files (Like
FPS.csv, AntPara.csv etc) and
allow modifying values and
save them on the disk.

PASS

9. Control ->
LMC Master
Control

023
23.lmcMasterControl
.ui

Various fields are there GMRT
status,IST,Park,LMC
Mode,Change mode,LMC
services,LMC Subsystems

PASS

10. Control ->
LMC Operation
Control

024 24.lmcOperationCon
trol.ui

Main console of lmc to check
source catalog and track in /
out of source and sets azimuth
and elevation

PASS

025 25.Catalogs.ui

Read Item 5. Utilities->Catalog.
Upon selecting the object in the
catalog it load in the ‘LMC
Operational Control’

PASS

10.
Monitor->Messag
e Console

026
26.MessageConsole.
ui

Message console is a page of
some info. And also export
history option to save in device.

PASS

11.
Utilities->
Catalogs

027 27.Catalogs.ui
Manage , view and edit
catalog , also upload new in
browse

PASS

028 28.RiseSet.ui
Show the rise-set and transit
time for the given date and
Time

PASS

029 29.TypeofCatalog.ui
Declare System or User
Catalog and Type of the
Catalog (Type-1 and Type-2)

PASS

030
30.catalogsEditSour
ce.ui

Edit the Fields of selected
Source Object in the Catalog

PASS

031 31.plotTrajectory.ui
Show the selected source
object trajectory for a day for
AZ and EL axis

PASS

032 32.DopSet.ui Calculate Doppler Settings NA

033 33.precessTo.ui
Precess the RA-DEC for a
given date and time Epoch

PASS

034
34.riseAndSetTime.u
i

Select the Date-Time
PASS

035
35.subsystemFileDia
log.ui

Choose the catalog from Disk
PASS

036 36.TimeConverter.ui Convert IST to LST PASS

037
37.catalogsNewSour
ce.ui

Add the new Source in the
selected CATALOG

PASS

12. Other
windows in the
MainWindow
application

038 39.b2 History.ui
Shows the past alarm
messages for a configured
sub-systems

PASS

040 40. B2.ui Shows the current Alarm list PASS

041 41.b1History.ui

Show the history of the LMC
and sub-system detailed
messages of
command-response and
events

PASS

042 42.B1.ui

Show the LMC and sub-system
detailed messages of
command-response and
events

PASS

043 43.R1.ui

Show the IST, LST, UTC,
Server status, LMC , M&C
Status, and logged user along
with switch or re-login user

PASS

044 44. R2. UI
Show panel of ALARM , sound
mute option

PASS

045 PANIC Alarm panel Invoke Panic Alarm window PASS

4.2 Functional testing at the GMRT antenna.

In a functional testing, one sub-system, optical-fiber and sentinel sub-system connected in the
LAB to E01 antenna , and monitoring, and command parameters were tested. Since the LMC
Sub-systems are configured in a generic specification driven, it is considered to test a single
sub-system. Along with the major functionality of catalog, operational control window and LMC
Master control window for the LMC system testing itself.

Following screen-shots of functional testing of the LMC UI configured for E01 antenna is shown
for accomplishing the result of functional testing.

(a) Figure -1 : LMC Master-Control , and LMC Operational Control :

Figure -1 shows LMC Master control mode in Local mode along with the status of Alarm,
Archiver, and BATCH (Batch not OK because of GAB MNCScriptManager run on the gab1
machine and not configured for the ‘E01’ antenna).

LMC-Master control shows the IP addresses and Status of each sub-system, the OFCSNT shows
‘OK’ status as it is connected.

(b) Figure-2 : LMC Script Execution in Observing Program and Dashboard view
showing a high level status

The Observing window shows the scripting status of execution, and dash-board shows a high
level view of the sub-system. ‘GAB_C20’ don’t exist as it is not configured for the E01 antenna.

(c) Figure-3 : Sub-system window for the command, and Detailed Monitoring for the
“OFCSNT” Subsystem -

(d) Figure-4 : Catalog functionality

5. Summary

The objective of this project is to upgrade the graphical user interface (GUI) framework of the

Tango-based GMRT Control (TGC) System by transitioning from Python 2 and PyQt4 to Python

3 and PyQt5. The current system, built using outdated technologies, poses security risks, lacks

modern support, and restricts the implementation of new features. This upgrade will ensure

long-term support, improved performance, and enhanced user experience.

In the CONDA package environment TANGO Libraries (cpp tango 9.4.2 , PyTango 9.4.2 and

Java 9.7 with java openjdk 21.0.2, and for LMC programs compiled under openjdk 1.8.0_432)

on Ubuntu 22.04 LTS found to be working. Since it was a feasibility study, the Java program

needs to be updated further. The Python 3.9 and PyQt 5.12 and Taurus 5.2 Libraries and many

dependencies were installed.

Total 45 UIs were tested for the validation and functional testing, and Nearly 57 python files

need to be modified even after python-2 to python-3 and PyQt4 to PyQt5 converter tools were

used.

To Make the LMC fully functional along with the stable Ubuntu 22.04 LTS OS version, the

LMC software has a further scope of the work which is briefly listed as follows :

5.1 Future Scope of the Work :

(a) LMC Tango DS compilation under Openjdk 21.0.2 : At present , the LMC Tango

Device server is compiled under openjdk 8.0.1 which is unable to read response events

from the Sub-systems CPP IO-Tango device server. Hence, the Java Tango Device-server

gives command timeout response, however command and response is received and

command gets successfully executed at the CPP TANGO IO Device Servers.

(b) LMC Software containerisation : To run the LMC under a stable and safe environment,

a LMC software needs to run under the docker kind of software containerisation.

(c) Web-based UI : A web-based simple UI can be considered as a thin-client for the LMC

user-friendly UI experience.

Reference :

[1]https://www.tango-controls.org/

[2]https://wiki.python.org/moin/PyQt4

[3]https://conf1.ncra.tifr.res.in/event/5/attachments/87/186/ngmnc_demo_nov15_2019-Jiten
dra.pdf

[4] https://www.geeksforgeeks.org/python-introduction-to-pyqt5/

[5] https://github.com/rferrazz/pyqt4topyqt5

https://wiki.python.org/moin/PyQt4
https://www.geeksforgeeks.org/python-introduction-to-pyqt5/

Appendix-I

(I) Python-3 code modification done after 2to3-3.9 converter used.

Code Change description Python files for code changes

1. .import syntax corrected

2. Indentation errors and space errors are
resolved

3. Handled float division using int() casting

4. Wrapped filter() and map() with list()

5. Replace iteritems() with items()

6. Updated MySQLDB connection encoding Remove bytecode

7. Updated log4py class API usage

8. Change comment format (’ ’ ’ to ” ” ”) MNCScriptManager.py ,
MNCApiBridge.py , helper.py

9. Upload Script spacing and exception fixes

10. Handled missing issaty function for stdout MNCScriptManager.py

11. Avoided writing to read-only
sys.stdout.encoding

12. Fixed byte/string mismatched error validation.py

13. Fixed string rstrip() on byte objects base.py , MNCScriptManager

14. Use sorted() instead of dict.sort()

(I) PyQT5 code modification done after the ‘pyqt4toqt5’ converter was used.

Code Change Description Python Files for code changes

1. Resolved Syntax error
(global devlog before variable usage)

offload.py , mainWindow.py ,
R1.py

2. Fixed deprecated get_instance() method , initialize
direct instance creation Logger()

mainWindow.py , R1.py ,
DeveloperLogger.py

3. Replaced the Phonon library with QMediaPlayer mainWIndow.py , offload.py ,
B2.py

4. Fixed pextension compilation offload.py , mainWIndow.py ,
menuGenerator.py ,
lmcMasterControl.py ,
validator.py , scaled_format.py

5. Linked required external libraries (Cdist,GuiLibs),
Enabled compiled gnovas extension

Dir- src

6. String replace functions , login.ui file errors , Signal
connet errors

tuneReceiver.py ,bandCenter.py
, Trajectory.py ,
plotTrajectory.py , correlator.py ,
newProject.py

7. Expert console Catalog.py

8. Subsystem Command Execution Subsystem.py

9. Observation Program base.py

10. Signal Changing function Catalogs.py ,
cmdRespChangeEvent.py

11. QLineEdit.text().isEmpty Issue lmcOperationControl.py

12. CommonCommandEnvironment – QTableWidgetItem CommonCommandEnvironment
.py

13. Update def getAttributeModel function to FQDN (Fully

Qualified Domain Name)

lmcMasterControl.py ,
dashboardControl.py

