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ABSTRACT 

Radio Frequency Interference (RFI) poses a significant challenge in radio astronomy, corrupting 

observational data and obscuring weak cosmic signals. This project presents a robust, data-driven 

pipeline for the detection, visualisation, and temporal analysis of RFI across multiple antennas, 

frequency bands, and time ranges. The core of the detection methodology employs Huber loss-

based polynomial baseline fitting, which offers resilience against strong outliers while preserving 

baseline integrity. RFI is flagged by identifying deviations exceeding a dynamic 3σ threshold 

above this fitted baseline.

The pipeline integrates multiple visualisation modules: waterfall plots to display spectral evolution 

over time, bar graphs showing band-wise occupancy statistics, and calendar heat maps to monitor 

daily observation durations and RFI time percentages. It supports flexible user inputs for antenna 

selection, channel, frequency band, and date range. Additional modules compute frequency vs. 

time occupancy percentages and track the degradation of detection sensitivity over the years due 

to increasing RFI, as reflected in rising sigma thresholds.

To counteract this degradation, the system supports referencing archival baselines from cleaner 

years for consistent RFI detection in present-day data. Overall, this modular, scalable framework 

enhances the ability to monitor and mitigate RFI contamination in large-scale radio observatories.

 

IV



TABLE OF CONTENTS  

Bonafide certificate —————————————————————————-I 

Declaration by authors ————————————————————————II 

Acknowledgement —————————————————————-————III 

Abstract ———————————————————————————-——IV 

1. Introduction —————————————————————————-—-1 

 1.1 Institution profile  ——————————————————————1 

 1.2 What is RFI ?————————————————————————3 

 1.3 Threats posed by RFI to Radio Astronomy ———————————-—5 

2. Statistical analysis  ————————————————————————7 

3. Data file and user input specifications  ——————————————-——9 

 3.1 Data file details ———————————————————————9 

 3.2 User input specifications ——————————————————-—9 

4. Gray scale plot / waterfall plot ——————————————————-—10 

 4.1 Waterfall plot for band -2   ————————————————-——12 

 4.2 Waterfall plot for band -3———————————————————13 

 4.3 Waterfall plot for band -4———————————————————14 

 4.4 Waterfall plot for band -5———————————————————15  

 4.5 Python code ————————————————————————16 

5. Bar graph   ———————————————————————————25 

 5.1 What is a bar graph ?   ————————————————————25 

 5.2 Python code ————————————————————————27 

6. Calendar plot ——————————————————————————34 

V



 6.1 What is a calendar plot ?———————————————————34 

 6.2 Band wise calendar plot  ———————————————————35 

 6.3 Python code ————————————————————————36 

 6.4 Total observation duration calendar plot —————————————44 

 6.5 Python code ————————————————————————45 

7. Huber loss    ——————————————————————————-51 

 7.1 What is Huber loss ?   ————————————————————51 

 7.2 Python code    ———————————————————————53 

8. Frequency versus time occupancy per spectral channel.  —————————62  

 8.1 What are the stats given by the frequency vs time occupancy plots ?——62 

 8.2 Frequency vs time occupancy per spectral channel for band -2.    ———63 

 8.3 Frequency vs time occupancy per spectral channel for band -3     ———65 

 8.4 Frequency vs time occupancy per spectral channel for band -4     ———67 

 8.5 Python code.        ——————————————————————69 

9. Three sigma comparison over the years        ——————————————79 

 9.1 Comparison of 3 sigma over the years        ————————————79 

 9.2 Comparison of 3 sigma over the years after implying the cleaner band    

 approach for 2024 and 2025 data .        ———————————————81 

10. Time occupancy and bandwidth occupancy ——————————————83 

11. Future scopes of my project      ———————————————————85 

12. Websites and research papers used for reference ————————————-86 

VI



1.INTRODUCTION 

1.1 Institution profile  

NCRA has setup a unique facility for radio astronomical research using the metre wavelengths 

range of the radio spectrum , known as the Giant Metrewave Radio Telescope (GMRT), located at a 

site about 80km north of Pune. GMRT consists of fully steerable gigantic parabolic dishes of 45 

metre diameter , each spread over distances of upto 25km. GMRT is one of the most challenging 

experimental programmes in basic sciences undertaken by Indian scientists and engineers . 

  

 The number and configuration of the dishes were optimised to meet the principal 

astrophysical objectives which require sensitivity at high angular resolution as well as ability to 

image radio emissions from diffuse extended regions . Fourteen of the thirty dishes are located more 

or less randomly in a compact Central Array in a region of about 1 sq km. The remaining sixteen 

dishes are spread out along the 3 arms of an approximately Y-shaped configuration over a much 

larger region , with the longest interferometric baseline about 25 km. 

The multiplication or correlation of radio signals from all the 435 possible pairs of the antennas or 

interferometers over several hours will thus enable radio images of celestial objects to be 

synthesised with a resolution equivalent to that obtainable with a single gigantic dish 25 kilometre 

diameter ! The array will operate in six frequency bands centred around 50, 153, 233, 325, 610 and 

1420 MHz. All these feeds provide dual polarisation outputs . In some configuration , dual 

frequency observations are also possible .  

The higher angular resolution achievable will range from about 60 arcsec at the lowest frequencies 

to about 2 arcsec at 1.4GHz.  

GMRT an indigenous project . The construction of 30 large dishes at a relatively small cost has been 

possible due to an important technological breakthrough achieved by Indian scientists and engineers 

in the design of the light weight , low cost dishes . The design is based on what is being called the 

‘SMART’ concept - for Stretch Mesh Attached to Rope Trusses.  

 

The dish has been made light weight and of low solidity by replacing the conventional backup 
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structure by series of rope trusses stretched between 16 parabolic frames made of tubular steel . The 

wire ropes are tensioned suitably to make mosaic of plane facets approximating a parabolic surface . 

A light-weight thin wire mesh (made of 0.55 mm diameter stainless steel wire) with a grid size 

varying from 10 X 10 mm in the central part of the dish to 20 X 20 mm in the outer parts, stretched 

over the rope truss facets forms the reflecting surface of the dish. The low-solidity design cuts down 

the wind forces by a large factor and is particularly suited to Indian conditions where there is no 

snowfall in the plains. The overall wind forces and the resulting torques for a 45-m GMRT dish are 

similar to those for only a 22-m dish of conventional design, thus resulting in substantial savings in 

cost. 

The dish is connected to a `cradle' which is supported by two elevation bearings on a yoke placed 

on a 3.6 m diameter slewing-ring bearing secured on the top of a 15 metre high concrete tower. The 

weight of the disk is about 80 tonnes and the counter-weight is about 40 tonnes. The dishes have alt-

azimuth mount. The salient parameters and specifications of each dish are summarised in the Table. 
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1.2 What is RFI? 

Radio Frequency Interference (RFI) is the disruption or contamination of a 

desired radio signal by the presence of unwanted electromagnetic waves. These interfering signals 

overlap with the frequency bands used for legitimate communication or observation, leading to a 

degradation of signal quality, data loss, or even complete failure of radio-based systems. RFI is 

particularly problematic in fields that rely on the detection of weak signals, such as radio astronomy, 

remote sensing, satellite communications, and radar systems. In such applications, even a faint 

interfering signal can overwhelm a legitimate one, rendering the data unusable or corrupt.

RFI can originate from a wide range of sources and is broadly categorised into natural and artificial 

(man-made) interference. Natural RFI sources include lightning discharges, auroras, cosmic 

background noise, and solar flares, which emit broadband radio noise that can interfere with 

observations. However, the vast majority of problematic RFI in modern environments comes from 

man-made sources. These include telecommunications infrastructure such as mobile towers, FM/TV 

broadcast stations, Wi-Fi networks, satellite constellations, and radar systems. Additionally, many 

common electronic devices—computers, LED lights, power lines, switching power supplies, car 

engines, and even electric toothbrushes—emit unintended radio signals that contribute to the 

growing RFI environment.

The nature of RFI can vary—it may be narrowband or broadband, stationary or drifting, continuous 

or intermittent. Narrowband RFI appears at specific frequencies and can resemble legitimate 

signals, making detection challenging. Broadband RFI spans a wide frequency range and can 

significantly contaminate large portions of the spectrum. Time-varying RFI, such as radar pulses or 

intermittent transmissions, poses additional challenges due to its unpredictable nature.

In radio astronomy, RFI is particularly damaging because the astronomical signals being observed 

are typically many orders of magnitude weaker than man-made transmissions. As a result, RFI can 

completely obscure the cosmic signals or introduce false detections that mimic real astronomical 

phenomena. To address this, observatories employ a multi-layered approach to RFI mitigation. This 

includes physical measures such as placing telescopes in remote, radio-quiet zones, using shielded 

and filtered electronics, and aligning with regulatory protections that restrict emissions in certain 

bands. On the software side, advanced signal processing techniques are used to identify and 

suppress RFI. These methods include statistical outlier detection, robust polynomial or spline fitting 

to subtract baselines, time-frequency masking, machine learning classifiers, and algorithms like 

Huber loss fitting that are robust to outliers.
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The increasing density of wireless communication infrastructure, the expansion of satellite 

constellations (e.g., Starlink), and the general electrification of modern life have led to a significant 

rise in RFI levels worldwide. This trend threatens not only the quality of scientific research but also 

the reliability of communications and navigation systems. To combat this, international and national 

regulatory bodies such as the International Telecommunication Union (ITU), the Federal 

Communications Commission (FCC), and local spectrum agencies define rules for frequency 

allocation, emission limits, and usage rights to help minimise interference. However, enforcement 

can be difficult, especially in regions lacking infrastructure or legal control.

In summary, Radio Frequency Interference is a growing and complex challenge that affects a wide 

range of technologies and scientific fields. Understanding its sources, characteristics, and mitigation 

strategies is essential for ensuring the integrity and reliability of systems that depend on clean radio 

frequency environments. As humanity becomes increasingly dependent on wireless communication, 

the importance of effective RFI management will only continue to grow.
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1.3 Threats posed by RFI to Radio astronomy : 

Radio Frequency Interference (RFI) poses serious and growing threats to radio astronomy, a field 

that relies on the detection of extremely faint natural radio signals from celestial sources. Since 

astronomical radio emissions are often billions of times weaker than man-made transmissions, even 

minimal RFI can drown them out, leading to several major problems:

1. Loss of Data Integrity: 

RFI can contaminate observational data by introducing artificial signals that are 

indistinguishable from true cosmic sources. This leads to corrupted datasets where important 

astrophysical information may be hidden, distorted, or completely erased.

2. False Detections: 

RFI can mimic genuine astronomical signals, resulting in false positives. For example, a 

pulsed signal from a radar or satellite may resemble a pulsar or fast radio burst (FRB), 

misleading researchers and causing wasted effort and incorrect scientific conclusions.

3. Reduced Sensitivity: 

Continuous or broadband RFI raises the noise floor in a telescope’s receiver system, 

reducing its sensitivity. This means that weaker astronomical signals that would otherwise 

be detectable get lost in the increased background noise.

4. Loss of Observing Time: 

Interference often forces astronomers to discard portions of their data or reschedule 

observations entirely. In some cases, entire frequency bands become unusable for science, 

limiting what researchers can study and reducing the value of expensive observing time on 

national or international facilities.

5. Spectral Band Pollution: 

Certain frequency bands are internationally reserved for radio astronomy (e.g., the hydrogen 

line at 1.42 GHz). However, spillover emissions from adjacent bands or unauthorised 

transmissions can pollute these protected zones, degrading critical observations that cannot 

be done at other frequencies.

6. Increased Cost and Complexity: 

Mitigating RFI requires sophisticated signal processing, robust filtering techniques, and 

careful site planning—all of which increase the complexity and cost of radio astronomy 

projects. Additionally, observatories often have to invest in RFI monitoring and 
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mitigation infrastructure to keep their data usable.

7. Threat to Future Discoveries: 

As RFI continues to grow with the expansion of wireless technologies and satellite 

constellations, the window for making groundbreaking discoveries in radio astronomy is 

narrowing. If left unmanaged, RFI could prevent the detection of extremely faint or rare 

signals—such as those from the early universe, exoplanet atmospheres, or extraterrestrial 

intelligence—that are crucial to advancing our understanding of the cosmos.

8. Cumulative Global Impact: 

Because radio waves are not confined by national borders, RFI from one region can affect 

observatories far away, especially in space-based radio telescopes or in global Very Long 

Baseline Interferometry (VLBI) networks. The cumulative interference from multiple 

sources across the globe threatens the collaborative nature of modern radio astronomy.

In essence, RFI endangers the core capability of radio astronomy: the ability to observe the universe 

through its faintest signals. Without strong protection, regulation, and technological innovation to 

combat interference, the future of this observational science—and the discoveries it can make—

may be significantly constrained.
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2. STATISTICAL ANALYSIS  

The below mentioned methodologies are some of the techniques which can be used to create a 

descriptive analysis on the RFI stats .  

A. Correlation Studies

Correlation studies aim to uncover relationships between observed RFI events and external 

environmental or operational factors that may be influencing them. By analysing timestamped RFI 

data alongside logs from weather systems, device operation records, solar activity indices, or even 

regional power consumption logs, one can identify patterns suggesting that certain external 

conditions are conducive to RFI occurrences. For instance, a spike in RFI may consistently coincide 

with local thunderstorms, indicating a strong weather-based origin. Similarly, solar flares or 

geomagnetic storms can emit radio waves that interfere with ground-based radio telescopes. These 

correlations not only help in attributing causes to the interference but also in developing mitigation 

strategies, such as avoiding observations during high solar activity or creating exclusion masks 

around certain time windows or events. Statistically, correlation coefficients, heat maps, or 

multivariate regression models may be employed to quantify these associations, offering insights 

into which factors most strongly contribute to RFI contamination.

B. Outlier Detection

Outlier detection focuses on identifying rare, extreme, or anomalous RFI events that deviate 

significantly from normal background levels. These high-impact events may be caused by 

unexpected and powerful sources such as radar systems, transient satellite transmissions, or short 

bursts from faulty electronic equipment. From a data analytics standpoint, these outliers are 

typically spikes in amplitude or power levels that stand out in frequency-time heat maps. In Python, 

library such as scipy  is used to implement peak-finding algorithms, which detect these sharp 

deviations from the baseline. Statistically, methods like the Z-score, interquartile range (IQR), or 

Huber loss-based residual thresholding can also be applied to filter out or flag outliers. Detecting 

these events is crucial for data cleaning and for avoiding the misinterpretation of spurious 

interference as genuine astronomical signals. It also helps in building databases of known RFI 

signatures, which can later be excluded or corrected using automated pipelines.
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C. Time Series Analysis

Time series analysis is used to examine how RFI evolves over time, looking for recurring patterns, 

trends, or periodic behaviours. By treating RFI data as a function of time, one can apply statistical 

models to identify whether certain types of interference are intermittent or persistent. Intermittent 

RFI is characterised by periodic bursts that appear at regular intervals—perhaps due to scheduled 

equipment cycles, recurring satellite passes, or human activity patterns. On the other hand, 

persistent RFI represents continuous interference over extended durations, often due to 

infrastructure like broadcasting towers or continuous electronics emissions. Through techniques 

such as autocorrelation, seasonal decomposition, or Fourier transforms, one can distinguish between 

these two types. Identifying time-dependent structures in RFI helps astronomers plan observation 

windows more effectively, as well as construct filters or masks that align with known RFI 

periodicities. This method also aids in long-term monitoring of site conditions and in verifying 

whether regulatory measures (like spectrum restrictions) are effective over time.

D. Predictive Modelling

Predictive modelling in the context of RFI involves using historical data to forecast when and where 

interference is likely to occur in the future. By analysing past RFI events, their frequencies, 

amplitudes, and time distributions, machine learning or statistical algorithms can be trained to 

predict similar events in upcoming observation cycles. For example, if a specific frequency band 

showed consistent RFI patterns over the past year during a particular time of day, the model can 

forecast similar disruptions in the present or near future. This is especially useful in observation 

planning, where astronomers might choose to avoid certain frequency bands or reschedule sessions 

based on RFI forecasts. Moreover, predictive models can leverage the shape or profile of past RFI-

contaminated bands to interpret present-day data, particularly if the current signal is ambiguous. 

Techniques like ARIMA (AutoRegressive Integrated Moving Average), LSTM (Long Short-Term 

Memory neural networks), or random forest regressors are often used to build these models. 

Overall, predictive modelling enables proactive mitigation rather than reactive cleanup, making it 

an essential component of modern RFI management strategies.
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3. DATA FILE AND USER INPUT SPECIFICATIONS 

3.1 Data file details : 

• The data used in this project is sourced from the 60:1 monitoring tool. 

• The file sizes range approximately from 1 MB to 150 MB. 

• These data files contain time-stamped amplitude values that correspond to various spectral 

channels across four frequency bands—band 2, band 3, band 4, and band 5. 

• The dataset includes measurements from a total of 30 antennas, each with two polarisations, 

resulting in 60 distinct channels. 

• Each channel consists of data recorded over 401 frequency steps, providing detailed frequency 

resolution for analysis. 

3.2 User input specifications :
The project interface is designed to accept specific user inputs that tailor the data analysis process 

according to user-defined criteria. 

• The key input features include the selection of the frequency band, with available options being 

band 2, band 3, band 4, and band 5. 

• Users are also required to specify the antenna name, which ranges covers all the antenna names 

such as  C00, C01, up to W06. 

• In addition to the antenna, the user selects the channel name, either CH1 or CH2, corresponding 

to the two available polarisations. 

• Finally, users define the time window of interest by providing a start and stop date, which helps 

in filtering and loading only the relevant data files for the selected observation period.
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4. GRAY SCALE PLOT / WATERFALL PLOT  

As part of the visual analysis in this project, grayscale plots were generated to represent the 

variation in signal amplitude over both frequency and time. These plots are often referred to as 

waterfall plots, and they serve as a foundational visualisation tool in the detection and analysis of 

Radio Frequency Interference (RFI). Each grayscale plot is a 2D matrix where the x-axis 

corresponds to frequency, the y-axis corresponds to time (or individual data files arranged 

chronologically), and the pixel intensity represents the signal amplitude at each frequency-time 

point. 

Lighter shades in the plot typically indicate higher amplitudes, which may suggest the presence of 

strong or anomalous signals, while darker regions represent lower, background-level signals that 

are closer to the system noise floor.

 figure :4.1 : Gray scale plot for band 5 data file , dated : 05/02/2024, for antenna :S03, channel :CH1. 

These plots allow us to visually track the presence, persistence, and frequency spread of RFI 

events. For example, horizontal streaks in the plot indicate persistent interference at a fixed 

frequency over time, which is characteristic of continuous RFI sources like broadcasting towers or 

industrial equipment. In contrast, vertical streaks or bands of lighter intensity may suggest 

broadband events affecting a large range of frequencies simultaneously, possibly caused by 

transient environmental noise or certain types of satellite transmissions. 
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Intermittent RFI, which appears sporadically at fixed intervals, shows up as periodic light patches 

along the same frequency row. By examining these patterns, users can infer not only the existence 

but also the temporal behaviour of RFI sources—whether they are continuous, intermittent, sudden, 

or fading. The use of a grayscale colour map rather than a rainbow or multi-coloured scale is 

intentional and beneficial for subtle pattern recognition. Grayscale preserves the focus on contrast 

without introducing perceptual biases that colour maps may cause. It also facilitates easier 

quantitative interpretation when comparing across multiple plots, especially when amplitude values 

are normalised or thresholded for consistency.

In this project, these grayscale waterfall plots were generated for specific combinations of 

bands, antennas, channels, and date ranges, as chosen by the user inputs. This modularity 

allowed for high flexibility in inspection—enabling users to zoom in on specific antennas or 

channels affected by RFI in particular frequency bands. These plots served as a first step in 

identifying problematic regions of the spectrum, guiding further stages of the analysis such as 

baseline fitting, thresholding, outlier detection, and statistical modelling.
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4.1 Waterfall plot for band -2 :

• The grayscale plot generated for Band 2 ( 100 MHz to 300 MHz) displays the variation in signal 

amplitude across 401 frequency steps over the specified observation period.  

• This plot corresponds to the selected antenna and channel, and is constrained within the start and 

stop date provided by the user.  

• Band 2 typically covers lower frequency ranges, where man-made interference from local 

communication systems or environmental noise sources is more likely to occur.  

• In the plot, RFI sources manifest as bright vertical lines at specific frequency bins, indicating 

interference. In some regions, faint and sporadic bright patches suggest intermittent activity, 

which could be linked to cyclical or time-dependent emitters such as nearby industrial machinery 

or scheduled transmissions.  

• The plot helps in distinguishing stable spectral regions from highly contaminated ones, which is 

critical for planning clean observation windows in Band 2. 

                figure :4.2 : Gray scale plot for band 2 data file , dated : 08/02/2024 - 28/03/2024, for antenna :C10, channel :CH2. 
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4.2 Waterfall plot for band -3 :

• For Band 3, the grayscale plot offers a detailed representation of signal amplitudes detected over 

time, again filtered by user-specified antenna, channel, and observation period. 

• Band 3 often encompasses mid-range frequencies, ranging from 175 MHz to 575 MHz

• The grayscale intensity patterns show several regions of moderate to strong RFI, with some 

bright frequency bins persisting over a significant portion of the time axis. 

• This may indicate fixed-location transmitters or equipment operating in nearby environments. 

• In contrast, some frequency bands remain consistently dark, suggesting clean and usable regions 

of the spectrum. 

• This plot is particularly useful for identifying frequency ranges in Band 3 that could be masked 

out or flagged in downstream analysis.

         figure :4.3 : Gray scale plot for band 3 data file , dated : 14/01/2024 - 18/01/2024, for antenna :C10, channel :CH1. 
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4.3 Waterfall plot for band - 4 :

• The Band 4 grayscale plot focuses on slightly higher frequency regions, 500 MHz to 1000MHz 

again constrained to the chosen antenna, channel, and observation time window.  

• Compared to lower bands, RFI in Band 4 can appear more structured or bursty, often originating 

from transient sources such as mobile networks.  

• The grayscale plot highlights these phenomena through sharp, high-intensity peaks that are 

temporally narrow and localised in frequency.  

• This makes Band 4 particularly interesting for time-sensitive interference detection. In some 

cases, band edges may show increased activity, which can be due to spillover from adjacent 

transmission bands.  

• This visualisation provides valuable insight into which parts of Band 4 remain stable and which 

are vulnerable to unpredictable interference bursts. 

 

                figure :4.4 : Gray scale plot for band 4 data file , dated : 01/02/2024 - 04/02/2024 , for antenna :C10, channel :CH1. 
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4.4 Waterfall plot for band - 5 :

• The grayscale plot for Band 5 reveals signal behaviour in the higher frequency end of the 

observational spectrum, 800MHz to 17000Mhz.  

• Band 5 is often susceptible to interference from satellite constellations, airborne sources, and 

high-frequency broadband equipment.  

• The plot for the selected antenna and channel across the defined date range shows a mixture of 

low-level background activity and high-impact transient RFI events.  

• These appear as scattered bright regions or clusters, which can be irregular in both frequency and 

time, making them more challenging to model.  

• However, some persistent frequency bands can still be identified, often corresponding to 

predictable emitters.  

• The Band 5 plot plays a crucial role in assessing the dynamic nature of RFI in high-frequency 

bands and helps refine frequency filters applied in subsequent processing. 

 

figure :4.5 : Gray scale plot for band 5 data file , dated : 05/02/2024 - 06/02/2024, for antenna :S03, channel :CH1. 
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4.5 Python Code : 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from datetime import datetime, timedelta 

import os 

# Frequency band options for user input 

band_frequencies = { 

    "band 2": {"start": 100, "stop": 300},  

    "band 3": {"start": 175, "stop": 575},  

    "band 4": {"start": 500, "stop": 1000},  

    "band 5": {"start": 800, "stop": 1700}, 

    "all bands": {"start": 0, "stop": 1500}, 

} 

# Subranges of bands used specifically for calculation (excludes the shoulder of the band shape ) 

calculation_band_frequencies = { 

    "band 2": {"start": 120, "stop": 240},  

    "band 3": {"start": 250, "stop": 500},  

    "band 4": {"start": 550, "stop": 860},  

    "band 5": {"start": 1000, "stop": 1450}, 

    "all bands": {"start": 120, "stop": 1450}, 

} 

# Get valid band input from user 

while True: 
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    user_band_input = input('Enter the band name (available bands: Band 2, Band 3, Band 4, Band 5, 
all bands): ').lower() 

     

    if user_band_input in band_frequencies: 

        selected_band_info = band_frequencies[user_band_input] 

        calculation_band_info = calculation_band_frequencies[user_band_input] 

        # Extract start/stop frequency values for plotting and calculation 

        start_frequency_in_MHz = selected_band_info["start"] 

        stop_frequency_in_MHz = selected_band_info["stop"] 

        calc_start_freq_mhz = calculation_band_info["start"] 

        calc_stop_freq_mhz = calculation_band_info["stop"] 

        print(f"Selected {user_band_input}: Start Frequency = {start_frequency_in_MHz} MHz, Stop 
Frequency = {stop_frequency_in_MHz} MHz") 

        break  

    else: 

        print("Invalid band name. Please enter one of the bands mentioned here(Band 2, Band 3, Band 
4, Band 5).") 

# Converts to Hz for later comparison with filenames 

start_frequency = start_frequency_in_MHz * 1000000 

stop_frequency = stop_frequency_in_MHz * 1000000 

# Defines number of bins and generate frequency array for plotting 

num_freq_bins = 401 

calc_freq_increment = (calc_stop_freq_mhz - calc_start_freq_mhz) / num_freq_bins 

frequencies = np.array([calc_start_freq_mhz + i * calc_freq_increment for i in 
range(num_freq_bins)]) 

17



# Gets the antenna and channel input 

antenna_name = input("enter the antenna name:  ").upper() 

channel_name = input("enter the channel name: ").upper() 

# Validates date inputs and convert to datetime.date 

while True: 

    try: 

        start_date_str = input("Enter the start date (DD/MM/YYYY): ") 

        stop_date_str = input("Enter the stop date (DD/MM/YYYY): ") 

        user_start_date = datetime.strptime(start_date_str, "%d/%m/%Y").date() 

        user_stop_date = datetime.strptime(stop_date_str, "%d/%m/%Y").date() 

        if user_start_date > user_stop_date: 

            print("Error: Start date cannot be after stop date. Please re-enter dates.") 

        else: 

            break  

    except ValueError: 

        print("Invalid date format. Please use DD/MM/YYYY.") 

filename_array = [] 

# Scans current directory for matching files 

for file_name in os.listdir('.'): 

    if file_name.endswith('Hz.txt') and '_' in file_name: 

        try: 
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            sections = file_name.split('_') 

             

            if len(sections) < 5: 

                print(f"  - Skipping malformed filename (not enough sections): {file_name}") 

                continue 

             

            # Extract dates from filename 

            file_day = sections[0].strip() 

            file_month = sections[1].strip() 

            file_year = sections[2].strip() 

            file_date_str = f"{file_day}/{file_month}/{file_year}" 

            file_date = datetime.strptime(file_date_str, "%d/%m/%Y").date()  

            # Checks if file date and frequency match user input 

            if user_start_date <= file_date <= user_stop_date: 

                start_freq_section = sections[3].strip()  

                stop_freq_section = sections[4].replace('Hz.txt', '').strip()  

                file_start_freq = float(start_freq_section) 

                file_stop_freq = float(stop_freq_section) 

                if file_start_freq == start_frequency and file_stop_freq == stop_frequency: 

                    filename_array.append(file_name) 

                    print(f"  - Found relevant file: {file_name}") 

        except (ValueError, IndexError) as e: 

            print(f"  - Skipping file '{file_name}' due to parsing error: {e}") 

            continue 
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filenames = filename_array 

# Exits if no matching files found 

if not filenames: 

    print("No files found matching the specified date and frequency range.") 

    exit() 

else: 

    print(f"Successfully identified {len(filenames)} files for processing.") 

# Function to load and filter data from a file based on antenna and channel 

def load_data(filename): 

    try: 

        df = pd.read_csv(filename, header=None, sep='\s+') 

    except FileNotFoundError: 

        print(f" file not found :{filename}") 

        exit() 

    # Filter rows matching the selected antenna and channel 

    filtered = df[(df[2] == antenna_name) & (df[3] == channel_name)].reset_index(drop=True) 

    if filtered.empty: 

        print(f'No data found for antenna {antenna_name} and channel {channel_name} in 
{filename}') 

        return [], np.array([]) 

    # Extract timestamp strings and amplitude matrix 

    time_strings = filtered[0].astype(str)+' '+filtered[1].astype(str) 
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    amplitude_matrix = filtered.iloc[:,13:].astype(float).values 

    # Apply frequency mask for calculation range 

    full_freq_increment = (stop_frequency_in_MHz - start_frequency_in_MHz) / num_freq_bins 

    full_freqs = np.array([start_frequency_in_MHz + i * full_freq_increment for i in 
range(num_freq_bins)]) 

    freq_mask = (full_freqs >= calc_start_freq_mhz) & (full_freqs <= calc_stop_freq_mhz) 

    amplitude_matrix = amplitude_matrix[:, freq_mask] 

    return time_strings.tolist(), amplitude_matrix 

# Load data from all valid files 

all_time_strings = [] 

all_amplitudes = [] 

for filename in filenames: 

    current_time_strings, current_amplitudes = load_data(filename) 

    all_time_strings.extend(current_time_strings) 

    if current_amplitudes.size > 0: 

        all_amplitudes.append(current_amplitudes) 

# Exit if no valid data collected 

if not all_time_strings: 

    print("No data loaded from any of the files. Exiting.") 

    exit() 

# Convert timestamps to datetime objects and calculate seconds since midnight 
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combined_times = all_time_strings 

combined_datetimes = [datetime.strptime(ts, "%d/%m/%Y %H:%M:%S") for ts in 
combined_times] 

seconds_since_midnight = np.array([dt.hour * 3600 + dt.minute * 60 + dt.second for dt in 
combined_datetimes]) 

if not all_amplitudes: 

    print("No amplitude data found after filtering. Exiting.") 

    exit() 

# Helper function to load all timestamps from a file (used for duration calculation) 

def load_timestamps_all_rows(filename): 

    try: 

        df = pd.read_csv(filename, header=None, sep=r'\s+') 

    except FileNotFoundError: 

        print(f"File not found: {filename}") 

        return [] 

    time_strings = df[0].astype(str) + ' ' + df[1].astype(str) 

    try: 

        return [datetime.strptime(t, "%d/%m/%Y %H:%M:%S") for t in time_strings] 

    except Exception as e: 

        print(f"Failed to parse timestamps in {filename}: {e}") 

        return [] 

print("\n--- File Observation Durations (using >2s segmentation) ---") 

total_duration = timedelta(0) 
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# Loop over files and compute segmented durations (gaps >2s split segments) 

for file in filenames: 

    timestamps = load_timestamps_all_rows(file) 

    if len(timestamps) < 2: 

        print(f"{file}: Not enough timestamps for duration calculation.") 

        continue 

    timestamps.sort() 

    file_duration = timedelta(0) 

    segment_start = timestamps[0] 

    for i in range(1, len(timestamps)): 

        delta = timestamps[i] - timestamps[i - 1] 

        if delta > timedelta(seconds=2): 

            file_duration += timestamps[i - 1] - segment_start 

            segment_start = timestamps[i] 

    file_duration += timestamps[-1] - segment_start 

    print(f"{file}: duration = {file_duration}") 

    total_duration += file_duration 

# Stack all amplitude matrices vertically (combine all time steps) 

combined_amplitudes = np.vstack(all_amplitudes) 

total_rows = combined_amplitudes.shape[0] 

# Sort data by datetime to prepare for plotting 

sorted_indices = np.argsort(combined_datetimes) 
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combined_datetimes_sorted = np.array(combined_datetimes)[sorted_indices] 

amplitudes_sorted = combined_amplitudes[sorted_indices] 

seconds_since_midnight_sorted = seconds_since_midnight[sorted_indices] 

# Generate waterfall plot 

plt.figure(figsize=(14, 6)) 

plt.imshow( 

    amplitudes_sorted, 

    aspect='auto', 

    extent=[frequencies[0], frequencies[-1], 0, len(combined_datetimes_sorted)], 

    origin='lower', 

    cmap='jet' 

) 

plt.colorbar(label='Amplitude (dB)') 

plt.xlabel('Frequency (MHz)') 

plt.ylabel('Time (Date HH:MM)') 

plt.title(f'Combined Waterfall Plot (Antenna {antenna_name}, Channel {channel_name}, total 
duration - {total_duration})') 

# Set y-axis ticks to show readable date/time labels 

num_ticks = 10 

tick_indices = np.linspace(0, len(combined_datetimes_sorted) - 1, num_ticks, dtype=int) 

tick_labels = [combined_datetimes_sorted[idx].strftime("%d/%m/%Y %H:%M") for idx in 
tick_indices] 

plt.yticks(tick_indices, tick_labels) 

plt.tight_layout() 

plt.show() 
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5.BAR GRAPH  

5.1 what is a bar graph ? 

The bar graph is used to provide a clear and comparative visual representation of total observation 

durations across different frequency bands. It plots frequency bands along the x-axis and the 

corresponding total duration of data availability or observation time in hours along the y-axis. 

Each bar represents the amount of time for which data has been recorded in that particular band, 

calculated based on user-specified start and stop durations of interest.   

This visualisation is especially useful for understanding the data coverage across bands, identifying 

which bands have been more extensively observed, and highlighting any potential imbalances in 

observation time. For instance, a significantly shorter bar for a particular band might indicate fewer 

recordings, which could be due to limited availability, system downtime, or less scientific interest 

during that interval.  

Conversely, taller bars suggest frequent or long-duration observations. By summarising the time 

spent observing each band in a compact and interpretable format, the bar graph aids in making 

informed decisions about band-wise analysis, data reliability, and future observation planning. 

Figure 5.1: bar graph for all bands for a duration of 5 months, 01/01/2025 - 31/05/2025 25



The bar graph presented here ( figure 5.1) illustrates the total observation duration for each 

frequency band over a fixed five-month window, spanning from 01/01/2025 to 31/05/2025. This 

plot has been generated based on user-defined start and stop dates, and it visualises the cumulative 

observation time for Band 2, Band 3, Band 4, Band 5, and all bands. The x-axis of the graph 

represents the different frequency bands, while the y-axis denotes the total observation duration in 

hours. 

From the graph, it is evident that Band 4 had the highest observation duration during this period, 

exceeding 680 hours, indicating either more scheduled observations or greater availability of usable 

data in this band. Band 3 follows closely with over 400 hours of observation. Band 5 recorded a 

moderate duration of approximately 260 hours, whereas Band 2 had the least observation time, 

with under 60 hours, possibly due to fewer data captures or limited availability. The bar labeled 

“all bands” shows the combined total duration where multi-band files were included, summing up 

to about 120 hours. 

This type of visualisation helps quantify the distribution of observational effort across frequency 

bands and is particularly useful for identifying under-observed bands, optimising scheduling, and 

comparing data density over time.  
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5.2 Python Code : 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from datetime import datetime, timedelta 

import os 

# Defines the frequency ranges (in MHz) for each band 

band_frequencies = { 

    "band 2": {"start": 100, "stop": 300},  

    "band 3": {"start": 175, "stop": 575},  

    "band 4": {"start": 500, "stop": 1000},  

    "band 5": {"start": 800, "stop": 1700}, 

    "all bands": {"start": 0, "stop": 1500}, 

} 

# Calculates frequency bins for each band (though not used later in this code) 

for band, freq_range in band_frequencies.items(): 

    start_hz = freq_range["start"] 

    stop_hz = freq_range["stop"] 

    start_freq_mhz = start_hz * 1000000 

    stop_freq_mhz = stop_hz * 1000000 

    num_freq_bins = 401 

    freq_increment = (stop_freq_mhz - start_freq_mhz) / num_freq_bins 

    frequencies = np.array([start_freq_mhz + i * freq_increment for i in range(num_freq_bins)]) 

 

# Takes valid start and stop dates from the user 
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while True: 

    try: 

        start_date_str = input("Enter the start date (DD/MM/YYYY): ") 

        stop_date_str = input("Enter the stop date (DD/MM/YYYY): ") 

        user_start_date = datetime.strptime(start_date_str, "%d/%m/%Y").date() 

        user_stop_date = datetime.strptime(stop_date_str, "%d/%m/%Y").date() 

        if user_start_date > user_stop_date: 

            print("Error: Start date cannot be after stop date. Please re-enter dates.") 

        else: 

            break 

    except ValueError: 

        print("Invalid date format. Please use DD/MM/YYYY.") 

filename_array = [] 

# Selects files that match the date and frequency range 

for file_name in os.listdir('.'): 

    if file_name.endswith('Hz.txt') and '_' in file_name: 

        try: 

            sections = file_name.split('_') 

            if len(sections) < 5: 

                print(f"  - Skipping malformed filename (not enough sections): {file_name}") 

                continue 

 

            # Extracts the date from the filename 
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            file_day = sections[0].strip() 

            file_month = sections[1].strip() 

            file_year = sections[2].strip() 

            file_date_str = f"{file_day}/{file_month}/{file_year}" 

            file_date = datetime.strptime(file_date_str, "%d/%m/%Y").date() 

            # Skips files outside the date range 

            if not (user_start_date <= file_date <= user_stop_date): 

                continue 

            # Extracts start and stop frequency from the filename 

            start_freq_section = sections[3].strip() 

            stop_freq_section = sections[4].replace('Hz.txt', '').strip() 

            file_start_freq = float(start_freq_section) 

            file_stop_freq = float(stop_freq_section) 

            # Checks if the file overlaps with any of the defined bands 

            overlaps_any_band = False 

            for band, freq_range in band_frequencies.items(): 

                band_start = freq_range["start"] * 1e6 

                band_stop = freq_range["stop"] * 1e6 

                if file_stop_freq >= band_start and file_start_freq <= band_stop: 

                    overlaps_any_band = True 

                    break 

            # Appends valid file to the list 

            if overlaps_any_band: 
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                filename_array.append(file_name) 

                print(f"  - Found relevant file: {file_name}") 

        except (ValueError, IndexError) as e: 

            print(f"  - Skipping file '{file_name}' due to parsing error: {e}") 

            continue 

filenames = filename_array 

# Exits if no matching files were found 

if not filenames: 

    print("No files found matching the specified date and frequency range.") 

    exit() 

else: 

    print(f"Successfully identified {len(filenames)} files for processing.") 

# Loads a file and returns its DataFrame and combined timestamp strings 

def load_data(filename): 

    df = pd.read_csv(filename, header=None, sep='\s+') 

    if df.shape[1] < 2: 

        print(f"  - Skipping {filename}: not enough columns") 

    time_strings = df[0].astype(str) + ' ' + df[1].astype(str) 

    return df, time_strings 

all_time_strings = [] 

# Loads timestamp strings from all selected files 

for filename in filenames: 

    df, time_strings = load_data(filename) 
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    all_time_strings.extend(time_strings) 

# Exits if no timestamps were collected 

if not all_time_strings: 

    print("No data loaded from any of the files. Exiting.") 

    exit() 

file_observation_ranges = {} 

# Initializes a dictionary to store total durations per band 

band_durations = {band: timedelta(0) for band in band_frequencies} 

# Calculates total observation duration for each band 

for filename in filenames: 

    df, current_file_time_strings = load_data(filename) 

    if not current_file_time_strings.empty: 

        # Converts timestamp strings to datetime objects and drops invalid entries 

        cleaned_times = pd.to_datetime(current_file_time_strings, format="%d/%m/%Y %H:%M:
%S", errors='coerce') 

        cleaned_times = cleaned_times.dropna() 

        current_file_datetimes = cleaned_times.to_list() 

        if not current_file_datetimes: 

            continue 

        # Calculates total observation time with segmentation based on >2 second gaps 

        current_file_datetimes.sort() 

        segment_start = current_file_datetimes[0] 

31



        total_duration = timedelta(0) 

        for i in range(1, len(current_file_datetimes)): 

            delta = current_file_datetimes[i] - current_file_datetimes[i - 1] 

            if delta > timedelta(seconds=2): 

                total_duration += current_file_datetimes[i - 1] - segment_start 

                segment_start = current_file_datetimes[i] 

        total_duration += current_file_datetimes[-1] - segment_start  

        # Extracts the frequency range from filename again 

        sections = filename.split('_') 

        file_start_freq = float(sections[3].strip()) 

        file_stop_freq = float(sections[4].replace('Hz.txt', '').strip()) 

        # Adds the duration to the matching band 

        for band, freq_range in band_frequencies.items(): 

            band_start = freq_range["start"] * 1e6 

            band_stop = freq_range["stop"] * 1e6 

            if file_stop_freq == band_stop and file_start_freq == band_start: 

                band_durations[band] += total_duration 

# Prints total observation durations per band 

print("\n--- Total Observation Durations by Band ---") 

for band, duration in band_durations.items(): 

    print(f"{band.title()}: {duration}") 

# Converts durations to hours for plotting 
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band_names = list(band_durations.keys()) 

durations_in_hours = [duration.total_seconds() / 3600 for duration in band_durations.values()] 

# Generates a bar chart showing total duration per band 

plt.figure(figsize=(10, 6)) 

plt.bar(band_names, durations_in_hours, color='skyblue') 

plt.xlabel('Bands') 

plt.ylabel('Total Duration (hours) ') 

plt.title(f'Total Observation Duration per Band, dated : {start_date_str}-{stop_date_str}') 

plt.grid(axis='y', linestyle='--', alpha=0.7) 

plt.show()    
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6. CALENDAR PLOT  

6.1 What is a calendar plot ? 

The calendar heat map plot is a visual representation of the daily observation duration across a 

full calendar year, displayed in a month-by-day grid format. Each cell in the plot corresponds to a 

specific day of the year and is colour-coded based on the number of observation hours recorded 

on that day.  

Darker shades (toward green) represent higher durations, while lighter shades (toward yellow or 

white) indicate lower or no observation activity. This plot provides a compact and intuitive way to 

identify patterns in observation coverage over time. 

The x-axis of the heat map denotes the day of the month, while the y-axis lists the months from 

January to December. A colour bar is included alongside the plot to indicate the scale of observation 

duration in hours.  

This format allows for easy detection of gaps in data collection, peak periods of observation 

activity, or seasonal trends in system availability or usage. In this project, the calendar heat map is 

generated band-wise, allowing users to focus on specific frequency bands individually and assess 

their temporal data coverage. 

Such plots are particularly helpful for verifying the consistency and completeness of data over long 

time spans and for identifying periods of potential downtime, maintenance, or missing data. They 

also provide insight into operational efficiency and are valuable for planning future observations by 

highlighting underutilised periods. 
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6.2 Band wise calendar plot : 

        Figure 6.1 : Calendar plot for band -4 , for the duration of 5 months ( 01/01/2024 - 31/05/2024 ) 

The calendar heat map shown above (figure 6.1) displays the daily observation duration (in 

hours) for Band 4 across the year 2024. Each cell corresponds to a specific calendar day and is 

colour-coded to reflect the total number of hours of observation recorded for that day. The darker 

green shades represent higher observation durations, while the lighter shades and blank cells 

indicate lower or no observation activity. The accompanying colour bar to the right provides a 

reference for interpreting the colour scale, ranging from 0 to over 20 hours per day.

From the heat map, it is evident that the majority of observation activity occurred between January 

and May, with no data available from June to December, as shown by the completely empty rows 

for those months. Notable high-observation days include February 9 (24 hours), January 20–23 

(ranging from 18 to 23 hours), and April 20–22, which also recorded over 20 hours. These 

concentrated periods of activity suggest targeted or sustained observation campaigns during those 

days. 

On the other hand, there are many days—particularly scattered in March and April—where only 1–

4 hours were recorded, likely due to partial system usage or environmental interruptions.This heat 

map provides an effective summary of the time distribution of observations across the year and 

helps identify periods of high data availability versus operational gaps.It confirms that Band 4 was 

most actively observed during the first five months of 2024, with February and April showing the 

most consistent observation patterns. The visualisation is valuable for both validating data 

completeness and informing the planning of future observations. 
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6.3 Python code : 

# Import required libraries for numerical computation, data handling, date-time operations, plotting, 

and file management 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from datetime import datetime, timedelta 

import os 

import calendar 

# Define start and stop frequencies (in MHz) for each observational band 

band_frequencies = { 

    "band 2": {"start": 100, "stop": 300},  

    "band 3": {"start": 175, "stop": 575},  

    "band 4": {"start": 500, "stop": 1000},  

    "band 5": {"start": 800, "stop": 1700}, 

} 

# Prompt user to select a valid band from the predefined list 

while True: 

    selected_band = input("Enter the band to process (e.g., band 2, band 3, etc.): ").strip().lower() 

    if selected_band not in band_frequencies: 
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        print("Invalid band. Please choose from:", list(band_frequencies.keys())) 

    else: 

        break 

# Prompt user to enter a valid start and stop date for file filtering 

while True: 

    try: 

        start_date_str = input("Enter the start date (DD/MM/YYYY): ") 

        stop_date_str = input("Enter the stop date (DD/MM/YYYY): ") 

        user_start_date = datetime.strptime(start_date_str, "%d/%m/%Y").date() 

        user_stop_date = datetime.strptime(stop_date_str, "%d/%m/%Y").date() 

        if user_start_date > user_stop_date: 

            print("Start date must be before stop date.") 

        else: 

            break 

    except ValueError: 

        print("Invalid date format. Please use DD/MM/YYYY.") 

# Extract frequency range in Hz for the selected band 

band_range = band_frequencies[selected_band] 

band_start_freq = band_range["start"] * 1e6 
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band_stop_freq = band_range["stop"] * 1e6 

# Initialize a list to hold filenames that match the selected band and date range 

filenames = [] 

# Iterate over files in the current directory to identify matching observation files 

for file in os.listdir('.'): 

    if file.endswith('Hz.txt') and '_' in file: 

        try: 

            cleaned_filename = file.replace(" ", "") 

            parts = cleaned_filename.split('_') 

            if len(parts) < 5: 

                continue 

            file_date = datetime.strptime(f"{parts[0]}/{parts[1]}/{parts[2]}", "%d/%m/%Y").date() 

            if not (user_start_date <= file_date <= user_stop_date): 

                continue 

            file_start_freq = float(parts[3]) 

            file_stop_freq = float(parts[4].replace("Hz.txt", "")) 

            if file_start_freq == band_start_freq and file_stop_freq == band_stop_freq: 

                filenames.append(file) 

        except: 
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            continue 

# Exit if no matching files are found; otherwise, display the number of matches 

if not filenames: 

    print("No matching files found for the selected band and date range.") 

    exit() 

else: 

    print(f"Found {len(filenames)} files for {selected_band}.") 

# Define a function to load and parse timestamps from a given file 

def load_timestamps(filename): 

    df = pd.read_csv(filename, sep='\s+', header=None) 

    time_strings = df[0].astype(str) + ' ' + df[1].astype(str) 

    return pd.to_datetime(time_strings, format="%d/%m/%Y %H:%M:%S", 

errors='coerce').dropna().tolist() 

# Initialize a dictionary to store timestamps organized by date 

timestamps_by_date = {} 

# Populate the dictionary with timestamps grouped by file date 

for file in filenames: 

    try: 
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        cleaned_filename = file.replace(" ", "") 

        parts = cleaned_filename.split('_') 

        file_date = datetime.strptime(f"{parts[0]}/{parts[1]}/{parts[2]}", "%d/%m/%Y").date() 

        times = load_timestamps(file) 

        if file_date not in timestamps_by_date: 

            timestamps_by_date[file_date] = [] 

        timestamps_by_date[file_date].extend(times) 

    except: 

        continue 

# Initialize a dictionary to store total observation durations per date 

date_durations = {} 

# Calculate total observation time for each date, accounting for gaps over 2 seconds 

for date, times in timestamps_by_date.items(): 

    if not times: 

        continue 

    times.sort() 

    total_duration = timedelta(0) 

    segment_start = times[0] 

    for i in range(1, len(times)): 
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        delta = times[i] - times[i - 1] 

        if delta > timedelta(seconds=2):   

            total_duration += times[i - 1] - segment_start 

            segment_start = times[i] 

    total_duration += times[-1] - segment_start   

    date_durations[date] = total_duration 

# Convert durations from timedelta to hours for each date 

hours_by_date = {d: td.total_seconds() / 3600 for d, td in date_durations.items()} 

# Initialize a heatmap array of shape (12 months × 31 days), filled with NaNs 

heatmap = np.full((12, 31), np.nan) 

# Fill heatmap with hourly values at the correct (month, day) positions 

for d, hours in hours_by_date.items(): 

    heatmap[d.month - 1, d.day - 1] = hours 

# Create a figure and axis for the calendar-style heatmap plot 

fig, ax = plt.subplots(figsize=(16, 6)) 

# Display heatmap using imshow with a green-yellow color map 
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c = ax.imshow(heatmap, aspect='auto', cmap='YlGn', vmin=0, vmax=24) 

# Set x-axis ticks as days (1–31) and y-axis ticks as month names 

ax.set_xticks(np.arange(31)) 

ax.set_xticklabels(np.arange(1, 32), fontsize=9) 

ax.set_yticks(np.arange(12)) 

ax.set_yticklabels(calendar.month_abbr[1:], fontsize=10) 

# Add numeric hour values to each heatmap cell (if data is present) 

for m in range(12): 

    for d in range(31): 

        val = heatmap[m, d] 

        if not np.isnan(val): 

            ax.text(d, m, f"{val:.0f}", ha='center', va='center', color='black', fontsize=7) 

# Add title, axis labels, and colorbar to the plot 

plt.title(f"Calendar Heatmap: Observation Duration per Day - {selected_band.upper()} ", 

fontsize=14) 

plt.xlabel("Day of Month") 

plt.ylabel("Month") 

cbar = plt.colorbar(c, ax=ax, orientation='vertical') 

cbar.set_label("Hours of Observation") 
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# Adjust layout and display the plot 

plt.tight_layout() 

plt.show() 
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6.4 Total observation duration calendar plot : 

            Figure 6.2 : Calendar plot for the duration of 5 months ( 01/01/2024 - 31/05/2024 ) 

The above calendar heat map presents the combined observation duration across all frequency 

bands, displayed on a day-by-day basis for the year 2024. Each cell in the plot represents a 

specific day of the month, with months listed along the y-axis and days along the x-axis. The 

intensity of the cell colour indicates the total number of observation hours recorded on that 

particular day, with darker shades of green corresponding to higher observation durations, and 

lighter or white shades representing lower or no observations. A colour bar on the right side of the 

plot maps the colour scale to numeric hour values. 

The observation durations shown here is for a period of five months ,from February through May. 

Many days during this period show the maximum possible 24 hours of observation, suggesting 

full-day coverage. February and March, in particular, appear densely filled with high-duration 

values, indicating a phase of peak data acquisition. A few scattered days—such as January 10, 

March 10, and parts of late May—show relatively lower durations (ranging between 0 to 12 hours), 

possibly due to system downtime, maintenance, or external interference. 

Overall, this plot provides a comprehensive visual summary of temporal observation coverage 

across the entire year and serves as a powerful diagnostic tool to assess operational consistency, 

highlight active and inactive periods, and validate the completeness of the dataset across all bands 

collectively. 
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6.5 Python Code : 

import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
from datetime import datetime, timedelta 
import os 
import calendar 

# Defines the frequency ranges (in MHz) for each band 
band_frequencies = { 
    "band 2": {"start": 100, "stop": 300},  
    "band 3": {"start": 175, "stop": 575},  
    "band 4": {"start": 500, "stop": 1000},  
    "band 5": {"start": 800, "stop": 1700}, 
    "all bands": {"start": 0, "stop": 1500}, 
} 

# Calculates frequency bins for each band (not reused later in the script) 
for band, freq_range in band_frequencies.items(): 
    start_hz = freq_range["start"] 
    stop_hz = freq_range["stop"] 

    start_freq_mhz = start_hz * 1000000 
    stop_freq_mhz = stop_hz * 1000000 

    num_freq_bins = 401 
    freq_increment = (stop_freq_mhz - start_freq_mhz)/num_freq_bins 
    frequencies = np.array([start_freq_mhz + i * freq_increment for i in range(num_freq_bins)]) 

# Accepts user-specified start and stop dates 
while True: 
    try: 
        start_date_str = input("Enter the start date (DD/MM/YYYY): ") 
        stop_date_str = input("Enter the stop date (DD/MM/YYYY): ") 

        user_start_date = datetime.strptime(start_date_str, "%d/%m/%Y").date() 
        user_stop_date = datetime.strptime(stop_date_str, "%d/%m/%Y").date() 

        if user_start_date > user_stop_date: 
            print("Error: Start date cannot be after stop date. Please re-enter dates.") 
        else: 
            break  
    except ValueError: 
        print("Invalid date format. Please use DD/MM/YYYY.") 

filename_array = [] 
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# Selects files within the specified date range and overlapping frequency bands 
for file_name in os.listdir('.'): 
    if file_name.endswith('Hz.txt') and '_' in file_name: 
        try: 
            sections = file_name.split('_') 
             
            if len(sections) < 5: 
                print(f"  - Skipping malformed filename (not enough sections): {file_name}") 
                continue 
             
            file_day = sections[0].strip() 
            file_month = sections[1].strip() 
            file_year = sections[2].strip() 
             
            file_date_str = f"{file_day}/{file_month}/{file_year}" 
            file_date = datetime.strptime(file_date_str, "%d/%m/%Y").date()  

            if not (user_start_date <= file_date <= user_stop_date): 
                continue 

            start_freq_section = sections[3].strip()  
            stop_freq_section = sections[4].replace('Hz.txt', '').strip()  
            file_start_freq = float(start_freq_section) 
            file_stop_freq = float(stop_freq_section) 

            overlaps_any_band = False 
            for band, freq_range in band_frequencies.items(): 
                band_start = freq_range["start"] * 1e6   
                band_stop = freq_range["stop"] * 1e6 

                # Checks if file frequency overlaps with current band 
                if file_stop_freq >= band_start and file_start_freq <= band_stop: 
                    overlaps_any_band = True 
                    break 

            if overlaps_any_band: 
                filename_array.append(file_name) 
                print(f"  - Found relevant file: {file_name}") 

        except (ValueError, IndexError) as e: 
            print(f"  - Skipping file '{file_name}' due to parsing error: {e}") 
            continue 

filenames = filename_array 

# Exits if no valid files found 
if not filenames: 
    print("No files found matching the specified date and frequency range.") 
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    exit() 
else: 
    print(f"Successfully identified {len(filenames)} files for processing.") 

# Loads timestamp strings from a file 
def load_data(filename): 
    df = pd.read_csv(filename, header=None, sep='\\s+') 
    if df.shape[1] < 2: 
        print(f"  - Skipping {filename}: not enough columns") 
    time_strings = df[0].astype(str)+' '+df[1].astype(str) 
    return df, time_strings 

all_time_strings = [] 

# Aggregates all timestamps across files 
for filename in filenames: 
    df, time_strings = load_data(filename) 
    all_time_strings.extend(time_strings) 

# Exits if no timestamps were found 
if not all_time_strings: 
    print("No data loaded from any of the files. Exiting.") 
    exit() 

band_durations = {band: timedelta(0) for band in band_frequencies} 

# Calculates total observation duration per frequency band 
for filename in filenames: 
    df, current_file_time_strings = load_data(filename) 

    if not current_file_time_strings.empty: 
        cleaned_times = pd.to_datetime(current_file_time_strings, format="%d/%m/%Y %H:%M:
%S", errors='coerce') 
        cleaned_times = cleaned_times.dropna() 
        current_file_datetimes = cleaned_times.to_list() 

        if not current_file_datetimes: 
            continue 
     
        start_time = min(current_file_datetimes) 
        stop_time = max(current_file_datetimes) 
        duration = stop_time - start_time 

        sections = filename.split('_') 
        file_start_freq = float(sections[3].strip()) 
        file_stop_freq = float(sections[4].replace('Hz.txt', '').strip()) 
 
        print(f"File: {filename}”).  
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        print(f"  Start time: {start_time.strftime('%d/%m/%Y %H:%M:%S')}") 
        print(f"  Stop time:  {stop_time.strftime('%d/%m/%Y %H:%M:%S')}") 
        print(f"  Duration:   {duration}") 

        # Adds duration to the corresponding band 
        for band, freq_range in band_frequencies.items(): 
            band_start = freq_range["start"] * 1e6 
            band_stop = freq_range["stop"] * 1e6 

            if file_stop_freq == band_stop and file_start_freq == band_start: 
                band_durations[band] += duration 

# Prints total observation duration per band 
print("\n--- Total Observation Durations by Band ---") 
for band, duration in band_durations.items(): 
    print(f"{band.title()}: {duration}") 

# Loads datetime objects from a file 

def load_data(filename): 
    df = pd.read_csv(filename, header=None, sep='\\s+') 
    time_strings = df[0].astype(str) + ' ' + df[1].astype(str) 
    times = pd.to_datetime(time_strings, format="%d/%m/%Y %H:%M:%S", errors='coerce') 
    return times.dropna().tolist() 

# Organizes timestamps by date 
timestamps_by_date = {} 

for file_name in filenames: 
    try: 
        parts = file_name.strip().split('_') 
        day, month, year = parts[0].strip(), parts[1].strip(), parts[2].strip() 
        file_date_str = f"{day}/{month}/{year}" 
        file_date = datetime.strptime(file_date_str, "%d/%m/%Y").date() 

        times = load_data(file_name) 
        if file_date not in timestamps_by_date: 
            timestamps_by_date[file_date] = [] 
        timestamps_by_date[file_date].extend(times) 
    except Exception as e: 
        print(f"Error processing {file_name}: {e}") 

# Calculates observation duration for each calendar date 
date_durations = {} 
 
for date, all_times in timestamps_by_date.items(): 
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    if not all_times: 
        continue 
    all_times.sort() 
    total_duration = timedelta(0) 
    segment_start = all_times[0] 

    for i in range(1, len(all_times)): 
        delta = all_times[i] - all_times[i - 1] 
        if delta <= timedelta(seconds=2): 
            continue 
        else: 
            segment_end = all_times[i - 1] 
            total_duration += segment_end - segment_start 
            segment_start = all_times[i] 

    total_duration += all_times[-1] - segment_start 
    date_durations[date] = total_duration 

# Prints total observation duration per calendar date 
print("\n--- Total Observation Duration per Date  ---") 
for date, duration in sorted(date_durations.items()): 
    print(f"{date.strftime('%d/%m/%Y')}: {duration}") 

# Converts durations to hours for heatmap 
hours_by_date = {d: td.total_seconds() / 3600 for d, td in date_durations.items()} 

# Initializes empty 12x31 heatmap matrix 
heatmap = np.full((12, 31), np.nan) 

# Fills heatmap matrix with observation durations (in hours) 
for d, hours in hours_by_date.items(): 
    month_idx = d.month - 1   
    day_idx = d.day - 1 
    heatmap[month_idx, day_idx] = hours 

# Plots the calendar heatmap 
fig, ax = plt.subplots(figsize=(16, 6)) 
c = ax.imshow(heatmap, aspect='auto', cmap='YlGn', vmin=0, vmax=24) 

ax.set_xticks(np.arange(31)) 
ax.set_xticklabels(np.arange(1, 32), fontsize=9) 
ax.set_yticks(np.arange(12)) 
ax.set_yticklabels(calendar.month_abbr[1:], fontsize=10) 

# Annotates each cell with hour values 
for month in range(12): 
    for day in range(31): 
        hours = heatmap[month, day] 
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        if not np.isnan(hours): 
            ax.text(day, month, f"{hours:.0f}", ha='center', va='center', color='black', fontsize=7) 

plt.title("Calendar Heatmap: Total Observation Duration per Day - 2024", fontsize=14) 
plt.xlabel("Day of Month") 
plt.ylabel("Month") 
cbar = plt.colorbar(c, ax=ax, orientation='vertical') 
cbar.set_label("Hours of Observation") 

plt.tight_layout() 
plt.show() 
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7. HUBER LOSS  

7.1 What is Huber Loss? 

Huber loss is a robust error function used in regression tasks that is specifically designed to 

handle the presence of outliers in the data. Unlike traditional least squares regression, which 

penalises all errors by squaring them (thereby amplifying the effect of large deviations), Huber loss 

uses a hybrid approach that balances sensitivity and robustness. 

Mathematically, the Huber loss behaves quadratically for small residuals (differences between 

observed and predicted values) and linearly for large residuals. This behaviour is governed by a 

threshold parameter known as delta (δ): 

• When the residual is less than δ in magnitude, the loss is computed as the square of the residual 

(just like in least squares). 

• When the residual exceeds δ, the loss switches to a linear form, thus limiting the influence of 

large deviations. 

This makes Huber loss especially useful in scenarios like radio astronomy data analysis, where RFI 

spikes act as outliers, but the underlying baseline trend still needs to be modelled accurately. By 

down-weighting these RFI peaks while still preserving the fit for the majority of the data, Huber 

loss helps achieve a more reliable and robust baseline estimation compared to standard least 

squares regression. 

Figure 7.1 : baseline formation for band 2 based on LSR and Huber loss method 
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The plot above (figure 7.1) showcases the application of statistical baseline fitting techniques for 

detecting Radio Frequency Interference (RFI) in amplitude versus frequency data. The blue curve 

represents the original observed signal across a frequency range (in MHz), while the orange curve 

represents the estimated baseline computed using a robust fitting method. 

To effectively identify RFI, it is essential to first model the underlying signal behaviour—i.e., the 

expected background amplitude trend in the absence of interference. This is done through baseline 

fitting, where a smooth curve is fit to the data using regression techniques. 

Initially, a Least Squares Regression (LSR) approach is used. LSR attempts to find the curve that 

minimises the sum of squared residuals—that is, the squared difference between the actual 

amplitude values and the predicted baseline.  

While LSR is efficient and accurate under ideal noise conditions, it is highly sensitive to outliers, 

which makes it unsuitable for datasets contaminated by strong RFI spikes. These outliers can skew 

the baseline upward, leading to inaccurate fits. 

To overcome this limitation, the Huber loss function is employed. Huber loss combines the 

advantages of both LSR and absolute error loss. For residuals within a certain threshold (called 

delta), it behaves like LSR (squares the residuals). For larger residuals—often due to RFI peaks—it 

switches to linear behaviour, reducing their influence on the fit.  

This softens the impact of high-amplitude RFI spikes, resulting in a more robust and realistic 

baseline. The baseline shown in orange is therefore generated using an iterative Huber loss-based 

polynomial fitting, which ensures that the baseline is unaffected by sharp RFI peaks, allowing 

those peaks to be accurately flagged as anomalies. 

In this plot, one can observe multiple sharp spikes in the blue curve (especially around 120–150 

MHz), which clearly deviate from the smooth orange baseline. These spikes are effectively ignored 

during baseline fitting due to the Huber loss mechanism, and they stand out as potential RFI 

candidates. The visual separation between the baseline and the peaks aids in automatic threshold-

based RFI detection in subsequent steps. 

Overall, the combination of LSR (for normal data) and Huber loss (for robust fitting in presence of 

RFI) provides a reliable and adaptive approach to detecting and isolating interference in radio 

observation data.    
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7.2 Python code : 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from datetime import datetime, timedelta 

import os 

# Defines frequency bands with their respective start and stop frequencies (in MHz) 

band_frequencies = { 

    "band 2": {"start": 100, "stop": 300},  

    "band 3": {"start": 175, "stop": 575},  

    "band 4": {"start": 500, "stop": 1000},  

    "band 5": {"start": 800, "stop": 1700}, 

    "all bands": {"start": 0, "stop": 1500}, 

} 

# Defines the frequency ranges used specifically for calculation within each band 

calculation_band_frequencies = { 

    "band 2": {"start": 122, "stop": 240},  

    "band 3": {"start": 250, "stop": 500},  

    "band 4": {"start": 550, "stop": 900},  

    "band 5": {"start": 1000, "stop": 1450}, 

    "all bands": {"start": 110, "stop": 1450}, 

} 

# Takes user input for the band and validates it 

while True: 
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    user_band_input = input('Enter the band name (available bands: Band 2, Band 3, Band 4, Band 5, 
all bands): ').lower() 

    if user_band_input in band_frequencies: 

        selected_band_info = band_frequencies[user_band_input] 

        start_frequency_in_MHz = selected_band_info["start"] 

        stop_frequency_in_MHz = selected_band_info["stop"] 

        print(f"Selected {user_band_input}: Start Frequency = {start_frequency_in_MHz} MHz, Stop 
Frequency = {stop_frequency_in_MHz} MHz") 

        break  

    else: 

        print("Invalid band name. Please enter one of the bands mentioned here(Band 2, Band 3, Band 
4, Band 5).") 

# Converts start and stop frequencies from MHz to Hz and creates frequency bins 

start_frequency = start_frequency_in_MHz * 1000000 

stop_frequency = stop_frequency_in_MHz * 1000000 

num_freq_bins = 401 

freq_increment = (stop_frequency - start_frequency)/num_freq_bins 

frequencies = np.array([start_frequency + i * freq_increment for i in range(num_freq_bins)]) 

# Takes user input for antenna and channel names 

antenna_name = input("enter the antenna name:  ").upper() 

channel_name = input("enter the channel name: ").upper() 

# Takes user input for start and stop date, and validates the format and range 

while True: 

    try: 

        start_date_str = input("Enter the start date (DD/MM/YYYY): ") 
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        stop_date_str = input("Enter the stop date (DD/MM/YYYY): ") 

        user_start_date = datetime.strptime(start_date_str, "%d/%m/%Y").date() 

        user_stop_date = datetime.strptime(stop_date_str, "%d/%m/%Y").date() 

        if user_start_date > user_stop_date: 

            print("Error: Start date cannot be after stop date. Please re-enter dates.") 

        else: 

            break  

    except ValueError: 

        print("Invalid date format. Please use DD/MM/YYYY.") 

filename_array = [] 

# Filters relevant files based on filename pattern, frequency, and date range 

for file_name in os.listdir('.'): 

    if file_name.endswith('Hz.txt') and '_' in file_name: 

        try: 

            sections = file_name.split('_') 

            if len(sections) < 5: 

                print(f"  - Skipping malformed filename (not enough sections): {file_name}") 

                continue 

            file_day = sections[0].strip() 

            file_month = sections[1].strip() 

            file_year = sections[2].strip() 

            file_date_str = f"{file_day}/{file_month}/{file_year}" 

            file_date = datetime.strptime(file_date_str, "%d/%m/%Y").date()  

            if user_start_date <= file_date <= user_stop_date: 
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                start_freq_section = sections[3].strip()  

                stop_freq_section = sections[4].replace('Hz.txt', '').strip()  

                file_start_freq = float(start_freq_section) 

    

             file_stop_freq = float(stop_freq_section) 

                if file_start_freq == start_frequency and file_stop_freq == stop_frequency: 

                    filename_array.append(file_name) 

                    print(f"  - Found relevant file: {file_name}") 

        except (ValueError, IndexError) as e: 

            print(f"  - Skipping file '{file_name}' due to parsing error: {e}") 

            continue 

filenames = filename_array 

# Exits if no valid files were found 

if not filenames: 

    print("No files found matching the specified date and frequency range.") 

    exit() 

else: 

    print(f"Successfully identified {len(filenames)} files for processing.") 

# Loads data for a given file and filters by antenna and channel 

def load_data(filename): 

    try: 
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        df = pd.read_csv(filename, header=None, sep='\s+') 

    except FileNotFoundError: 

        print(f" file not found :{filename}") 

        exit() 

    filtered = df[(df[2] == antenna_name) & (df[3] == channel_name)].reset_index(drop=True) 

    if filtered.empty: 

        print(f'No data found for antenna {antenna_name} and channel {channel_name} in 
{filename}') 

        return [], np.array([]) 

    time_strings = filtered[0].astype(str)+' '+filtered[1].astype(str) 

    amplitude_matrix = filtered.iloc[:,13:].astype(float).values 

    return time_strings.tolist(), amplitude_matrix 

# Loads and stores all timestamps and amplitudes from matched files 

all_time_strings = [] 

all_amplitudes = [] 

for filename in filenames: 

    current_time_strings, current_amplitudes = load_data(filename) 

    all_time_strings.extend(current_time_strings) 

    if current_amplitudes.size > 0: 

        all_amplitudes.append(current_amplitudes) 

# Exits if no valid data was found 

if not all_time_strings: 

    print("No data loaded from any of the files. Exiting.") 

    exit() 
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# Stacks all amplitude data into a single array 

combined_amplitudes = np.vstack(all_amplitudes) 

# Applies frequency range filtering based on calculation band 

calc_band = calculation_band_frequencies[user_band_input] 

calc_start_freq = calc_band["start"] * 1e6 

calc_stop_freq = calc_band["stop"] * 1e6 

calc_indices = np.where((frequencies >= calc_start_freq) & (frequencies <= calc_stop_freq))[0] 

# Applies notch filter for band 2 by excluding frequencies from 165–195 MHz 

if user_band_input == "band 2": 

    notch_start = 165e6 

    notch_stop = 195e6 

    calc_indices = calc_indices[ 

        ~((frequencies[calc_indices] >= notch_start) & (frequencies[calc_indices] <= notch_stop)) 

    ] 

# Extracts filtered frequencies and amplitudes 

filtered_frequencies = frequencies[calc_indices] 

filtered_amplitudes = combined_amplitudes[:, calc_indices] 

# Converts amplitude from dB to linear milliwatts 

amplitudes_linear_mW = 10 ** (combined_amplitudes / 10) 

# Parameters for baseline fitting and RFI detection 

poly_order = 10 
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threshold_sigma = 3 

delta = 1.0 

max_iter = 15 

# Applies robust polynomial fitting with Huber loss to a single row 

def process_row(y, x, delta): 

    coeffs = robust_polyfit(x, y, poly_order, max_iter=max_iter, delta=delta) 

    y_fit = np.polyval(coeffs, x) 

    residual = y - y_fit 

    std = np.std(residual) 

    rfi_mask = np.abs(residual) > threshold_sigma * std 

    return y_fit, rfi_mask 

# Computes Huber weights for residuals 

def huber_weights(residuals, delta): 

    abs_residuals = np.abs(residuals) 

    weights = np.ones_like(residuals) 

    weights[abs_residuals > delta] = delta / abs_residuals[abs_residuals > delta] 

    return weights 

# Performs robust polynomial fitting using iterative reweighting 

def robust_polyfit(x, y, degree, max_iter, delta): 

    weights = np.ones_like(y) 

    for _ in range(max_iter): 

        coeffs = np.polyfit(x, y, degree, w=weights) 

        y_fit = np.polyval(coeffs, x) 

        residuals = y - y_fit 
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        weights = huber_weights(residuals, delta) 

    return coeffs 

# Processes each file and performs baseline fitting and RFI detection 

for filename in filenames: 

    print(f"Processing file: {filename}") 

    time_strings, amplitudes = load_data(filename) 

    if len(amplitudes) == 0: 

        continue 

    baselines = [] 

    rfi_masks = [] 

    for y in amplitudes: 

        x = np.arange(len(y)) 

        y_fit, rfi_mask = process_row(y, x, delta) 

        baselines.append(y_fit) 

        rfi_masks.append(rfi_mask) 

    baselines = np.array(baselines) 

    rfi_masks = np.array(rfi_masks) 

    sample_index = int(input(f"Select time index (0 to {len(amplitudes)-1}): ")) 

    y_full = amplitudes[sample_index]                      

    y_calc = y_full[calc_indices]                         

    x_calc = np.arange(len(y_calc))                    

    y_fit_calc, rfi_mask = process_row(y_calc, x_calc, delta) 
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    y_fit_full = np.full_like(y_full, np.nan)              

    y_fit_full[calc_indices] = y_fit_calc 

    file_frequencies = frequencies  

    plt.figure(figsize=(12, 6)) 

    plt.plot(frequencies / 1e6, y_full, label="Original", color='blue') 

    plt.plot(frequencies / 1e6, y_fit_full, label="Baseline", color='orange') 

    # Optionally plot RFI points (commented out) 

    # plt.scatter(frequencies[calc_indices][rfi_mask] / 1e6, y_calc[rfi_mask], color='red', label='RFI 
Detected', s=25) 

    plt.title(f"RFI Detection - Sample Index {sample_index}") 

    plt.xlabel("Frequency (MHz)") 

    plt.ylabel("Amplitude (dB)") 

    plt.legend() 

    plt.grid(True) 

    plt.tight_layout() 

    plt.show() 
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8. FREQUENCY VS TIME OCCUPANCY PER FREQUENCY BIN 

8.1 What are the stats given by the frequency vs time occupancy plots ? 

The Frequency vs. Time Occupancy plot provides a statistical overview of RFI activity across 

different frequency bins. It shows the percentage of time each frequency bin was occupied by an 

RFI event over a given observation period. The x-axis represents the frequency in MHz, while the 

y-axis displays the occupancy percentage, which quantifies how frequently a particular 

frequency bin exceeded the RFI threshold (typically defined using a baseline plus a multiple of 

standard deviation, such as 3σ). 

In the analysis of Radio Frequency Interference (RFI), frequency vs time occupancy plots provide 

a statistical view of how often each frequency bin is contaminated with interference. In simpler 

terms, the occupancy percentage reflects how persistently a frequency is “active” with signals 

stronger than the normal background (baseline) level, specifically above 3σ (3 standard deviations 

from baseline noise).  

This plot is generated by scanning across all time-stamped measurements and counting the number 

of times the amplitude ( the residual of the amplitude ) at each frequency bin exceeded the detection 

threshold. The ratio of this count to the total number of time instances is then expressed as a 

percentage, indicating how often each frequency bin was affected by interference. 

This visualisation is especially useful for identifying persistently contaminated frequencies and 

understanding RFI distribution across the spectrum. Frequencies with high occupancy 

percentages may correspond to known transmitters, satellite bands, or persistent noise sources. 

Meanwhile, frequency regions with near-zero occupancy can be considered cleaner and more 

reliable for scientific analysis.  

By presenting this data in a concise bar-graph format, the plot enables comparative assessment of 

spectral cleanliness, guiding astronomers or engineers to focus on less contaminated bands or to 

plan exclusion zones for RFI mitigation techniques. 
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8.2 Frequency vs time occupancy per spectral channel for band - 2: 

                   Figure 8.1: frequency vs time occupancy plot for band 2 showing the notch with the discontinuity 

The above plot illustrates the time occupancy percentage per frequency bin for Band 2, 

calculated using data from Antenna S03 and Channel CH1 over the user-specified duration: 

01/01/2025 to 31/05/2025. The total observation time covered in this plot is approximately 53 

hours, 19 minutes, and 13 seconds. 

The x-axis represents the frequency in MHz, while the y-axis shows the percentage of time that 

each frequency bin recorded an RFI event—defined here as an amplitude exceeding the 3-sigma 

threshold above the fitted baseline. This threshold ensures only statistically significant deviations 

are considered as interference. 

Figure 8.2: Gray scale plot for band 2 (same antenna , channel and date specifications as the time occupancy plot)
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The gray scale plot or the water fall plot has been attached for comparison with the time occupancy 

(per spectral channel ) plot of the band 2 .  

Also band 2 , has a peculiar band shape in the frequency range 165 MHz to 185 MHz , a typical 

notch and that frequency range has been ignored and hence we see the discontinuity in the time 

occupancy curve . 

Overall, this plot highlights the non-uniform distribution of RFI across Band 2 and emphasises 

the importance of bin-wise statistical monitoring in radio frequency analysis. 
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8.3 Frequency vs time occupancy per spectral channel for band - 3: 

                    Figure 8.3: frequency vs time occupancy plot for band 3 for a duration of 5 months  

The above plot shows the time occupancy percentage per frequency bin for Band 3, based on 

RFI detections from Antenna S03 and Channel CH1, spanning the observation period 01/01/2025 

to 30/05/2025. The x-axis represents the frequency in MHz, while the y-axis shows the 

percentage of time each frequency bin was contaminated by RFI (i.e., the signal exceeded 3σ 

above the baseline). 

This occupancy metric helps quantify how often each spectral bin is affected by interference. 

Figure 8.4: Gray scale plot for band 3 , (same antenna , channel and date specifications as the time occupancy plot)
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The gray scale plot or the water fall plot has been attached for comparison with the time occupancy 

(per spectral channel ) plot of the band 3 .  

In summary, Band 3 shows a non-uniform distribution of RFI, with clear interference signatures 

at certain frequencies that merit attention in future observation planning. 
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8.4 Frequency vs time occupancy per spectral channel for band - 4: 

Figure 8.5 frequency vs time occupancy ( per spectral Channel ) plot for band 4  

The plot shown above , is the band 4 plot of a duration of five months , dated : 01/01/2025 - 

31/05/2025. The X-axis is frequency (MHz), and the Y-axis is the % of time that the signal in that 

bin was above the 3σ threshold. 

The methodology used for band 2, 3 and 5 worked fine with band 4’s 2024 data as in band 4, the 

known persistent RFI’s frequency ranges 772 MHz - 803 MHz and 842 MHz to 900 MHz were 

ignored in the baseline formation just similar to the notch in band 2 ( 165 MHz - 185MHz)  . 

                Figure 8.6 Gray scale plot for the band 4 , for a duration of 5 months dated - 01/01/2025 - 31/05/2025 
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But the same methodology couldn’t be applied to the band 4’s data of 2025, because of the fact that 

frequency range between the mentioned data was affected by RFI as well. This significantly shoot 

up the three sigma value this affecting the baseline , residual and hence the plot .  

The solution was to borrow the 3σ threshold from older clean data (2016). That dataset had a 

very clean band shape due to the fact that the population back then was less and the electronic 

gadgets usage was not as much as the present day’s applications thus contributing to very less or 

almost no RFI in most of the regions of the band .  

Applying the 2016-derived 3σ threshold to the 2025 data brought the detection back on track, 

allowing every significant RFI spike to be correctly captured, as seen in the plot where time 

occupancy reaches over 95% for some bins. 

The near-zero values elsewhere indicate the rest of the band was relatively clean ,once a reliable 

threshold was used. 

The waterfall plot confirms the exact same frequency zones were consistently active across time. 

It provides a visual timeline of RFI events that matches the statistical detection from the time 

occupancy plot. 
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8.5 Python Code : 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from matplotlib import ticker 

from datetime import datetime, timedelta 

import os 

# Defines the frequency range (in MHz) for each band 

band_frequencies = { 

    "band 2": {"start": 100, "stop": 300},  

    "band 3": {"start": 175, "stop": 575},  

    "band 4": {"start": 500, "stop": 1000},  

    "band 5": {"start": 800, "stop": 1700}, 

    "all bands": {"start": 0, "stop": 1500}, 

} 

# Defines the narrower frequency range used for calculations for each band 

calculation_band_frequencies = { 

    "band 2": {"start": 120, "stop": 240},  

    "band 3": {"start": 250, "stop": 500},  

    "band 4": {"start": 550, "stop": 850},  

    "band 5": {"start": 1000, "stop": 1450}, 

    "all bands": {"start": 120, "stop": 1450}, 

} 

# Prompts user to input a valid band name and retrieves corresponding frequency range 

while True: 

    user_band_input = input('Enter the band name (available bands: Band 2, Band 3, Band 4, Band 5, 

all bands): ').lower() 

    if user_band_input in band_frequencies: 
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        selected_band_info = band_frequencies[user_band_input] 

        start_frequency_in_MHz = selected_band_info["start"] 

        stop_frequency_in_MHz = selected_band_info["stop"] 

        print(f"Selected {user_band_input}: Start Frequency = {start_frequency_in_MHz} MHz, Stop 

Frequency = {stop_frequency_in_MHz} MHz") 

        break  

    else: 

        print("Invalid band name. Please enter one of the bands mentioned here(Band 2, Band 3, Band 

4, Band 5).") 

# Converts start/stop frequency from MHz to Hz and generates frequency bins 

start_frequency = start_frequency_in_MHz * 1_000_000 

stop_frequency = stop_frequency_in_MHz * 1_000_000 

num_freq_bins = 401 

freq_increment = (stop_frequency - start_frequency)/num_freq_bins 

frequencies = np.array([start_frequency + i * freq_increment for i in range(num_freq_bins)]) 

# Gets user input for antenna and channel names 

antenna_name =input("Enter the antenna name : ").upper() 

channel_name = input("Enter the channel name : ").upper() 

# Prompts user to enter a valid start and stop date for filtering 

while True: 

    try: 

        start_date_str = input("Enter the start date (DD/MM/YYYY): ") 

        stop_date_str = input("Enter the stop date (DD/MM/YYYY): ") 

        user_start_date = datetime.strptime(start_date_str, "%d/%m/%Y").date() 

        user_stop_date = datetime.strptime(stop_date_str, "%d/%m/%Y").date() 

        if user_start_date > user_stop_date: 

            print("Error: Start date cannot be after stop date. Please re-enter dates.") 

        else: 
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            break  

    except ValueError: 

        print("Invalid date format. Please use DD/MM/YYYY.") 

# Initializes list to store filenames matching date and frequency range 

filename_array = [] 

# Loops through all files in current directory to find relevant files 

for file_name in os.listdir('.'): 

    if file_name.endswith('Hz.txt') and '_' in file_name: 

        try: 

            sections = file_name.split('_') 

            if len(sections) < 5: 

                print(f"  - Skipping malformed filename (not enough sections): {file_name}") 

                continue 

            file_day = sections[0].strip() 

            file_month = sections[1].strip() 

            file_year = sections[2].strip() 

            file_date_str = f"{file_day}/{file_month}/{file_year}" 

            file_date = datetime.strptime(file_date_str, "%d/%m/%Y").date()  

            if user_start_date <= file_date <= user_stop_date: 

                start_freq_section = sections[3].strip()  

                stop_freq_section = sections[4].replace('Hz.txt', '').strip()  

                file_start_freq = float(start_freq_section) 

                file_stop_freq = float(stop_freq_section) 

                if file_start_freq == start_frequency and file_stop_freq == stop_frequency: 

                    filename_array.append(file_name) 

                    print(f"  - Found relevant file: {file_name}") 

        except (ValueError, IndexError) as e: 

            print(f"  - Skipping file '{file_name}' due to parsing error: {e}") 
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            continue 

# Assigns filtered filenames to a variable 

filenames = filename_array 

# Checks if any matching files are found 

if not filenames: 

    print("No files found matching the specified date and frequency range.") 

    exit() 

else: 

    print(f"Successfully identified {len(filenames)} files for processing.") 

# Defines a function to load amplitude and time data for a given file 

def load_data(filename): 

    try: 

        df = pd.read_csv(filename, header=None, sep=r'\s+') 

    except FileNotFoundError: 

        print(f"File not found: {filename}") 

        return None, None 

    # Filters rows based on selected antenna and channel 

    filtered = df[(df[2] == antenna_name) & (df[3] == channel_name)].reset_index(drop=True) 

    if filtered.empty: 

        print(f"Skipping {filename}: no data for antenna {antenna_name} and channel 

{channel_name}") 

        return None, None 

    # Extracts amplitude matrix and time strings 

    amplitude_matrix = filtered.iloc[:, 13:].astype(float).values 

    time_strings = filtered[0].astype(str) + ' ' + filtered[1].astype(str) 

    return time_strings.tolist(), amplitude_matrix 

72



# Initializes lists to hold all time and amplitude data 

all_time_strings = [] 

all_amplitudes = [] 

# Loads data from each relevant file and aggregates it 

for filename in filenames: 

    current_time_strings, current_amplitudes = load_data(filename) 

    if current_time_strings is None or current_amplitudes is None: 

        continue  # skip this file 

    all_time_strings.extend(current_time_strings) 

    if current_amplitudes.size > 0: 

        all_amplitudes.append(current_amplitudes) 

# Exits if no valid data is found 

if not all_time_strings: 

    print("No data loaded from any of the files. Exiting.") 

    exit() 

# Combines amplitude matrices from all files into one 

combined_amplitudes = np.vstack(all_amplitudes) 

# Extracts calculation range and indexes based on selected band 

calc_band = calculation_band_frequencies[user_band_input] 

calc_start_freq = calc_band["start"] * 1e6 

calc_stop_freq = calc_band["stop"] * 1e6 

calc_indices = np.where((frequencies >= calc_start_freq) & (frequencies <= calc_stop_freq))[0] 

# Filters frequency and amplitude data based on calculation band 

filtered_frequencies = frequencies[calc_indices] 

filtered_amplitudes = combined_amplitudes[:, calc_indices] 

 

# Sets threshold and Huber parameters 
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threshold_sigma = 3 

poly_order = 10 

delta = 1.0 

max_iter = 15 

# Defines function to process a single row of data using robust fitting 

def process_row(y, x, delta): 

    coeffs = robust_polyfit(x, y, poly_order, max_iter=max_iter, delta=delta) 

    y_fit = np.polyval(coeffs, x) 

    residual = y - y_fit 

    if user_band_input == "band 4": 

        std = 0.82666667 

    else: 

        std = np.std(residual) 

    rfi_mask = np.abs(residual) > threshold_sigma * std 

    return y_fit, rfi_mask 

# Defines function to compute Huber weights based on residuals and delta 

def huber_weights(residuals, delta): 

    abs_residuals = np.abs(residuals) 

    weights = np.ones_like(residuals) 

    weights[abs_residuals > delta] = delta / abs_residuals[abs_residuals > delta] 

    return weights 

# Defines function to perform iterative robust polynomial fitting using Huber loss 

def robust_polyfit(x, y, degree, max_iter, delta): 

    weights = np.ones_like(y) 

    for _ in range(max_iter): 

        coeffs = np.polyfit(x, y, degree, w=weights) 

        y_fit = np.polyval(coeffs, x) 

        residuals = y - y_fit 

        weights = huber_weights(residuals, delta) 

    return coeffs 
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# Creates RFI mask for each row in amplitude matrix 

x = np.arange(filtered_amplitudes.shape[1]) 

masks_all = [] 

for row in filtered_amplitudes: 

    _, mask_row = process_row(row, x, delta) 

    masks_all.append(mask_row) 

# Stacks masks to form final RFI mask matrix 

mask = np.vstack(masks_all) 

mask_flat = mask.T.flatten() 

# Converts string timestamps to datetime and extracts only time 

time_objects = [datetime.strptime(t, "%d/%m/%Y %H:%M:%S") for t in all_time_strings] 

time_objects_only = [t.time() for t in time_objects] 

# Converts time to numeric (minutes) format 

def time_to_minutes(t): 

    return t.hour * 60 + t.minute + t.second / 60 

times_numeric = [time_to_minutes(t) for t in time_objects_only] 

times_numeric_repeated = np.tile(times_numeric, len(calc_indices)) 

# Calculates RFI occupancy percentage per time step 

rfi_bandwidth_percentages_per_time = np.sum(mask, axis=1) / mask.shape[1] * 100 

# Calculates total and threshold-exceeding values for percentage 

total_values = filtered_amplitudes.size 

above_threshold_values = np.count_nonzero(mask) 

percentage_above_threshold = (above_threshold_values / total_values) * 100 

# Calculates occupancy percentage per frequency bin 

num_time_steps = filtered_amplitudes.shape[0]  

time_occupancy_percentages = np.sum(mask, axis=0) / num_time_steps * 100 
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# Prints frequency vs time occupancy percentages(commented out) 

#print("\nTime Occupancy (%) per Frequency Bin (where residual > 3σ):") 

#for freq, occupancy in zip(filtered_frequencies, time_occupancy_percentages): 

 #   if occupancy > 0: 

  #      print(f"  Frequency {freq/1e6:.2f} MHz: {occupancy:.2f}% of time") 

# Calculates overall RFI presence per time step 

any_rfi_per_time = np.any(mask, axis=1)   

num_time_steps_with_rfi = np.count_nonzero(any_rfi_per_time) 

total_time_steps = filtered_amplitudes.shape[0] 

total_rfi_time_percentage = (num_time_steps_with_rfi / total_time_steps) * 100 

# Displays total percentage of time affected by RFI 

print(f"\nTotal percentage of time with any frequency bin above 3σ: {total_rfi_time_percentage:.2f}

%") 

# Prepares data for scatter plotting 

freqs_repeated = np.repeat(filtered_frequencies, filtered_amplitudes.shape[0]) 

freqs_plot = freqs_repeated[mask_flat] / 1e6  

times_plot = np.array(times_numeric_repeated)[mask_flat] 

# Extracts date string for use in plot title 

if filenames: 

    date_parts = filenames[0].split('_')[:3] 

    file_date_cleaned = '_'.join(part.strip() for part in date_parts) 

    file_date_obj = datetime.strptime(file_date_cleaned, "%d_%m_%Y").date() 

    date_str_for_title = file_date_obj.strftime("%B %d, %Y") 

else: 

    date_str_for_title = "Unknown Date" 

# Defines function to load timestamps from all rows of a file 

def load_timestamps_all_rows(filename): 

76



    try: 

        df = pd.read_csv(filename, header=None, sep=r'\s+') 

    except FileNotFoundError: 

        print(f"File not found: {filename}") 

        return [] 

    time_strings = df[0].astype(str) + ' ' + df[1].astype(str) 

    try: 

        return [datetime.strptime(t, "%d/%m/%Y %H:%M:%S") for t in time_strings] 

    except Exception as e: 

        print(f"Failed to parse timestamps in {filename}: {e}") 

        return [] 

# Calculates total observation duration with segmentation check 

total_duration = timedelta(0) 

for file in filenames: 

    timestamps = load_timestamps_all_rows(file) 

    if len(timestamps) < 2: 

        print(f"{file}: Not enough timestamps for duration calculation.") 

        continue 

    timestamps.sort() 

    file_duration = timedelta(0) 

    segment_start = timestamps[0] 

    for i in range(1, len(timestamps)): 

        delta = timestamps[i] - timestamps[i - 1] 

        if delta > timedelta(seconds=2): 

            file_duration += timestamps[i - 1] - segment_start 

            segment_start = timestamps[i] 

    file_duration += timestamps[-1] - segment_start 

    print(f"{file}: duration = {file_duration}") 

    total_duration += file_duration 
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# Converts total duration into hours, minutes, and seconds 

hours = total_duration.total_seconds() // 3600 

minutes = (total_duration.total_seconds() % 3600) // 60 

seconds = total_duration.total_seconds() % 60 

# Prints total observation time 

print(f"\nTotal observation duration across all files (regardless of antenna/channel, with >2s 

segmentation): {int(hours)} hours, {int(minutes)} minutes, {int(seconds)} seconds.") 

# Plots time occupancy percentage per frequency bin 

plt.figure(figsize=(12, 5)) 

plt.plot(filtered_frequencies / 1e6, time_occupancy_percentages, color='teal', linewidth=2, 

label='time occupancy (%)') 

plt.xlabel("Frequency (MHz)") 

plt.ylabel("Time Occupancy (%)") 

plt.title(f"Time Occupancy per Frequency Bin (> 3σ),for ({start_date_str}-{stop_date_str})

\nAntenna:{antenna_name}, channel:{channel_name}, tot duration: {int(hours)}hrs,{int(minutes)}

mins,{int(seconds)}sec") 

plt.grid(True) 

plt.tight_layout() 

plt.legend() 

plt.show() 
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9. THREE SIGMA COMPARISON OVER THE YEARS  

9.1 Comparison of 3 sigma over the years 

Figure: 9.1: Year vs average 3 sigma plot showing the variation of 3 sigma over the years  

The plot shows the variation of average 3σ (three-sigma) threshold values across the years from 

2016 to 2025 for band 4. In the early years—2016 through 2018—the sigma values are relatively 

low and consistent, staying close to 2.5. This indicates that the spectral data during those years was 

cleaner, with lower variance in the baseline, and thus a stable and reliable threshold for RFI 

detection. 

However, a sharp increase in sigma is observed starting from 2019, and more drastically in 2024 

and 2025, where the 3σ values rise dramatically reaching a peak in 2025. This rise reflects increased 

contamination of the band with persistent RFI in recent years, which artificially inflates the baseline 

noise level. As sigma represents the standard deviation of the fitted baseline, a corrupted baseline 

leads to a significantly higher sigma, which can weaken the effectiveness of the 3σ threshold as a 

discriminator for RFI. 

These 3 sigma values are taken on the basis of baseline formation using the Huber loss technique , 

and the standard deviation of the residuals is taken across all the spectral channels ( that is the entire 

band width )  
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Thus, the plot clearly illustrates how the reliability of using a data-driven sigma threshold 

diminishes over time, especially in heavily polluted bands, necessitating alternative approaches 

such as referencing cleaner bands or older reference data. 
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9.2 Comparison of 3 sigma over the years after implying the cleaner band 

approach for 2024 and 2025. 

Figure 9.2: year vs avg 3 sigma plot showing the 3 sigma of the cleaner band for 2024 and 2025 

The slide presents a comparative analysis of the 3σ (three-sigma) threshold values across several 

years—2016, 2017, 2018, 2019, 2022, 2024, and 2025—for Band 4 radio data. This threshold is 

critical in RFI detection, as it marks the cutoff above which signal amplitudes are considered 

abnormal or potentially contaminated by interference. 

In this analysis, a consistent “cleaner band” approach was implemented for the years 2024 and 

2025, where only the uncorrupted, relatively RFI-free parts of the spectrum were used to calculate 

the 3σ values. This was necessary because some parts of the 2025 dataset were corrupted 

particularly in the regions between persistent RFI zones leading to an overestimation of the noise 

floor and hence an ineffective threshold for detecting actual RFI. The cleaner segments were 

therefore isolated manually or algorithmically to ensure accurate threshold estimation. 

The plotted trend shows that the average 3σ values remain remarkably consistent across years 

when cleaner data is used, with minor variations. This consistency validates the cleaner band 

approach as a reliable fallback strategy when no historical reference dataset is available.  

Essentially, if an older clean dataset (like 2016) cannot be reused, applying this cleaner-band 

extraction method allows one to reliably derive detection thresholds even from partially 

corrupted data, as was done for 2024 and 2025 .  81



Thus, this graph not only highlights the stability of sigma values over time under careful selection 

but also emphasises the robustness of the cleaner band method in maintaining threshold accuracy 

despite varying data quality. 
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10. TIME OCCUPANCY AND BANDWIDTH OCCUPANCY 

Figure 10.1: shows the bandwidth occupancy for band 2, for a single file dated : 19/04/2024 

The graph presents the variation of bandwidth occupancy percentage over time for Band-2 on April 

19, 2024. It captures how much of the observed bandwidth was affected by radio frequency 

interference (RFI) at each recorded time point. The y-axis represents the percentage of bandwidth 

flagged as RFI, while the x-axis corresponds to specific timestamps throughout the day. 

The data shows noticeable fluctuations in occupancy, with several spikes crossing 40%, indicating 

periods of significant RFI activity. This time-resolved visualisation enables quick identification of 

interference-heavy periods and helps in understanding the temporal distribution and intensity of RFI 

within the selected frequency band.
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Figure 10.2 : shows the time occupancy for each spectral channel of band 2 , dated : 19/04/2024



The statistics display the percentage of time that specific frequency bins experienced radio 

frequency interference (RFI), measured by how often the residual signal exceeded a 3σ threshold. 

These values give insight into how persistently certain frequencies are impacted by RFI over the 

observation period. 

The plot illustrates the time occupancy percentage of radio frequency interference (RFI) across 

different frequency bins. Each bar represents how frequently a particular frequency experienced 

interference over the observation period, calculated by detecting instances where the signal 

exceeded a 3-sigma threshold above the baseline. Higher occupancy percentages indicate 

frequencies that are more consistently impacted by RFI, while lower values correspond to cleaner 

regions of the spectrum. This analysis provides a clear statistical overview of which parts of the 

frequency spectrum are most affected by interference, offering valuable insight for identifying 

persistently contaminated regions and optimising future data collection or mitigation strategies.
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11. FUTURE SCOPES OF MY PROJECT  

The project primarily revolves around statistical evaluation of RFI patterns using historical spectral 

data. In future extensions, the methodology can be scaled to deliver a comprehensive descriptive 

analysis across various spectral channels, frequency bands, and time stamps, providing deeper 

insights into long-term RFI behaviour.

The robust detection techniques—particularly the use of Huber loss-based baseline estimation 

and least squares regression (LSR)—can be extended to LTA (Long Term Accumulation) files, 

broadening the applicability of this framework to larger, long-duration datasets.

Additionally, the pipeline can be adapted to automatically generate RFI logs for all GTAC 

(GMRT Time Allocation Committee) observations, ensuring consistent monitoring and 

documentation of interference events across observing sessions.

 

85



12. Websites and research papers used for reference: 

1. http://www.ncra.tifr.res.in/ncra/gmrt/about-gmrt/introducing-gmrt-1/introducing-

gmrt 

2. http://www.ncra.tifr.res.in/ncra/gmrt 

3. https://www.mdpi.com/2226-4310/8/2/51 

4. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2004RS003172 

5. https://www.mdpi.com/1424-8220/19/2/306?utm_source=chatgpt.com 

6. https://www.cantorsparadise.com/huber-loss-why-is-it-like-how-it-is-

dcbe47936473 

7. https://www.investopedia.com/terms/l/least-squares-method.asp 

 

86

http://www.ncra.tifr.res.in/ncra/gmrt/about-gmrt/introducing-gmrt-1/introducing-gmrt
http://www.ncra.tifr.res.in/ncra/gmrt/about-gmrt/introducing-gmrt-1/introducing-gmrt
http://www.ncra.tifr.res.in/ncra/gmrt
https://www.mdpi.com/2226-4310/8/2/51
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2004RS003172
https://www.mdpi.com/1424-8220/19/2/306?utm_source=chatgpt.com
https://www.cantorsparadise.com/huber-loss-why-is-it-like-how-it-is-dcbe47936473
https://www.cantorsparadise.com/huber-loss-why-is-it-like-how-it-is-dcbe47936473
https://www.investopedia.com/terms/l/least-squares-method.asp





