Identifying baseline problems from UV tracks N. G. Kantharia, Rajaram Nityananda National Centre for Radio Astrophysics, TIFR, Pune

1 Motivation

The Giant Metrewave Radio Telescope operates at low radio frequencies where several man-made problems such as narrow-band radio frequency interference (RFI), wide-band RFI due to power line discharge etc, corrupt the data. Moreover generic problems such as cross-talk between antennas and malfunctioning baselines also affect the data. All the above are additive errors which affect the final image as follows:

$$Visibilities + error \longleftrightarrow Image + FT(error); \tag{1}$$

FT(error) is the Fourier transform of the error. Basically the image has an extra component added to it. For example, RFI which persists throughout an observing run and is not excised will generate a wide-angle pattern in the final image with a fringe rate equal to that of the baseline which picked it up added to the sky image. If bad baselines persist through an observing run, they will generate a different response in the image plane. If the bad data generates a discernible response in the image plane then it is imperative to remove it in order to improve the S/N ratio of the image.

If we can identify the data which cause the above problems then that data can be edited and the final image would have a better dynamic range. In the recent past, we have received reports regarding a weak ring-like structure centred close to the phase centre in the final deconvolved image from several GMRT users. The pattern is insensitive to self-calibration or deeper deconvolution. Since this problem is likely caused by bad baselines (Dave Green, private communication, R. D. Ekers, in Synthesis Imaging in Radio Astronomy II, ASP Conference Series, Vol. 180, 1999, Ed: G. B. Taylor, C. L. Carilli, R. A. Perley), we have developed a procedure, which starts from the artifacts in the residual map, to assist the GMRT user in identifying the bad baselines. In this note, we outline the algorithm, its implementation and show the results we have obtained. We believe this is a convenient way to identify bad baselines from corrupted data which complements several existing methods/programmes/tasks in AIPS such as UVFLG, TVFLG, SPFLG etc.

2 Principle of identifying antenna pairs from uv tracks

Fourier transforming artifacts in the residual sky image generates a UV image clearly showing tracks of the general shape expected from the source and telescope geometry (see next section for details). Each baseline clearly sweeps out a cone (see A'B' in Fig. 1), and the track is the projection of this onto a plane normal to the line of sight (LOS) from the source to the earth (Fig. 1). Only part of this is of course visible.

Figure 1: The baseline AB made by two antennas placed at A and B on the earth's surface has been moved to the earth's centre as A'B' & B' sweeps out a circle as the earth rotates. Notice that the baseline describes a cone and the UV track is the projection on a plane normal to the LOS.

For convenience, let us use a coordinate system with (U,V) lying in the plane of the equator and W along the polar axis (see Fig 1). The circle described by B' has the equation W = P and $U^2 + V^2 = E^2$, where P stands for the polar component of the baseline and E the equatorial component. These don't change with time, but (in a space fixed coordinate system) U & V do, as $U = E \cos(H - H_0)$, $V = E \sin(H - H_0)$, H being the hour angle. If we choose the V axis to point to the RA of the source, then a vector along V appears largest in projection (on to the plane transverse to the earth-source line) for $\delta = \frac{\pi}{2}$ while the W component is maximum when viewed from the equator, $\delta = 0$. The projected baseline track is therefore given by an ellipse centred on $(0, P \cos \delta)$ (see Fig. 2) with major axis, along U, of length E, and minor axis, along V, of length $E \sin \delta$ (u & v are projected values, and equal to U & V only for $\& \delta = \pi/2$, i.e.polar viewing). Thus, the equation to the elliptic track is

$$\frac{(v - P\cos\delta)^2}{E^2 \sin^2\delta} + \frac{u^2}{E^2} = 1$$

Given two points (u_1, v_1) and (u_2, v_2) on this curve,

 $(v_1 - P\cos\delta)^2 + u_1^2\sin^2\delta = (v_2 - P\cos^\delta)^2 + u_2^2\sin^2\delta = E^2$

Figure 2: The figure shows the equatorial (E) and polar (P) components of the uv track which can be estimated from the uv track and can in turn be used to uniquely identify the antennas involved in the baseline.

which immediately gives

$$2P\cos\delta \ (v_2 - v_1) = (v_2^2 - v_1^2) + \sin^2\delta \ (u_2^2 - u_1^2)$$

From the above,

$$P = \frac{(v_2^2 - v_1^2) + \sin^2 \delta \ (u_2^2 - u_1^2)}{2\cos\delta \ (v_2 - v_1)}$$

and

$$E^{2} = \frac{(v - P\cos\delta)^{2}}{\sin^{2}\delta} + u^{2}$$

Substituting the value of P gives E^2 .

Since the equatorial (E) and polar (P) coordinates which are properties of a baseline and independent of time, the above exercise allows one to estimate these coordinates from the antenna positions and compare with those estimated from the uv track of a bad baseline. This exercise thus helps identify the bad baseline which can then be removed and the image quality improved. We describe the implementation and results from this procedure below. However since there is a finite possibility of the baseline being wrongly identified especially in those parts of the uv space where there is crowding and hence the E, P coordinates of more than one baseline are likely to be similar. To check this, we also made a list of baselines which are likely to be confusing because the difference in their equatorial and polar coordinates is within 50m of another baseline. Most of these, as expected, are central square baselines.

3 Implementation and Results

We have developed a programme in C which uses the above algorithm and identifies the baseline given coordinates of two separate points on the UV track. FFT of the source-subtracted residual image results in an uv image which shows the uv tracks and the real and imaginary parts of the visibility amplitude. Since the source response has been removed, the residual image are expected to contain only artifacts and hence any signature in the uv image can safely be assumed to be due to bad data.

The data obtained in the raw *lta* data format were converted into FITS using *listscan* and *gvfits*. The FITS data were then imported to NRAO AIPS ¹. and the data calibrated and imaged. Self-calibration of the data was also effected. The image showed the presence of ring-like artifacts originating near the pointing centre and mimicking a pseudo point source. We subtracted the clean components of all the sources from the uv data (UVSUB) and then imaged the residual uv data. The concentric rings persisted, were the major features in the image and are indeed the artifacts which we are trying to remove.

Fig. 3 shows the image of a field made after the sources in the field were subtracted from the uv data. The concentric ring-like structure centred close to the pointing centre is due to a bad baseline and needs to be removed before the dynamic range of the image can improve. Both RR and LL show the ring-like structure.

We used the task FFT in AIPS on the images shown in Fig. 3. Since the task was used on the sky map, we obtained a complex image of the uv plane. In Fig. 4, we show the real part of the FFT in the uv plane. The axes are labelled in u and v k λ . uv tracks made by various GMRT baselines as the earth rotates can be seen for both RR and LL. Since the sources have been removed, all the tracks should ideally register only noise. However the tracks pointed at by the arrows in Fig. 4 are brighter as compared to rest of the tracks and stand out. These are the bad baselines that probably persisted throughout the observations and gave rise to the concentric ring pattern seen in Fig. 3. We used the programme we have developed based on the above algorithm, *badbase* to identify this bad data.

The first task was to obtain the uv coordinates of any two points on the baseline track using which the programme *badbase* would find the closest match with numbers estimated from the measured values of the antenna positions which are generally referred to as B_x , B_y and B_z metres. We used a couple of different ways within AIPS involving different verbs and tasks to find these coordinates. Since many close baselines can have overlapping uv tracks, we stress the need for accurately finding two points lying on the same track. If by mistake the two points are from two different tracks, *badbase* will not be able to give a good match of the uv track to a possible baseline. In Appendix A, we suggest a couple of ways in AIPS using which the coordinates can be obtained.

¹The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

Figure 3: The 1.4 GHz RR (top) and LL (bottom) images of the central part of the primary beam. Notice the concentric ring-like structure near the centre of the image. No source is responsible for the structure which at first glance looks like a dirty beam. The dynamic range of the image is limited by the systematics. Moreover note that the fringe frequency of the dominant ring-like structure in the LL is larger than that in RR.

Figure 4: The FFT of the data shown in Fig. 3. RR (top) and LL (bottom) images of the FFT are shown. The UV tracks which give rise to the dominant ring-like structure in the RR and LL images are shown by an arrow. Our algorithm helps identify such bad UV tracks. The X (VV) and Y (UU) axes are labelled in $k\lambda$.

Once the coordinates of two points have been obtained, these are to be given to *badbase* alongwith the declination of the source in degrees, wavelength of observation in cm and the tolerance in metres upto which you would like the programme to probe for a match. We have been able to find matches to within 50m of a probable baseline and in many cases the match is within 20m. On the other hand, we would also like to warn users that in crowded regions of the uv plane there are chances of misidentifying baselines since there are likely to be more than one baseline within a given tolerance.

Once we identified the corrupt baselines using *badbase*, these were removed from the uv data and images were made again as shown in Fig. 5. The strong ring-like feature near the phase centre is not present in these images although the Stokes RR seems to show a weak ring-like structure which is the result of another bad baseline. The programme can be used iteratively. However, with each iteration, caution should be exercised to avoid good baselines being edited. One way which would work is to look at a small range of extremum values in the image and check for any bad baselines which appears to show 'signal'. If part of a baseline is bad then only that part should be removed. We suggest that one does some extra check on the baseline before editing it.

4 Summary

We have described an algorithm which works from artifacts in the image plane to identify bad baselines which result in ring-like artifacts in the image plane and limit the dynamic range at rms noise levels less than half a mJy. The implementation involves identifying two distinct points on the uv track and finding their uv coordinates. These coordinates have to be given to *badbase*, the programme that we have developed which compares the equatorial and polar coordinates obtained from the uv track with those estimated from the antenna positions and gives the closest match. Removing this baseline generally results in the ring-like artifacts disappearing from the image. We also note that this is one more way of identifying bad data in addition to several like UVFLG, TVFLG, SPFLG etc which exist in the AIPS environment.

5 Acknowledgements

We thank Ramya Sethuram of IIA for providing us with calibrated radio data which had the problem of concentric ring-like structure near the phase centre and also using our procedure several times helping us gain confidence in it appreciably. We thank Reena Shrikumar and Annabhat Joshi for help in preparing this document.

Figure 5: The images made after the bad baselines shown in Fig. 4 have been removed from the UV data. The top panel is Stokes RR and the bottom panel is Stokes LL. Notice that the intense concentric ring-like artifacts are not present in the image although a lower level ring-like structure does seem to be present in the Stokes RR image which is another bad baseline in the data.

Figure 6: The histogram showing the noise statistics of the image before the bad baselines are removed (top panel) and after the bad baselines are removed (bottom panel). The lower rms ($\sim 200\mu$ Jy) of the bottom panel compared to that of the upper panel rms ($\sim 270\mu$ Jy) indicates that bad data has been removed.

6 Appendix A - Recommended recipe:

In this appendix, we suggest how to use the programme *badbase*:

- 1. Remove (UVSUB) all clean components from the uv data and make a residual image which will clearly show the ring-like structure. Image RR and LL separately. Make a large image say 2048×2048 .
- 2. Take an FFT of the above image which will result in the complex UV data being shown in an image format. The real and imaginary uv images will be created. Examine the real part of the result.
- 3. If there are bad baselines they will generally appear as bright/faint tracks compared to the rest. Moreover they will not show a noise-like behavioiur. You need to identify these to be able to flag them.
- 4. To find the U and V coordinates of any two points on the bad track in AIPS, use either:

a. curval to find the x, y coordinates.

b. load x,y into the adverb PIXXY and run the verb IMVAL c. Note down the UU and VV coordinates that you get (note that IMVAL shows VV first and then UU).

or:

a. define a small box using TVWIN around the track enclosing the point you want to obtain the coordinates for.

b. run IMEAN and note down the UU and VV coordinates of the maximum or minimum point whichever is the relevant number on the track.

c. repeat a, b for another point on the track.

5. Run the programme 'badbase' that we have developed using the algorithm. If (4) has been done carefully, the programme will identify the track and print the bad baseline and how close it is to the baseline identified from the bad data. Better the identification in (5), better will be the match. The programme can be run as follows and takes the coordinates of the two points, declination of the source in degrees, wavelength in cms and the desired tolerance in metres.

syntax:badbase U1 V1 U2 V2 dec_deg lamdba_cm tolerance_m

For example, for identifying the bad short baseline in Fig.4 the inputs we gave to the programme were:

 $\textbf{badbase} \ \ 22.057 \ \ 14.402 \ \ 13.697 \ \ 25.481 \ \ 53.44 \ \ 21.26 \ \ 50 \\$

The results we obtained were as follows:

OFFSET = 7.5m = 0.04 klambda

 $EQUA{=}4759.010m \quad POL{=}4017.030m \quad BadBaseline{=}13{-}27$

EQUA_DATA=4763.500m POL_DATA=4011.055m

This meant that the bad baseline was 13-27 ie. C13-W03 and the difference between the baseline estimated from the coordinates that we obtained from the UV tracks (EQUA, POL) and those estimated from the antenna positions (EQUA_DATA, POL_DATA) was only 7.5m.

7 Appendix B: the programme in C

The badbase programme is listed below on the first two pages. This programme uses the file UVBASELINE.TXT which contains the equatorial and polar coordinates for all the 435 baselines as detailed in the section on the algorithm. The next seven pages give these coordinates. We estimate these values from the antenna positions as detailed in the algorithm. The antenna positions used to arrive at these values are given on the last page after UVBASELINE.TXT. The first column lists the antenna name whereas the second, third and fourth column give the values of B_x , B_y and B_z in metres.

```
/* A short programme to identify bad baselines based on RN's alg
0 - NGK 10/7/2008
    To compile:
    gcc -o badbase badbase.c -lm
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
main(int argc, char *argv[])
£
FILE *fp;
float X1_klambda, Y1_klambda, lambda_cm, Xm, Ym, X1m, X2m, Y1m, Y2m;
float X2_klambda, Y2_klambda, t, t1;
float *EQUA, *POL, EQ, PO, DIFF, FINAL, delta;
int *n, *m, A1, A2, i, j;
char tmp[40], tmp1[40], tmp2[40], tmp3[40], tmp4[40];
 if (argc != 8)
     -
        printf ("\n Input the coordinates of any two points lying on the bad baseline (uv) t
rack. \n");
         printf (" FFT of the corrupted image will generate the uv image from which the a
bove can be identified.\n");
         printf("\n Syntax: badbase <UU1 klambda> <VV1 klambda> <UU2 klambda>
<VV2 klambda> <declination deg> <lambda cm> <tolerance m> \n\n");
         exit(1);
      }
   X1_klambda = atof(argv[1]);
   Y1_klambda = atof(argv[2]);
   X2_klambda = atof(argv[3]);
   Y2_klambda = atof(argv[4]);
   delta = atof(argv[5]);
   lambda_cm = atof(argv[6]);
   FINAL = atof(argv[7]);
   delta = delta* 3.1415927/180.0;
EQUA
           = (float *)calloc(500, sizeof(float));
POL
           = (float *)calloc(500, sizeof(float));
           = (int *)calloc(500, sizeof(int));
n
           = (int *)calloc(500, sizeof(int));
m
  if ((fp=fopen("UVBASELINE.TXT", "r"))==NULL)
                                                   - {
```

```
printf("\nUVBASELINE.TXT:Unable to open"); exit(1); }
```

```
/* in metres */
   X1m = X1_klambda*(lambda_cm*10);
   Y1m = Y1_klambda*(lambda_cm*10);
   X2m = X2_klambda*(lambda_cm*10);
   Y2m = Y2_klambda*(lambda_cm*10);
  fscanf(fp, "%s %s %s %s %s %s %s n", tmp, tmp1, tmp2, tmp3, tmp4);
  t = (Y2m*Y2m - Y1m*Y1m);
  t1 = (X1m*X1m - X2m*X2m)*sin(delta)*sin(delta);
  Ym = (t - t1) / (2*(Y2m - Y1m));
  t = X1m*X1m; t1 = (Y1m-Ym)*(Y1m-Ym);
  Xm = sqrt(t + t1/pow(sin(delta),2));
  Ym = Ym/cos(delta);
  for (i=0;i<435;i++)</pre>
      fscanf(fp, "%d%d%f%f", &n[i], &m[i], &EQUA[i], &POL[i]);
    {
    }
  DIFF = 0.0;
  for (i=0;i<435;i++)
     -
         DIFF = sqrt(pow((EQUA[i] - abs(Xm)),2) + pow((POL[i] - a
bs(Ym)),2));
         if (DIFF<FINAL)
          {
               EQ = EQUA[i]; PO = POL[i]; A1 = n[i], A2 = m[i];
   printf("\n\n OFFSET=%5.1fm = %4.2f klambda\t\n", DIFF,DIFF/(lambda_cm*
10));
   printf("\n EQUA=%5.3fm\t POL=%5.3fm\t BadBaseline=%d-%d\n", EQ, PO, A1,
A2);
   printf("\n EQUA_DATA=%5.3fm \t POL_DATA=%5.3fm\n", Xm, Ym);
           }
    }
}
```

BASELINE	EQUA m	POL m
12	361.504730	20.309998
1 3	687.915100	20.040001
1 4	1062.187500	153.630005
1 6	624 242432	226 540088
1 7	722.186401	200.540009
1 8	425.618805	380.289978
19	647.298767	131.609985
1 10	872.463135	567.450012
1 11	1294.684814	301.519989
1 12	551.486389	615.500000
1 13	1375.788330	1097.880005
1 15	2156 094482	973 709961
1 16	3953.230469	1952.500000
1 17	7169.240723	2923.330078
1 18	9585.564453	3363.239990
1 19	11494.449219	4563.169922
1 20	937.593994	2785.889893
1 21	2206 212099	4259.120117
1 23	3076.807040	8959 459961
1 24	4705.982910	13362.440430
1 25	2289.329590	611.359985
1 26	3818.807861	1439.430054
1 27	5971.923828	2919.150146
1 28	7920.729492	5087.569824
1 29	9200.132812 12221 826014	/83/.1801/6
2 3	326.698395	40.349908
2 4	702.104248	173.940002
2 5	894.684998	163.779999
26	266.862030	206.239990
2 7	362.537964	180.230011
28	126.124054	359.979980
2 9	286.693970	111.299995
2 10	933,977417	281,200001
2 12	247.806732	595.190002
2 13	1029.244995	1077.570068
2 14	823.336670	588.280029
2 15	2514.212646	994.019958
2 16	4310.270020	1972.809937
2 17	/52/.896484	2943.640137
2 10	11853.418945	4583.479980
2 20	979.277893	2765.579834
2 21	1598.041992	4238.810059
2 22	2171.310059	6364.609863
2 23	3122.054932	8939.150391
2 24	4631.978516	13342.130859
2 20	1920.201440	1450 730000
2 27	5617.014160	2939.460205
2 28	7569.991211	5107.879883
2 29	8857.327148	7857.490234
2 30	11984.042969	8956.609375
3 4	376.206604	133.589996
35	568.240479	123.430000
3 7	77.860046	240.009990
3 8	309.639221	400.329987

_			
2	0	64 151070	151 649994
12	2.2	04.101070	101.019997
13	10	252.564377	587.489990
13	11	611.912292	321.559998
15	1 2	272 700000	625 520078
12	12	272.709000	000.000000
13	13	738.139465	1117.920044
13	14	517.082642	628,630005
15	15	2025 007205	052 660083
12	1.5	2000.907000	377.003307
3	16	4630.382812	1932.459961
13	17	7849.505371	2903.290039
5	10	10267 726562	2242 100051
12	10	10207.720302	5545.199951
13	19	12175.281250	4543.129883
13	20	1136.259033	2805.929932
15	2.1	1409 560050	4270 160156
12	21	1490.000000	2/9.100100
13	22	2209.779297	6404.959961
13	23	3215.675049	8979.500000
13	24	4607 512695	13382 480469
11	27	1007.012090	
13	25	1604.641724	591.320007
3	26	3136.767822	1419.390015
1 2	27	5293 679688	2899 110107
15	20	3235.013000	
13	28	1249.093262	2007.229183
3	29	8543.045898	7817.140137
3	30	11665,616211	8916.259766
1	5	102 220001	10 15000
14	0	T32'SSOOOT	TA'TDAAA0
4	6	459.374481	380.179993
4	7	362.541962	354,169983
1.7		670 030400	522.010002
4	8	6/8.229492	222.919982
4	9	426.448639	285.239990
4	10	319,319458	721.079956
L.	11	276 005148	455 140004
14	11	2/0.995140	400.149994
4	12	606.325562	769.130005
4	13	497.311646	1251.510010
L.	14	277 422010	762 310071
17	14	2//.455050	/02.2199/1
4	15	3201.072266	820.079956
4	16	4992.073242	1798.869995
4	17	9212 913477	2760 600051
17	10	10620 530060	2703.033331
4	18	10632.539062	3209.609863
4	19	12538.678711	4409.540039
4	2.0	1414 757568	2939 520020
1.7	20	1111.101000	1413 560000
4	21	1203.323/17	4412.750000
4	22	2344.391113	6538.549805
4	23	3391.545898	9113.089844
Lâ.	24	4643 011523	13516 070312
17	27	1000 10010	
4	25	1228.461426	457.730011
4	26	2760.632324	1285.800049
4	27	4918.025879	2765.520020
17	20	1010.020019 COTE E0CAOC	4023 020041
14	28	68/5.586426	4223'72AA4T
4	29	8173.628906	7683.550293
4	30	11292,836914	8782.669922
	6	646 000000	270 010000
12	0	040.909929	210.012202
5	7	548.315613	344.010010
5	8	865.920288	523.760010
5	9	615 972351	275 079987
12	10	400 000014	213.012207
15	10	468.622314	110.313383
5	11	157.976349	444.989990
5	12	785 211548	758 969971
12	12	106 060005	1941 25000
12	1.2	420.003305	1241.000090
5	14	274.347595	752.059998
5	15	3393.508301	830.239990
Ē	16	5102 600176	1900 020007
12	10	5105.00U1/0	1073.023301
15	17	8404.670898	2779.860107
5	18	10824.693359	3219.770020
5	19	12730,497070	4419.699707
12	10	1650 163466	
15	20	1558.152466	2223.323893
<u> </u>			

5 21	1516.001455	4402 590332
	2400 504030	
D 22	2409.094238	0228.390137
5 23	3471.317871	9102.929688
5 24	4647 962402	13505 010156
6 36	1026 062222	
5 25	1036.967773	467.890015
5 26	2569.968750	1295.959961
5 27	4728 523438	2775 680176
12 64	1/20.020400	2775.000110
5 28	6688.419922	4944.099609
5 2 9	7991.139648	7693.709961
5 30	11106 930664	8792 830078
12 20	11100.550004	0752.00005
6 /	99.D/U/I/	26.009995
6 8	219.034134	153.739990
6 9	40 036118	94 940002
	10.000110	24. 200002
10 10	258.350281	340.899994
6 11	671.505432	74.970001
6 12	168.537415	388.949982
6 13	764 206082	
6 13	/64.296082	8/1.3300/8
6 14	556.500244	382.040009
6 15	2779.742188	1200-260010
6 16	4576 201750	2179 050049
10 10	10.00.001/08	2113.000013
6 17	7793.219238	3149.880127
6 18	10209.788086	3589.790039
6 10	12119 540905	4790 710727
0 19	12110.049000	103.113121
6 20	1032.856445	2559.339844
6 21	1441.022461	4032.570068
6 22	2122 097646	2150 270117
0 22	2122.00/040	6156.570117
6 23	3120.386719	8732.910156
6 2 4	4534.711914	13135.890625
6 25	1683 310425	837 910034
0 20	1005.510425	0.000
6 26	3216.662842	1662.3.13380
6 27	5375.511719	3145.700195
6 28	7334 616600	5314 119629
6 20	7554.010055	0000 200000
6 29	8632.592773	8063.729980
6 30	11752.169922	9162.849609
7 8	317 738373	179 749985
14 8	36,203030	
1/9	/6./82928	68.930008
7 10	179.521149	366.909973
7 11	572.690002	100.979996
1 1 1 1	0/0.000002	
/ 12	Z48.ZZU398	414.959961
7 13	676.897705	897.340027
7 14	462.728638	408.049988
7 15	2876 707520	1174 250000
1 10	2070.707020	1177.20000
7 16	4672.798828	2153.040039
7 17	7890.360840	3123.870117
7 18	10307 345703	3563,780029
17 10	10015 00000	1722 700000
/ 19	12212.833008	4/03./03301
7 20	1096.662842	2585.349854
7 21	1421,856445	4058,580078
7 22	2144 500700	2104 270092
1 44	2144.008/89	0104.012000
7 23	3157.286621	8758.919922
7 24	4534.065918	13161.900391
7 25	1594 152320	911 000024
1 40	1004.103320	011.900024
7 26	3117.570312	1639.969971
7 27	5276.689941	3119.690186
7 20	7236 515625	5288 100863
7 20	7230.313023	2200.109003
7 29	8536.139648	8037.720215
7 30	11654.503906	9136.839844
8.9	252.507538	248.679993
0 10	440 645530	107 10004
8 10	449.040038	10/.100004
8 11	884.404541	78.769989
8 12	131,763779	235,209991
0 12	050 422272	717 50000
	300.30210	111.330000
8 14	758.251953	228.300018
L		

8 15	2578 721024	1354 000000
	1376.721944	
8 10	43/6.3/8906	2332.790039
8 17	7590.404785	3303.620117
0 10	10005 215820	2742 520020
	10000.210020	
8 18	11914.991211	4943.459961
8 20	885.712646	2405.599854
8 21	1472 331665	3878 830078
	1472.001000	
8 22	2054.437256	6004.629883
8 2 3	3016.752686	8579.169922
8 24	4508 004620	12002 150301
0 27	1001.050005	
8 25	1001.820082	331.020024
8 26	3435.294678	1819.719971
8 27	5594 397461	3299 440186
6 46	3553.337401	
8 28	/553.636/19	5467.859863
8 2 9	8850.755859	8217.469727
8 30	11971.065430	9316-589844
0 10	251 000007	426 020000
19 10	201.289993	435.839996
9 11	647.444214	169.910004
9 12	208.569656	483,889984
0 12	752 052530	966 270020
1 2 2 2	/32.032339	300.210020
9 14	539.511536	476.980011
9 15	2800.851562	1105.319946
0 16	4596 607754	2084 108863
1 10	1390.037734	2007.103003
9 17	7814.553223	3054.939941
9 18	10231.788086	3494.849854
0 10	12140 007656	4604 770795
1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12140.097050	1031.113103
9 20	1072.599121	2654.280029
9 21	1462.700073	4127.510254
0 22	2155 726318	6253 310059
222	2155.720510	0203-040600
9 2 3	3157.022705	8827.849609
9 2 4	4562.695312	13230.830078
9 25	1652 884888	742 969971
10 50	2105 021200	122.303371
9 26	3185.931396	15/1.040039
9 2 7	5344.105469	3050.760010
0 28	7302 008789	5210 170688
	7502.000705	2219.179000
9 29	8288.521823	/968./90039
9 30	11718.994141	9067.910156
110 11	447.322906	265.929993
10 10	740 004407	40.040000
10 12	340.204407	48.049988
10 13	506.669281	530.430054
10 14	309.243134	41.140015
10 15	3027 856201	1541 159912
10 15	1005 0101	
10 16	4825.346191	2013.343301
10 17	8039.970215	3490.780029
10 18	10454.857422	3930.689941
10 10	10064 601004	
10 19	12364.621094	5150.62011/
10 20	1096.854248	2218.439941
10 21	1277.666504	3691.670166
10 22	2054 468506	5917 460727
10 22	2004.400000	0011.105/2/
10 23	3088.861084	8392.009766
10 24	4406.122559	12794.990234
10 25	1480 137695	1178.810059
10 20	1400.137033	2000 000000
10 26	3010.934814	2006.880005
10 27	5172.204102	3486.600098
10 28	7138.831055	5655-019531
10 20	0450 401011	0404 62002
10 29	0430.491211	0404.043003
10 30	11559.802734	9503.750000
11 12	785.433289	313.979980
11 12	269 617210	796 260046
	200.01/210	790.90040
111 14	TP0.03/308	.01001
11 15	3447.386963	1275.229980
11 16	5242.236328	2254,020020
111 10	0461 056641	
111 17	8461.056641	3224.850098

	11	18	10878.820312	3664.760010
I	11	10	12786 756836	4864 689941
I		1.5	12/00./20020	
I	$\pm \pm$	20	1495./3449/	2484.369873
I	11	21	1370.893066	3957.600098
I	11	22	2282.958740	6083.399902
I	11	23	3350 968750	8657 940430
I	11	2.4	4406 205500	
I	ΤT	24	4496.395508	13060.920898
I	11	25	1034.318970	912.880005
I	11	26	2563.785156	1740.949951
I	11	27	4725.112793	3220.670166
I	11	28	6692 782227	5380 080844
I		20	0052.702227	
I	$\perp \perp$	29	8008.462891	8138.700195
I	11	30	11114.314453	9237.819336
I	12	13	829.814026	482.380066
I	12	14	648.563049	6.909973
I	12	15	2697 892000	1580 200061
I	1 2	10	440F 637303	25/2 000000
I	14	10	4495.657207	2568.000000
I	12	17	//0/.288086	3238.830078
I	12	18	10120.594727	3978.739990
I	12	19	12031.103516	5178.669922
I	12	20	865.491516	2170.389893
I	12	21	1356.610840	3643.620117
I	12	22	1981.583496	5769.419922
I	12	22	2066 022036	0242 050021
I	12	20	2900.033930	0.242.909901
I	12	24	4417.043457	12/46.940430
I	12	25	1813.914795	1226.859985
I	12	26	3346.576172	2054.929932
I	12	27	5507.361816	3534.650146
I	12	28	7471.180664	5703.069824
I	12	2.9	8776.350586	8452.679688
I	12	30	11890.835038	9551, 799805
I	12	3.4	221 216025	490 70070
I	13	14	231.316925	489.290039
I	13	15	3527.635742	2071.590088
I	13	16	5325.398926	3050.379883
I	13	17	8536.748047	4021.209961
I	13	18	10949.217773	4461.120117
I	13	19	12860.144531	5661.049805
I	13	2.0	1397.004517	1688.009888
I	13	21	1117 922485	3161 240234
I	13	22	2059 006004	5287 04020
I	10	22	2009.990094	207.030039
I	13	23	3135.660400	10001.0000/8
I	13	24	4232.781250	12264.560547
I	13	25	1109.989136	1709.239990
I	13	26	2603.005127	2537.310059
I	13	27	4759.010254	4017.030273
I	13	2.8	6736.227051	6185,449707
I	13	20	8072 107422	8935 060547
I	13	20	11150 /00047	
I	13	30	11159.498047	10024.113988
I	14	15	3334.824707	1082.300049
I	14	16	5131.917480	2561.089844
I	14	17	8347.674805	3531.919922
I	14	18	10763.150391	3971.830078
I	14	19	12672,606445	5171.759766
I	14	2.0	1329 603115	2177,200805
I	14	21	1050 000150	2660 620222
I	14	22	1200.00/108	5776 220079
I	14	22	2130.487549	0/10.3300/8
I	14	23	3198.716064	8350.870117
I	14	24	4386.658691	12753.850586
I	14	25	1190.611450	1219.949951
I	14	26	2714.840576	2048.020020
I	14	27	4875,983398	3527.740234
I	14	2.8	6846.474121	5696.159668
I	14	20	0122 766331	0445 770500
I	14	29	0100./003/1	0445.770500
- 18				

14 30	11268.797852	9544.889648
15 16	1797.769409	978.789978
15 17	5013.717285	1949.620117
15 18	7431.867676	2389.530029
15 19	9339.370117	3589.459961
15 20	2534.147949	3759.599854
15 21	3656.142090	5232.830078
15 22	3545.687988	7358.629883
15 23	3897.147949	9933.169922
15 24	5877.606445	14336.150391
15 25	4408.925781	362.349976
15 26	5915,492188	465.720032
15 27	8040 280273	1945.440186
15 28	9950.650391	4113.859863
15 20	11169 428711	6863 470215
15 30	14327,341797	7962.589844
16 17	3221.587646	970, 830078
16 18	5643.587402	1410.739990
16 19	7547.049316	2610.669922
16 20	4273.684082	4738.389648
16 21	5394,781738	6211.620117
16 22	5134.895508	8337.419922
16 23	5239,888672	10911.959961
16 24	7248 805006	15314 940430
16 25	6188.666992	1341,139893
16 26	7678 704590	513 060946
16 27	9780.037109	966.650146
16 28	11660.342773	3135.069824
16 29	12835.667969	5884.680176
16 30	16001.774414	6983,799805
17 18	2423.372559	439.909912
17 10	4325 881836	1639.839844
17 20	7416.003906	5709.219727
17 21	8519 955078	7182 450105
17 22	9114 506101	9308 250000
17 23	7973.824707	11882.790039
17 24	9905 199219	16285 770508
17 25	9409.805664	2311.069071
17 26	10894 217773	1483 900024
17 27	12980.667969	4.179932
17 28	14836,122070	2164.239746
17 29	15971.262695	4913.850098
17 30	19138.023438	6012.969727
18 19	1914.431763	1199.929932
18 20	9798.255859	6149.129883
18 21	10889.714844	7622.360352
18 22	10423.988281	9748.160156
18 23	10181,840820	12322.700195
18 24	12041.529297	16725.679688
18 25	11832.250977	2751.879883
18 26	13317.541992	1923.809937
18 27	15401.015625	444.089844
18 28	17248.031250	1724.329834
18 29	18366.859375	4473.940430
18 30	21531.798828	5573.059570
19 20	11712.592773	7349.059570
19 21	12803.050781	8822.290039
19 22	12326.564453	10948.089844
19 23	12056.176758	13522.629883
19 24	13885.642578	17925.609375
19 25	13733.883789	3951.809814
19 26	15211.875000	3123.739746
19 27	17283.072266	1644.019775

10.20	10113 107500	524 200002
13 20	19113.18/500	221.333302
19 29	20208.474609	3274.010254
19 30	23369.250000	4373.129883
20 21	1122 565106	1472 330325
20 21	1125.565186	1475.250225
20 22	1277.490234	3599.030029
20 23	2152.856689	6173.570312
20 24	2785 020006	10576 550781
20 27	5705.020330	
20 25	2502.860352	3397.250000
20 26	3996.280518	4225.319824
20 27	6146 354980	5705 040039
20 27	0140.354900	
20 28	8126./0/520	7873.459961
20 29	9468.464844	10623.070312
20 20	12549 225039	11722 199452
20 30	12349.33330	
21 22	1012.833862	2125.799805
21 23	2086.529541	4700.339844
21 24	3139.860352	9103.320312
	0050.000002	1070 170000
21 25	2058.304443	4870.479980
21 26	3348.232666	5698.550293
21 27	5415,843750	7178 270508
21 20	7704 017570	0246 600452
21 28	1334.017218	A340.00A433
21 29	8782.929688	12096.300781
21 30	11793,432617	13195,419922
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1000 104041	2574 540000
22 23	1080.234/41	2074.040009
22 24	2508.422852	6977.520508
22 25	3065.729248	6996.279785
22 26	4346 013086	7024 250000
22 20	4340.913086	/824.330098
22 27	6379.951660	9304.070312
22 28	8349.043945	11472-490234
22 20	0751 250700	14222 000600
22 29	9/51.250/09	14222.039003
22 30	12728.446289	15321.219727
23 24	2010.894165	4402.980469
22.25	4142 002222	0570 020312
25 25	4145.005225	9570.820512
23 26	5387.089355	10398.889648
23 27	7369.932617	11878.610352
22 20	0221 040242	14047 020207
22 20	9521.946242	14047.029297
23 29	10738.409180	16796.640625
23 30	13667.710938	17895.759766
24 25	4947 720215	13973 800781
21 25	1917.720210	
24 26	5763.193848	14801.870117
24 27	7384.192871	16281.590820
24 28	0103 637605	18450 009766
24 20	10624 212422	21100 (21004
24 29	10024.3134//	71733.077034
24 30	13323.280273	22298.740234
25 26	1533,467407	828.070007
25 27	2002 5/5000	2207 780020
23 21	2092.242898	2001.190009
25 28	5658.712891	4476.209961
25 29	6976.286133	7225.820312
25 20	10090 013633	0224 020452
20 30	10000.0136/2	0224.337403
26 27	2161.362061	1479.720093
26 28	4133.740234	3648.139648
26 20	5475 472623	6397 750000
20 29	54/5.4/5055	
26 30	8556.978516	7496.869629
27 28	1983.371948	2168.419678
27 20	3371 470703	4918.030273
27 29	5371.470703	
27 30	6403.358887	6017.149414
28 29	1440.902222	2749.610352
28 30	4423.285156	3848.729980
20 20	7167 224051	1000 110620
29 30	2101.254821	1033.113.073
1		
1		
1		
1		

C00:01	6.9500	687.8800	-20.0400	
C01:02	13.2400	326.4300	-40.3500	
C02:03	0.0000	0.0000	0.0000	
C03:04	-51.1000	-372.7200	133.5900	
C04:05	-51.0800	-565.9400	123.4300	
C05:06	79.0900	67.8200	-246.5900	
C06:07	71.2300	-31.4400	-220.5800	
C08:08	130.7700	280.6700	-400.3300	
C09:09	48.5600	41.9200	-151.6500	
C10:10	191.3200	-164.8800	-587.4900	
C11:11	102.4200	-603.2800	-321.5600	
C12:12	209.2800	174.8500	-635.5400	
C13:13	368.5800	-639.5300	-1117.9200	
C14:14	207.3000	-473.7100	-628.6300	
E02:15	-348.0400	2814.5500	953.6700	
E03:16	-707.5800	4576.0000	1932.4600	
E04:17	-1037.1100	7780.6900	2903.2900	
E05:18	-1177.3700	10200.0000	3343.2000	
E06:19	-1571.3200	12073.4600	4543.1300	
S01:20	942.9900	633.9200	-2805.9300	
S02:21	1452.8500	-367.3000	-4279.1600	
S03:22	2184.5400	333.0300	-6404.9600	
S04:23	3072.8600	947.6800	-8979.5000	
S06:24	4592.7100	-369.0400	-13382.4800	
W01:25	-201.5000	-1591.9400	591.3200	
W02:26	-482.6700	-3099.4100	1419.3900	
W03:27	-992.0100	-5199.9000	2899.1100	
W04:28	-1734.5500	-7039.0300	5067.5300	
W05:29	-2706.0900	-8103.1300	7817.1400	
W06:30	-3102.1100	-11245.6000	8916.2600	

8 Appendix C: Some hints for getting the most out of this programme:

Here are some useful hints if it gets difficult to use this programme to identify bad baselines. Although there are no gurantees, with experience we find that using different approaches as the data demands helps get rid of bad baselines.

- Examine the source-subtracted image for the presence of ring-like artifacts centred about the pointing centre. Only if you can notice them then you proceed with the procedure outlined above.
- Sometimes the bad baseline is lost in the maze of baselines in the uv image. Load only a small range close the maximum value in the uv image and check for any baseline which shows a constant offset instead of noise-like behvaiour. If none are visible then load only a small range of values close to the minimum in the uv image and check for any baselines which show a constant offset. This helps in the regions of the uv plane which are crowded. If you do identify the bad baseline then note down the U and V coordinates and use *badbase*.
- Inspite of doing the above at times it does not help identify the bad baseline. In this case, note down the rough U and V of the bad baseline from the uv image and then examine the data using other tasks such as VPLOT etc. This can also be done by noting down the fringe frequency of the ring-like artifact and finding out the uv baseline.
- Sometimes severe RFI can give rise to stripes in the image which confuse the ring-like structure - use the UVSUBed data to CLIP the bad data or remove bad data by identifying the culprits and then continue with the above procedure till the ring-like structure disappears.
- Lastly if all your attempts to flag that bad baseline fails...you can use the data if the bad baseline is at a very low level else request the Centre Director for makeup time on the telescope :>.