The GMRT LTA format

Jayaram N Chengalur

26/Feb/2002

1 Introduction

Interferometric data at the GMRT is stored in a format called the 1ta!
format. This document is a detailed specification of the 1ta format and
is targeted at people who would like to write/modify offline data analysis
software.

As shown in Figure 1, the 1ta format is record oriented, i.e. it consists of an
integer number of fixed length records?. The file starts with a global header,
followed by a scan header. Data for the first scan begins immediately after the
end of the scan header. The second scan header begins immediately after the
last data record of the first scan, and so on. The sizes of the global header
and the scan headers are guaranteed to be integer multiples of the record
length. All the visibility (and associated) data corresponding to a single
timestamp are placed in a single record, i.e. each data record corresponds to
a unique timestamp. In this sense the lta file is in time-baseline order.

The first 4 bytes of almost® every record is a signature. These 4 bytes
specify the type of the record. At the moment there are 3 valid signatures,
viz.

1. HDR Indicates that the record is the first record of a global header.
2. SCAN Indicates that the record is the first record of a scan header.
3. DATA Indicates that the record is a data record.

For SCAN and DATA type records the first few bytes immediately after
the signature indicate the scan number and the record number in that scan.
See figure 1 and the following sections for more details.

! This name is derived from that of the last stage of the correlator, viz. the Long Term
Accumulator.

2This is not strictly true. Programmers should be aware that in case the DAS chain
crashes one could be left with an lta file whose last record is incomplete.

3The only exceptions are the second and succesive records of global and scan headers.
These records do not begin with a signature.

signature (HDR)4—@ GLOBAL HDR 0

GLOBAL HDR N

N SCAN-0 HDR 0

signature (SCAN)
(SCANO000)

SCAN-0 HDR N
SCAN-0 DATA 0

signature (DATA)
(DATA0000.00000)

signature (DATA)
(DATAN000000N) SCAN-0 DATA N

P SCAN-1HDR 0
signature (SCAN) .

(SCANO0001)

‘ SCAN-1HDRN

signature (DATA) — =S SCAN-M DATA N |

(DATA000M.0000N)

Figure 1: Overview of the LTA file structure. LTA files are record based, i.e.
they consist of an integer number of fixed length records. Each file starts with
a global header followed by a scan header. Data for a scan starts immediately
after the end of the scan header. After the last data record of the first scan
one has the scan header for the next scan, and so on. The first record of
the global header begins with the signature “HDR, ”. The first record of each
scan header begins with the signature “SCAN”. The next 4 bytes indicate the
scan number starting with 0000. Each data record begins with the signature
“DATA”. The next 11 bytes are MMMM.NNNNN where MMMM is the scan
number and NNNNN (starting with 00000) is the running number the given
data record in this scan.

2 The Global Header

The global header contains information on both the organization of the lta
file as well as global details of the observation, i.e. things like the number of
baselines and channels, which do not change from one scan to another. This

header consists of two parts, an “ASCII header” and a “binary header”.
In the current version, the ASCII header is complete in itself, i.e. offline
programs can (and in fact do) ignore the binary header. However, this may
be depreciated in the future. The binary header is not complete in itself, i.e.
if one reads only the binary header one will not be able to parse the lta file. In
particular the binary header only contains details regarding the observation
parameters and has no information on the layout of the lta file. In general
the binary header has more detailed information on the observation set up
than is available in the ASCII header.

The ASCII header itself consists of a number of 80 byte blocks. The first
80 bytes of the ASCII header are

HDR REC_LEN HDR_RECS AHDR_RECS

where REC_LEN is the record length in bytes (i.e. all records in this file
are of length REC_LEN bytes), HDR_RECS is the total number of records
that the global header occupies, and AHDR_RECS is the total number
of records that the ASCII header occupies. The remaining HDR_RECS-
AHDR_RECS records consist of the binary header. For example, a global
header starting with

HDR 1013032 2 1

indicates that the record length in this file is 1013032 bytes, and that the
global header is 2 records long, of which 1 record (the first record) is the
ASCII header and 1 record (the second record) is the binary header. Pro-
grams which parse this should only look for three white space separated
integers after the string “HDR”, and not for values starting at a fixed byte
offset.

In the ASCII header, 80 byte blocks that start with the character “*” are
comments. Comments are generally used to indicate the start and end of dif-
ferent sections of the ASCII header. For example the comment “*{ Init.def”
indicates the start of the “Init” section of the ASCII header, while the com-
ment “*} Init” indicates the end of the “Init” section of the ASCII header.
Apart from these comments, the ASCII header consists of (keyword, value)
pairs. The format is

KEYWORD = VALUE

Keywords are 8 characters or less in length. The 9th byte is always and
the value always starts from the 11th byte. The value could contain white

w__»

spaces, programs should in general read all bytes up to the last non white
space byte.

The various keywords and their meanings are given in section 5. The
end of the ASCII header is marked by an 80 byte block starting with the
string “END_OF_HEADER?”. The rest of the ASCII header record is filled
with white space (although programs should not depend on this.). Note that
since it is not necessary for the record length to be a multiple of 80 bytes, if
the ASCII header occupies more than one record one could have an 80 byte
block which is split across two adjacent records.

The binary header contains the “CorrType” structure that is used by the
DAS programs. See the file “newcorr.h” (Appendix 7) for details. Basically if
one reads sizeof(CorrType) bytes from the start of the binary header into an
object that has been declared to be of type CorrType then one has recovered
the CorrType structure that was used by the DAS programs which generated
the given lta file. Note that if the endian type of the machine on which one is
working is different from the one on which the lta file was recorded one will
have to appropriately flip the bytes of each field in the CorrType structure.
(The endian type of the lta file is recorded in the ASCII header).

3 The SCAN header

The scan header contains information that could change from scan to scan,
i.e. things like the source name (and other source related parameters), the
observing frequency, etc. Like the global header, the scan header also consists
of two parts, the ASCII scan header and the binary scan header. The format
of the ASCII scan header is identical to that of the ASCII global header,
i.e. it too consists of 80 byte blocks of (keyword,value) pairs. Also, as in
the ASCII global header, a “*” at the start of an 80 byte block denotes
a comment. Comments in the ASCII scan header are generally of of the
form“*{” and “*}”, i.e. they are used to demarcate different sections.
The first 80 bytes of the ASCII scan header are

SCANMMMM HDR_RECS AHDR_RECS

where MMMM is a integer indicating the scan number in the file. The first
scan would have number 0000, the second 0001 and so on. HDR_RECS
is the total number of records in the scan header and AHDR_RECS is
the total number of records in the ASCII scan header. The end of the

ASCII scan header is marked by an 80 byte block starting with the string
“END_OF_HEADER”. The rest of the scan header record is filled with white
space (although programs should not depend on this.). Note that, as dis-
cussed for the ASCII global header, if the ASCII scan header occupies more
than one record, one could have an 80 byte block which is split across two
adjacent records. The keywords that occur in the scan header are listed in
section 6.

The binary scan header contains the “ScanInfoType” structure used by
the DAS programs. See the file “newcorr.h” (Appendix 7) for details. Ba-
sically if one reads sizeof(ScanInfoType) bytes from the start of the binary
header into an object that has been declared to be of type ScanInfoType
then one has recovered the ScanInfoType structure that was used by the
DAS programs which generated the given lta file. Note that if the endian
type of the machine on which one is working is different from the one on
which the lta file was recorded one will have to appropriately flip the bytes
of each field in the ScanInfoType structure. (The endian type of the lta file
is recorded in the global ASCII header).

4 Data Records

All the data acquired at a given time stamp are placed in a single record. The
first 4 bytes of any data record is the string “DATA”. The next 11 bytes are a
string of the sort “MMMM.NNNNN” where MMMM is the scan number of
this data record and NNNNN is the record number in this scan. For example,
the first data record in the first scan would have the number “0000.00000”,
the second data record would have the number “0000.00001” and so on.

Each data record contains the timestamp*, the record weight®, flags,
model parameters and the visibility data itself. The weight and time stamp
are in double (8 bytes) format. The model parameters are the DataParType
structure used by the DAS programs (see “newcorr.h” (Appendix 7) for de-
tails). The flags are described in section 5. The visibility data is in the form
of two doubles (real and imaginary) per baseline per channel.

Information as to where in each data record these parameters can be found
is given in the ASCII header. For example, the timestamp can be found at

4This is the IST time at the middle of the first STA cycle of this data record.
5This is the number of 0.128 sec LTA cycles that have been integrated to form this
data record.

the byte offset TIME_OFF (from the start of each data record) and consists
of TIMESIZE bytes. (TIME_OFF and TIMESIZE are keywords in the global
ASCII header. All such keywords are listed in Appedix 5). Similarly the data
starts at byte offset DATA _OFF and consists of DATASIZE bytes. As shown
in Figure 2 in each record the data is arranged in baseline-channel order. That
is at offset DATA_OFF one will have the visibility for channel 0 of baseline 0.
The next datum will be channel 1 of baseline 0, and so on until one reaches
the last channel of baseline 0. Then one has channel 0 of baseline 1 and so
on until one reaches the last channel of the last baseline. The composition
of the different baselines is specified in the global ASCII header (i.e. one
has keywords of the sort BASO00 to BASNNN which specify the antennas
(strictly speaking the sidebands and polarizations) which baselines 0 to NNN
are composed off.)

signature (DATANNNN.MMMM)

Byte offset = DATA_OFF

(c0,b0) (c1,b0) (cn,b0) (cO,bl) (cn,bm)

Figure 2: The structure of data records. The first 4 bytes are always “DATA”.
The next 11 bytes are of the form MMMM.NNNNN where MMMM is the
scan number (starting with 0000) and NNNNN is the number of the data
record in this scan (starting at 00000). The visibility data starts at byte
offset DATA_OFF in the record, and is in baseline-channel order. See the
text for more details.

5 Appendix ASCII Global Header

#%{ Tnit.def
RECL
HDR_RECS
REC_FORM
OBS_MODE
VERSION
D_TYPE
D_SIZE
D_ALIGN
INT_REP
FL_REP
BYTE_SEQ
*1 Init

*{ AddCorr.def

ANTENNAS
SAMPLERS
BASELINE
CHANNELS
FLG_OFF
FLG_SIZE
FLGRECOF
FLGRECSZ
FLGANTOF
FLGANTSZ

FLGSMPOF
FLGSMPSZ

FLGBASOF
FLGBASSZ

|

|

|

1013032
2

PROJ_DATA

pre-rel

2.0pre : MONLOG
char short int long float double

124448
124448
Twos Comp
IEEE

Big Endian

30

60
930
128
80
99656

96
120

start of Init section

record length (bytes)

number of header records

type of recorded data (CHECK!)
observing mode

DAS and LTA version

! data types used in file

sizes of these data types (bytes)
alignment of this data types

data representation used for integers
data representation used for floats
byte sequence

end of Init section

start of AddCorr section

total number of antennas in file

total number of samplers in file

total number of baselines in file

total number of channels in file

offset at which flag tables starts

total size of flag tables (bytes)

offset at which per record flag starts
size of per record flag

offset at which per antenna flags start
size of the per antenna flag table (bytes
(one bit per antenna)

offset at which per sampler flags start
size of the per sampler flag table (byte)
(one bit per sampler)

offset at which per basline flags start
size of the per baseline flag table

(one bit per baseline)

FLGDATOF
FLGDATSZ

TIME_OFF
TIMESIZE
WT_OFF
WT_SIZE
PAR_OFF
PAR_SIZE
DATA_OFF
DATASIZE
DATAFMT
*} AddCorr

*{ Corrsys.def

VERSION
CLOCK
STA
STATIME
T_UNIT
ANTS
F_ENABLE
X_ENABLE
CHAN_MAX
POLS

*1 Corrsys

216
99520

59736

8

59744

8

99752

960

60712
952320
COMPL.64

CORR30
32000000.000000 Hz
8192 Cycles

132096 usec
1.000000 sec

30

60

465

128

2

offset at which the per datum flags start
size of the per datum flag table

(4 bits per datum)

offset at which the time stamp starts
size of the time stamp (bytes) (double)
offset at which the record weigth starts
size of the weight (bytes) (double)

offset at which the model parameters start
size of the model parameter structure
offset at which the visibility data starts
size of the visibility data (bytes)

data format (8 byte complex)

end of AddCorr section

start of Corrsys section

DAS version

clock speed (Hz)

FFT cycles in 1 STA (CHECK!)
Length of 1 STA cycle (micro seconds)
Time unit (unused?)

Max antennas in the correlator
Number of samplers in the correlator
Number of MAC chips in the correlator
Max chans in the correlator

Max pols in the correlator

end of Corrsys section

*+{ Antenna.def I start of Antenna section

! This section gives the antenna co-ordinates. The units are meters.

! The co-ordinate system is the usual right handed one used in radio

! astronomy, see eg. Thompson, Moran & Swenson. The last two columns
! give the instumental delays, also in meters. There is one delay per

! polarization.

*Antld = Ant bx by bz delay0 delayl
ANTO0O = C00 6.95 687.88 -20.04 -497.89 -497.89
ANT29 = WO06 -3102.11 -11245.60 8916.26 -29266.87 -29266.87
**1 Antenna.def I end of Antenna section

**{ Bandnames.def I start of Bandnames section
BANDO0O = USB-130

BANDO1 = USB-175

BANDO2 = LSB-130

BANDO3 = LSB-175

*1 Bandnames ! end of Bandnames section

*k{ Sampler.def I start of the Sampler section

! This section gives the sampler conectivity. That is it

! specifies which sideband of which antenna is connected to
! a given sampler and FFT pipeline.

*Sampld = Ant Bandld Fftld

SMP000 = C12 USB-130 000
SMP001 = C(C12 USB-175 001
SMP059 = C13 USB-175 059
*k1 Sampler.def ! end of the Sampler section

*+{ Baseline.def ! start of Baseline section

! This section gives the baseline composition. That is it tells you

! which sidebands of which antennas comprise a given baseline. Both

! the numbers and names of the sidebands and antennas are given. The
! order of baselines here is the same as the order in which data

! is sorted in each data record. That is the data for baseline 0

I (BASO000 in this table) appears at the start of the data block

! data for BASO01 appears at the end of the data for BAS000 and so on

*Baseld = A0 B0 A1 B1 SMP0O SMP1 Ant0 BandO Antl
BASO00 = 04 00 29 00 032 008 C04 USB-130 W06
BAS0O01 = 04 01 29 01 033 009 C04 USB-175 W06
BAS929 = 12 01 12 01 039 059 C13 USB-175 C(C13
**1 Baseline.def ! end of Baseline section

*k{ Corrsel.def start of the Corrsel section

!
MODE = 0 ! DAS mode
LTA = 128 ! STA cycles averaged in one record
SAMP_NUM = 0:59:1 ! samplers whose data is in the file
CHAN_NUM = 0:127:1 ! channel numbers whose data is in the file
*1 Corrsel ! end of the Corrsel section

10

Bandl
USB-130
USB-175

USB-175

6 Appendix ASCII Scan Header

HDR_RECS
*{ SubArray0.def
ANTMASK
BANDMASK
SEQ
PROJECT
CODE
OBJECT
RA-DATE
DEC-DATE
MJD_SRC
DRA/DT

DDEC/DT

F_STEP
RF
FIRST_LO
BB_LO
NET_SIGN

*} SubArray0

*{ ExtraScan.def
INTEG
DATE-OBS

MJD_REF
BAD_RECS
BAD_ANTS
BAD_SAMP
BAD_BASE
BAD_CHAN
*1 ExtraScan

2

Biiiiitia

0003

0

SYSTEM TEST
SYS

3C48

24.452596
33.170747
0.000000
0.000000

0.000000

7812.500000
325000000 325000000
255000000 255000000

70000000 70000000
11-1-1

16.908287
Thu Feb 21 00:01:07 2002

52325.770833

11

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!
|
|
|
|
|
|
|
|
!
!

numer of records in scan header
start of Subarray section
antennas in subarray
sidband(s) in subarray

Project Seq No. (Useful to DAS only)
Project title

project Code

source Name

source RA (mean)

source DEC (mean)

MJD of source co-ordinates
rate of change of source RA
(for solar system objects)

rate of change of source DEC
(for solar system objects)
channel width (Hz)

RF of channel 0 (Hz)

First LO (Hz)

Baseband LO (Hz)

channel spacing=NET_SIGN*F_STEP
per sideband per polarization
end of Subarray section

! begin of ExtraScan section

! integration time (sec)

! Reference date and time

! NOTE: reference time always 00:00:00
! value here should be ignored
! The reference MJD

! list of bad records

! list of bad antennas

! list of bad samplers

! list of bad baselines

! list of bad channels

! end of ExtraScan section

7 Appendix: The binary header (”newcorr.h”)

enum USB_130, USB_175, LSB_130, LSB_175, MAX_BANDS ;
enum RRLL, RRRL, RR__, MACMODES ;
enum arar_arar, alal_alal, brbr_brbr, blbl_blbl,
aral_brbl, aral_alar, brbl_blbr, arbr_albl, DpcMuxVals ;
enum NAMELEN=32, DATELEN=32 ;
enum MAX_ANTS=30, MAX_SAMPS=60, MAX_FFTS=MAX_SAMPS, MAC_CARDS=33,
MAX_BASE=32*MAC_CARDS, MAX_CHANS=128, POLS=2

/* be sure that MAX_FFTS and MAX_SAMPS are both even numbers !
*/

enum MAX_PROJECTS=500, MAX_SCANS=100 ;

enum LittleEndian=1, BigEndian=0 ;

enum TransitObs = 32768 ;

enum TimeSize=sizeof (double), WtSize = 2*sizeof(float),

ActiveScans=8, DataFlagSize=ActiveScans*sizeof(int) ;

typedef struct

char name[4];

unsigned char samp_id[MAX_BANDS] ;

double bx, by, bz; /* metres */

double dO[MAX_BANDS], pO[MAX_BANDS];

/*

samp_id is the local reference for sampler;

corr->sampler[samp_id] .dpc gives the absolute

sampler channel number

scan_id is dynamic and is only locally revelant

to a specific program, pointing to an index

in a scan table which the program may be maintaining.

Others have global significance for all programs

*/

AntennaParType;

typedef struct

int macs, channels, pols, sta, statime ;

float f_step, clock; /* Hz */

unsigned char dpcmux,clksel,fftmode,macmode ; /* replaces old
dummy int */

CorrParType ;

12

in

typedef struct

int antmask, samplers, baselines, channels, 1lta;
short bandmask, mode ;

short chan_num[MAX_CHANS] ;

double mjd._ref, tunit ; /* (mjd_ref*t_unit), (timestamp*t_unit)

sec */

DasParType ;

typedef struct

char object[NAMELEN];

struct float i,q,u,v ; flux ;

double mjd0 /* fractional mjd, to which ra, dec refer x/ ;

/*

mjd0 refers to the epoch of ra_app,dec_app.

Note that the timestamp in data is wrt to the global
reference time contained in daspar->mjd_ref

*/

double ra_app,dec_app,ra_mean,dec_mean,dra,ddec ; /* rad, rad/s

double freq[2], first_ lo[2],bb_1lo[2]; /* Hz */
double rest_freq[2], lsrvel[2] ; /* Hz, km/s */
double ch_width ; /* Hz */

int id, net_sign[MAX_BANDS], mode , dumi;

unsigned int antmask; /* antennas to fringe stop */
unsigned short bandmask, dum?2;

short calcode, qual ;

SourceParType ;

typedef struct

char code[8], observer[NAMELEN], title[NAMELEN] ;
unsigned int antmask ; /* antennas to record */
unsigned short bandmask,seq;

ProjectType ;

typedef struct

int status ;

float t ; /* program dependent meaning ! x/
ProjectType proj ;

SourceParType source ;

ScanInfoType ;

typedef struct wunsigned char ant_id, band, fft_id, dpc;

13

SamplerType;

typedef struct

SamplerType samp[2] ;

unsigned char card,chip,pol,word_incr ;

/* e.g., RRLL pol=1?7 word_incr=2 represents RR component ;
RRLL pol=07 word_incr=2 represents LL component ;

RRRL pol=07 word_incr=2 represents RL component ;

RR__ pol=0?7 , word_incr=1

*/

BaseParType ; /* try this structure instead of BaseType */
typedef struct

unsigned char endian,dummy[7];

char version [NAMELEN]; /* should begin with string "CORR" */
char bandname [MAX_BANDS 1[8];

AntennaParType antenna [MAX_ANTS]; /* Ant pos, freq & other config

SamplerType sampler [MAX_SAMPS]; /* ant, band vs. ffts */

BaseParType baseline[MAX_BASE]; /* Pair of ant, band */

CorrParType corrpar; /* Max. enabled mac_params */

DasParType daspar; /* Actually useful params */

CorrType;

typedef struct wunsigned int ext_model,idle,stop,userflag ; AntennaFlagType

typedef struct float phase, dp, delay, dd /* sec/sec */ ; ModelParType

typedef struct float phase, dp, delay, dslope; DataParType;
/* units: phase in radian, dp in radian/sec,
delay in sec, dslope in radians/channel

*/

typedef struct

double t0 ; /* seconds wrt corr->daspar.mjd_ref */
int ant_id, band ;

ModelParType par ;

ExtModelType ;

define AntennaTypeSize sizeof (AntennaType)

define MacFftTypeSize sizeof (MacFftType)

define SamplerTypeSize sizeof (SamplerType)

define DataParTypeSize sizeof(DataParType)

define CorrTypeSize sizeof (CorrType)

14

define CorrSize sizeof (CorrType)

typedef struct

int in0,inl,out0O,outl ; IndexType ;

typedef struct

double bxcd,bycd,bzsd,fixed,phase, bb_lo,freq, f_step ;
GeomType ;

define DAS_H KEY 1030

define DAS D KEY 1031

define DAS_HO_KEY 1032

define DAS_DO_KEY 1033

define DAS_BUFSIZE 4096000

define DAS_HDRSIZE 200000

typedef struct

int s0,s1, card; /* card points to relevant delay/FFT card */
/%

The two relevant samplers are given by
daspar.samp_num[s0] and daspar.samp_num[s1]

*/

int delay, pO, pstepO,pl,pstepl, fstc ; /* is int ok? */
/* Do not plant delay difference between two streams here;
the difference must be handled as static difference
during initialisation

*/

float p2fstc, fstc_step ; /* is float fine : sirothia 13oct */
FftDelayParType ;

typedef struct

double clock, t_update ;

double pc_time ;

double t_off; /* JNC 16Dec98x/

double delay_step, fstc_scale, nco_tick_time ;

int cycle, seq, cards ;

/*cycle = STA cycles between model update */

unsigned char dpcmux,clksel,fftmode,macmode ;
ModelParType par [MAX_SAMPS] ;

FftDelayParType fdpar[MAX_ANTS] ;

ModelInfoType ;

typedef struct

int active, status, scan, scan_off;

15

CorrType corr ;

ModelInfoType model ;

char buf [DAS_HDRSIZE];

DasHdrType ;

enum BufMarked=1, BufReady=1<<1, RackOBad=1<<2,Rack1Bad=1<<3,Rack2Bad=1<<4,
Rack3Bad=1<<5,Rack4Bad=1<<6,RackbBad=1<<7, BufFinish=1<<8,
MaxDataBuf=100

enum MAX_EVENTS=50000 ;

typedef struct

float t ;

unsigned char type, cmd ;

unsigned short seq ;

int flag num, scan num ; /* indexes on AntennaFlag and ScanInfo

EventLogType ;

typedef struct

int t_off, wt_off, par_off, data_off, data_words ;
short par_words, wordsize ;

RecOffsetType ;

typedef struct

int off ;

BaseParType base ;

char name[12] ;

MacWordType ;

typedef struct

unsigned char seq, scan ;

int status,recl, seqnum ;

RecOffsetType off ;

MacWordType *mac ;

char xbuf ;

RecBufType ;

typedef struct

int active,status;

unsigned short events,flags,starts,stops ;
CorrType corr ;

AntennaFlagType flag[MAX_EVENTS] [MAX_BANDS] ;
EventLogType event[MAX_EVENTS] ;

16

ScanInfoType scaninfo[MAX_SCANS] ;
RecOffsetType offset ;
DataInfoType ;

typedef struct

int flag,rec,seqnum ;

unsigned short flag_seq, newstate ;
DataTabType;

typedef struct

int flag, blocksize, maxblocks, cur_block, first_block, cur_rec;
DataTabType dtab[MaxDataBuf];

char buf[DAS_BUFSIZE] ;

DataBufType ;

17

